7-6-2010

Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s}=7$ TeV

B. Agkun
Carnegie Mellon University

R. Carroll
Carnegie Mellon University

Thomas A. Ferguson
Carnegie Mellon University, ferguson@cmphys.phys.cmu.edu

D. W. Jang
Carnegie Mellon University

S. Y. Jun
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/physics

Part of the Physics Commons

Published In
Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s} = 7$ TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 18 May 2010; published 6 July 2010)

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at $\sqrt{s} = 7$ TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity $dN_{ch}/d\eta|_{|\eta|<0.5} = 5.78 \pm 0.01$ (stat) ± 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from $\sqrt{s} = 0.9$ to 7 TeV is $[66.1 \pm 1.0$ (stat) ± 4.2 (syst)]%. The mean transverse momentum is measured to be 0.545 ± 0.005 (stat) ± 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.

DOF: 10.1103/PhysRevLett.105.022002

PACS numbers: 13.85.Ni

Introduction.—Measurements of particle yields and kinematic distributions are an essential first step in exploring a new energy regime of particle collisions. Such studies contribute to our understanding of the physics of hadron production, including the relative roles of soft and hard scattering contributions, and help construct a solid foundation for other investigations. In the complicated environment of LHC pp collisions [1], firm knowledge of the rates and distributions of inclusive particle production is needed to distinguish rare signal events from the much larger backgrounds of soft hadronic interactions. They will also serve as points of reference for the measurement of nuclear-medium effects in Pb-Pb collisions in the LHC heavy ion program.

The bulk of the particles produced in pp collisions arise from soft interactions, which are modeled only phenomenologically. Experimental results provide the critical guidance for tuning these widely used models and event generators. Soft collisions are commonly classified as elastic scattering, inelastic single-diffractive (SD) dissociation, double-diffractive (DD) dissociation, and inelastic nondiffractive (ND) scattering [2]. (Double-Pomeron exchange is treated as DD in this Letter.) All results presented here refer to inelastic non-single-diffractive (NSD) interactions, and are based on an event selection that retains a large fraction of the ND and DD events, while disfavoring SD events.

The measurements focus on transverse-momentum p_T and pseudorapidity η distributions. The pseudorapidity, commonly used to characterize the direction of particle emission, is defined as $\eta = -\ln (\tan(\theta/2))$, where θ is the polar angle of the direction of the particle with respect to the anticlockwise beam direction. The count of primary charged hadrons N_{ch} is defined to include decay products of particles with proper lifetimes less than 1 cm. Products of secondary interactions are excluded, and a percent-level correction is applied for prompt leptons. The measurements reported here are of $dN_{ch}/d\eta$ and dN_{ch}/dp_T in the pseudorapidity range $|\eta| < 2.4$ and closely follow our previous analysis of minimum-bias data at lower center-of-mass energies of $\sqrt{s} = 0.9$ and 2.36 TeV as reported in Ref. [3].

The data for this study are drawn from an integrated luminosity of 1.1 μb$^{-1}$ recorded with the Compact Muon Solenoid (CMS) experiment [4] on 30 March 2010, during the first hour of the LHC operation at $\sqrt{s} = 7$ TeV. These results are the highest center-of-mass energy measurements of the $dN_{ch}/d\eta$ and dN_{ch}/dp_T distributions conducted at a particle collider so far and complement the other recent measurements of the ALICE experiment at 7 TeV [5].

Experimental methods.—A detailed description of the CMS experiment can be found in Ref. [4]. The detectors used for the present analysis are the pixel and silicon-strip tracker, covering the region $|\eta| < 2.5$ and immersed in a 3.8 T axial magnetic field. The pixel tracker consists of three barrel layers and two end-cap disks at each barrel end. The forward calorimeter (HF), which covers the region $2.9 < |\eta| < 5.2$, was also used for event selection. The detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 [6].

The event selection and analysis methods in this Letter are identical to those used in Ref. [3], where more details can be found. The inelastic pp collision rate was about 50 Hz. At these rates, the fraction of events in the data,
other beam-background rejection 55 100
HF coincidence 55 113
Reconstructed PV 61 551

Selection criteria are applied in sequence, i.e., each line includes the selection from the previous ones.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches + one BSC signal</td>
<td>68 512</td>
</tr>
<tr>
<td>Reconstructed PV</td>
<td>61 551</td>
</tr>
<tr>
<td>HF coincidence</td>
<td>55 113</td>
</tr>
<tr>
<td>Beam-halo rejection</td>
<td>55 104</td>
</tr>
<tr>
<td>Other beam-background rejection</td>
<td>55 100</td>
</tr>
</tbody>
</table>

where two or more minimum-bias collisions occurred in the same bunch crossing, is estimated to be less than 0.3% and was neglected. Any hit in the beam scintillator counters (BSC, 3.23 < |\(\eta \) < 4.65) coinciding with colliding proton bunches was used for triggering the data acquisition. A sample mostly populated with NSD events was selected by requiring a primary vertex (PV) to be reconstructed with the tracker, together with at least one HF tower in each end with more than 3 GeV total energy. Beam-halo and other beam-background events were rejected as described in Ref. [3]. The remaining fraction of background events in the data was found to be less than \(2 \times 10^{-5} \). The numbers of events satisfying the selection criteria are listed in Table I.

The event selection efficiency was estimated with simulated events using the PYTHIA [7,8] and PHOJET [9,10] event generators. The relative event fractions of SD, DD, and ND processes and their respective event selection efficiencies are listed in Table II. The fraction of diffractive events is higher than at \(\sqrt{s} = 5 \) TeV, while the selection efficiency increases.

Table I

<table>
<thead>
<tr>
<th>Selection</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches + one BSC signal</td>
<td>68 512</td>
</tr>
<tr>
<td>Reconstructed PV</td>
<td>61 551</td>
</tr>
<tr>
<td>HF coincidence</td>
<td>55 113</td>
</tr>
<tr>
<td>Beam-halo rejection</td>
<td>55 104</td>
</tr>
<tr>
<td>Other beam-background rejection</td>
<td>55 100</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Fracions</th>
<th>PYTHIA Fraction</th>
<th>Selection efficiencies</th>
<th>Fracions</th>
<th>PHOJET Fraction</th>
<th>Selection efficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>19.2%</td>
<td>26.7%</td>
<td>ND</td>
<td>67.9%</td>
<td>96.4%</td>
</tr>
<tr>
<td>DD</td>
<td>12.9%</td>
<td>33.6%</td>
<td>ND</td>
<td>67.9%</td>
<td>96.4%</td>
</tr>
<tr>
<td>ND</td>
<td>80.8%</td>
<td>86.3%</td>
<td>NSD</td>
<td>80.8%</td>
<td>86.3%</td>
</tr>
<tr>
<td>NSD</td>
<td>80.8%</td>
<td>86.3%</td>
<td>NSD</td>
<td>80.8%</td>
<td>86.3%</td>
</tr>
</tbody>
</table>

Results

For the measurement of the \(dN_{ch}/dp_T \) distribution, charged-particle tracks with \(p_T \) in excess of 0.1 GeV/c were used in 12 different \(|\eta| \) bins, from 0 to 2.4. The average charged-hadron yields in NSD events are shown in Fig. 1 as a function of \(p_T \) and \(|\eta| \). The Tsallis parametrization [12–14],

\[
E \frac{d^2N_{ch}}{dp_T^2} = \frac{1}{2\pi p_T} \frac{E}{d\eta} \frac{d^2N_{ch}}{dy} = C \frac{N_{ch}}{dy} \left(1 + \frac{E_T}{nT} \right)^{-n},
\]

where \(n = 0.5 \ln[(E + p_z)/(E - p_z)] \), \(E_T = \sqrt{m^2 + p_T^2} - m \), and \(m \) is the charged pion mass, was fitted to the data. The \(p_T \) spectrum of charged hadrons, \(1/(2\pi p_T) d^2N_{ch}/d\eta d p_T \), measured in the range \(|\eta| < 2.4 \), is shown in Fig. 2 for data.
The fit to the data [Eq. (1)] is mainly used for extrapolation as a function of p_T; the systematic uncertainties are smaller than the symbols. The measurements at $\sqrt{s} = 0.9$ and 2.36 TeV [3] are also shown. The solid lines represent fits of Eq. (1) to the data.

At 0.9, 2.36, and 7 TeV. The high-p_T reach of the data is limited by the increase of systematic uncertainties with p_T. The parameter T and the exponent n were found to be $T = 0.145 \pm 0.005($syst$)$ GeV and $n = 6.6 \pm 0.2($syst$)$. The average p_T, calculated from a combination of the measured data points and the low- and high-p_T contributions as determined from the fit, is $\langle p_T \rangle = 0.545 \pm 0.005($stat$) \pm 0.015($syst$)$ GeV/c.

Experimental uncertainties related to the trigger and event selection are common to all the analysis methods. The uncertainty related to the presence of SD (DD) events in the final sample was estimated to be 1.4% (1.1%), based on consistency checks between data and simulation for diffractive event candidates. The total event selection uncertainty, which also includes the selection efficiency of the BSC and HF, was found to be 3.5%. Based on studies similar to those presented in Ref. [3], additional 3% and 2% uncertainties were assigned to the tracklet and track reconstruction algorithm efficiencies, respectively. Corrections at the percent level were applied to the final results to extrapolate to $p_T = 0$. The uncertainty on these extrapolation corrections was found to be less than 1%. All other uncertainties are identical to those listed in Ref. [3].

The $dN_{ch}/d\eta$ measurements were repeated on a separate data sample without any magnetic field, for which almost no p_T extrapolation is needed, and gave results consistent within 1.5%. The final systematic uncertainties for the pixel counting, tracklet, and track methods were found to be 5.7%, 4.6%, and 4.3%, respectively, and are strongly correlated.

For the $dN_{ch}/d\eta$ measurements, the results for the three individual layers within the cluster-counting method were found to be consistent within 1.2% and were combined. The three layer pairs in the pixel-tracklet method provided results that agreed within 0.6% and were also combined. Finally, the results from the three different measurement methods, which agree with the combined result within 1% to 4% depending on η, were averaged. The final $dN_{ch}/d\eta$ distributions are shown in Fig. 3 for $\sqrt{s} = 0.9$, 2.36, and 7 TeV. The CMS results are compared with measurements made by other experiments. In the ATLAS Collaboration analysis [15], events and particles were selected in a different region of phase space, which makes a direct comparison difficult. Their results are therefore not included in the figure.

The results can also be compared to earlier experiments as a function of \sqrt{s}. The energy dependence of the average charged hadron p_T can be described by a quadratic function of $\ln s$ [16]. As shown in Fig. 4, the present measure-
FIG. 3. Distributions of $dN_{ch}/d\eta$, averaged over the three measurement methods and compared with data from UA5 [23] ($p\bar{p}$, with statistical errors only) and ALICE [24] (with systematic uncertainties). The shaded band shows systematic uncertainties of the CMS data. The CMS and UA5 data are averaged over negative and positive values of η. The CMS and UA5 data include the systematic uncertainties. The shaded band shows systematic uncertainties. The shaded band shows systematic uncertainties.

FIG. 4. Average p_T of charged hadrons as a function of the center-of-mass energy. The CMS measurements are for $|\eta| < 2.4$. Also shown are measurements from the ISR [25] (pp), E735 [26] ($p\bar{p}$), and CDF [27] ($p\bar{p}$) for $|\eta| < 0.5$, and from UA1 [16] ($p\bar{p}$) for $|\eta| < 2.5$. The solid line is a fit of the functional form $<p_T> = 0.413 - 0.0171 \ln s + 0.00143 \ln^2 s$ to the data. The error bars on the CMS data include the systematic uncertainties.

FIG. 5. Average value of $dN_{ch}/d\eta$ in the central η region as a function of center-of-mass energy in pp and $p\bar{p}$ collisions. Also shown are NSD and inelastic measurements from the NAL Bubble Chamber [28] ($p\bar{p}$). ISR [29] (pp), UA1 [16] ($p\bar{p}$), UA5 [23] ($p\bar{p}$), CDF [30] ($p\bar{p}$), STAR [31] (pp), PHOBOS [32] (pp), and ALICE [24] (pp). The curves are second-order polynomial fits for the inelastic (solid) and NSD event selections (dashed). The error bars include systematic uncertainties, when available. Data points at 0.9 and 2.36 TeV are slightly displaced horizontally for visibility.
range. These differences indicate the need for a continued model development and simulation tuning. Work on updated event generators based on LHC data is currently under way.

Summary.—Charged-hadron transverse-momentum and pseudorapidity distributions have been measured in proton-proton collisions at √s = 7 TeV. The numerical values of the data presented in this Letter can be found in the HEPDATA database [22]. The combined result for the central pseudorapidity density, from three mutually consistent methods of measurement, is dNch/dη|η<0.5 = 5.78 ± 0.01(stat) ± 0.23(syst) for non-single-diffractive events. This value is higher than most predictions and provides new information to constrain ongoing improvements of soft particle production models and event generators. The mean transverse momentum has been measured to be 0.545 ± 0.005(stat) ± 0.015(syst) GeV/c. These studies are the first steps in the exploration of particle production at the new center-of-mass energy frontier, and contribute to the understanding of the dynamics in soft hadronic interactions.

We congratulate and express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR and administrative staff at CERN and other CMS institutes, excellent performance of the LHC. We thank the technical colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR and administrative staff at CERN and other CMS institutes.

S. Naumann-Emme,38 F. Nowak,38 C. Sander,38 H. Schettler,38 P. Schleper,38 M. Schröder,38 T. Schum,38
J. Schwandt,38 H. Stadie,38 G. Steinbrück,38 J. Thomsen,38 R. Wolf,38 J. Bauer,39 V. Buege,39 A. Cakir,39
F. Ratnikov,39 M. Renz,39 A. Sabellek,39 C. Saout,39 A. Scheurer,39 P. Schieberdecker,39 F.-P. Schilling,39
E. B. Ziebarth,39 G. Daskalakis,40 T. Geralis,40 A. Kyriakis,40 D. Loukas,40 I. Manolakos,40 A. Markou,40
C. Markou,40 C. Mamroutamatis,40 E. Petrakou,40 L. Gouskou,41 P. Katsas,41 A. Panagiotou,41,b I. Evangelou,42
P. Kokkas,42 N. Manthos,42 I. Papadopoulos,42 V. Patras,42 F. A. Triantis,42 A. Aranyi,43 G. Bencze,43
L. Boldizsar,43 G. Debreczeni,43 C. Hajdu,43,d B. Horvath,43,f A. Kapusi,43 K. Krajczar,43 A. Laszlo,43,F. Sikler,43
G. Vesztorgombi,43 N. Beni,44 J. Molnar,44 J. Palinkas,44 Z. Szillasi,44,b V. Veszprémi,44 P. Raics,45 Z. L. Trocsanyi,45
P. Kokkas,42 N. Manthos,42 I. Papadopoulos,42 V. Patras,42 F. A. Triantis,42 A. Aranyi,43 G. Bencze,43
L. Boldizsar,43 G. Debreczeni,43 C. Hajdu,43,d B. Horvath,43,f A. Kapusi,43 K. Krajczar,43 A. Laszlo,43,F. Sikler,43
G. Vesztorgombi,43 N. Beni,44 J. Molnar,44 J. Palinkas,44 Z. Szillasi,44,b V. Veszprémi,44 P. Raics,45 Z. L. Trocsanyi,45
P. Kokkas,42 N. Manthos,42 I. Papadopoulos,42 V. Patras,42 F. A. Triantis,42 A. Aranyi,43 G. Bencze,43
L. Boldizsar,43 G. Debreczeni,43 C. Hajdu,43,d B. Horvath,43,f A. Kapusi,43 K. Krajczar,43 A. Laszlo,43,F. Sikler,43
G. Vesztorgombi,43 N. Beni,44 J. Molnar,44 J. Palinkas,44 Z. Szillasi,44,b V. Veszprémi,44 P. Raics,45 Z. L. Trocsanyi,45
P. Kokkas,42 N. Manthos,42 I. Papadopoulos,42 V. Patras,42 F. A. Triantis,42 A. Aranyi,43 G. Bencze,43
L. Boldizsar,43 G. Debreczeni,43 C. Hajdu,43,d B. Horvath,43,f A. Kapusi,43 K. Krajczar,43 A. Laszlo,43,F. Sikler,43
G. Vesztorgombi,43 N. Beni,44 J. Molnar,44 J. Palinkas,44 Z. Szillasi,44,b V. Veszprémi,44 P. Raics,45 Z. L. Trocsanyi,45

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Vrije Universiteit Brussel, Brussel, Belgium
5Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
6Laboratório de Fisica Nuclear, Universidade Federal do Rio de Janeiro, Brazil
7Laboratório de Instrumentação e Física Teórica de Partículas, Universidade Federal do Rio de Janeiro, Brazil
8Universidade Federal Fluminense, Niterói, Brazil
9University of California, Berkeley, California
10State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
11Institute of High Energy Physics, Beijing, China
12Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network for High Energy Physics, Cairo, Egypt
13National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
14Department of Physics, University of Helsinki, Helsinki, Finland