8-21-2002

Confidence Sets for Nonparametric Wavelet Regression

Christopher Genovese
Carnegie Mellon University, genovese@stat.cmu.edu

Larry Wasserman
Carnegie Mellon University, larry@stat.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/statistics

Part of the Statistics and Probability Commons
CONFIDENCE SETS FOR NONPARAMETRIC WAVELET REGRESSION

BY CHRISTOPHER R. GENOVESE1 AND LARRY WASSERMAN2

\textit{Carnegie Mellon University}

We construct nonparametric confidence sets for regression functions using wavelets. We consider both thresholding and modulation estimators for the wavelet coefficients. The confidence set is obtained by showing that a pivot process, constructed from the loss function, converges uniformly to a mean zero Gaussian process. Inverting this pivot yields a confidence set for the wavelet coefficients and from this we obtain confidence sets on functionals of the regression curve.

August 21, 2002

1Research supported by NSF Grant SES 9866147.
2Research supported by NIH Grants R01-CA54852-07 and MH57881 and NSF Grants DMS-98-03433 and DMS-0104016.

\textit{Key words and phrases:} Confidence sets, Stein’s unbiased risk estimator, nonparametric regression, thresholding, wavelets.
1 Introduction

Wavelet regression is an effective method for estimating inhomogeneous functions. Donoho and Johnstone (1995a, 1995b, 1998) showed that wavelet regression estimators based on nonlinear thresholding rules converge at the optimal rate simultaneously across a range of Besov and Triebel spaces. The practical implication is that, for denoising an inhomogeneous signal, wavelet thresholding outperforms linear techniques. See for instance Cai (1999), Cai and Brown (1998), Efroymovich (1999), Johnstone and Silverman (2002), and Ogden (1997). However, confidence sets for the wavelet estimators may not inherit the convergence rate of function estimators. Indeed, Li (1989) shows that uniform nonparametric confidence sets for regression estimators decrease in radius at an $n^{-1/4}$ rate. However, with additional assumptions, Picard and Tribouley (2000) show that it is possible to get a faster rate for pointwise intervals.

In this paper, we show how to construct uniform confidence sets for wavelet regression. More precisely, we construct a confidence sphere in the ℓ^2-norm for the wavelet coefficients of a regression function f. We use the strategy of Beran and Dümbgen (1998), originating from an idea in Stein (1981), in which one constructs a confidence set by using the loss function as an asymptotic pivot. Specifically, let μ_1, μ_2, \ldots be the coefficients for f in the orthonormal wavelet basis ϕ_1, ϕ_2, \ldots, and let $(\hat{\mu}_1, \hat{\mu}_2, \ldots)$ be corresponding estimates that depend on a (possibly vector-valued) tuning parameter λ. Let $L_n(\lambda) = \sum_i (\hat{\mu}_i(\lambda) - \mu_i)^2$ be the loss function and let $S_n(\lambda)$ be an unbiased estimate of $L_n(\lambda)$. The Beran-Dümbgen strategy has the following steps.

1. Show that the pivot process $B_n(\lambda) = \sqrt{n}(L_n(\lambda) - S_n(\lambda))$ converges weakly to a Gaussian process with covariance kernel $K(s, t)$.

2. Show that $B_n(\hat{\lambda}_n)$ also has a Gaussian limit, where $\hat{\lambda}_n$ minimizes $S_n(\lambda)$. This step follows from the previous step if $\hat{\lambda}_n$ is independent of the pivot process or if $B_n(\hat{\lambda}_n)$ is stochastically very close to $B_n(\lambda_n)$ for an appropriate deterministic sequence λ_n.

3. Find a consistent estimator $\hat{\tau}_n^2$ of $K(\hat{\lambda}_n, \lambda_n)$.

4. Conclude that

\[D_n = \left\{ \mu : \frac{L_n(\hat{\lambda}_n) - S_n(\hat{\lambda}_n)}{\hat{\tau}_n/\sqrt{n}} \leq z_{\alpha} \right\} \]

\[= \left\{ \mu : \sum_{\ell=1}^{n} (\hat{\mu}_{n\ell} - \mu_{\ell})^2 \leq \frac{\hat{\tau}_n z_{\alpha}}{\sqrt{n}} + S_n(\hat{\lambda}_n) \right\} \]

is an asymptotic 1 – \(\alpha\) confidence set for the coefficients, where \(z_{\alpha}\) denotes the upper-tail \(\alpha\)-quantile of a standard Normal and where \(\hat{\mu}_{n\ell} \equiv \hat{\mu}_\ell(\hat{\lambda}_n)\).

5. It follows that

\[C_n = \left\{ \sum_{\ell=1}^{n} \mu_{\ell} \phi_\ell(\cdot) : \mu \in D_n \right\} \]

is an asymptotic 1 – \(\alpha\) confidence set for \(f_n = \sum_{\ell=1}^{n} \mu_{\ell} \phi_\ell\).

6. With appropriate function-space assumptions, conclude that \(C_n\) is also a confidence set for \(f\).

The limit laws – and thus the confidence sets – we obtain are uniform over Besov balls. The exact form of the limit law depends on how the \(\mu_i\)s are estimated. We consider universal shrinkage (Donoho and Johnstone 1995a), modulation estimators (Beran and Dümbgen 1998), and a restricted form of SureShrink (Donoho and Johnstone 1995b).

Having obtained the confidence set \(C_n\), we immediately get confidence sets for any functional \(T(f)\). Specifically, \((\inf_{f \in C_n} T(f), \sup_{f \in C_n} T(f))\) is an asymptotic confidence set for \(T(f)\). In fact, if \(T\) is a set of functionals, then the collection \(\{(\inf_{f \in C_n} T(f), \sup_{f \in C_n} T(f)) : T \in T\}\) provides simultaneous intervals for all the functionals in \(T\). If the functionals in \(T\) are point-evaluators, we obtain a confidence band for \(f\); see Section 8 for a discussion of confidence bands. An alternative method for constructing confidence bands is given in Picard and Tribouley (2000).

In Section 2, we discuss the basic framework of wavelet regression. In Section 3, we give the formulas for the confidence sets with known variance. In Section 4, we extend the results to the unknown variance case. In Section
5, we describe how to obtain confidence sets for functionals. In Section 6, we consider numerical examples. Finally, Section 7 contains technical results, and Section 8 discusses a variety of related issues.

2 Wavelet Regression

Let \(\phi \) and \(\psi \) be, respectively, a father and mother wavelet that generate the following complete orthonormal set in \(L^2[0,1] \):

\[
\phi_{j_0,k}(x) = 2^{j_0/2} \phi(2^{j_0} x - k), \\
\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k),
\]

for integers \(j \geq J_0 \) and \(k \), where \(J_0 \) is fixed. Any function \(f \in L^2[0,1] \) may be expanded as

\[
f(x) = \sum_{k=0}^{2^{j_0}-1} \alpha_k \phi_{J_0,k}(x) + \sum_{j=J_0}^{\infty} \sum_{k=0}^{2^j-1} \beta_{j,k} \psi_{j,k}(x) \tag{1}
\]

where \(\alpha_k = \int f \phi_{J_0,k} \) and \(\beta_{j,k} = \int f \psi_{j,k} \). For fixed \(j \), we call \(\beta_j = \{\beta_{j,k} : k = 0, \ldots, 2^j - 1\} \) the resolution-\(j \) coefficients.

Assume that

\[
Y_i = f(x_i) + \sigma \epsilon_i, \quad i = 1, \ldots, n
\]

where \(f \in L^2[0,1] \), \(x_i = i/n \), and \(\epsilon_i \) are iid standard Normals. The goal is to estimate \(f \) under squared error loss. We assume that \(n = 2^{J_1} \) for some integer \(J_1 \). Let

\[
f_n(x) = \sum_{k=0}^{2^{J_0}-1} \alpha_k \phi_{J_0,k}(x) + \sum_{j=J_0}^{J_1} \sum_{k=0}^{2^j-1} \beta_{j,k} \psi_{j,k}(x) \tag{2}
\]

denote the projection of \(f \) onto the span of the first \(n \) basis elements.

Define empirical wavelet coefficients

\[
\begin{align*}
\tilde{\alpha}_k &= \sum_{i=1}^{n} Y_i \int_{(i-1)/n}^{i/n} \phi_{j_0,k}(x) \, dx \approx \frac{1}{n} \sum_{i=1}^{n} \phi_{j_0,k}(x_i) Y_i \approx \alpha_k + \frac{\sigma}{\sqrt{n}} Z_k, \\
\tilde{\beta}_{j,k} &= \sum_{i=1}^{n} Y_i \int_{(i-1)/n}^{i/n} \psi_{j,k}(x) \, dx \approx \frac{1}{n} \sum_{i=1}^{n} \psi_{j,k}(x_i) Y_i \approx \beta_{j,k} + \frac{\sigma}{\sqrt{n}} Z_{j,k},
\end{align*}
\]
where the Z_ks and $Z_{j,k}$s are IID standard Normals. In practice, these coefficients are computed in $O(n)$ time using the discrete wavelet transform.

We consider two types of estimation: soft thresholding and modulation. The soft-threshold estimator with threshold $\lambda \geq 0$, given by Donoho and Johnstone (1995), is defined by

$$\hat{\alpha}_k = \tilde{\alpha}_k$$
$$\hat{\beta}_{j,k} = \text{sign}(\tilde{\beta}_{j,k}) (|\tilde{\beta}_{j,k}| - \lambda)_+,$$

where $a_+ = \max(a, 0)$.

Two common rules for choosing the threshold λ are the universal threshold and the SureShrink threshold. To define these, let $\hat{\sigma}^2$ be an estimate of σ^2 and let $\rho_n = \sqrt{2 \log n}$. The universal threshold is $\lambda = \rho_n \hat{\sigma} / \sqrt{n}$. The levelwise SureShrink rule chooses a different threshold λ_j for the $n_j = 2^j$ coefficients at resolution level j by minimizing Stein’s unbiased risk estimator (SURE) with estimated variance. This is given by

$$S_n(\lambda) = \frac{\hat{\sigma}^2}{n} 2^{J_0} + \sum_{j=J_0}^{J_1} S(\lambda_j)$$

where

$$S_j(\lambda_j) = \frac{n_j}{\hat{\sigma}^2} - \frac{n_j}{\hat{\sigma}^2} 1\{|\tilde{\beta}_{j,k}| \leq \lambda_j\} + \min(\hat{\beta}_{j,k}^2, \lambda_j^2),$$

for $J_0 \leq j \leq J_1$. The minimization is usually performed over $0 \leq \lambda_j \leq \rho_n \hat{\sigma} / \sqrt{n}$, although we shall minimize over a smaller interval for reasons that explain in the remark after Theorem 3.2. SureShrink can also be used to select a global threshold by minimizing $S_n(\lambda)$ using the same constant λ at every level. We call this global SureShrink.

The second estimator we consider is the modulation estimator given by Beran and Dümbgen (1998) and Beran (2000). Although these papers did not explicitly consider wavelet estimators, we can adapt their technique to construct estimators of the form

$$\hat{\alpha}_k = \xi_\phi \tilde{\alpha}_k$$
$$\hat{\beta}_{j,k} = \xi_j \tilde{\beta}_{j,k},$$

for $J_0 \leq j \leq J_1$. The minimization is usually performed over $0 \leq \lambda_j \leq \rho_n \hat{\sigma} / \sqrt{n}$, although we shall minimize over a smaller interval for reasons that explain in the remark after Theorem 3.2. SureShrink can also be used to select a global threshold by minimizing $S_n(\lambda)$ using the same constant λ at every level. We call this global SureShrink.

The second estimator we consider is the modulation estimator given by Beran and Dümbgen (1998) and Beran (2000). Although these papers did not explicitly consider wavelet estimators, we can adapt their technique to construct estimators of the form

$$\hat{\alpha}_k = \xi_\phi \tilde{\alpha}_k$$
$$\hat{\beta}_{j,k} = \xi_j \tilde{\beta}_{j,k},$$

for $J_0 \leq j \leq J_1$. The minimization is usually performed over $0 \leq \lambda_j \leq \rho_n \hat{\sigma} / \sqrt{n}$, although we shall minimize over a smaller interval for reasons that explain in the remark after Theorem 3.2. SureShrink can also be used to select a global threshold by minimizing $S_n(\lambda)$ using the same constant λ at every level. We call this global SureShrink.

The second estimator we consider is the modulation estimator given by Beran and Dümbgen (1998) and Beran (2000). Although these papers did not explicitly consider wavelet estimators, we can adapt their technique to construct estimators of the form

$$\hat{\alpha}_k = \xi_\phi \tilde{\alpha}_k$$
$$\hat{\beta}_{j,k} = \xi_j \tilde{\beta}_{j,k},$$

for $J_0 \leq j \leq J_1$. The minimization is usually performed over $0 \leq \lambda_j \leq \rho_n \hat{\sigma} / \sqrt{n}$, although we shall minimize over a smaller interval for reasons that explain in the remark after Theorem 3.2. SureShrink can also be used to select a global threshold by minimizing $S_n(\lambda)$ using the same constant λ at every level. We call this global SureShrink.
where $\xi_0, \xi_{j_0}, \xi_{j_0+1}, \ldots, \xi_{j_1}$ are chosen to minimize SURE, which in this case is

$$
\tilde{S}_n(\xi) = \sum_{k=0}^{2^{j_0}-1} \left[\xi_k^2 \frac{\hat{\sigma}^2}{n} + (1 - \xi_k)^2 \left(\hat{\alpha}_k - \frac{\hat{\sigma}^2}{n} \right) \right] + \\
\sum_{j=J_0}^{J_1} \sum_{k=0}^{2^j-1} \left[\xi_j^2 \frac{\hat{\sigma}^2}{n} + (1 - \xi_j)^2 \left(\hat{\beta}_{j,k}^2 - \frac{\hat{\sigma}^2}{n} \right) \right]
$$

$$
\equiv S_{\phi}(\xi) + \sum_{j=J_0}^{J_1} \tilde{S}_{\phi}(\xi_j).
$$

(9)

Following Beran (2000), we minimize $\tilde{S}_n(\xi)$ subject to a monotonicity constraint: $1 \geq \xi_0 \geq \xi_{j_0} \geq \xi_{j_0+1} \geq \cdots \geq \xi_{j_1}$. We call this the monotone modulator, and we let $\tilde{\xi}$ denote the ξ’s at which the minimum is achieved.

It is natural to consider minimizing $\tilde{S}_n(\xi)$, level by level (Donoho and Johnstone, 1995) or in other block minimization schemes (Cai, 1999) without the monotonicity constraint. However, we find, as in Beran and Dümbgen (1998), that the loss functions for these estimators then do not admit an asymptotic distributional limit which is needed for the confidence set. It is possible to construct other modulators besides the monotone modulator that admit a limiting distribution; we will report on these elsewhere.

Having estimated the wavelet coefficients, we then estimate f – more precisely f_n – by

$$
\hat{f}_n(x) = \sum_{k=0}^{2^{j_0}-1} \hat{\alpha}_k \phi_{j_0,k}(x) + \sum_{j=J_0}^{J_1} \sum_{k=0}^{2^j-1} \hat{\beta}_{j,k} \psi_{j,k}(x).
$$

(10)

It will be convenient to consider the wavelet coefficients, true and estimated, in the form of a single vector. Let $\mu = (\mu_1, \mu_2, \ldots)$ be the sequence of true wavelet coefficients $(\alpha_0, \ldots, \alpha_{2^{j_0-1}}, \beta_{j_0,0}, \ldots, \beta_{j_0,2^{j_0-1}}, \ldots)$. The α_k coefficient corresponds to μ_ℓ where $\ell = k + 1$ and β_{jk} corresponds to μ_ℓ where $\ell = 2^j + k + 1$. Let ϕ_1, ϕ_2, \ldots denote the corresponding basis functions. Because $f \in L^2[0,1]$, we also have that $\mu \in \ell^2$. Similarly, let $\mu_n = (\mu_1, \ldots, \mu_n)$ denote the vector of first n coefficients $(\alpha_0, \ldots, \alpha_{2^{j_0-1}}, \beta_{j_0,0}, \ldots, \beta_{j_0,2^{j_0-1}}, \ldots, \beta_{j_1,2^{j_1-1}})$.
For any $c > 0$ define:

$$\ell^2(c) = \left\{ \mu \in \ell^2 : \sum_{\ell=1}^{\infty} \mu_{\ell}^2 \leq c^2 \right\},$$

and let $B_{p,q}^c(c)$ denote a Besov space with radius c. If the wavelets are r-regular with $r > \varsigma$, the wavelet coefficients of a function $f \in B_{p,q}^c(c)$ satisfy $||\mu||^c_{p,q} \leq c$, where

$$||\mu||^c_{p,q} = \left(\sum_{j=J_0}^{\infty} \left(2^{j(\varsigma+(1/2)-(1/p))} \left(\sum_k |\beta_{j,k}|^p \right) \right)^{1/p} \right)^{q/1}, \quad (11)$$

Let

$$\gamma = \begin{cases} \varsigma & p \geq 2 \\ \varsigma + \frac{1}{2} - \frac{1}{p} & 1 \leq p < 2. \end{cases} \quad (12)$$

We assume that $p,q \geq 1$ and also that $\gamma > 1/2$. However, for certain results we require the stronger condition that $\gamma > 1$. We also assume that the mother and father wavelets are bounded, have compact support, and have derivatives with finite L^2 norms. We will call a space of functions f satisfying these assumptions a Besov ball with $\gamma > 1/2$ (or 1) and radius c and the corresponding body of coefficients with $||\mu|| \leq c$ a Besov body with $\gamma > 1/2$ (or 1) and radius c. We use B to denote either, depending on context. If B is a coefficient body, we will denote by B^m for any positive integer m, the set of vectors (μ_1, \ldots, μ_m) for $\mu \in B$.

3 Confidence Sets With σ Known

Here we give explicit formulas for the confidence set when σ is known. The proofs are deferred until Section 7, and the σ unknown case is treated in Section 4. It is to be understood in this section that σ replaces $\hat{\sigma}$ in (5) and (9).

The confidence set is of the form

$$D_n = \left\{ \mu^n : \sum_{\ell=1}^{n} (\mu_{\ell} - \hat{\mu}_{\ell})^2 dx \leq s_n^2 \right\}. \quad (13)$$
The definition of the radius s_n is given in Theorems 3.1, 3.2, 3.3. In each case, we will show that
\[
\lim_{n \to \infty} \sup_{\mu^n \in B^n} |P\{\mu^n \in D_n\} - (1 - \alpha)| = 0,
\]
for a coefficient body B. Strictly speaking, the confidence set D_n is for approximate wavelet coefficients, but we show in Section 7 that the approximation error can be easily accounted for. By the Parseval relation, D_n also yields a confidence set for f_n. We then show that if f is in a Besov ball B with $\gamma > 1$ and radius c then
\[
\liminf_{n \to \infty} \inf_{f \in B} P\{f \in C_n\} \geq 1 - \alpha
\]
where
\[
C_n = \left\{ f \in B : \int_{0}^{1} (f(x) - \hat{f}_n(x))^2 \leq t_n^2 \right\}
\]
and $t_n^2 = s_n^2 + \delta \log n/n$ for any small, fixed $\delta > 0$. The factor $\delta \log n/n$ accommodates the difference between the true and approximate wavelet coefficients and is negligible relative to the size of the confidence set.

Theorem 3.1 (Universal Threshold). Suppose that \hat{f}_n is the estimator based on the global threshold $\lambda = \rho_n \sigma / \sqrt{n}$. Let
\[
s_n^2 = \sigma^2 \frac{z_\alpha}{\sqrt{n/2}} + S_n(\lambda).
\]
Then, equations (14) and (15) hold for any Besov body B with $\gamma > 1$ and radius $c > 0$.

Remark 3.1. When σ is known, this theorem actually holds with $B = \ell^2(c)$ (and thus with B^n equal to a sphere of radius c in \mathbb{R}^n) because there is no need to prove asymptotic equicontinuity of the pivot process. However, this generalization is not useful in practice.

We consider a restricted version of the SureShrink estimator where we minimize SURE over $g \rho_n \sigma / \sqrt{n} \leq \lambda \leq \rho_n \sigma / \sqrt{n}$, where $g > 1/\sqrt{2}$.
Theorem 3.2 (Restricted SureShrink). Let \(1/\sqrt{2} < \varrho < 1 \). In the global case, let \(\lambda_{J_0} = \cdots = \lambda_{J_1} \equiv \lambda \) be obtained by minimizing \(S_n(\lambda) \) over \(\varrho p_n \sigma / \sqrt{n} \leq \lambda \leq p_n \sigma / \sqrt{n} \). In the levelwise case, let \(\lambda \equiv (\lambda_{J_0}, \ldots, \lambda_{J_1}) \) be obtained by minimizing \(S_n(\lambda_{J_0}, \ldots, \lambda_{J_1}) \). Let

\[
\sigma_n^2 = \sigma^2 \frac{z_{\varrho}^2}{\sqrt{n/2}} + S_n(\hat{\lambda}).
\]

(18)

Then, equations (14) and (15) hold for any Besov body \(B \) with \(\gamma > 1 \) and radius \(c > 0 \).

Remark 3.2. We conjecture that our results holds with only the restriction that \(\varrho > 0 \). We hope to report on this extension in a future paper. Interestingly, the above theorem does not hold for \(\varrho = 0 \) because the asymptotic equicontinuity of \(B_n \) fails, so some restriction on SureShrink appears to be necessary.

Remark 3.3. The theorem also holds with a data-splitting scheme similar to that used in Nason (1996) and Picard and Tribouley (2000), where we use one half of the data to estimate the SURE-minimizing threshold and the other half to construct the confidence set. In the case \(\varrho > 1/\sqrt{2} \), this is not required but it may be needed in the more general case \(\varrho > 0 \).

Finally, we consider the modulation estimator.

Theorem 3.3 (Modulators). Let \(\hat{f}_n \) be the estimate obtained from the monotone modulator. Let

\[
s_n^2 = \tilde{\tau}^2 \frac{z_{\varrho}^2}{\sqrt{n}} + \tilde{S}(\tilde{a})
\]

(19)

where

\[
\tilde{\tau}^2 = \frac{2\sigma^4}{n} \sum_{\ell=1}^{n} (2\xi_{\ell} - 1)^2 + 4\sigma^2 \sum_{\ell=1}^{n} \left(\hat{\mu}_{\ell}^2 - \frac{\sigma^2}{n} \right)^2 (1 - \xi_{\ell})^2
\]

(20)

where \(\hat{\xi}_{\ell} \) is the estimated shrinkage coefficient associated with \(\mu_{\ell} \). Then equation (14) holds for any Besov body \(B \) with \(\gamma > 1/2 \) and radius \(c > 0 \), and equation (15) holds for any Besov body \(B \) with \(\gamma > 1 \) and radius \(c > 0 \).
4 Confidence Sets With σ Unknown

Suppose now that σ is not known. We consider two cases. The first, assumed in Beran and Dümbgen (1998, eq. 3.2), is that there exists an independent, uniformly consistent estimate of σ. For example, if there are replications at each design point then the residuals at these points provide the required estimator $\hat{\sigma}$. More generally, letting $\mathcal{L}(\cdot)$ denote the law of a random variable, they assume the following condition:

(S1) There exists an estimate $\hat{\sigma}_n^2$, independent of the empirical wavelet coefficients, such that $\mathcal{L}(\hat{\sigma}_n^2/\sigma^2)$ depends only on n and such that

$$\lim_{n \to \infty} m\left(\mathcal{L}(n^{1/2}(\hat{\sigma}_n^2/\sigma^2 - 1)), N(0, \bar{\sigma}^2)\right) = 0$$

where $m(\cdot, \cdot)$ metrizes weak convergence and $\bar{\sigma} > 0$.

In the absence of replication (or any other independent estimate of σ^2), we estimate σ^2 by

$$\hat{\sigma}_n^2 = 2 \sum_{\ell = \frac{n}{2} + 1}^{n} \hat{\mu}_\ell^2$$

which Beran (2000) calls the high-component estimator. We then need to assume that μ^ℓ is contained in a more restrictive space. Specifically, we assume the following:

(S2) The coefficients μ of f are contained in the set

$$\{\mu \in \ell^2(c) : ||\beta_j||^2 \leq \zeta_j, j \geq J_2\}$$

for some $c > 0$, $J_2 > J_0$ and some sequence of positive reals $\zeta = (\zeta_1, \zeta_2, \ldots)$ where $\zeta_j = O(2^{-j/2})$ and β_j denotes the resolution-j coefficients.

Condition (S2) holds when f is in a Besov ball \mathcal{B} with $\gamma > 1/2$. We note that such a condition is implicit in Beran (2000) and Beran and Dümbgen (1998) in the absence of (S1).
Beran and Dümbgen (1998) construct confidence sets with \(\sigma \) unknown by including an extra term in the formula for \(s_n^2 \) to account for the variability in \(\tilde{\sigma}_n^2 \). This strategy is feasible for modulators since terms involving \(\tilde{\sigma}_n^2 \) separate nicely in the estimated loss from the rest of the data. In thresholding estimators, the empirical process in Theorem 7.2 depends on \(\tilde{\sigma}_n \) in a complicated way, making it difficult to deal with \(\tilde{\sigma} \) separately. We offer two methods for this case. For the soft-thresholded wavelet estimators, it turns out that a plug-in method suffices. More generally, we can use “double confidence set” approach.

For both approaches, we need the uniform consistency of \(\tilde{\sigma} \).

Lemma 4.1. For any Besov body \(\mathcal{B} \) with \(\gamma > 1/2 \),

\[
\sup_{\mu \in \mathcal{B}} \left| \frac{\tilde{\sigma}^2}{\sigma^2} - 1 \right| \overset{P}{\to} 0.
\] (22)

The proof of this lemma is straightforward and is omitted.

In the plug-in approach, we simply replace \(\sigma \) by \(\tilde{\sigma} \) in the expressions of the last section.

Theorem 4.1 (Plug-in Confidence Ball). Theorems 3.1 and 3.2 continue to hold if \(\tilde{\sigma} \) replaces \(\sigma \). For the modulation estimator, Theorem 3.3 holds with \(\tilde{\tau}^2 \) replaced by

\[
\tilde{\tau}^2 = \frac{2\tilde{\sigma}^4}{n} \sum_{\ell=1}^{n} (2\tilde{\xi}_\ell - 2)^2 + 20\tilde{\sigma}^4 \left(\frac{1}{n} \sum_{\ell=1}^{n} (2\tilde{\xi}_\ell - 1) \right)^2 + 4\sigma^2 \sum_{\ell=1}^{n} \left(\tilde{\mu}_\ell - \frac{\sigma^2}{n} \right)^2 (1 - \tilde{\xi}_\ell)^2
\] (23)

In the double confidence set approach, the confidence set is the “tube” equal to the union of confidence balls obtained by treating \(\sigma \) as known, for every value in a confidence interval for \(\sigma \). We first need a uniform confidence interval for \(\sigma \). This is given in the following theorem; the proof is straightforward and is omitted.

Theorem 4.2. Let

\[
Q_n = \tilde{\sigma}_n^2 \left[\left(1 - \frac{\mathcal{O} z_{1-\alpha/2}}{\sqrt{n}} \right)^{-1}, \left(1 - \frac{\mathcal{O} z_{\alpha/2}}{\sqrt{n}} \right)^{-1} \right].
\] (24)
Under Condition (S1), we have

\[\liminf_{n \to \infty} \inf_{\sigma > 0} P\{\sigma \in Q_n\} \geq 1 - \alpha. \quad (25) \]

Under Condition (S2) with \(\sigma = 2 \), we have for any Besov body \(B \) with \(\gamma > 1/2 \)

\[\liminf_{n \to \infty} \inf_{\mu \in B, \sigma > 0} P\{\sigma \in Q_n\} \geq 1 - \alpha. \quad (26) \]

Theorem 4.3 (Double Confidence Set). Let \(\tilde{\alpha} = 1 - \sqrt{1 - \alpha} \) if (S1) holds and let \(\tilde{\alpha} = \alpha/2 \) if (S2) holds. Let \(Q_n \) be an asymptotic \(1 - \tilde{\alpha} \) confidence interval for \(\sigma \) as in Theorem 4.2. Let

\[D_n = \bigcup_{\sigma \in Q_n} D_{n,\sigma} \quad (27) \]

where \(D_{n,\sigma} \) is a \(1 - \tilde{\alpha} \) confidence ball for \(\mu \) from the previous section obtained with fixed \(\sigma \). Then,

\[\liminf_{n \to \infty} \inf_{\mu \in B^n} P\{\mu^n \in D_n\} \geq 1 - \alpha. \quad (28) \]

Finally, under conditions (S1) or (S2), Theorems 3.1, 3.2, and 3.3 continue to hold with equation (28) replacing equation (14) and \(D_n \) as in equation (27).

5 **Confidence Sets for Functionals**

Let \(f \mapsto f_n^\ast \) be the operation that takes \(f \) to the approximation defined in equation (38). The reader can think of \(f_n^\ast \) as simply the projection \(f_n \) of \(f \) onto the span of the first \(n \) basis functions. Define \(C_n^\ast \) to be the set of \(f_n^\ast \) corresponding to coefficient sequences \(\mu^n \in D_n \). For real-valued functionals \(T \), define

\[J_n^\ast(T) = \left(\inf_{f_n^\ast \in C_n^\ast} T(f_n^\ast), \sup_{f_n^\ast \in C_n^\ast} T(f_n^\ast) \right). \quad (29) \]

We then have the following immediately from the asymptotic coverage of the confidence set.
Lemma 5.1. Let \mathcal{T} be a set of real-valued functionals on a Besov ball \mathcal{B} with $\gamma > 1$ and radius $c > 0$. Then,

$$\liminf_{n \to \infty} \inf_{f \in \mathcal{B}} P\{T(f_n^*) \in J_n^*(T) \text{ for all } T \in \mathcal{T}\} \geq 1 - \alpha. \quad (30)$$

We can extend the previous result to include sets of functionals of slowly increasing resolution. Let \mathcal{F} be a function class and let \mathcal{T}_n be sequence of sets of real-valued functionals on \mathcal{F}. Define the radius of approximation of \mathcal{F} under \mathcal{T}_n as

$$r_n(\mathcal{F}, \mathcal{T}_n) = \sup_{T \in \mathcal{T}_n} \sup_{f \in \mathcal{F}} |T(f) - T(f_n^*)|.$$

For a sequence w_n, define

$$J_n(T) = \left(\inf_{f_n \in C_n^*} T(f_n^*) - w_n, \sup_{f_n \in C_n^*} T(f_n^*) + w_n \right). \quad (31)$$

Theorem 5.1. For a function class \mathcal{F} and a sequence \mathcal{T}_n of sets of real-valued functionals on \mathcal{F}, if $w_n \geq r_n(\mathcal{F}, \mathcal{T}_n)$,

$$\liminf_{n \to \infty} \inf_{f \in \mathcal{F}} P\{T(f) \in J_n(T) \text{ for all } T \in \mathcal{T}_n\} \geq 1 - \alpha. \quad (32)$$

Proof. Follows from the triangle inequality and Lemma 5.1.

Remark 5.1. If the functionals in \mathcal{T}_n are point evaluators $T(f) = f(x)$, then the confidence sets above yield confidence bands.

For a given compactly-supported wavelet basis, define the integer κ to be the maximum number of basis functions within a single resolution level whose support contains any single point:

$$\kappa = \sup \left\{ \# \{ \psi_{jk}(x) \neq 0 : 0 \leq k < 2^j \} : 0 \leq x \leq 1, j \geq J_0 \right\}.$$

Note also that $\|\psi_{jk}\|_1 = 2^{-j/2}\|\psi\|_1$. Both κ and $\|\psi\|_1$ are finite for all the commonly used wavelets.

As an example, we consider local averages over intervals whose length decreases with n.

13
Theorem 5.2. Fix a decreasing sequence \(\Delta_n > 0 \) and define
\[
\mathcal{T}_n = \left\{ T : T(f) = \frac{1}{b-a} \int_a^b f \, dx, \, 0 \leq a < b \leq 1, \, |b-a| \geq \Delta_n \right\}.
\]

Let \(c > 0 \) and \(\mathcal{F}_c = \bigcup_{p,q \geq 1} \mathcal{B}^c_{p,q}(c) \).

If the mother and father wavelets are compactly supported with \(\kappa < \infty \) and \(\| \psi \|_1 < \infty \) and if \(\Delta_n^{-1} = o(n^{\zeta}/(\log n)^d) \) for some \(0 \leq \zeta < 1 \) and \(d = 0 \) or for \(\zeta = 1 \) and \(d > 0 \), then
\[
r_n(\mathcal{F}_c, \mathcal{T}_n) = o(n^{\zeta-1}/(\log n)^d).
\]

Hence, for any sequence \(w_n \) such that \(w_n \to 0 \) and \(w_n n^{1-\zeta} (\log n)^d \to \infty \),
\[
\liminf_{n \to \infty} \inf_{f \in \mathcal{F}_c} \mathbb{P}\{ T(f) \in J_n(T) \text{ for all } T \in \mathcal{T}_n \} \geq 1 - \alpha.
\]

6 Numerical Examples

Here we study the confidence sets for the zero function \(f_0(x) \equiv 0 \) and for the two examples considered in Beran and Dümbgen (1998). We also compare the wavelet confidence sets to confidence sets obtained from a cosine basis as in Beran (2000).

The two functions, defined on \([0,1]\), are given by
\[
f_1(x) = 2(6.75)^3 x^6 (1-x)^3 \quad (35)
\]
\[
f_2(x) = \begin{cases}
1.5 & \text{if } 0 \leq x < 0.3 \\
0.5 & \text{if } 0.3 \leq x < 0.6 \\
2.0 & \text{if } 0.6 \leq x < 0.8 \\
0.0 & \text{otherwise.}
\end{cases} \quad (36)
\]

Tables 1 and 2 report the results of a simulation using \(\alpha = .05 \), \(n = 1024 \), \(\sigma = 1 \), and 5000 iterations (which gives a 95% confidence interval for the estimated coverage of length no more than 0.025). For comparison, the radius of the standard 95 per cent \(\chi^2 \) confidence ball, which uses no smoothing, is 1.074. We used a symmlet 8 wavelet basis, and all the calculations were done using the S+Wavelets package.
Table 1. Coverage and average confidence ball radius, by method, in the σ-known case. Here, $n = 1024$ and $\sigma = 1$.

<table>
<thead>
<tr>
<th>Method</th>
<th>Function</th>
<th>Coverage</th>
<th>Average Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal</td>
<td>f_0</td>
<td>0.951</td>
<td>0.274</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.949</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.935</td>
<td>0.439</td>
</tr>
<tr>
<td>SureShrink (global)</td>
<td>f_0</td>
<td>0.946</td>
<td>0.270</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.941</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.937</td>
<td>0.401</td>
</tr>
<tr>
<td>SureShrink (levelwise)</td>
<td>f_0</td>
<td>0.944</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.940</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.927</td>
<td>0.395</td>
</tr>
<tr>
<td>Modulator (wavelet)</td>
<td>f_0</td>
<td>0.941</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.940</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.933</td>
<td>0.329</td>
</tr>
<tr>
<td>Modulator (cosine)</td>
<td>f_0</td>
<td>0.931</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.930</td>
<td>0.259</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.905</td>
<td>0.318</td>
</tr>
</tbody>
</table>

Table 2. Coverage, by thresholding method, in the σ-unknown case using the Plug-in Confidence Ball. Again $n = 1024$ and $\sigma = 1$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Universal</th>
<th>Sure GL</th>
<th>Sure LW</th>
<th>WaveMod</th>
<th>CosMod</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>0.961</td>
<td>0.955</td>
<td>0.954</td>
<td>0.955</td>
<td>0.999</td>
</tr>
<tr>
<td>f_1</td>
<td>0.963</td>
<td>0.955</td>
<td>0.953</td>
<td>0.961</td>
<td>0.999</td>
</tr>
<tr>
<td>f_2</td>
<td>0.938</td>
<td>0.940</td>
<td>0.929</td>
<td>0.951</td>
<td>0.997</td>
</tr>
</tbody>
</table>
7 Technical Results

Recall that the model is
\[Y_i = f(x_i) + \sigma \epsilon_i \]
where \(\epsilon_i \sim N(0,1) \) and \(f(x) = \sum_j \mu_j \phi_j(x) \). Let \(X_j \) denote the empirical wavelet coefficients given by
\[
X_j = \sum_{i=1}^n Y_i \int_{x_i - \frac{1}{n}}^{x_i + \frac{1}{n}} \phi_j(x) \, dx
= \bar{\mu}_j + N \left(0, \frac{\sigma^2}{n} \right),
\]
where \(\bar{\mu}_{n\ell} = \int f_n \phi_\ell \) for
\[
\bar{f}_n(x) = n \sum_{i=1}^n 1_{\left(\frac{i-1}{n} \right)}(x) \int_{\frac{i-1}{n}}^{\frac{i}{n}} f(t) \, dt
= \sum_{\ell=1}^\infty \bar{\mu}_n \phi_j(x)
\] (37)
and its projection
\[
f^*(x) = \sum_{\ell=1}^n \bar{\mu}_n \phi_j(x).
\] (38)

It will be helpful to designate some notation before proceeding with the ensuing subsections. Let \(\sigma_n^2 = \sigma^2 / n \), and define \(r_n = \rho_n / \sqrt{\bar{n}} \) where \(\rho_n = \sqrt{2 \log n} \). Also define \(\nu_{ni} = -\sqrt{n} \mu_i / \sigma \), and let \(a_{ni} = \nu_{ni} - u \rho_n \) and \(b_{ni} = \nu_{ni} + u \rho_n \). Note that \(\sqrt{n} X_i / \sigma = \epsilon_i - \nu_{ni} \). Define
\[
I_{ni}(u) = 1\{|X_i| < ur_n\} = 1\{\nu_{ni} - u \rho_n < \epsilon_i < \nu_{ni} + u \rho_n\} = 1\{a_{ni} < \epsilon_i < b_{ni}\}
I_{ni}^+(u) = 1\{X_i > ur_n\} = 1\{\epsilon_i > \nu_{ni} + u \rho_n\} = 1\{\epsilon > b_{ni}\}
I_{ni}^-(u) = 1\{X_i < -ur_n\} = 1\{\epsilon_i < \nu_{ni} - u \rho_n\} = 1\{\epsilon < a_{ni}\}
J_{ni}(s,t) = 1\{sr_n < X_i < tr_n\} = 1\{\nu_{ni} + s \rho_n < \epsilon_i < \nu_{ni} + t \rho_n\}.
\]
For \(0 \leq u \leq 1 \) and \(1 \leq i \leq n \), define
\[
Z_{ni}(u) = \sqrt{n} \left[(X_i - ur_n)1\{X_i > ur_n\} + (X_i + ur_n)1\{X_i < -ur_n\} - \mu_i \right] ^2 -
\]
\[
\sqrt{n} \left[\sigma_n^2 - 2\sigma_n^2 1 \{ X_i^2 \leq u^2 r_n^2 \} + \min(X_i^2, u^2 r_n^2) \right] \\
= \frac{\sigma^2}{\sqrt{n}} \left[(\epsilon_i^2 - 1)(1 - 2I_{ni}(u)) + 2\nu_m \epsilon_i I_{ni}(u) - 2u\rho_n \epsilon_i (I_{ni}^+(u) - I_{ni}^-(u)) \right].
\]

(39)

Each \(Z_{ni} \) represents the contribution of the \(i \)th observation to the pivot process and satisfies \(\mathbb{E} Z_{ni}(u) = 0 \) for every \(0 \leq u \leq 1 \). We also have that

\[
Z_{ni}^2(u) = \frac{\sigma^4}{n} \left[(\epsilon_i^2 - 1)^2 + 4\nu_m \epsilon_i^2 I_{ni}(u) + 4u^2 \rho_n^2 \epsilon_i^2 (1 - I_{ni}(u)) - 4\nu_m \epsilon_i (\epsilon_i^2 - 1)I_{ni}(u) - 4u\rho_n \epsilon_i (\epsilon_i^2 - 1) (I_{ni}^+(u) - I_{ni}^-(u)) \right].
\]

(40)

The relevance of these definitions will become clear subsequently. Throughout this section, \(C' \) denotes a generic positive constant, not depending on \(n, \mu, \) or \(\epsilon \), that may change from expression to expression.

7.1 Absorbing Approximation and Projection Errors

As noted in the statement of Theorems 3.1, 3.2 and 3.3, the confidence set \(\mathcal{C}_n \) for \(\bar{\mu}^n \) induces a confidence set for \(f \) uniformly over Besov spaces. In this subsection, we make this precise.

Theorem 7.1. Let \(\bar{\mathcal{B}} \) be a Besov body with \(\gamma > 1 \) and radius \(c > 0 \) and let \(\mathcal{B} \) be a Besov ball with the same \(\gamma \) and \(c \). Let \(\mathcal{D}_n \) be defined by (13) and suppose that

\[
\liminf_{n \to \infty} \inf_{\bar{\mu} \in \mathcal{B}} \mathbb{P}\{ \bar{\mu}^n \in \mathcal{D}_n \} \geq 1 - \alpha
\]

for every \(c > 0 \). Let \(\mathcal{C}_n \) be defined as in (16). Then, under the Besov assumptions, for every \(c > 0 \),

\[
\liminf_{n \to \infty} \inf_{f \in \mathcal{B}} \mathbb{P}\{ f \in \mathcal{C}_n \} \geq 1 - \alpha.
\]

(41)

Proof. Brown and Zhao (2002) show that \(\| f - \bar{f}_n \|^2 \) and \(\| \bar{f}_n - f^*_n \|^2 = \sum_{j=n+1}^\infty \bar{f}_j^2 \) are both bounded, uniformly over \(\mathcal{B} \), by \((C' \log n)/n^{2\gamma} \) for some
universal \(\epsilon' > 0 \). It then follows that
\[
\| f - f^*_n \|_2^2 \leq \left(\| f - \overline{f}_n \|_2 + \| \overline{f}_n - f^*_n \|_2 \right)^2 \leq \frac{C' \log n}{n^{2\gamma}}.
\]
Let
\[
\hat{\delta}_n^2 = s_n^2 + \delta_n = \frac{\hat{\tau}^2 \alpha}{\sqrt{n}} + \delta_n + S_n
\]
where \(\delta_n = \delta \log n/n \) for some fixed, small \(\delta > 0 \), and let \(W^2 = \| \hat{f}_n - f^*_n \|_2^2 \). Then,
\[
\| \hat{f}_n - \overline{f}_n \|_2^2 = \| \hat{f}_n - f^*_n \|_2^2 + \| f^*_n - \overline{f}_n \|_2^2 \leq W^2 + \frac{C' \log n}{n^{2\gamma}},
\]
uniformly over \(B \). Hence,
\[
P\left\{ \| \overline{f}_n - \hat{f}_n \|_2^2 > \hat{\delta}_n^2 \right\} \leq P\left\{ W^2 > s_n^2 - \frac{C' \log n}{n^{2\gamma}} \right\} = P\left\{ W^2 > s_n^2 + \delta_n - \frac{C' \log n}{n^{2\gamma}} \right\}.
\]
Now, uniformly,
\[
\lim inf_{n \to \infty} \delta_n - \frac{C' \log n}{n^{2\gamma}} > 0
\]
since \(\gamma > 1 \) and so
\[
\lim sup_{n \to \infty} \sup_{f \in B} P\left\{ W^2 > s_n^2 + \delta_n - \frac{C' \log n}{4n^{2\gamma}} \right\} \leq \lim sup_{n \to \infty} \sup_{f \in B} P\left\{ W^2 > s_n^2 \right\} \leq \alpha.
\]
To do the same for \(f \) we note that
\[
\| \hat{f}_n - f \|_2^2 = \| \hat{f}_n - f^*_n \|_2^2 + \| f - f^*_n \|_2^2 + 2 \langle \hat{f}_n - f^*_n, f^*_n - f \rangle
\]
\[
= \| \hat{f}_n - f^*_n \|_2^2 + \| f - f^*_n \|_2^2 + 2 \langle \hat{f}_n - f^*_n, f^*_n - f_n \rangle
\]
\[
= \| \hat{f}_n - f^*_n \|_2^2 + \| f - f^*_n \|_2^2 + 2 \sum_{i=1}^n (\hat{\mu}_i - \overline{\mu}_i)(\mu_i - \overline{\mu}_i)
\]
\[18\]
\[\leq \|\hat{f}_n - f_n^*\|^2 + \|f - f_n^*\|^2 + 2\|\hat{f}_n - f_n^*\|_2 \|f - f_n^*\|_2 \]
\[= \left(\|\hat{f}_n - f_n^*\|_2 + \|f - f_n^*\|_2\right)^2 + \|f - f_n\|^2 \]
\[\leq \left(W + \sqrt{C\log n} + C\log n\right)^2. \]

where the last inequality follows from the results in Brown and Zhao (2002) since \(\|f_n - f_n^*\| \leq \|f - \bar{f}_n\| \). Letting \(k^2_n = \frac{C\log n}{4n^{2\gamma}} \), we have

\[P\left\{ \|f - \hat{f}_n\|_2 > \sqrt{s_n^2} \right\} \leq P\left\{ (W + k_n)^2 > s_n^2 - k_n^2 \right\} \]
\[= P\left\{ W^2 > s_n^2 - 2k_n\sqrt{s_n^2 - k_n^2} \right\} \]
\[= P\left\{ W^2 > s_n^2 + \delta_n - 2k_n\sqrt{s_n^2 + \delta_n - k_n^2} \right\}, \]

where the first inequality follows from the non-negativity of \(W \) and \(k_n \) and is implied by \(W > \sqrt{s_n^2 - k_n^2} - k_n \). Now, uniformly, since \(\gamma > 1 \),

\[\liminf_{n \to \infty} \delta_n - 2k_n\sqrt{s_n^2 + \delta_n - k_n^2} > 0, \]

so

\[P\left\{ W^2 > s_n^2 + \delta_n - 2k_n\sqrt{s_n^2 + \delta_n - k_n^2} \right\} \]
\[\leq \limsup_{n \to \infty} \sup_{f \in B} P\left\{ W^2 > s_n^2 \right\} \]
\[\leq \alpha. \]

\[\square \]

7.2 The Pivot Process

In the rest of this section, for convenience, we will denote \(\mathbf{p}_j \) simply by \(\mu_j \). We now focus on the confidence set \(\mathcal{D}_n \) for \(\mu^n \) defined by

\[\mathcal{D}_n = \left\{ \mu^n : \sum_{i=1}^{n} (\hat{\mu}_i - \mu_i)^2 \leq s_n^2 \right\}. \]

Our main task in showing that \(\mathcal{D}_n \) has correct asymptotic coverage, is to show that the pivot process has a tight Gaussian limit.
For $i = 1, \ldots, n$, let $j(i)$ denote the resolution level to which index i belongs, and for $j = J_0, \ldots, J_1$, let I_j denote the set of indices at resolution level j, which contains $n_j = 2^j$ elements. Let t be a sequence of thresholds with one component per resolution level starting at J_0, where each t_j is in the range $[\rho_n \sigma_n, \rho_n \sigma_n]$. It is convenient to write $t = u \rho_n \sigma / \sqrt{n}$, where u is a corresponding sequence of values in $[0, 1]$. In levelwise thresholding, the t_js (and u_js) are allowed to vary independently. In global thresholding, all of the t_js (and u_js) are equal; in this case, we treat t (and u) interchangeably as a sequence or scalar as convenient.

The soft threshold estimator $\hat{\mu}_i(t)$ is defined by

$$\hat{\mu}_i(t) = (X_i - t_{j(i)})1\{X_i > t_{j(i)}\} + (X_i + t_{j(i)})1\{X_i < -t_{j(i)}\},$$

for $i = 1, \ldots, n$. The corresponding loss as a function of threshold is

$$L_n(t) = \sum_{i=1}^n (\hat{\mu}_i(t) - \mu_i)^2,$$

We can write Stein’s unbiased risk estimate as

$$S_n(t) = \sum_{i=1}^n (\sigma_n^2 - 2\sigma_n^21\{X_i^2 \leq t_{j(i)}^2\} + \min(X_i^2, t_{j(i)}^2))$$

$$= \sum_{j=J_0}^{J_1} \sum_{i \in I_j} (\sigma_n^2 - 2\sigma_n^21\{X_i^2 \leq t_j^2\} + \min(X_i^2, t_j^2))$$

$$\equiv \sum_{j=J_0}^{J_1} S_{nj}(t_j).$$

In global thresholding, we will use the first expression. In levelwise thresholding, each S_{nj} is a sum of n_j independent terms, and the different S_{nj}s are independent.

The SureShrink thresholds are defined by minimizing S_n. By independence and additivity, this is equivalent in the levelwise case to separately minimizing the $S_{nj}(t_j)$s over t_j. That is, recalling that $r_n = \rho_n \sigma / \sqrt{n}$,

$$\hat{u}_n = \arg\min_{0 \leq u \leq 1} S_n(u) \quad \text{and} \quad \hat{t}_n = u_n r_n \quad \text{(global)}$$

$$\hat{u}_{nj} = \arg\min_{0 \leq u_j \leq 1} S_{nj}(u_j) \quad \text{and} \quad \hat{t}_{nj} = u_{nj} r_n \quad \text{(levelwise)}.$$
We now define
\[B_n(u) = \sqrt{n} (L_n(ur_n) - S_n(ur_n)). \] (48)

We regard \(\{B_n(u) : u \in \mathcal{U}_\varrho\} \) as a stochastic process. Let \(\varrho > 1/\sqrt{2} \). In the global case, we take \(\mathcal{U}_\varrho = [\varrho, 1] \). In the levelwise case, we take \(\mathcal{U} = [\varrho, 1]^{\infty} \), the set of sequences \((u_1, \ldots, u_k, 1, 1, \ldots)\) for any positive integer \(k \) and any \(\varrho \leq u_j \leq 1 \). This process has mean zero because \(S_n \) is an unbiased estimate of risk. The process \(B_n \) can be written as
\[B_n(u) = \sum_{i=1}^{n} Z_{ni}(u_{j(i)}), \] (49)
where \(Z_{ni} \) is defined in equation (39). For levelwise thresholding, \(B_n(u) \) is also additive in the threshold components:
\[B_n(u) = \sum_{j=J_0}^{J_1} B_{nj}(u_j) = \sum_{j=J_0}^{J_1} \sum_{i \in I_j} Z_{ni}(u_j). \] (50)

Each \(B_{nj} \) is of the same basic form as the sum of \(n_j \) independent terms.

Lemma 7.1. Let \(\mathcal{B} \) be a Besov body with \(\gamma > 1 \) and radius \(c > 0 \). The process \(B_n(u) \) is asymptotically equicontinuous on \(\mathcal{U}_\varrho \) uniformly over \(\mu \in \mathcal{B} \) for any \(\varrho > 1/\sqrt{2} \) with both global and levelwise thresholding. In fact, it is uniformly asymptotically constant in the sense that for all \(\delta > 0 \),
\[
\limsup_{n \to \infty} \sup_{\mu \in \mathcal{B}} P^\mu \left\{ \sup_{u,v \in \mathcal{U}_\varrho} |B_n(u) - B_n(v)| > \delta \right\} = 0. \] (51)

Proof. As above, let \(a_{ni} = \nu_{ni} - u \rho_n \) and \(b_{ni} = \nu_{ni} + u \rho_n \). From equation (39), we have for \(0 \leq u < v \leq 1 \),
\[
\frac{\sqrt{n}}{2\sigma^2} (Z_{ni}(u) - Z_{ni}(v)) = (\epsilon_i^2 - 1)(I_{ni}(v) - I_{ni}(u)) - \nu_{ni} \epsilon_i (I_{ni}(v) - I_{ni}(u)) \]
\[
- u \rho_n \epsilon_i (I_{ni}^+(u) - I_{ni}^-(u)) + v \rho_n \epsilon_i (I_{ni}^+(v) - I_{ni}^-(v)) \]
From the above, we have in the global thresholding case that

\[
\frac{\sqrt{n}}{2\sigma^2} |Z_{ni}(u) - Z_{ni}(v)|
\leq (\epsilon_i^2 + |\nu_{ni}| + u_\rho_n)\epsilon_i 1\{u_\rho_n \leq |\epsilon_i - \nu_{ni}| \leq v_\rho_n\} + \\
|v - u|\rho_n|\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| > v_\rho_n\}
\leq (\epsilon_i^2 + |\nu_{ni}| \epsilon_i + 1) 1\{u_\rho_n \leq |\epsilon_i - \nu_{ni}| \leq v_\rho_n\} + \rho_n|\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq u_\rho_n\}
\leq (\epsilon_i^2 + |\nu_{ni}| \epsilon_i + 1) 1\{\varrho_{\rho_n} \leq |\epsilon_i - \nu_{ni}| \leq \rho_n\} + \rho_n|\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq \varrho_{\rho_n}\}
\equiv \Delta_{ni}
\]

(53)

Let \(A_{n0} = \{1 \leq i \leq n : |\nu_{ni}| \leq 1\}, A_{n1} = \{1 \leq i \leq n : 1 < |\nu_{ni}| \leq 2\rho_n\}, \) and \(A_{n2} = \{1 \leq i \leq n : |\nu_{ni}| > 2\rho_n\}. \) The Besov condition implies that

\[
\sum_{i=1}^{n} \nu_{ni}^{2\gamma} \leq C^2 n \log n,
\]

so \(\nu_{ni}^{2\gamma} \leq C^2 n \log n. \) Let \(n_0(n) = \left[C^{1/\gamma} n^{1/2\gamma} (\log n)^{1/2\gamma} \right]. \) This is \(o(n)\) if \(\gamma > 1/2\) and \(o(\sqrt{n})\) if \(\gamma > 1.\) It follows that for \(i \geq n_0, |\nu_{ni}| \leq 1;\) hence, \(|A_{n0}| = n - n_0(n)\) and \(|A_{n1}| + |A_{n2}| \leq n_0(n).\)

From the above, we have in the global thresholding case that

\[
\sup_{\vartheta \leq u \leq \vartheta} |B_n(u) - B_n(v)|
\leq \sup_{\vartheta \leq u \leq \vartheta} \sum_{i=1}^{n} |Z_{ni}(u) - Z_{ni}(v)|
\leq \frac{2\sigma^2}{\sqrt{n}} \sum_{i=1}^{n} \left[(\epsilon_i^2 + |\nu_{ni}| \epsilon_i + 1) 1\{\varrho_{\rho_n} \leq |\epsilon_i - \nu_{ni}| \leq \rho_n\}
\right.
\left. + \rho_n|\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq \varrho_{\rho_n}\}\right]
\]

(55)
We break the sum $\sum_{i=1}^n$ into three sums $\sum_{i \in A_0} + \sum_{i \in A_1} + \sum_{i \in A_2}$ and consider these one at a time.

For the case where $|\nu_{ni}| \leq 1$ we have the following:

$$
\frac{2\sigma^2}{\sqrt{n}} \sum_{i \in A_0} \left[(\epsilon_i^2 + |\nu_{ni}| |\epsilon_i| + 1) 1\{\rho_n \leq |\epsilon_i - \nu_{ni}| \leq \rho_n \} + \rho_n |\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq \rho_n \} \right]
$$

$$
\leq \frac{2\sigma^2}{\sqrt{n}} \sum_{i \in A_0} (\epsilon_i^2 + (1 + \rho_n) |\epsilon_i| + 1) 1\{|\epsilon_i| \geq \rho_n - 1 \} .
$$

Let $t_n = \rho_n - 1$. By equations (67) and (68), the expected value of each summand is

$$
E \left(\epsilon_i^2 + (1 + \rho_n) |\epsilon_i| + 1 \right) 1\{|\epsilon_i| \geq \rho_n - 1 \}
$$

$$
= 2(t_n + \rho_n + 1)\phi(t_n) + 4(1 - \Phi(t_n))
$$

$$
= o(n^{-1/2}).
$$

The entire sum thus goes to zero as well. To see the last equality, note that there exists $\delta > 0$ such that

$$
\phi(t_n) = \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} t_n^2 \right\} = \frac{1}{\sqrt{2\pi e}} \exp \left\{ -\frac{\rho_n^2}{2} - \frac{\rho_n^2}{4} e^{\rho_n} \right\}
$$

$$
= \frac{1}{\sqrt{2\pi e}} n^{\frac{\rho_n^2}{2}} \exp \left\{ -\frac{\rho_n^2}{2} \right\} = o(n^{-1/2-\delta}),
$$

because $\frac{\rho_n}{\sqrt{\log n}} - \rho^2 < -1/2 - \delta$ for large enough n, where $\delta = |\rho^2 - 1/2|/2$.

It follows that $\rho_n \phi(t_n) = o(n^{-1/2})$ and similarly for $(1 - \Phi(t_n)) \sim \phi(t_n)/t_n$.

For the case where $1 < |\nu_{ni}| \leq 2\rho_n$ we have the following:

$$
\frac{2\sigma^2}{\sqrt{n}} \sum_{i \in A_1} \left[(\epsilon_i^2 + |\nu_{ni}| |\epsilon_i| + 1) 1\{\rho_n \leq |\epsilon_i - \nu_{ni}| \leq \rho_n \} + \rho_n |\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq \rho_n \} \right]
$$

$$
\leq \frac{2\sigma^2}{\sqrt{n}} \sum_{i \in A_1} (\epsilon_i^2 + 3\rho_n |\epsilon_i| + 1) 1\{|\epsilon_i - \nu_{ni}| \geq \rho_n \} .
$$

The expected value of each summand is bounded by $2 + 3\rho_n$. The expected value of the entire sum is thus bounded by

$$
\frac{n_0(n)}{\sqrt{n}} 2\sigma^2(2 + 3\rho_n) \to 0,
$$

23
because $\gamma > 1$ implies $n_0(n)\rho_n/\sqrt{n} \to 0$.

For the case where $2\rho_n < |\nu_{ni}|$ we have the following from equation (53):

$$
\frac{2\sigma^2}{\sqrt{n}} \sum_{i \in A_{n2}} \left[(\epsilon_i^2 + |\nu_{ni}| |\epsilon_i| + 1) 1\{\rho_n \leq |\epsilon_i - \nu_{ni}| \leq \rho_n \} + \rho_n |\epsilon_i| 1\{|\epsilon_i - \nu_{ni}| \geq \rho_n \} \right]
\leq \frac{2\sigma^2}{\sqrt{n}} \left(\sum_{i \in A_{n2}} (\epsilon_i^2 + 2\rho_n |\epsilon_i| + 1) + \sum_{i \in A_{n2}} (|\nu_{ni}| - \rho_n) |\epsilon_i| 1\{|\epsilon_i| \geq |\nu_{ni}| - \rho_n \} \right).
$$

The expected value of the summands in the first term is bounded by $2 + 2\rho_n$.

The expected value of the summands in the second term is bounded by $2(\nu_{ni} - \rho_n)\phi(\nu_{ni} - \rho_n)$. Hence, the expected value of the entire sum is bounded by

$$
\frac{n_0(n)}{\sqrt{n}} 2\sigma^2 (2 + \rho_n + 2(\nu_{ni} - \rho_n)\phi(\nu_{ni} - \rho_n)) \to 0,
$$

because $\gamma > 1$ implies $n_0(n)\rho_n/\sqrt{n} \to 0$.

We have shown that $E \sup_{\theta \leq u \leq \theta \leq 1} |B_n(u) - B_n(v)| \to 0$. The result follows for all $\delta > 0$ by Markov’s inequality.

Next, consider the levelwise thresholding case. The product space $\mathcal{U}_\theta = \lbrack \theta, 1 \rbrack^\infty$ is the set of sequences $(u_1, \ldots, u_k, 1, 1, \ldots)$ over positive integers k and $\theta \leq u_j \leq 1$. By Tychonoff’s theorem, this space is compact and thus totally bounded, so \mathcal{U}_θ is totally bounded under the product metric $d(u, v) = \sum_{\ell=0}^{\infty} 2^{-\ell} |u_\ell - v_\ell|$. For $u \in \mathcal{U}_\theta$, define

$$
B_n(u) = \sum_{i=1}^{n} Z_{ni}(u_{j(i)}).
$$

It follows then that for any $u, v \in \mathcal{U}_\theta^\infty$, $d(u, v) \leq 1 - \theta$ and

$$
|B_n(u) - B_n(v)| \leq \sum_{i=1}^{n} |Z_{ni}(u_{j(i)}) - Z_{ni}(v_{j(i)})| \leq \sum_{i=1}^{n} \sup_{u, v \in \mathcal{U}_\theta} |Z_{ni}(u) - Z_{ni}(v)| \leq \sum_{i=1}^{n} \Delta_{ni},
$$

where

(56)

(57)

(58)
where Δ_{ni} is the u, v independent bound established above in equation (53). The result above shows that
\[
E \sup_{u,v \in U_a} |B_n(u) - B_n(v)| \to 0. \tag{59}
\]
This implies that B_n is asymptotically constant (and thus equicontinuous) on U_a. \hfill \square

Lemma 7.2. Let B be a Besov body with $\gamma > 1$ and radius $c > 0$. For any fixed u_1, \ldots, u_k in either global or levelwise thresholding, the vector $(B_n(u_1), \ldots, B_n(u_k))$ converges in distribution to a mean zero Gaussian on \mathbb{R}^k, uniformly over $\mu \in B$, in the sense that
\[
\sup_{\mu \in B} m(L(B_n(u_1), \ldots, B_n(u_k)), N(0, \Sigma(u_1, \ldots, u_k; \mu)) \to 0,
\]
where m is any metric on \mathbb{R}^k that metrizes weak convergence and where Σ represents a limiting covariance matrix, possibly different for each μ.

Proof. We begin by showing that the Lindeberg condition holds uniformly over $\mu \in B$ and over $0 \leq u \leq 1$.

First consider global thresholding. Define $||Z_{ni}|| = \sup_{0 \leq u \leq 1} |Z_{ni}(u)|$. Recall that $E Z_{ni} = 0$ for all n and i. Now by equations (39) and (40),
\[
Z^2_{ni}(u) \leq \frac{2\sigma^4}{n} \left[(\epsilon_i^2 - 1)^2 + 4u^2 \rho_n^2 \epsilon_i^2 (1 - I_{ni}(u)) + 4\nu_n^2 \epsilon_i^2 I_{ni}(u) \right]
\equiv N_1 + N_2 + N_3.
\]
Note that none of N_1, N_2 or N_3 depend on u. Hence,
\[
||Z_{ni}||^2 \{ ||Z_{ni}|| > \eta \} \leq \{ N_1 + N_2 + N_3 \} \{ (N_1 + N_2 + N_3) > \eta^2 \}
\leq \sum_{r=1}^3 \sum_{s=1}^3 K_r J_s \tag{60}
\]
where $J_s = \{ K_s > \eta^2/3 \}$. We will now show that the nine terms in (60) are exponentially small in n which implies that the Lindeberg condition holds. Moreover, we will see that the condition holds uniformly over $\ell^2(c)$. 25
First,

\[P\left\{ \mathcal{N}_1 > \frac{\eta^2}{3} \right\} = P\left\{ |\epsilon_1^2 - 1| > \frac{\eta \sqrt{n}}{\sigma^2 \sqrt{12}} \right\} \leq 2 \exp \left\{ -\frac{\eta \sqrt{n}}{8 \sigma^2 \sqrt{12}} \right\} \]

using the fact that \(P\{|X_1^2 - 1| > t\} \leq 2e^{-t(t^4)/8} \). To bound \(\mathcal{N}_2 \) we use Mill’s ratio:

\[P\left\{ \mathcal{N}_2 > \frac{\eta^2}{3} \right\} \leq P\left\{ |\epsilon_i| > \frac{\eta}{\sigma r_n \sqrt{48}} \right\} \leq 2 \frac{r_n \sqrt{48}}{\eta} e^{-\eta^2/(96 r_n^2)} = 2 \frac{\rho \sqrt{48}}{\eta \sqrt{n}} e^{-\eta^2/(96 \rho^2)}. \]

For the third term, if \(\mu_i = 0 \), \(\mathcal{N}_3 = 0 \). If \(\mu_i \neq 0 \),

\[P\left\{ \mathcal{N}_3 > \frac{\eta^2}{3} \right\} \leq P\left(\{|X_i| \leq r_n \} \cap \left\{ \epsilon_i^2 > \frac{\eta^2}{48 \sigma^2 \mu_i^2} \right\} \right) \equiv b(\mu_i). \]

An elementary calculus argument shows that \(b(\mu_i) \leq b(\mu_*) \) where

\[|\mu_*| = \frac{\rho \sigma}{2 \sqrt{n}} + \frac{1}{2} \sqrt{\frac{\rho^2 \sigma^2}{n} + \frac{4 \eta}{\sqrt{48 n}}}. \]

Now, for all large \(n \),

\[b(\mu_*) \leq P\left\{ \epsilon > -\rho \sigma + \sqrt{n}|\mu_*| \right\} \]

\[\leq P\left\{ \epsilon > \frac{n^{1/4} \sqrt{\eta}}{6} \right\} \leq \frac{6}{\eta \sqrt{2 \pi n^{1/4}}} e^{-\eta \sqrt{n}/72}. \]

These inequalities show that for \(\eta > 0 \) and for \(s = 1, 2, 3, \) \(E J_{si} \leq K_1 \exp(-K_2 \min(\eta, \eta^2) \sqrt{n}) \). Because \(\sqrt{E N_{1i}^2} \leq K_3/n, \sqrt{E N_{2i}^2} \leq \rho_n^2 K_4/n, \) and \(\sqrt{E N_{3i}^2} \leq \mu_n^2 K_5, \) the Cauchy-Schwarz and equation (60) show that for \(\eta > 0, \)

\[E \sum_{i=1}^n ||Z_{ni}||^2 1\{||Z_{ni}|| > \eta\} \leq K_6(\sigma, \bar{\rho}, c) \exp(-K_7(\sigma, \bar{\rho}) \min(\eta, \eta^2) \sqrt{n}). \quad (61) \]

Here, the constants \(K_j \) depend at most on \(\sigma \). It follows that the Lindeberg condition holds uniformly by applying the Cauchy-Schwartz inequality to (60).
Write $B_n(u) \equiv B_{n,\mu}(u)$ to emphasize the dependence on μ and similarly for $Z_{ni;\mu_i}(u)$. In particular, let $B_{n,0}(u)$ denote the process with $\mu_1 = \mu_2 = \cdots = 0$. Let $\mathcal{L}_{n,\mu}(u)$ denote the law of $B_{n,\mu}(u) = \sum_{i=1}^n Z_{ni;\mu_i}(u)$ and let \mathcal{N} denote a Normal with mean 0 and variance 2. By the triangle inequality,

$$m(\mathcal{L}_{n,\mu}(u), \mathcal{N}) \leq m(\mathcal{L}_{n,0}(u), \mathcal{N}) + m(\mathcal{L}_{n,\mu}(u), \mathcal{L}_{n,0}(u))$$

where $m(\cdot, \cdot)$ denotes the Prohorov metric. By the uniform Lindeberg condition above, the CLT holds for $\mathcal{L}_{n,0}(u)$ and hence, by Theorem 7.3, $m(\mathcal{L}_{n,0}(u), \mathcal{N}) \to 0$. Now we show that

$$\sup_{\mu \in B} m(\mathcal{L}_{n,\mu}(u), \mathcal{L}_{n,0}(u)) \to 0. \quad (62)$$

Note that

$$\frac{\sqrt{n}}{2\sigma^2} |Z_{ni;\mu_i}(u) - Z_{ni;0}(u)| = \left| (\epsilon_i^2 - 1)(I_{ni;\mu_i}(u) - I_{ni;0}(u)) + \nu_{ni} \epsilon_i I_{ni;\mu_i}(u) - u \rho_{ni} \epsilon_i (I_{ni;\mu_i}(u) - I_{ni;0}(u)) \right|$$

This can be bounded as in the proof of Lemma 7.1 and the sum split over the same three cases $|\nu_{ni}| \leq 1$, $1 < |\nu_{ni}| \leq 2\rho_n$, and $|\nu_{ni}| > 2\rho_n$. It follows that

$$\sup_{\mu \in B} \mathbb{E} \sup_{g \leq u \leq 1} |B_{n,\mu}(u) - B_{n,0}(u)| \leq a_n^2$$

where $a_n \to 0$; note that a_n does not depend on u or μ. Therefore,

$$\sup_{\mu \in B} \sup_{g \leq u \leq 1} P\{|B_{n,\mu}(u) - B_{n,0}(u)| > a_n\} \leq \frac{a_n^2}{a_n} = a_n$$

for all large n. Recall that, by Strassen’s theorem, if $P\{|X - Y| > \epsilon\} \leq \epsilon$ then the marginal laws of X and Y are no more than ϵ apart in Prohorov distance. Hence,

$$\sup_{\mu \in B} \sup_{g \leq u \leq 1} m(\mathcal{L}_{n,\mu}(u), \mathcal{L}_{n,0}(u)) \leq a_n \to 0. \quad (64)$$

27
This establishes the theorem for one u. When $B_n(u_1, \ldots, u_k)$ is an \mathbb{R}^k-valued process for some fixed k,

$$\mathbb{E}\|B_{n;\mu}(u_1, \ldots, u_k) - B_{n;0}(u_1, \ldots, u_k)\| \leq k \mathbb{E} \sup_{\rho \leq u \leq 1} |B_{nr;\mu}(u) - B_{nr;0}(u)|,$$

so by equation (63) the sup of the former is bounded by ka_n^2. Since k is fixed, the result follows. Thus, (62) holds for any finite dimensional marginal.

The same method shows that the result also holds in the levelwise case. \qed

Theorem 7.2. For any Besov body with $\gamma > 1$ and radius $c > 0$ and for any $1/\sqrt{2} < \varrho < 1$, there is a mean zero Gaussian process W such $B_n \rightsquigarrow W$ uniformly over $\mu \in \mathcal{B}$, in the sense that

$$\sup_{\mu \in \mathcal{B}} m(\mathcal{L}(B_n), \mathcal{L}(W)) \rightarrow 0, \quad (66)$$

where m is any metric that metrizes weak convergence on $\ell^\infty[\varrho, 1]$.

Proof. The result follows from the preceding lemmas in both the global and levelwise cases. Lemmas 7.3 and 7.2 shows that the finite-dimensional distributions of the process converge to Gaussian limits. Lemma 7.1 proves asymptotic equicontinuity. It follows then that B_n converges weakly to a tight Gaussian process W. \qed

7.3 The Variance and Covariance of B_n

Recall that $r_n = \rho_n \sigma / \sqrt{n}$, $\nu_{ni} = -\sqrt{n}\mu_i / \sigma$, $a_{ni} = \nu_{ni} - u\rho_n$, and $b_{ni} = \nu_{ni} + u\rho_n$. Also define

$$D_1(s, t) = \int_s^t \varepsilon \phi(\varepsilon) \, d\varepsilon = s\phi(s) - t\phi(t) \quad (67)$$

$$D_2(s, t) = \int_s^t \varepsilon^2 \phi(\varepsilon) \, d\varepsilon = s\phi(s) - t\phi(t) + \Phi(t) - \Phi(s) \quad (68)$$

$$D_3(s, t) = \int_s^t \varepsilon(\varepsilon^2 - 1) \phi(\varepsilon) \, d\varepsilon = (s^2 + 1)\phi(s) - (t^2 + 1)\phi(t) \quad (69)$$

28
\[
D_4(s, t) = \int_s^t (\epsilon^2 - 1)^2 \phi(\epsilon) \, d\epsilon \\
= 2 (\Phi(t) - \Phi(s)) + s(s^2 + 1)\phi(s) - t(t^2 + 1)\phi(t).
\]
\text{(70)}

Let \(K_n(u, v) = \text{Cov}(B_n(u), B_n(v))\). It follows from equation (40) that

\[
K_n(u, u) = \mathbb{E} Z_{n_i}^2(u)
\]

\[
= \frac{2\sigma^4}{n} \left[1 + 2u_n^2 D_2(a_{ni}, b_{ni}) + 2u_n^2 \left(1 - D_2(\dot{a}_{ni}, \dot{b}_{ni}) \right) - 2\nu_{ni} D_3(\dot{a}_{ni}, \dot{b}_{ni}) + 2u \rho_n \left(D_3(-\infty, a_{ni}) - D_3(b_{ni}, \infty) \right) \right]
\]

\[
= \frac{2\sigma^4}{n} \left[1 + 2u_n^2 \rho_n^2 + 2a_{ni} b_{ni} D_2(\dot{a}_{ni}, \dot{b}_{ni}) - 2b_{ni} (a_{ni}^2 + 1) \dot{\phi}(a_{ni}) + 2a_{ni} (b_{ni}^2 + 1) \dot{\phi}(b_{ni}) \right]
\]

\[
= \frac{2\sigma^4}{n} \left[1 + 2u_n^2 \rho_n^2 + 2a_{ni} b_{ni} \left(\Phi(b_{ni}) - \Phi(a_{ni}) \right) + 2b_{ni} a_{ni}^2 \dot{\phi}(a_{ni}) - 2a_{ni} b_{ni}^2 \dot{\phi}(b_{ni}) - 2b_{ni} (a_{ni}^2 + 1) \dot{\phi}(a_{ni}) + 2a_{ni} (b_{ni}^2 + 1) \dot{\phi}(b_{ni}) \right]
\]

\[
= \frac{2\sigma^4}{n} \left[1 + \sqrt{II} \right]
\]

\[
\equiv \frac{2\sigma^4}{n} \left[1 + I + II \right].
\]

Theorem 7.3. Let \(\mathcal{B}\) be a Besov ball with \(\gamma > 1/2\) and radius \(c > 0\).

Then,

\[
\lim_{n \to \infty} \sup_{\mu \in \mathcal{B}} \left| \sum_{i=1}^n \mathbb{E} Z_{n_i}^2(u) - 2\sigma^4 \right| = 0.
\]

Proof. Apply Lemma 7.4 to the sum of terms I and II. This is of the form \(\frac{1}{n} \sum_{i=1}^n g_n(\nu_{ni})\), where

\[
g_n(x) = 2u_n^2 \rho_n^2 + 2(x^2 - u_n^2 \rho_n^2)(\Phi(x + u \rho_n) - \Phi(x - u \rho_n)) +
\]
We have \(g_n(0) \to 0 \) because \(|g_n(0)| \leq 6\rho_n n^{-\phi^2} \), and hence \(n > 288/\epsilon \) implies that \(|g_n(0)| < \epsilon \).

Now, if \(|x| > 2\rho_n \), then by Mill’s inequality, \(|g_n(x)| \leq C\rho_n^2 \). If \(|x| \leq 2\rho_n \), the same holds because each term is of order \(\rho_n^2 \). Hence, \(\|g_n\|_{\infty} = O(\log n) \).

For \(x \) in a neighborhood of zero,

\[
|g_n(x) - g_n(0)| \leq |g_n'(\xi)| |x| \quad \text{for some } |\xi| \leq |x|
\]

\[
\leq \sup_{|\xi| \leq |x|} |g_n'(\xi)| |x|.
\]

Hence,

\[
\sup_n |g_n(x) - g_n(0)| \leq |x| \sup_n \sup_{|\xi| \leq |x|} |g_n'(\xi)|.
\]

By direct calculation, for \(\epsilon > 0 \) and \(\delta = \min(\epsilon, 1/8) \), \(\sup_{|\xi| \leq |x|} |g_n'(\xi)| \leq 1 \), so \(|x| \leq \delta \) implies \(\sup_n |g_n(x) - g_n(0)| \leq \epsilon \). Thus \((g_n) \) is an equicontinuous family of functions at 0.

By Lemma 7.4, the result follows.

Lemma 7.3. Let \(B \) be a Besov body with \(\gamma > 1/2 \) and radius \(c > 0 \). Then the function \(K_n(u, v) = \text{Cov}(B_n(u), B_n(v)) \) converges to a well defined limit uniformly over \(\mu \in B \):

\[
\lim_{n \to \infty} \sup_{\mu \in B} \left| K_n(u, v) - 2\sigma^4 \right| = 0.
\]

Proof. Theorem 7.3 proves the result for \(u = v \). Let \(0 \leq u < v \leq 1 \). Then, by equation (39)

\[
Z_{ni}(u)Z_{ni}(v) = \frac{\sigma^4}{n} (\epsilon^2 - 1)^2 (1 - 2I_{ni}(v) + 2I_{ni}(u)) +
\]

\[
2\frac{\sigma^3}{\sqrt{n}} \epsilon (\epsilon^2 - 1) \left\{ vr_n I_{ni}^-(v) + ur_n I_{ni}^- (u) - \mu_i -
vr_n I_{ni}^+(v) - ur_n I_{ni}^+(u) + 3\mu I_{ni}(u) +
2ur_n J_{ni}(u, v) - 2ur_n J_{ni}(-v, -u) \right\} +
\]

\[
2\sigma^2 \epsilon^2 \left\{ 2\mu^2 I_{ni}(u) + 2ur_n (\mu + r_n v) J_{ni}(u, v) +
2ur_n (vr_n - \mu v) J_{ni}(-v, -u) \right\}.
\]
Let $\tilde{a}_n = \nu_n - v\rho$ and $\tilde{b}_n = \nu_n + v\rho$. We then have

$$
K_n(u, v) = \mathbb{E}(Z_n(u)Z_n(v)) \\
= \frac{2\sigma^4}{n} \left[1 - D_4(\tilde{a}_n, \tilde{b}_n) + D_4(a_n, b_n) \\
v\rho_n D_3(-\infty, \tilde{a}_n) + u\rho_n D_3(-\infty, a_n) + \nu_n - \\
v\rho_n D_3(\tilde{b}_n, \infty) - u\rho_n D_3(b_n, \infty) - 3\nu_n D_3(a_n, b_n) \\
2u\rho_n D_3(b_n, \tilde{b}_n) - 2u\rho_n D_3(\tilde{a}_n, a_n) + \\
2\nu_n^2 D_2(a_n, b_n) + 2uv\rho_n (\rho_n - \nu_n) D_2(b_n, \tilde{b}_n) + \\
2uv\rho_n (\rho_n + \nu_n) D_2(\tilde{a}_n, a_n) \right].
$$

The proof that this converges is essentially the same as the proof of Theorem 7.3. □

Lemma 7.4. Let B be a Besov ball with $\gamma > 1/2$. Let g_n be a sequence of functions equicontinuous at 0, with $\|g_n\|_{\infty} = O((\log n)^\alpha)$ for some $\alpha > 0$, and satisfying $g_n(0) \to a \in \mathbb{R}$. Then,

$$
\lim_{n \to \infty} \sup_{\mu \in B} \frac{1}{n} \sum_{i=1}^{n} g_n(\mu_i \sqrt{n}) = a.
$$

Proof. Without loss of generality, assume that $a = 0$. Let $M_n = \|g_n\|_{\infty}$. Fix $\epsilon > 0$. By equicontinuity, there exists $\delta > 0$ such that $|x| < \delta$ implies $|g_n(x) - g_n(0)| < \epsilon/4$ for all n. By assumption, there exists an N such that $|g_n(0)| < \epsilon/4$ for $n \geq N$. Since B is by assumption a Besov ball, there is a constant C such that for all n, $\sum_{i=1}^{n} \mu_i^{2\gamma} \leq C^2 \log n$, for all $\mu \in B$. See (Cai 1999, pp. 919–920) for inequalities that imply this.

Let $\nu_n = \mu_i \sqrt{n}$. The condition on μ implies for all n that

$$
\sum_{i=1}^{n} \nu_n^{2\gamma} \leq C^2 n \log n.
$$

31
Let the set of such ν_ns be denoted by \widetilde{B}_n. We thus have
\[
\sup_{\mu \in B} \left| \frac{1}{n} \sum_{i=1}^{n} g(\mu_i \sqrt{n}) \right| \leq \sup_{\nu_n \in \widetilde{B}_n} \frac{1}{n} \sum_{i=1}^{n} |g(\nu_{ni})|.
\]

Let $n_0 = \left\lceil C^{1/\gamma} n^{1/2\gamma} (\log n)^{1/2\gamma} / \delta^{1/\gamma} \right\rceil$. This is less than n and bigger than N for large n. Then for $i \geq n_0$ and $n \geq N$, $|\nu_{ni}| \leq \delta$ and $|g_n(\nu_{ni})| \leq \epsilon/2$. We have
\[
\frac{1}{n} \sum_{i=1}^{n} |g_n(\nu_{ni})| \leq \frac{n_0}{n} M_n + \frac{\epsilon}{2} \frac{n - n_0 + 1}{n}
\leq n^{-(1-1/2\gamma)} (\log n)^{1/2\gamma} C^{1/\gamma} M_n \frac{C^{1/\gamma} M_n}{\delta^2} + \frac{\epsilon}{2}.
\]
Thus, as soon as
\[
n (\log n)^{-1/(-1/\gamma)} \geq \left(\frac{C^{1/\gamma}}{\delta^{1/\gamma}} \max \left(1, \frac{2M_n}{\epsilon}\right) \right)^{2\gamma/(-1/\gamma)},
\]
we have
\[
\sup_{\nu_n \in \widetilde{B}_n} \frac{1}{n} \sum_{i=1}^{n} |g_n(\nu_{ni})| \leq \epsilon,
\]
which proves the lemma. \qed

7.4 Proofs of Main Theorems

Proof Theorem 3.1. This follows from Theorems 7.2, and 7.3. The last statement follows from Theorems 7.1. \qed

Proof Theorem 3.2. This follows from Theorems 7.2, 7.3, and the fact that $B(\hat{\nu}) = B(1) + o_P(1)$, uniformly in $\rho \leq \hat{\nu} \leq 1$ and $\mu \in B$. The last statement follows from Theorems 7.1. \qed

Proof Theorem 3.3. This follows from the Theorem 3.2 in Beran and Dümbgen (1998) and Theorem 7.1. \qed
Proof Theorem 4.1. Let $\hat{m} = \hat{\sigma}/\sigma$ The pivot process with $\hat{\sigma}$ “plugged in” is

$$
\tilde{B}_n(u) = \sqrt{n} \sum_{i=1}^{n} [(\mu_i - \hat{\mu}_i(u \hat{m}))^2 +
\left[\hat{m} \sigma^2_n \right. - 2 \hat{m} \sigma^2_n \left\{ X^2_i \leq u^2 r^2_n \hat{m}^2 \right\} + \min(X^2_i, u^2 r^2_n \hat{m}^2) \left] \right]

= B_n(u \hat{m}) + (\hat{m} - 1) \frac{\sigma^2}{n} \sum_{i=1}^{n} \left(1 - 2 \left\{ |\tilde{\beta}_{j,k}| \leq u r_n \hat{m} \right\} \right)

= B_n(u) + o_p(1),

uniformly over $u \in \mathcal{U}_k$ and $\mu \in \mathcal{B}$, by Lemmas 7.1 and 4.1. The result follows.

\[\square \]

Proof Theorem 4.3. Let μ_0 and σ_0 denote the true values of μ and σ, respectively. Then under (S1) we have,

$$
P\{\mu_0^n \in \mathcal{D}_n\} \geq P\{\sigma_0 \in \mathcal{Q}_n\} P\{\mu_0^n \in \mathcal{D}_n | \sigma_0 \in \mathcal{Q}_n\} \geq P\{\sigma_0 \in \mathcal{Q}_n\} P\{\mu_0^n \in \mathcal{D}_{n,\sigma_0} | \sigma_0 \in \mathcal{Q}_n\} = P\{\sigma_0 \in \mathcal{Q}_n\} P\{\mu_0^n \in \mathcal{D}_{n,\sigma_0}\}

Hence,

$$
\liminf_{n \to \infty} \inf_{\mu^n \in \mathcal{B}_n} P\{f_n \in \mathcal{D}_n\} \geq (1 - \bar{\alpha})^2 = (1 - \alpha).

Under (S2),

$$
P\{\mu_0^n \notin \mathcal{D}_n\} = P\{\mu_0^n \notin \mathcal{D}_n, \sigma_0 \notin \mathcal{Q}_n\} + P\{\mu_0^n \notin \mathcal{D}_n, \sigma_0 \in \mathcal{Q}_n\} \leq P\{\sigma_0 \notin \mathcal{Q}_n\} + P\{\mu_0^n \notin \mathcal{D}_{n,\sigma_0}, \sigma_0 \in \mathcal{Q}_n\} \leq P\{\sigma_0 \notin \mathcal{Q}_n\} + P\{\mu_0^n \notin \mathcal{D}_{n,\sigma_0}\}

Thus,

$$
\liminf_{n \to \infty} \inf_{\mu^n \in \mathcal{B}_n} P\{f_n \in \mathcal{C}_n\} \geq (1 - \bar{\alpha} - \bar{\alpha}) = 1 - \alpha.

This completes the proof.
For the final claim, note that the uniform consistency of $\tilde{\sigma}$ and the asymptotic constancy of B_n (Lemma 7.1), imply that $B(\tilde{u}) = B(1) + o_p(1)$, uniformly in $\varrho \leq \tilde{u} \leq 1$ and $\mu \in B$. The theorem follows from Theorems 3.1, 3.2, 3.3, and 4.3. □

Proof Theorem 5.1. For any $f \in F_c$, we have that

$$|T(f) - T(f_n^*)| \leq |T(f) - T(f_n)| + |T(f_n) - T(f_n^*)|$$

Since $\int_a^b \psi_{jk} = 0$ whenever the support of ψ_{jk} is contained in $[a, b]$, the first term is bounded by (with C' denoting a possibly different constant in each expression)

$$|T(f) - T(f_n)| \leq \sum_{j=J_1+1}^{\infty} \sum_{k=0}^{2^j-1} |\beta_{jk}| \left| \frac{1}{b-a} \int_a^b \psi_{jk}(x) \, dx \right|$$

$$\leq \|\psi\| \Delta_n \sum_{j=J_1+1}^{\infty} \max |\beta_{j, k}| \frac{1}{2^{-j/2}}$$

$$\leq \frac{C'}{\Delta_n} \sum_{j=J_1+1}^{\infty} \|\beta_{j, k}\| 2^{-j}$$

$$\leq \frac{C' \Delta_n}{\Delta_n} \sum_{j=J_1+1}^{\infty} \frac{1}{2^{-j} 2^{-j/2}}$$

$$= \frac{C'}{\Delta_n} 2^{-(\gamma+(1/2))J_1}$$

$$= \frac{C'}{\Delta_n} n^{-(\gamma+\frac{1}{2})}$$

$$= o(n^{\xi-(\gamma+\frac{1}{2})/(\log n)^d})$$

For a given $0 \leq a < b \leq 1$, let $q = \sup\{1 \leq m \leq n : (m-1)/n \leq a\}$ and $r = \inf\{1 \leq m \leq n : b \leq m/n\}$. The second term in equation (71) is bounded by

$$|T(f_n) - T(f_n^*)| \leq \frac{1}{b-a} \sum_{\ell=1}^{n} |\mu_{\ell}| \left| \int_a^b (\phi_{\ell} - \bar{\phi}_{\ell}) \right|$$
\[r_n(F, T_n) = o(n^{\frac{\gamma-\frac{1}{2}}{d}}). \]

The result follows by Theorem 5.1. \(\square \)

8 Discussion

As shown by Li (1989), confidence spheres for nonparametric regression like the ones we have constructed will generally shrink slowly. Hence, the confidence sets might not inherit the fast convergence rates of the function estimator. A deeper discussion of rate adaptivity in confidence theory is given in Genovese, Robins, and Wasserman (2002).
We have chosen to emphasize confidence balls and simultaneous confidence sets for functionals. A more traditional approach is to construct an interval of the form \(\hat{f}(x) \pm w_n \) where \(\hat{f}(x) \) is an estimate of \(f(x) \) and \(w_n \) is an appropriate sequence of constants. This corresponds to taking \(T(f) = f(x) \), the evaluation functional, in Theorem 5.1. There is a rich literature on this subject; a recent example in the wavelet framework is Picard and Tribouley (2000). Such confidence intervals are pointwise in two senses. First, they focus on the regression function at a particular point \(x \), although they can be extended into a confidence band. Second, the validity of the asymptotic coverage usually only holds for a fixed function \(f \): the absolute difference between the coverage probability and the target \(1 - \alpha \) converges to zero for each fixed function, but the supremum of this difference over the function space need not converge. Moreover, in this approach one must estimate the asymptotic bias of the function estimator or eliminate the bias by undersmoothing.

While acknowledging that this approach has some appeal and is certainly of great value in some cases, we prefer the confidence ball approach for several reasons. First, it avoids having to estimate and correct for the bias which is often difficult to do in practice and usually entails putting extra assumptions on the functions. Second, it produces confidence sets that are asymptotically uniform over large classes. Third, it leads directly to confidence sets for classes of functionals which we believe are quite useful in scientific applications. Of course, we could take the class of functionals \(\mathcal{T} \) to be the set of evaluation functions \(f(x) \) and so our approach does produce confidence bands too. It is easy to see, however, that without additional assumptions on the functions these bands are hopelessly wide. We should also mention that another approach is to construct Bayesian posterior intervals as in Barber, Nason, and Silverman (2002) for example. However, the frequentist coverage of such sets is unknown.

In Section 5, we gave a flavor of how information can be extracted from the confidence ball \(\mathcal{C}_n \) using functionals. Beran (2000) discusses a different approach to exploring \(\mathcal{C}_n \) which he calls “probing the confidence set.” This involves plotting smooth and wiggly representatives from \(\mathcal{C}_n \). A generalization of these ideas is to use families of what we call *parametric probes*. These are parameterized functionals tailored to look for specific features of the function...
such as jumps and bumps. In a future paper, will report on probes as well as other practical issues that arise. In particular, we will report on confidence sets for other shrinkage schemes besides thresholding and linear modulators.

References

American Statistical Association, 94, 189–204.

