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Abstract  One reason given for the use of multirobot 

systems is that many cheap robots are more reliable than one 
expensive robot.  To date, however, there has been no 
quantitative analysis to support this assertion.  This paper 
presents the first quantitative support for the argument that 
larger teams of less-reliable robots can perform certain missions 
more reliably than smaller teams of more-reliable robots.  Our 
results show that for short missions, in fact, a team of four robots 
can provide greater mission reliability than a team of two robots, 
even when the individual robots in the team of four have 
reliability that is an order of magnitude lower.  These results 
suggest that considerable cost reductions can be achieved for 
some missions by choosing larger teams of less-reliable robots 
over smaller teams of more-reliable robots. 

 
Index Terms  Mobile robots, multirobot systems, mission 

design, reliability. 
 

I. INTRODUCTION 

Applications of multirobot systems can be divided into 
two categories: those where multiple robots are necessary for 
task completion, and those where a single robot could 
complete the task but where multiple robots are desirable for 
reasons beyond task completion.  An example task falling into 
the first category is soccer—a single robot cannot play soccer.  
An example task in the second category is area coverage—
while in many cases an area can be covered by a single robot, 
it may nonetheless be preferable to use more than one robot. 

When the mission itself does not dictate a particular robot 
team configuration, there are multiple requirements which a 
mission designer must consider.  Three important factors 
which we consider here are time, cost, and reliability.   

Time can be a reason for using more robots than the 
minimum required because, for some tasks, having extra 
robots can reduce the time required to complete the task.  For 
instance, in an area coverage task, multiple robots can work in 
parallel in order to accomplish the task more quickly. 

Cost is an important consideration in team size.  There is 
the cost of additional robots.  There is the cost of robot 
components—more robust components cost more.  There are 
operating costs such as transportation and maintenance, which 
may be higher for a larger team.  Infrastructure costs may be 
greater for a larger team; for instance, a larger team may 
require more communications bandwidth. 

The third performance criterion we consider here is 
reliability, expressed as the probability of mission completion 
(PoMC).  A requirement for a mission to have a certain 
probability of successful completion can dictate the minimum 

number of robots required for the mission.  For example, if 
one robot has a 90% probability of surviving a task, but the 
mission requirement is for a 97% probability of having one 
robot survive the task, then one way to meet this requirement 
is by sending two robots (giving a 99% chance that one would 
survive). 

These criteria (time, cost, reliability) are highly 
interdependent.  As an example, adding more robots to a 
mission increases the cost, but it can also reduce the amount of 
time required to complete the mission.  Reducing the mission 
duration means that the robots don't need to survive as long, 
so they can be built of lower-reliability components, which 
reduces the cost. 

These relationships among team size, component 
reliability, cost, time, and mission success have been 
mentioned in the robotics literature, but only in passing and 
only in qualitative terms.  In particular, researchers often 
claim that multirobot systems provide greater reliability than 
single-robot systems (e.g., [1,2,3,4]). 

Superficially, such a claim seems obviously true—if three 
robots are sent to do a task instead of one, there is a greater 
chance of completing the task.  When one examines the above 
claim in greater depth, however, finding the answer can be 
complicated.  In this example, the cost of completing the task 
has been tripled by sending three robots.  If these same 
additional funds were instead invested towards improving the 
reliability of a single robot, then which would be more likely 
to complete the task—the three robots or the single superior 
robot?  The answer is no longer obvious. 

In this paper, we provide quantitative analyses of the 
tradeoffs among these design variables.  For a sample robot 
mission, we compare the reliability and cost of teams with 
differing numbers of robots and different robot reliabilities.  
We examine questions which a mission designer would want 
to ask, such as "For a given mission and number of robots, 
what is the minimum robot reliability required to provide a 
certain probability of mission completion?" and "For a given 
mission, if I use extra robots, how much less reliable can they 
be and still give the same probability of completing the 
mission?" 

This paper makes use of the methodology we have 
developed previously for predicting the reliability of robot 
teams (see [5]).  While the reliability engineering literature 
provides methods for predicting the reliability of systems 
composed of independent components, the nature of 
multirobot systems is such that there is a significant amount of 
dependence among the reliabilities of team members.  In [5] 
we describe a system for task description and simulation that 



enables the evaluation of these complex interdependent 
reliabilities.  Whereas our previous work has been primarily 
concerned with the development of the methodology, this 
paper presents experimental results from applying that 
methodology to answer important design questions in the 
multirobot domain. 

The only known work preceding ours in the area of 
predicting robot team reliability is [6].  That paper's methods 
are similar to ours in that they are based in the reliability 
literature, but that paper has a narrow focus on teams of robots 
with cannibalistic repair capability.  In contrast, we are 
developing a general methodology that can be applied to a 
wide variety of robot teams and missions.  That paper also 
makes comparisons only in terms of the amount of work that 
can be completed by different robot teams, while our 
methodology is built around the concept of mission tasks, 
which will allow us to more easily integrate our work with 
existing mission planning systems, most of which consider a 
mission as a collection of tasks. 

II. TYPES OF FAILURE BEING ADDRESSED 

Many factors can cause the failure of a robotic mission.  
The laboratory robots with which most researchers are 
familiar usually fail due to design, manufacturing and usage 
errors.  The hardware breaks down due to being poorly 
designed or constructed; the software has bugs that are 
revealed only under the stress of a demo; and both hardware 
and software fail because the robots are used in situations 
beyond the intentions of their designers. 

While these types of failures are significant, and in fact 
are the dominating failure modes for most robots today 
[7,8,9], we contend that these failure modes are not in need of 
modeling so much as they are in need of correction.  These 
failures are the result of errors and can be reduced if not 
eliminated through process control.  Methods for reducing 
errors in design, manufacturing, software development and 
operation are widely used in industry.  As mobile robots 
become more common, these engineering and manufacturing 
methods will be applied to them, yielding a reduction in these 
types of failures. 

We can see that this is possible because some of today's 
robots are already built with a high degree of quality control in 
design, construction, and operation.  For instance, the 
planetary rovers built for NASA by the Jet Propulsion 
Laboratory are built to very high standards of quality and 
controlled by highly trained operators, resulting in a very low 
incidence of failures due to errors.  Another example is 
autonomous aerial robots.  Even in the university 
environment, aerial robots demonstrate considerably higher 
reliability than ground robots.  This is largely because much 
greater care is given to their design, construction, and 
operation due to the more severe consequences of failure in 
comparison with ground robots. 

When failures due to errors are largely eliminated, as with 
the NASA rovers, then the remaining failures are due mostly 
to physical properties of the materials and to the processes 
used.  An example of such a failure is the degradation of the 
grease in a bearing and the subsequent failure of the bearing.  
There is no process control that will change the physical 
reality that grease breaks down and ungreased bearings fail.  

Instead, the system must be designed taking into account the 
possibility of bearing failure.   

It is this latter type of failure with which we are 
concerned in this paper.  The reliability engineering literature 
provides well-established probabilistic models for this type of 
failure.  It is possible that some of the other types of failure 
mentioned above can be modeled probabilistically and 
incorporated into these predictions.  For instance, predictive 
models for generation of software errors have been proposed 
in the literature (e.g., [10,11]).  Incorporation of such models 
would allow us to provide a more complete picture of robot 
failure.  However, these models have been in existence for a 
much shorter time than hardware reliability models and have 
been applied in very few cases, so their ability to predict 
software failures is unproven.  In addition, the input data 
required for these models are often not available in the early 
stages of a project, and it is this early design phase which our 
work targets. 

III. EXAMPLE MISSION SCENARIO 

A. Mission and Tasks 
In these experiments we examine an example planetary 

exploration mission.  In this mission a team of robots is tasked 
to install a solar panel array for a measurement and 
observation outpost.  The mission consists of carrying the 
solar panels from the landing site to the outpost and then 
assembling them.  The size of the solar panels is such that two 
robots are needed to carry and assemble one panel.   

For the purposes of the reliability analysis, the task of 
assembling a solar panel is broken down into three subtasks: 

 - Transit to the outpost, 
 - Assemble the panel, and 
 - Return to the landing site. 
 
We assume that failure occurs only at the end of a 

subtask.  This allows us to avoid dealing with partially 
completed subtasks.  This simplification does not limit the 
resolution of the representation because tasks can be restated 
into smaller subtasks if needed. 

 
B. Robots and Components 

The robots are considered to be made up of several 
subsystems that are independent from the standpoint of 
reliability.  The specific partitioning is not important to the 
methodology, but for the analyses in this paper the robots are 
divided into the subsystems listed in Table 1.   

We assume that the failure of any single subsystem leads 
to failure of the entire robot.  For the current example mission 
this is a reasonable assumption, since all of the subsystems 
must be functioning in order to complete the subtasks of 

TABLE 1 
 ROBOT SUBSYSTEMS AND RELIABILITIES 

Subsystem MTTF (h) 
Power 4202 

Computation & Sensing 4769 
Mobility 19724 

Communications 11876 
Manipulator 13793 



TABLE 2 
 COMPONENTS COMPRISING POWER SUBSYSTEM 

Component Quantity 
Battery 2 

Battery control board 2 
Mission clock 1 

Power distribution unit 1 
Power control unit 1 

Shunt limiter 1 
Electrical heater 2 

Radioisotope heater 2 
Thermal switch 2 

TABLE 3 
 SUBSYSTEM USAGE BY TASK 

Subsystem Transit Assemble Return 
Power 6 8 6 

Computation & Sensing 6 4 6 
Mobility 6 8 6 

Communications 2 4 2 
Manipulator 0 8 0 

Transit and Assemble. 
The probability of a subsystem's failing during a task is 

found using standard reliability engineering methods assuming 
a constant hazard rate.  Two inputs determine the module 
failure probability: the module's failure rate, often given by 
mean time to failure (MTTF), and the length of time for which 
the module is operated during the task.  

The failure rates for the robot subsystems were calculated 
from the failure rates of the major components in each 
subassembly and are listed in Table 1.  The component 
reliability data used to derive these subsystem reliabilities 
were provided by the Jet Propulsion Laboratory and are 
representative of components used in NASA's planetary 
robots.  An example component breakdown for the power 
module is shown in Table 2.  Additional details on the 
calculation of subsystem failure and the combining of 
component reliabilities can be found in [5].   

In addition to the failure rate, we must know the usage of 
each subsystem for each subtask.  These usage times, shown 
in Table 3, were assigned using reasonable assumptions about 
the relative durations of different tasks and the relative usage 
of different modules.   

The probability of survival for a subsystem for a given 
task is given by the equation  







 −

= MTTF
t

eP  (1) 

where 
t = the amount of time that the subsystem is used during the 

task; and 
MTTF = the mean time to failure for the subsystem. 
 
Using Eq. (1) and the data from Tables 1 and 3, we 

calculated the probability that each subsystem will survive 
each task.  These probabilities are shown in Table 4. 
 
C. Robot Teams 

The baseline robot team consists of a pair of robots that 
are constructed to very high levels of robustness.  These 
robots are composed of highly reliable components, are 
designed with operating limits well beyond the expected 
operating conditions, and incorporate redundancy and self-
diagnostic capabilities.  In other words, they are designed in 
the way that NASA currently designs robots.  We use the 
MTTF values listed in Table 1 for this robot team, since the 
component failure rates used to derive these values are 
representative of actual NASA robots. 

Against this baseline configuration, we examine the 

effects of varying both the number of robots on the team and 
the reliability of the components used.  Among other things, 
we wish to compare the reliability of a larger team of less-
reliable robots against the baseline team. 

IV. APPROACH 

The experiments in this paper make use of the method 
described in [5] for predicting probability of mission 
completion.  In this method, the mission is represented using a 
state–transition diagram as in Fig. 1.  This particular diagram 
shows a team consisting of four robots that is tasked to install 
P panels.   

START 

# Robots 
< 2 ? FAILURE

# Panels 
= 0 ? 

TRANSIT 

# Robots 
= odd ? 

SUCCESS

RETURN (1)
TRANSIT (1)

# Robots 
< 2 ? 

# Spares 
> 0 ? 

ASSEMBLE FAILURE

# Robots 
> 0 ? 

RETURN 

N

  Y 

  Y 

N

 Y

N

Y 

N

N 

Y

N 

Y 

Fig. 1 State transition diagram for two-robot team.



TABLE 4 
 SUBSYSTEM PROBABILITY OF SURVIVAL BY TASK 

Subsystem Transit Assemble Return 
Power 99.86% 99.81% 99.86% 

Computation & Sensing 99.87% 99.92% 99.87% 
Mobility 99.97% 99.96% 99.97% 

Communications 99.98% 99.97% 99.98% 
Manipulator 100% 99.94% 100% 

The state machine represented by the state–transition 
diagram is implemented in software.  At each task node the 
state of the robot (dead or alive) is evaluated by choosing a 
random value between 0 and 1 for each subsystem and 
comparing that value with the probability of survival for that 
subsystem for that task.  The branch in the diagram 
corresponding to the resulting team state is followed, and the 
process continues until the system reaches either Success or 
Failure. 

As an example, after the assemble task, we would "roll 
the dice" for each module for each robot and compare the 
values with the probabilities in Table 4.  If at least one of the 
robots survived this task, then the main branch of the diagram 
in Fig. 1 is followed; i.e., the Return task is performed.  
Otherwise, the diagram branches back to Start, since there are 
no robots to Return. 

The simulation is repeated many times, with each Success 
result being assigned a score of 1 and each Failure result 
being assigned a score of 0.  The average score of all trials 
then gives the overall probability of mission completion.  The 
results of the simulations were verified by hand calculation for 
a few simple cases. 

V. RESULTS 

For the example mission scenario described above, once 
the tasks, the task durations, and the baseline module 
reliabilities are fixed, then the input variables for the model 
are: 
 - the number of robots on the team, 
 - the reliability of the components used, and 
 - the mission duration (number of panels to be installed). 

 
Two of the questions that a mission designer might want 

to ask when choosing robots for this mission are: 
"For a given mission duration and component reliability, 
what is the fewest number of robots that will meet a certain 
probability of mission completion?" and 

"If additional robots are added beyond the minimum 
number, can we use lower reliability components, and if so 
how much lower?" 

 
A. Minimum Number of Robots Required 

Our initial comparison is of teams using different 
numbers of identical robots.  Fig. 2 shows the simulation 
results for teams of two to six robots over a range of mission 
durations.   

Fig. 2 shows, for example, that for a mission specifying 
that 30 panels are to be installed with a PoMC of at least 95% 
the team must have at least four robots.  This figure also 
shows that there is a diminishing return in terms of mission 
reliability as more robots are added. 

 
B. Minimum MTTF with Excess Robots 

If additional robots are added beyond the minimum 
required, it should be possible to use less-reliable components 
in those robots and still achieve a required mission reliability. 
Fig. 3 shows the simulation results for teams of four robots 
with component reliabilities ranging from 10% to 50% of the 
baseline amounts from Table 1. 

When varying the reliability of the components, we apply 
a constant multiplier to all of the MTTF values in Table 1.  
For instance, when we refer to a team with 10% of the MTTF 
of the baseline team, we are multiplying all the values in Table 
1 by 10%. 

Fig. 3 shows that for very short missions a team of four 
robots with only 10% of the reliability of the baseline team 
can provide a higher PoMC.  As the length of the mission 
increases, the reliability required for the four-robot team to 
equal the performance of the baseline team increases, but even 
for fairly long missions, the four-robot team can still 
outperform the baseline team even with a much lower MTTF. 

To answer the question posed above—"How much lower 
can the reliability of the components for the four-robot team 
be?"—we need to look at the intersections of the four-robot 
curves with the two-robot curve in Fig. 3.  These points give 
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the MTTF % for which the two teams provide the same 
PoMC.  These intersection points are replotted in Fig 4 on a 
graph of MTTF % versus mission length.  We have also fitted 
a curve to these points, allowing this equalizing MTTF % to 
be found for intermediate points without running additional 
simulations.   

Fig. 4 shows, for instance, that if we are designing a 
mission to install 20 panels, then the team of four robots will 
need an MTTF approximately 20% of the baseline in order to 
provide the same PoMC as the baseline team. 

Looking back at Fig. 3, we observe that at the points of 
intersection the slope of the four-robot team is always steeper 
than that of the two-robot team.  This means that the 
performance of the four-robot team will be more susceptible 
to errors in the estimates of mission parameters.   

As an example, consider the 20-panel mission, for which 
the PoMC at the intersection point for the four-robot team 
with 20% MTTF is about 63%.  If during the mission the 
assembly operation ends up taking 25% longer than 
anticipated, then by running new simulations with this change 
we find that the PoMC for the baseline team drops to 61% 
while the PoMC for the four-robot 20%-MTTF team drops to 
56%. 

A mission designer would need to take these slopes into 
account when selecting team configurations and components.  
If there is a large amount of uncertainty in the input 
parameters, it may be necessary to overdesign the four-robot 
team to a greater extent than would be necessary for the two-
robot team.  This may change the preferred team type in some 
situations. 

 
C.  Time Required 

When choosing among robot team configurations it is 
necessary to consider other performance metrics besides 
PoMC.  For instance, it may sometimes be preferable to 
choose a team configuration that provides a lower time to 
complete the mission, even if that configuration has a lower 
PoMC. 

For the mission analyzed here, larger teams will complete 
the mission more quickly, since they can perform the work in 
parallel (assembling more than one panel at a time).  Fig. 5 
shows the average number of hours per completed panel for 

the baseline and four-robot 50%-MTTF teams.  The hours-
per-panel for the baseline team is simply the total time 
required for the Transit, Assemble, and Return tasks.  The 
hours-per-panel for the four-robot team starts at half this value 
and climbs upward with increasing mission duration but is still 
significantly lower than the baseline team even for 150 panels.   
 
D.  Cost 

Another important factor in choosing a team 
configuration is cost.  Lower-reliability components should 
cost less than those with higher reliability.  For a given 
mission, we would like to be able to determine which team 
configuration will provide the required reliability at the lowest 
cost. 

In choosing components for a mission, the designer would 
make choices among a small number of alternate components, 
each providing a certain reliability for a certain cost.  
However, in the early stages of design the mission designer 
may not have complete information about available 
components.  In this case, it is useful to have a parametric 
model of the cost–reliability relationship.  Ref. [12] provides a 
general model for this relationship, which is given as 

( ) ( )
( )








−
−

⋅−=
i

i

RR
RR

fc
max

min1exp  (2) 

where 
Ri = a reliability of interest between Rmin and Rmax ; 

c = the relative cost of Ri compared to Rmin ; and 

f = the feasibility of reliability improvement (between 0 and 1). 
 
Using (2) with a feasibility of 0.5, we find that for the 

sample mission a cost reduction of 50% can be accomplished 
by choosing components with MTTF that is 40% of the 
baseline values.  Therefore, a team of four robots with 40% 
MTTF would cost approximately the same as the baseline 
two-robot team. 

Looking at Fig. 3, we see that the 4R, 40% team has a 
higher mission reliability than the 2R team for missions 
shorter than 85 panels, so the 4R team would be the more 
cost-effective solution for missions shorter than 85 panels. 
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E.  Partial Success 

An additional consideration is that for many missions, 
including the current one, a binary representation of mission 
success may not be completely appropriate.  For the current 
mission, installing a solar panel array is not an all-or-nothing 
venture.  If only some of the panels are installed, the array will 
likely still be able to provide useful energy.  Fig. 6 compares 
teams in terms of the average percentage of the assigned 
panels which are successfully installed.  This figure shows that 
the four-robot teams have an even greater advantage over the 
two-robot team when partial mission completion is acceptable.   

VI. SUMMARY AND FUTURE WORK 

We have shown in this paper how reliability can guide the 
design of multirobot missions.  Our results in this paper are 
significant because they provide the first quantitative support 
for the argument that larger teams of less-reliable robots can 
provide superior mission reliability compared to smaller teams 
of more-reliable robots, at least for some missions. 

For the simple mission analyzed here, our results show 
that a team of four robots can provide a higher probability of 
mission completion than a team of two robots, even when the 
team of four is made of components of much lower reliability.  
For short missions, the four-robot team can use components 
with an order of magnitude lower reliability and still provide 
higher mission reliability.  Even for fairly long missions, a 
four-robot team using robots with 40% of the reliability of 
those in the two-robot team still provides better performance.  
Using a parametric estimate of the cost–reliability relationship 
taken from [11], we have shown that the four-robot team can 
deliver higher mission reliability at lower cost than the two-
robot team. 

In future work, we plan to integrate these reliability 
estimation methods with mission planning software, in order 
to provide tools that a mission designer can use to make 
informed tradeoffs between mission reliability and other 
factors such as cost.   

In addition, we intend to improve the reliability model by 
removing some of the simplifying assumptions currently used.  
For instance, we would like to allow for consideration of 
partial failures of robots rather than simply using the current 
binary dead-or-alive model.  In a complex mission scenario 
with heterogeneous robots performing heterogeneous tasks, 
the failure of a robot subsystem may not render that robot 
useless but may instead result in re-assigning that robot to 
different tasks.   

A number of new questions are raised when we consider 
how robot failure affects task allocation and re-allocation, 
such as "Is it better to re-assign a partially-failed robot to a 
new task, or to abandon it?" and "How should the initial 
assignment of tasks be made such that individual robot 
failures will have the lowest impact on the overall mission?" 

Ultimately, we would like to apply these tools to a large 
variety of missions in order to determine if generalizations can 
be made about the suitability of certain types of robot teams 
for certain missions.  We wonder, for instance, if there are 
classes of missions for which it is always better to use a single 
(or a few) highly-robust robots, and other classes of missions 

for which it is always better to use larger numbers of less-
robust robots. 
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