1970

Observation and prediction for the heat equation.

Victor J. Mizel
Carnegie Mellon University

Thomas I. Seidman
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
OBSERVATION AND PREDICTION FOR
THE HEAT EQUATION, II

by

V. J. Mizel and T. I. Seidman

Report 70-35

September, 1970
1. **Introduction.** Consider an insulated uniform body occupying a bounded open subset \mathcal{R} of \mathbb{R}^m with piecewise smooth boundary $\partial\mathcal{R}$. Under proper normalization the temperature $u = u(t,x)$ satisfies

\[u_t = \Delta u \quad t > 0, x \in \mathcal{R} \quad (1a) \]

\[u_n|_{\partial\mathcal{R}} = 0 \quad t > 0, \quad (1b) \]

where u_n denotes the (outward) normal derivative defined at all points of $\partial\mathcal{R}$ except the negligible subset for which a normal is not defined. Suppose it possible to observe the boundary value $f(t,\cdot) = u(t,\cdot)|_{\partial\mathcal{R}}$ throughout the time interval $0 < t < T$. Is it then possible, given this data alone, to predict $w(x) = u(T,x)$, $x \in \mathcal{R}$, and furthermore is the problem "well posed"? More precisely, we ask whether the mapping

\[A: f \mapsto w \quad (2) \]

from the linear manifold \mathcal{M} of boundary values assumed by solutions of (1) to the space $L^2(\mathcal{R})$, is well-defined and continuous, topologizing \mathcal{M} by the norm of $L^2((0,T) \times \partial\mathcal{R})$.

In our previous paper [5] we succeeded in showing that the answer is affirmative whenever \mathcal{R} is a cylindrical region, i.e., when $\mathcal{R} = (a,b) \times \mathcal{S}$ for some bounded open subset \mathcal{S} of \mathbb{R}^{m-1} with
piecewise smooth boundary. The purpose of the present note is, first,
to show that the answer is likewise affirmative when \(\mathcal{R} \) is the
\(m \)-ball and, second, to discuss the problems involved in extending
these results to a more general class of regions \(\mathcal{R} \).

As in the paper [5], the argument proceeds by using separation
of variables to reduce this problem to a problem in the theory of
approximation by exponential sums (Dirichlet series). The significant
new aspect of the present problem is the necessity of developing uniform
results concerning Dirichlet series approximation: results which are
valid for every series whose exponent sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \)
belongs to a prescribed class of sequences. As far as we know,
such uniformity problems involving a class of exponent sequences
have not previously been considered (except en passant in [1]).
For this reason, our results in this direction are presented in
somewhat greater generality than is needed directly for our application
(see §4).

§2. We begin by noting that the mapping given in (2) is well-defined
for every bounded \(\mathcal{R} \) with piecewise smooth boundary and every \(T > 0 \).
This follows from the fact, implied by the unique extension property
for the heat equation, that the only solution to (1) which satisfies
the additional condition
\[
u(t,x) = 0 \quad 0 < t < T, \quad x \in \partial \mathcal{R} \]
is \(u = 0 \); see e.g. [5].

We now restrict ourselves to an investigation of the mapping \(A \)
for the case of an \(m \)-ball, which without loss of generality we may
take to be of radius 1. The separability of the Laplacian for the
m-ball ensures that we may write any solution of (1) in the form

$$u(t,x) = \sum_{i,n} c_{in} e^{-\lambda_{in} t} \Omega_i(w) R_{in}(r),$$

with $t > 0$, w varying over the unit sphere, and $r \in [0,1]$, so $x = rw \in \mathbb{R}$. (We refer to r as the 'radial' variable, w as the 'angular' variable.) The $\{\Omega_i\}$ are the orthonormalized 'angular' eigenfunctions of Δ for \mathbb{R}, the $\{R_{in}\}$ are the corresponding radial eigenfunctions for the Neumann boundary condition (1b), and the $\{\lambda_{in}\}$ are the eigenvalues of Δ pertaining to this boundary condition. In writing (3) we have used the fact that in \mathbb{R}^m

$$\Delta = r^{1-m} \frac{\partial}{\partial r} [r^{m-1} \frac{\partial}{\partial r}] + r^{-2} L$$

where L is a partial differential operator involving only the 'angular' variable w. It follows that

$$L \Omega_i = \nu_i^2 \Omega_i, \quad i \geq 1,$$

(4)

(Note that the operator L has multiple eigenvalues so each distinct eigenvalue may appear several times in the sequence $\{\nu_i^2\}$.) Likewise

$$R_{in}'' + \frac{m-1}{r} R_{in}' + (\lambda_{in} - \nu_i^2/r^2) R_{in} = 0$$

(5)

$$R_{in}(1) = 0, \quad R_{in}(0^+) \text{ bounded.}$$

We also have the normalization conditions

$$\langle \Omega_i, \Omega_j \rangle_{\partial \mathbb{R}} = \int_{\partial \mathbb{R}} \Omega_i \Omega_j dw = \delta_{ij}$$

(6a)

$$\langle R_{in}, R_{in'} \rangle = \int_0^1 R_{in}(r) R_{in'}(r) r^{m-1} dr = 0 \quad n \neq n'$$

(6b)
and we set

$$N_{in}^2 = \int_0^1 |R_{in}(r)|^2 r^{m-1} dr.$$

(6d)

With the above normalizations the coefficients \(c_{in}\) satisfy

$$\sum_{i,n} |c_{in}|^2 N_{in}^2 e^{-2\lambda in t} < \infty \quad \text{for} \quad t > 0,$$

(7)

since \(u(t,\cdot) \in L^2(\mathbb{R})\) for all \(t > 0\).

From the expansion (3) and from (6c) and (7) we see that

$$f(t,x) = \sum_{i,n} c_{in} e^{-\lambda in t} \Omega_i(w) \quad x = w \in \partial \mathcal{Q}, \quad 0 < t < T,$$

(8a)

$$w(x) = \sum_{i,n} (c_{in} e^{-\lambda in t}) \Omega_i(w) R_{in}(r) \quad x = rw \in \mathcal{Q}.$$

(8b)

Using (6a) we have

$$f(t,x) = \sum_{i,n} c_{in} e^{-\lambda in t} =$$

$$= \langle f(t,\cdot), \Omega_i \rangle_{\partial \mathcal{Q}} = \int f(t,\cdot) \Omega_i dw$$

$$0 < t < T, \quad i = 1, 2, \ldots.$$

(9)

We introduce the following notation: for any sequence \(\lambda = (\lambda_1, \lambda_2, \ldots)\)

with \(0 < \lambda_1 < \lambda_2 < \ldots\) we write

$$[\Lambda] = \overline{sp} \{ e^{-\lambda t} : \lambda \in \Lambda \} \subset L^2(0, \infty)$$

$$[\Lambda]_T = \overline{sp} \{ e^{-\lambda t} : \lambda \in \Lambda \} \subset L^2(0, T).$$

Then let \(t_n^A = t_n^A : n \geq 1\) and \(t_n^T = t_n^T : n \geq 1\) denote linear functionals—assuming they are well defined—such that
\(t_n \varphi \mapsto b_n \) whenever \(\varphi = \sum b_k e^{-\lambda_k t} \in [A] \subset L^2(0,\infty) \)

\(t_n^T \psi \mapsto b_n \) whenever \(\psi = \sum b_k e^{-\lambda_k t} \in [A]_T \subset L^2(0,T) \).

We will be concerned in particular with the eigenvalue sequences \(\Lambda_{i} = \{\lambda_{in}\}_{n \geq 1} \) obtained from the boundary value problem (5). In terms of the above notation and using equation (9), we may express the coefficients \(\{c_{in}\} \) appearing in (3) and (8) by

\[c_{in} = t_{in}^T (f_i) = t_{in}^T (\langle f, \Omega_i \rangle_{\partial \mathbb{R}}) \quad i,n \geq 1, \]

where for brevity we have written \(t_{in}^T \) for \(t_n^T \). Thus (8b) can be written as

\[[Af](x) = w(x) = \sum_{i,n} t_{in}^T (\langle f, \Omega_i \rangle_{\partial \mathbb{R}}) \Omega_i(w) R_{in}(r) e^{-\lambda_{in} T} \quad x = rw \in \mathbb{R}. \quad (10) \]

It follows that if each of the \(\{t_{in}^T\} \) is continuously extendable to all of \([A_i]_T \subset L^2(0,T) \) and if we can obtain suitable estimates for the \(\|t_{in}^T\| \) then we can estimate \(\|A\| \). In fact, we have from (6) and (10) that

\[|w|_{\mathbb{R}}^2 = \sum_{i,n} t_{in}^T (\langle f, \Omega_i \rangle_{\partial \mathbb{R}}) \Omega_i(w) R_{in}(r) e^{-\lambda_{in} T} \]

\[\leq \sum_{i,n} \|t_{in}^T\|^2 |\langle f, \Omega_i \rangle_{\partial \mathbb{R}}|^2_{(0,T)} N_{in}^2 e^{-2\lambda_{in} T} \]

\[\leq \sup_i \{ \sum_n \|t_{in}^T\|^{2} N_{in}^2 e^{-2\lambda_{in} T} \} |f|_{(0,T)}^2 \]

since by (6a) and the completeness of the \(\{\Omega_i\} \),

\[\sum_i |\langle f, \Omega_i \rangle|^2_{(0,T)} = |f|_{(0,T) \times \partial \mathbb{R}}^2 \]

(For convenience we will consistently use \(| | \), with subscripts
for the range of integration, to denote integral L^2 norms of functions, and we will use $\| \|$ without subscripts, to denote operator norms of linear functionals and transformations.) Hence we have the estimate

$$\|A\|^2 \leq \sup_i \{ \Sigma_n \| t^T_{in} \|^2 N^2_n e^{-2\lambda in T} \}. \tag{11}$$

By the Hahn-Banach theorem, the functional $t^T_n = t^\Lambda_n T$

(defined initially on $\text{sp}(e^{-\lambda t} : \lambda \in \Lambda)$) is continuously extendable to $[\Lambda]_T$ if and only if the function $e^{-\lambda n t}$, $0 < t < T$, satisfies

$$e^{-\lambda n t} \notin \Lambda - \{ \lambda_n \}_T = \text{sp}(e^{-\lambda k t} : k \neq n) \subset L^2(0,T). \tag{12a}$$

In this case,

$$\|t^T_n\|^{-1} = \inf \left\{ |e^{-\lambda n t} - \varphi|_{(0,T)} : \varphi \in \text{sp}(e^{-\lambda k t} : \lambda_k \in \Lambda, k \neq n) \right\}
= \text{dist}(e^{-\lambda n t}, [\Lambda - \{ \lambda_n \}]_T). \tag{12b}$$

Thus our prediction problem reduces to obtaining suitable estimates, uniform in i, of the quantities $\{N_{in}\}$ and

$$\|t^T_{in}\|^{-1} = \text{dist}(e^{-\lambda n t}, [\Lambda_i - \lambda_{in}]_T). \tag{13}$$

§3. In this section we examine the sequences Λ_i and $\{R_{in}\}$

given by (5). For the purposes of this section we may suppress the subscript i and consider the eigenvalue problem:

$$R'' + \frac{m-1}{r} R' + (\lambda - \nu^2/r^2) R = 0, \quad 0 < r < 1,
R(0^+) \text{ bounded, } R'(1) = 0, \tag{5'}$$
in which ν appears as a parameter. We take ν ≥ 1, this being valid for the eigenvalues ν_i given by (4) (see, e.g., [2]). We seek the eigenvalues λ = λ_1, λ_2, ... and eigenfunctions R = R_1, R_2, ... satisfying (5') with the normalization: R(1) = 1.

It is convenient to set z_n = \sqrt{\lambda_n} in which case we can express z_n, R_n in terms of Bessel functions:

\[R_n(r) = r^{1-m/2} J_\nu(z_n r)/J_\nu(z_n), \quad \text{and} \]

\[\sqrt{\lambda_n} = z_n \quad \text{is the nth zero of } J'_\nu. \]

This leads to the formula

\[N_n^2 = \int_0^1 R_n(r) | r^{m-1} dr = \int_o^z J_\nu(z)^2 z dz/\lambda_n J_\nu(z_n)^2. \]

On multiplying Bessel's equation by zJ'_ν and integrating by parts between 0 and z_n we now obtain the uniform estimate

\[N_n^2 = \frac{1}{2}(1 - \nu^2/\lambda_n) \leq 1/2. \]

Note that this also shows that \(\lambda_n \geq \nu^2 \geq 1. \)

We proceed next to obtain a uniform lower bound for the separations (z_{n+1} - z_n), namely we show that z_{n+1} - z_n ≥ 1/2. Note first that with the change of scale \(r \mapsto y = r z_n, \hat{R}(y) = R_n(r), \) the differential equation of (5') becomes

\[\frac{\hat{R}}{y} + \frac{m-1}{y} \hat{R} + (1 - \nu^2/y^2) \hat{R} = 0. \]

Passing now to the polar phase plane variables (cf. [3])

\[y^{m-1} \hat{R}' = \rho \cos \theta, \quad \hat{R} = \rho \sin \theta, \]
one obtains the system
\[\rho' = [y^{1-m} - (y^{m-1} - \nu^2 y^{m-3})] \rho \sin \theta \cos \theta, \]
\[\theta' = y^{1-m} \cos^2 \theta + [y^{m-1} - \nu^2 y^{m-3}] \sin \theta. \]
\[(17) \]
Note that the condition \(\dot{R}(z_n) = 0 \) is equivalent to \(\cos \theta(z_n) = 0 \).

For each interval \([z_n, z_{n+1}]\) we have \(y \geq z_n \geq \nu \geq 1 \) so \(\theta' > 0 \)
and we may find a (unique) subinterval \((\alpha, \beta) \subset \theta z_n, z_{n+1}\) for which
\[\sin^2 \theta(y) < y^{2-2m} \quad \text{for} \quad y \in (\alpha, \beta) \]
\[\sin^2 \theta(\alpha) = \alpha^{2-2m}, \quad \sin^2 \theta(\beta) = 0. \]

On this subinterval, by (17), we have \(\theta' \leq 2y^{1-m} \leq 2\alpha^{1-m} \) so that
\[\theta(\beta) - \theta(\alpha) = \int_{\alpha}^{\beta} \theta' \, dy \leq 2\alpha^{1-m}(\beta - \alpha). \]

But
\[\alpha^{1-m} = |\sin \theta(\beta) - \sin \theta(\alpha)| \leq \theta(\beta) - \theta(\alpha), \]
and this gives the desired lower bound for the separation:
\[z_{n+1} - z_n > \beta - \alpha \geq [\theta(\beta) - \theta(\alpha)] / \max(\theta'(y) : \alpha \leq y \leq \beta) \]
\[\geq [\sin \theta(\beta) - \sin \theta(\alpha)]/2\alpha^{1-m} = 1/2. \]
\[(18) \]
(Although (18) gives uniform estimates of the separation of zeroes of \(J'_\nu \) for arbitrary \(\nu \geq 1 \), much more accurate asymptotic estimates are available (e.g., in [7]).)

\section{The present section is devoted to obtaining the needed estimates for the quantities \(\|T_{in}^T \| \) occurring in \$2\). In pursuing this goal we develop, as mentioned earlier, results for approximation by Dirichlet
series which are uniform over certain classes of sequences.

We begin by referring to results of L. Schwartz ([9] §6,§9) (see also [1] and [4]). We restate these in a form convenient for our purpose. In what follows a regular sequence $\Lambda = (\lambda_1, \lambda_2, \ldots)$ is one for which $\sum 1/\lambda_k$ converges and for which there is a positive lower bound for the separations $(\lambda_{k+1} - \lambda_k)$.

Theorem (S_1): If Λ is a regular sequence then each function $F \in [\Lambda] \subset L^2(0, \infty)$ possesses a unique Dirichlet series expansion of the form

$$F(\tau) = \sum_{n} d_n e^{-\lambda_n \tau} \quad (19)$$

which converges for complex $\tau = t + is$ in the halfplane $t > 0$. Moreover, there exists a positive function C^Λ, defined on $(0, \infty)$ by

$$C^\Lambda(t) = \sqrt{2\pi} \sum_n \frac{\lambda_n}{1 + 2\pi} \left| \frac{\lambda_n + \lambda_m}{\lambda_n - \lambda_m} \right| e^{-(\lambda_n - \lambda_1)t} \quad (20)$$

which is bounded on each interval $[t_0, \infty), t_0 > 0$, and for which

$$\sum_{n} ||A_n|| e^{-(\lambda_n - \varepsilon)t} \leq C^\Lambda(t) e^{-(\lambda_1 - \varepsilon)t} \quad \text{for } \varepsilon > 0. \quad (21)$$

Consequently, for each $F \in [\Lambda] \subset L^2(0, \infty)$,

$$e^{\varepsilon t} |F(t + is)| < |F|_{(0, \infty)} C^\Lambda(t) e^{-(\lambda_1 - \varepsilon)t}, \text{ for all } 0 \leq \varepsilon \leq \lambda_1. \quad (22)$$

Theorem (S_2): If Λ is a regular sequence and $T > 0$, then every function $F \in [\Lambda]_T$ is the restriction to $(0, T)$ of a unique function $F^* \in [\Lambda]$, and there exists a positive constant c^Λ_T, independent of F, such that

$$|F^*|_{(0, \infty)} \geq |F|_{(0, T)} \geq c^\Lambda_T |F^*|_{(0, \infty)}. \quad (23)$$
We now wish to consider classes of sequences which obey a stronger separation requirement than regularity. To wit, given $\beta > 1$ and $\delta > 0$, we consider all sequences Λ satisfying

\begin{equation}
\frac{1}{\beta} \lambda_{n+1}^{1/\beta} - \lambda_n^{1/\beta} \geq 2\delta, \quad n \geq 1
\end{equation}

\begin{equation}
\lambda_1^{1/\beta} \geq 2\delta.
\end{equation}

The regularity of such sequences is clear. Moreover by the results in §3, the sequences Λ_1 determined by (5) satisfy (24) with $\delta = 1/4$, $\beta = 2$.

The following result is a uniform version of theorems (S_1) and (S_2).

Theorem 1: Let $\mathcal{L}_{\delta, \beta}$ denote the class of all sequences Λ satisfying (24) for a prescribed pair δ, β with $\delta > 0$, $\beta > 1$. Then there exists a positive function $C_{\delta, \beta}$ on $(0, \infty)$, bounded on each interval $[t_0, \infty)$, $t_0 > 0$, such that

\begin{equation}
e^{\epsilon t} |F(t + i\sigma)| \leq |F|_{(0, \infty)} C^A(t) e^{-\left(\lambda_1 - \epsilon\right) t} \leq |F|_{(0, \infty)} C_{\delta, \beta}(t),
\end{equation}

when $\Lambda \in \mathcal{L}_{\delta, \beta}$ and $0 \leq \epsilon \leq \delta$.

Moreover, for each $T > 0$ there exists a positive constant $c_{\delta, \beta, T}$ such that

\begin{equation}
c^A_t \geq c_{\delta, \beta, T} \quad \text{for all} \quad \Lambda \in \mathcal{L}_{\delta, \beta}.
\end{equation}

Proof: Define a positive sequence $M = (\mu_1, \mu_2, \ldots)$ as follows

\begin{equation}
(\mu_j)^{1/\beta} = (j + 1)\delta \quad j \geq 1.
\end{equation}

We will show that we may take

\begin{equation}
c_{\delta, \beta}(t) = c^M(t/2^\beta).
\end{equation}
Since M is regular, C^M is, by theorems (S_1), bounded on each interval $[t_0, \infty)$, $t_0 > 0$. Hence it suffices to verify the inequality

$$\sup\{C^\Lambda|t|e^{-(\lambda_1-\delta)^t}: \Lambda \in \mathcal{L}_\delta, \beta\} \leq C^M(t/2^\beta)e^{-(\mu_1-\delta)^t/2^\beta} \quad (28)$$

which by (20) is equivalent to

$$\Sigma_n \left(1 + \frac{\lambda_n}{2\pi} \right)^2 \frac{|\lambda + \lambda_m|}{n + \lambda_m} e^{-(\lambda - \delta)^t} \leq \Sigma_j \left(1 + \frac{\mu_j}{2\pi} \right)^2 \frac{|\mu_j + \mu_k|}{\mu_j - \mu_k} e^{-(\mu_j - \delta)^t/2^\beta} \quad (29)$$

for all $\Lambda \in \mathcal{L}_\delta, \beta$.

Suppose $\Lambda \in \mathcal{L}_\delta, \beta$ is fixed. By (24) and (27) there exists for each n an index j_n such that

$$\lambda_n \in [\mu_{j_n-1}, \mu_{j_n}]$$

and $n \neq m$ implies $j_n \neq j_m$. In order to show that (28) holds it is sufficient to show that each term on the left is dominated by an appropriate term on the right. We show in fact that for each n and for $j = j_n$ one has

$$\left(1 + \frac{\lambda_n}{2\pi} \right)^2 \frac{|\lambda + \lambda_m|}{n + \lambda_m} e^{-(\lambda - \delta)^t} \leq \left(1 + \frac{\mu_j}{2\pi} \right)^2 \frac{|\mu_j + \mu_k|}{\mu_j - \mu_k} e^{-(\mu_j - \delta)^t/2^\beta} \quad (30)$$

Note that

$$\lambda_n - \delta \geq [(j - 1)^\beta - 1] \delta \geq [(j^\beta - 2^\beta)/2^\beta] \delta = (\mu_j - \mu_1)/2^\beta.$$
Thus

\[(1 + \frac{\lambda_n}{2\pi})^2 - (\lambda_n - \delta^\beta) t \leq (1 + \frac{\mu_j}{2\pi})^2 - (\mu_j - \delta^\beta) t / 2^\beta, \]

and it remains only to compare the infinite products in (29). Now

by (24) we have, for \(k = 1, 2, \ldots, \)

\[|\lambda_n^{1/\beta} - \lambda_n^{1/\beta}| \geq 2\delta_k, \]

so, since \(j = j_n \geq 2 \) for all \(n, \)

\[\frac{\lambda_{n-k}}{\lambda_n}^{1/\beta} \leq \frac{(j-2k)\delta}{(j-1)\delta} \leq \frac{j-k}{j} \quad n \geq 1, k \geq 1 \]

\[\frac{\lambda_n}{\lambda_{n+k}}^{1/\beta} \leq \frac{j\delta}{((j-1)+2k)\delta} \leq \frac{j}{j+k} \]

That is,

\[\frac{\lambda_{n-k}}{\lambda_n} \leq \frac{\mu_{j-k}}{\mu_j}, \quad \frac{\lambda_n}{\lambda_{n+k}} \leq \frac{\mu_j}{\mu_{j+k}} \]

which implies that for both \(m > n \) and \(m < n, \)

\[\left| \frac{\lambda_n + \lambda_m}{\lambda_n - \lambda_m} \right| \leq \left| \frac{\mu_j + \mu_j + (m-n)}{\mu_j - \mu_j + (m-n)} \right| \]

On noting that any discarded factors of the right hand product
in (30) are greater than 1, we see that (29) has been proved.
To complete the proof, we note that by Theorem S_2 there exists $c_T^\Lambda > 0$ for each $\Lambda \in \mathcal{L}$ and we set

$$c_T = c_T, \delta, \beta = \inf \{ c_T^\Lambda : \Lambda \in \mathcal{L} \};$$

we need only prove that $c_T > 0$. If, indeed, we had $c_T = 0$, then there would exist a sequence Λ_k in \mathcal{L} and a sequence of exponential polynomials $P_k \in \text{sp}\{ e^{-\lambda t} : \lambda \in \Lambda_k \}$ such that

$$|P_k|(0, \infty) = 1, \quad k = 1, 2, \ldots, \quad (31a)$$
$$|P_k|(0, T) \to 0, \quad k \to \infty. \quad (31b)$$

By (22), and (25) we have

$$e^{\epsilon t} |P_k(t + i\sigma)| \leq C_{\delta, \beta}(t) \quad \text{for} \quad t > 0, \quad 0 \leq \epsilon \leq \delta^B, \quad (32)$$

where $C_{\delta, \beta}(t)$ is uniformly bounded on any interval $[t_\circ, \infty)$, $t_\circ > 0$.

Thus, a standard result on normal families of analytic functions implies the existence of a subsequence of $\{ P_k \}$--which we again denote by $\{ P_k \}$--which converges to an analytic limit function P.

Since the convergence asserted is uniform in any compact subset of the right half-plane, it follows that $P_k \to P$ in, e.g., $L^2(T/2, T)$.

By (31b), this shows $P = 0$ a.e. in $(T/2, T)$ whence, as P is analytic in the right half-plane, we conclude that $P = 0$. Now, using (32) we also have $P_k \to P = 0$ in $L^2[T, \infty)$, so

$$|P_k|^2(0, \infty) = |P_k|^2(0, T) + |P_k|^2(T, \infty) \to 0$$

(using (31b)), which contradicts (31a). Hence $c_T > 0$.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
Remarks 1. In the above theorem the class $L_{\delta, \beta}$ was obtained by applying a map $\lambda_k = \varphi(z_k)$ (here, $\varphi(z) = z^\beta$) to uniformly separated sequences (z_1, z_2, \ldots). In fact, L was specified by giving φ, (i.e., β) as well as the separation of the z's, and a lower bound for $z_1 > 0$. The proof of the theorem was tailored to the exponential nature of the mapping φ considered, but one might also consider more general mappings. It would seem of interest to determine reasonable sufficient conditions on φ for the analogous theorem to be valid.

2. Although we have emphasized the spaces $L^2(0, \infty)$ and $L^2(0, T)$, analogous results hold for L^p spaces with $p \neq 2$. In fact Theorems (S.1) and (S.2) apply for $p \neq 2$ (cf. [9]) and a correspondingly revised proof for Theorem 1 is also available.

3. It should be noted that if $\Lambda \in L_{\delta, \beta}$ satisfies a restriction of the form

$$\frac{1}{\lambda_1^\beta} \geq (r_0 + 1)\delta$$

then the comparison sequence could be taken as the following subsequence of M,

$$M_0 = (M_{r_0}, M_{r_0+1}, \ldots),$$

In that case the limit on ε in (25) could be increased to $0 < \varepsilon \leq (r_0 + 1)^\beta \delta^\beta$ while if ε is held fixed $C_{\delta, \beta}(t) \to 0$ as $r_0 \to \infty$.

§5. At this point we are ready to state and prove the anticipated result concerning the 'observation and prediction' problem.

Theorem 2: The 'observation and prediction' problem is well-posed.
That is, for any $T > 0$ the mapping
\[A: u|_{(0,T) \times \partial Q} \in L^2((0,T) \times \partial Q) \mapsto u(\cdot, T) \in L^2(Q) \]
is a well-defined, bounded (indeed, compact) linear map for solutions u of the Neumann problem (1) for the heat equation on the m-ball.

Proof: For $m = 1$ this follows from the principal result of [6].

For $m > 1$ we may continue to assume Q is the unit m-ball and use the expansion (3). As noted in §3, the sequences $\Lambda_i, \{R_i\}$ obtained from (5') have $\nu = \nu_i \geq 1$. Thus we have the uniform bound

$N_{in}^2 \leq 1/2$ while by (15) and (18) each sequence Λ_i is in $L_{\delta, \beta}$ with $\delta = 1/4$, $\beta = 2$. Applying Theorem 1 together with (21) gives

\[e^{\epsilon T} \sum_n \| t_{in} \| e^{-\lambda_{in} T} \leq C_{\delta, \beta}(T), \quad 0 \leq \epsilon \leq (1/4)^2. \]

Noting Theorem (S_2) we have

\[\ell^T_{in}(F) = \ell_{in}(F^*) \]

so, using (23) and Theorem 1,

\[\| \ell^T_{in} \| \leq \| \ell_{in} \| / C_{\delta, \beta, T}. \]

Substituting (34) into (33), squaring and discarding cross terms gives

\[\sum_n \| t_{in} \| e^{-2\lambda_{in} T} \leq e^{-\epsilon T} C_{\delta, \beta}(T) / \sqrt{2} C_{\delta, \beta, T}. \]

for each i. This, in view of (11) and the bound on N_{in}^2, gives a bound for A:

\[\| A \| \leq e^{-\epsilon T} C_{\delta, \beta}(T) / \sqrt{2} C_{\delta, \beta, T}. \]

(35)
To show that A is compact we observe that the map $f \mapsto w$
can be factored as

$$f \mapsto f|_{t<T'} \mapsto u(T',\cdot) \mapsto u(T,\cdot) = w$$

with $0 < T' < T$. The restriction map is certainly bounded; the second map is of the sort shown above to be bounded, with T' for T; the third is the solution operator corresponding to the initial value problem for (1) and this is well-known to be compact. Thus, as a product of bounded maps with a compact map, A is compact.

An alternative proof could be given, using Remark 3 following Theorem 1 and the fact that $v_1 \to \infty$, to show directly that A is the limit in norm of operators of finite rank.

Corollary: The 'observation and prediction' problem is well-posed (indeed, the linear mapping $A: f \mapsto w$ is compact) when the codomain is taken to be $L^p(1 \leq p \leq \infty)$ and the domain \mathbb{M} is topologized as a subset of $L^r(2 \leq r \leq \infty)$.

Proof: This follows from the theorem and two observations.

(1) In considering the factorization of A given in the proof above, it is easily seen that the solution mapping $u(T',\cdot) \mapsto u(T,\cdot)$, for the initial value problem is actually compact from $L^2(\mathbb{R})$ to $L^p(\mathbb{R})$ for all $p \geq 1$.

(2) Since $(0,T) \times \partial \mathbb{R}$ has finite measure, the inclusion map from $L^r((0,T) \times \partial \mathbb{R})$ to $L^2(0,T) \times \partial \mathbb{R}$ is continuous for $r \geq 2$.
§6. We now wish to summarize the work of the preceding sections in more general terms.

Let \(\{ H_p \} \) be a complete set of (orthonormalized) eigenfunctions, indexed in some order, for the Laplacian for the region \(\mathcal{R} \) with the Neumann boundary condition \((1b) \); let \(\{ \lambda_p \} \) be the corresponding eigenvalues and set \(e_p(t) = \exp[-\lambda_p t] \). Then, analogously to (3), any solution of (1) has an expansion of the form

\[
 u(t,x) = \sum_p c_p e_p(t) H_p(x) \quad t > 0, x \in \mathcal{R},
\]

so that

\[
 A : f = \sum_p c_p e_p(t) H_p \in L^2((0,T) \times \partial \mathcal{R})
\]

so that

\[
 w = \sum_p c_p e_p(T) H_p \in L^2(\mathcal{R}),
\]

where

\[
 h_p = H_p|_{\partial \mathcal{R}}.
\]

Clearly, if \(A \) is continuous then the linear functionals

\[
 \mu_p \text{ on } \mathcal{M} \text{ given by }
\]

\[
 \mu_p : f \to c_p
\]

must be well-defined and continuous since, by the orthonormality of \(\{ H_p \} \),

\[
 \mu_p(f) = c_p = \langle Af, H_p \rangle_\mathcal{R} / e_p(t).
\]

Conversely, we may express \(A \) in terms of these functionals:

\[
 Af = \sum_p \mu_p(f) e_p(T) H_p
\]

so that continuity of \(A \) follows from having suitable estimates for the quantities \(\| \mu_p \| \).
Our approach, in this paper and in [5], has been to partition the set \{p\} of indices into subsets \(\pi_i\) \((i = 1, 2, \ldots)\). Letting

\[
m_i = \text{sp} \{ \sum_{p \in \pi_i} c_p e_p h_p \} \subset \mathcal{M} \subset L^2((0, T) \times \partial \Omega)
\]

we may consider the restrictions \(\wedge \mathcal{M}_p\) of \(\mathcal{M}_p\) to \(m_i\) \((p \in \pi_i)\) and write

\[
f = \sum_{i} f_i = \sum_{i} \left(\sum_{p \in \pi_i} c_p e_p h_p \right),
\]

\[
A f = \sum_{i} A_i f_i = \sum_{i} \left(\sum_{p \in \pi_i} \wedge \mathcal{M}_p (f_i) e_p (T) h_p \right)
\]

where \(A_i\) is the restriction of \(A\) to \(m_i\). Then

\[
|A f|_p^2 = \sum_{i} |A_i f_i|_p^2
\]

\[
= \sum_{i} \left(\sum_{p \in \pi_i} \wedge \mathcal{M}_p (f_i) e_p (T) \right)^2.
\]

Hence

\[
|A f|_p^2 \leq \sum_{i} \left(\sum_{p \in \pi_i} \left\| \wedge \mathcal{M}_p \right\| e_p (2T) \right) |f_i|_2 (0, T) \times \partial \Omega
\]

\[
\leq \sup_{i} \left(\sum_{p \in \pi_i} \left\| \wedge \mathcal{M}_p \right\| e_p (2T) \right) \sum_{i} |f_i|_2 (0, T) \times \partial \Omega
\]

In the case of the \(m\)-ball, the subspaces \(m_i\) were actually orthogonal (each being associated with a single \(\Omega_i\)) so

\[
\sum_{i} |f_i|_2 (0, T) \times \partial \Omega = |f|_2 (0, T) \times \partial \Omega
\]

and it follows from this and (39) that

\[
\|A\|^2 \leq \sup_{i} \left(\sum_{p \in \pi_i} \left\| \wedge \mathcal{M}_p \right\| e_p (2T) \right).
\]
In order to estimate the quantities \(\|\tilde{m}_p\| \) appearing in (41) we observe that the \(\{\tilde{m}_p\} \) can be expressed in terms of functionals \(\{\tilde{u}_p\} \) of the type discussed \(\S 4 \). In fact, for any \(q \)

\[
\langle f_i, h_{q} \rangle_{\partial \Omega}(t) = \sum_{p \in \pi_i} c_p \langle h_p, h_{q} \rangle_{\partial \Omega} \tilde{u}_p(t),
\]

and hence

\[
\tilde{m}_q(f_i) = c_q = \tilde{u}_q^T \langle f_i, h_{q} \rangle_{\partial \Omega}(t) / |h_{q} \rangle_{\partial \Omega}^2 q \in \pi_i, \tag{42}
\]

where \(\tilde{u}_q^T \) is the functional which selects the coefficient of \(e_q \) for elements of

\[
[\Lambda_i]_T = \overline{sp}\{e_p : p \in \pi_i\} \subset L^2(0, T).
\]

Equation (42) leads to the appraisal

\[
\|\tilde{m}_p\| \leq \|\tilde{u}_p^T\| / |h_{q} \rangle_{\partial \Omega}^2
\]

so that (41) implies (compare (11)):

\[
\|A\|^2 \leq \sup_{i} \sum_{p \in \pi_i} \|\tilde{u}_p^T\|^2 / |h_{q} \rangle_{\partial \Omega}^2 e_p(2T). \tag{43}
\]

Now by (15)

\[
|h_{p} \rangle_{\partial \Omega}^{-2} = N_{in}^2 \leq \frac{1}{2}. \tag{44}
\]

Hence (43) implies

\[
\|A\| \leq \sup_{i} \sum_{p \in \pi_i} \|\tilde{u}_p^T\| e_p(T) / \sqrt{2},
\]

which on applying theorem 1 leads to the appraisal (see (35))

\[
\|A\| \leq e^{-\epsilon T} c_{\delta, \beta}(T) / \sqrt{2} c_{\delta, \beta, T}, \quad 0 \leq \epsilon \leq (1/4)^2.
\]

In the case of 'cylindrical' sets, considered in [5], the spaces \(m_i \) are by no means orthogonal, so (40) fails to hold.
We succeeded in that case by noting that there is available the following replacement for (40):

\[\sum |f_i|^2_{(0,T) \times \partial \mathcal{R}} = |f|^2_{(0,T) \times \partial \mathcal{R}} \leq |f|^2_{(0,T) \times \partial \mathcal{R}} \quad (45) \]

which stems from the orthogonality of the \(f_i \) where \(\mathcal{R} = \{0\} \times \mathcal{A} \) is the base of the cylinder \(\mathcal{R} = [0,1] \times \mathcal{A} \). Correspondingly (42) and (44) were replaced by

\[\frac{\mathcal{H}_q(f_i)}{\mathcal{H}_q} = \mathcal{T}_q^T(\langle f_i, h \rangle_{\mathcal{R}}(t))/|h^2_{q_{\mathcal{R}}}, \]

\[|h^2_{q_{\mathcal{R}}} = 1. \]

Another, more powerful, approach which seems more likely to extend to the case of a general class of regions \(\mathcal{R} \), involves the replacement of (39) by a condition of the form

\[\sum |f_i|^2_{(T',T) \times \partial \mathcal{R}} \leq K^2 |f|^2_{(0,T) \times \partial \mathcal{R}} \quad (46) \]

for some choice of \(T' \in (0,T) \) and a corresponding constant \(K \). In this situation we are led to appraise the quantities \([\mathcal{H}_p^\mathcal{R}] \) not in terms of the functionals \([\mathcal{T}_p^\mathcal{R}] \) used earlier, but rather in terms of the functionals \([\mathcal{T}_p^{T_1}] \) where \(T_1 = T - T' \). Note first that the function \(g_i = \langle f_i, h \rangle_{\partial \mathcal{R}} \) given by

\[\langle f_i, h \rangle_{\partial \mathcal{R}}(t) = \sum_{p \in \pi_i} c_p \langle h_p, h \rangle_{\partial \mathcal{R}} e_p(t), \ldots \]

when restricted to the interval \(T' < t < T \), corresponds by a translation of variable to the following function on \((0,T_1) \):

\[g_i(T+\tau) = \sum_{p \in \pi_i} c_p \langle h_p, h \rangle_{\partial \mathcal{R}} e_p(T') e_p(\tau) \quad 0 < \tau < T_1. \]
Hence we have the formula, parallel to (42)

\[\hat{A}_q(f_i) = c_q = T_q^1(g_i(T' + \tau))/|h_q|^2e_q(T'), \]

(47)

where \(T^q_q \) selects the coefficient of \(e_q \) in elements of

\[[\Lambda_i]_{T_1} = \text{sp}(e_p; p \in \pi_i) \subset L^2(0, T_1). \]

This leads to the appraisal

\[|\hat{A}_q(f_i)| \leq \|t_q^T\| |g_i(T' + \tau)| (0, T_1) e_q(-T')/|h_q|^2_\partial \]

\[\leq \|t_q^T\| |<f_i, h_q>| (T', T) e_q(-T')/|h_q|^2_\partial \]

\[\leq \|t_q^T\| |f_i| (T', T) \times \partial \subset e_q(-T')/|h_q|^2_\partial. \]

Hence (38) implies

\[|A^2_f|_\partial \leq \sum_i \|t_p^T\|^2 |f_i|^2_\partial \quad (T', T) \times \partial \subset e_p(2(T - T'))/|h_p|^2_\partial \]

\[\leq \sum_i \left(\sum_{p \in \pi_i} \|t_p^T\|^2/|h_p|^2_\partial \subset e_p(2T_1) \right) |f_i|^2_\partial (T', T) \times \partial \]

(48)

Combining this with (46) we deduce that

\[\|A^2\| \leq k^2 \sup_i \left(\sum_{p \in \pi_i} \|t_p^T\|^2/|h_p|^2_\partial \subset e_p(2T_1) \right) \]

\[\leq k^2 \sup_i \left[\sum_{p \in \pi_i} \|t_p^T\| e_p(T_1/2) \right] \sup_{p \in \pi_i} \frac{e_p(T_1/2)}{|h_p|^2_\partial}. \]
Therefore under the very mild condition that, say
\[|h_p|^{-1} e_p(T_1/2) < K_1 < \infty \quad \text{for all } p, \quad (49) \]
we have
\[\|A\| < KK_1 \sup \{ \sum_{p \in \pi_i} \mathcal{J}^\alpha_{p_p} e_p(T_1/2) \}. \]

Finally, assuming that the partitions are such that the sequences
\[\Lambda_i = \{ \lambda_p : p \in \pi_i \} \]
all belong to some \(\mathcal{E}_{\delta, \beta} \), so that theorem 1 is applicable, we have the desired boundedness assertion,
\[\|A\| < KK_1 \mathcal{C}_{\delta, \beta} (T_1/2) / c_{\delta, \beta, T}. \quad (50) \]

We have shown above that the inequality in (46) is sufficient for boundedness of \(A \). What is particularly striking is that it is also necessary if \(A \) is to be bounded for all choices at \(T > 0 \). More precisely, we have the following result.

Theorem 3: Suppose that the functions \(h_p = H_p|_{\partial R} \) have the property that for each \(\epsilon > 0 \)
\[\{ |h_p|^{-1} e_p(\epsilon) \} \text{ is bounded.} \quad (51) \]
Suppose also that for a given \(T > 0 \) there exists a partition of \(\{ \lambda_p \} \) into subsets
\[\Lambda_i = \{ \lambda_p : p \in \pi_i \} \]
satisfying:

(H1) \(\Lambda_i \in \mathcal{E}_{\delta, \beta} \) for some \(\delta > 0, \beta > 1 \) and all \(i \).
(H2) for some \(T' < T \) there are associated to every
\[
f \in \text{sp}\{h_p \}_{p \in \Pi} \subset L^2((0,T) \times \partial \Omega) \text{ functions}
\]
\[
f_i \in \text{sp}\{h_p e_p : p \in \Pi_i\} \subset L^2((T',T) \times \partial \Omega) \text{ satisfying}
\]
\[
\Sigma f_i = f\big|_{(T',T) \times \partial \Omega} \in L^2((T',T) \times \partial \Omega).
\]
Then the following relation holds
\[
\Sigma |f_i|^2_{(T',T) \times \partial \Omega} \leq K |f|^2_{(0,T) \times \partial \Omega},
\]
and the solution operator
\[
\Lambda: f \to u(T,\cdot)
\]
is bounded.

Conversely, if the functions \(\{h_p\} \) have the property that
for each \(\epsilon > 0 \)
\[
\Sigma |h_p|_{\partial \Omega} e_p(\epsilon) \text{ converges } \tag{52}
\]
then the boundedness for every \(T > 0 \) of the solution operator
\[
\Lambda: f \to u(T,\cdot)
\]
implies that (*) is valid for every partition of \(\{\lambda_p\} \) and
every \(T > T' > 0 \).

Proof: The proof of the first assertion is as given above once
we notice that (*) follows from (H2) by the uniform boundedness
principle.

In order to verify the converse we note that the expressions
\[
f_i = \Sigma c_p h_p e_p, \text{ with } c_p = \langle Af, h_p \rangle e_p(-T), \text{ satisfy}
\]
\[|f_i|^2_{(T', T) \times \partial R} \leq \left[\sum_{p \in \pi_i} |c_p| |h_p|_{\partial R} |e_p|_{(T', T)} \right]^2 \]
\[\leq \left[\sum_{p \in \pi_i} |c_p| |h_p|_{\partial R} e_p(T') |e_p|_{(0, T_1)} \right]^2 \]
\[\leq \sum_{p \in \pi_i} \left[|c_p| e_p(T'/2) \right]^2 \sum_{p \in \pi_i} \left[|h_p|_{\partial R} e_p(0, T_1) e_p(T'/2) \right]^2. \]

Since \[|e_p|_{(0, T_1)} \leq |e_p|_{(0, \infty)} = \frac{1}{2\lambda_p}, \] it is easily seen by (52) that the second factor on the right side is bounded, uniformly in \(i \), by a constant \(D^2 \). On summing over \(i \) we obtain
\[\sum_{i} |f_i|^2_{(T', T) \times \partial R} \leq D^2 \sum_{p} \left[|c_p| e_p(T'/2) \right]^2 \]
which, by the formula (38) for \(|A'f|^2 \), where
\[A' = f|_{(0, T'/2) \times \partial R} \to u(T'/2, \cdot) \in L^2(R), \]
yields
\[\sum_{i} |f_i|^2_{(T', T) \times \partial R} \leq D^2 \|A_{T'/2}\|^2 |f|^2_{(0, T'/2) \times \partial R}, \]
as was claimed.

In view of theorem 3 we have been led to make the following conjecture.

Conjecture. For each piecewise \(C^\infty \) region \(R \) the sequence \(\{h_p\} \) satisfies (51) and the set \(\{\lambda_p\} \) can be partitioned into subsequences \(A_i = \{\lambda_p : p \in \pi_i\} \) satisfying both (H1) and (H2) of theorem 3.

It is clear that the "observation and prediction" problem will be well posed provided this conjecture holds, but we have been unable as yet to ascertain the truth of the conjecture.
Acknowledgements. This work was partially supported by the National Science Foundation under Grants GP 11697 and GP 19126. An earlier version, prepared while one of us (V.J.M.) was on Sabbatical leave at Technion-Israel Institute of Technology, appeared in the Technion Preprint Series as Report No. MT 37.

The unfailing consideration and stimulating mathematical atmosphere encountered at the Technion Mathematics Department are herewith gratefully acknowledged.
BIBLIOGRAPHY

