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Summary
The evaluation and optimization of flexible

chemical processes remains one of the most
challenging problems in Process Systems
Engineering. In this paper an overview of recent
methods for quantifying the property of flexibility in
chemical plants will be presented. As will be shown,
these methods are gradually evolving form
deterministic worst-case measures for feasible
operation to stochastic measures that account for the
distribution functions of the uncertain parameters.
Another trend is the simultaneous handling of discrete
and continuous uncertainties with the aim of
developing measures for flexibility and reliability that
can be integrated within a common framework. It
will be then shown how some of these measures can
be incorporated in the optimization of chemical
processes. In particular, the problems of retrofit
design to improve flexibility at minimum cost will be
discussed as well as the optimization of flexibility for
multiproduct batch plants.

1. Introduction

The problem of accounting for uncertainty at the
design stage is clearly a problem of great practical
significance due to the variations that are commonly
experienced in plant operation (e.g. changes in
demands, fluctuations of feed compositions and
equipment failure). Furthermore, at the design stage
one must rely on values of technical parameters
which are unlikely to be realized once a design is
actually implemented (e.g. transfer coefficients and
efficiencies). Finally, models that are used to predict
the performance of a plant at the design stage may not
even match the correct behavior trends of the process.
In view of all these uncertainties, the common
practice is to overdesign processes and/or perform
ad-hoc case studies to try to verify the flexibility or
robustness of a design. The pitfalls of such
approaches, however, are well known and therefore
have motivated the study and development of
systematic techniques over the last 20 years (e.g.
Grossmann et al, 1983; Grossmann and Morari,
1984).

It is the purpose of this paper to provide an
overview of recent techniques that have been
developed for evaluating and optimizing flexibility in
the face of uncertainties of continuous parameters and
discrete states. It will be assumed that the basic form
of the process model is correct. In this paper we will
emphasize work that has been developed by our
group at Carnegie Mellon. This paper will be
organized as follows. The problem statements for the
evaluation and optimization problems will be given
first for deterministic and stochastic approaches. An
overview will then be presented for different
formulations and solution methods for the evaluation
problems, followed by similar items for the
optimization design problems. As will be shown, the
reason for the recent trend towards the stochastic
approach is that it offers a more general framework,
especially for integrating continuous and discrete
uncertainties under a common measure (e.g.
integrating flexibility and reliability). At the same
time, however, the stochastic approach also involves
a number of major challenges that still need to be
overcome, especially for the optimization problems.

A specific application to multiproduct batch plants
will be presented to illustrate how the problem
structure can be exploited in specific instances to
simplify the optimization.

2. Problem Statements

It will be assumed that the model of a process is
described by equations and inequalities of the form:

h(d,z,x,q)=0
g(d,z,x,q)<0

d=Dy

where the variables are defined as follows:

(1)

d - L vector of design variables that defines the
structure and equipment sizes of a process

z - nz vector of control variables that can be
adjusted during plant operation
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x - nx vector of state variables that describe the
behavior of a process

0 - np vector of continuous uncertain parameters

y - L vector of boolean variables that describes
the unavailability (0) or availability (1) of the
corresponding design variables d

D - diagonal matrix whose elements in the
diagonal correspond to the design variables d

For convenience in the presentation it will be
assumed that the state variables x in (1) are eliminated
from the equations h(d,z,x,0)=O; the model then
reduces to

f(d,z,6)<0
d=Dy (2)

The evaluation problems that can then be considered
for a fixed design D are as follows:

A) Deterministic Problems Let y be fixed, and 0 be

described by a nominal value 0 N , expected
deviations in the positive and negative directions
A0+, A0% and a set of correlations r(0) < 0:

a)Problem Al : Determine if the design d = Dy, is

feasible for every point 0 in

T={0I0N -A0- < 0 <0N+A0+ , r(0)<O)

b) Problem A2: Determine the maximum deviation

5 that design d = Dy can tolerate such that every

point 0 in

T(5)={0I0N -5A0" < 0 <0N+5A0+ , r(0)<O}
is feasible.

Problem (Al) corresponds to the feasibility
problem discussed in Halemane and Grossmann
(1983), while problem (A2) corresponds to the
flexibility index problem discussed in Swaney and
Grossmann (1985a).

B) Stochastic Problems Let 0 be described by a joint

probability distribution function j(0):

a) Problem Bl: If y is fixed, determine the
probability of feasible operation.

b) Problem B2: If the discrete probability p, for
the availability of each piece of equipment ^is
given, determine the expected probability of
feasible operation.

Problem (Bl) corresponds to evaluating the
stochastic flexibility discussed in Pistikopoulos and
Mazzuchi (1990), while problem (B2) corresponds to
evaluating the expected stochastic flexibility
discussed in Straub and Grossmann (1990).

As for the design optimization problems they
will involve the selection of the matrix D so as to
minimize cost and either a) satisfy the feasibility test
(Al), or b) maximize the flexibility measure as given
by (A2), (Bl) or (B2), where the latter problem gives
rise to a multiobjective optimization problem.

3 . Evaluation for Deterministic Case

3.1 Formulations

In order to address problem (Al) for determining
the feasibility of a fixed design d, consider first a
fixed value of the continuous parameter 0. The
feasibility for fixed d at the given 9 value is then
given by the following optimization problem
(Halemane and Grossmann, 1983):

(3)
s.t. fj|d, z, 0)<u jeJ

where \|/ <. 0 indicates feasibility and \|/ > 0
infeasibility. Note that the objective in problem (3) is
to find a point z* such that the maximum potential
constraint violation is minimized.

In terms of the function \y(d,8), feasibility for

every point 6e T, can be established by the
formulation (Halemane and Grossmann, 1983):

= max \|/(d, (4)

where %(d) < 0 indicates feasibility of the design d

for every point in the parameter set T, and x(d) > 0
indicates infeasibility. Note that the max operator in
(4) determines the point 8* for which the largest
potential constraint violation can occur.

As for the flexibility index problem (A2), the
formulation is given by (see Swaney and
Grossmann, 1985a):

F = max 5
s.t. max \j/(d, 6]< 0

0eT(5) V ;

5 > 0

(5)



where the objective is to inscribe the largest parameter
set T(8*) in the feasible region projected in 0-space.
An alternative formulation to problem (A2) is,

5 = max 5
6,z

= min 5* (el
9€T * '

(6)

where

5 0Umax 5
\ / 6,z

s.t. fj(d, z, e )<0 jeJ

9 = 0N + 5 0

(7)

andT = {9|-A8 < 6 < A 6
The objective in (6) is to find the maximum
displacement which is possible along the
displacement 0 from the nominal value 6N. Note that
in both (5) and (6) the solution of the critical point 9*
lies at the boundary of the feasible region projected in
6-space.

3.2 Methods
Assume that no constraints r(0) < 0 are present

for correlating parameter variations. Then the
simplest methods for solving problems (Al) and (A2)
are vertex enumeration schemes which rely on the
assumption that the critical points 0* lie at the vertexes
of the sets T and T(5*). Such an assumption is only
valid provided certain convexity conditions hold (see
Swaney and Grossmann, 1985).

Let V = {k} correspond to the set of vertices in
T={0I0N -A9* < 0 <0N-A0+}. Then, problem (4)
can be reformulated as

X(d) = max
keV

where
uk = min u

s.t. fjjd, z,0k)<u jeJ

(8)

(9)

That is, the problem reduces to solving the 2nP
optimization problems in (9).

Likewise, problem (6) can be reformulated as
F = min5k

 (lQ)

where

s.t. fj (d, z, e) < 0 jeJ (11)

0 = 6 + A0k

5 > 0

and A0k is the displacement vector to vertex k. This
problem again reduces to solving 2nP optimization
problems in (11).

The problem of avoiding the exhaustive
enumeration of all vertices, which increase
exponentially with the number of parameters, has
been addressed by Swaney and Grossmann (1985b)
and Kabatek and Swaney (1989) using implicit
enumeration techniques. The latter author has been
able to solve problems with up to 20 parameters with
such an approach.

An alternative method that does not rely on the
assumption that critical points correspond to vertices,
is the active set strategy of Grossmann and Floudas
(1987). This method relies on the fact that the
feasible region projected into the space of d and 0,

R(d,e)={eiy(d,8)<0} (12)

(see Figure 1) can be expressed in terms of active sets

of constraints fj(d,z,0)=O, jeJ^ k=l,...NAS.

0 2

0 1

Figure 1 Constraints in the space of d and 0

These active sets are obtained from all subsets of
non-zero multipliers that satisfy the Kuhn-Tucker
conditions of problem (3)

(13)

Pistikopoulos and Grossmann (1989) have proposed
a systematic enumeration procedure to identify the



R(d,e>={e
where

s.t.

1 \)/k(d,0)<O,

y^d, e)=
fjfd.z, e) =

k=i,..

min u

= u j

.,NAS)

NAS active sets of constraints, provided that the
corresponding submatrices in (13) are of full rank.

The projected parameter feasible region in (12)
can then be expressed as

(14)

(15)

The above active set strategy by Grossmann and
Floudas (1987) does not require, however, the
a-priori identification of constraints \ j / k . This is
accomplished by reformulating problem (4) with the
Kuhn-Tucker conditions of (3) embedded in it, and
expressed in terms of 0-1 variables WJ for modelling
the complementarity conditions.

For the case of problem (Al), this leads to the
mixed-integer optimization problem

%(d) = max u

s.t. Sj + fjfd, z, 0 J = u je J

nz
(16)

e N - A6 N0 < 0 r

r(0) < 0

WJ = 0,1 ; Xj; sj > 0 jeJ

where U is a valid upper bound for the violation of
constraints. For the case of problem (A2), the
calculation of the flexibility index can be formulated
as the mixed-integer optimization problem (17).

In both cases, constraints fj that are linear in z
and 0 give rise to MILP problems which can be
solved with standard branch and bound methods.
For nonlinear constraints models (16) and (17) give
rise to MINLP problems which can be solved with
Generalized Benders Decomposition (Geoffrion,
1972) or with any of the variants of the outer-
approximation method (e.g. Viswanathan and
Grossmann, 1989). Also, for the case when nz + 1
constraints are assumed to be active and the

constraints are monotone in z, Grossmann and
Floudas (1987) decompose the MINLP into a
sequence of NLP optimization problems, each
corresponding to an active set which is identified
a-priori from the stationary conditions of the
Lagrangian.

F = min 5
+ fj(d, z, 0J = O jeJs.t.

»j-w jSl

< nz

(17)
0N - 5A0" < 0 < 0N + 5A0+

r(0)< 0

5 > 0 ; WJ = 0,1 , A J , S J > 0 jeJ

4 • Evaluation for Stochastic Case
4.1 Formulation

In order to formulate problem (Bl), the
probability of feasible operation given a joint
distribution for 9, j(9), this involves the evaluation of
the multiple integral

SF(d) •i j (0) d0
9:y(d,e)<o

(18)

where SF(d) is the stochastic flexibility for a given
design (see Pistikopoulos and Mazzuchi, 1990;
Straub and Grossmann, 1990). Note that this
integral must be evaluated over the feasible region
projected in 0 space (see eqn. (12) and Figure 2). In
Figure 2 the circles represent the contours of the joint
distribution function j .

1
Figure 2 SF is evaluated by integration over the

shaded area.



For the case when uncertainties are also involved
in the equipment, discrete states result from all the
combinations of the vector y. It is convenient to
define for each state s the index sets

Y s i = { / | y ^ = l } , Y 5 « ( / | y J = 0} (19)

to denote the identity of available and unavailable
equipment. Note that state s is defined by a particular
choice of ys which in turn determines the design
variables for that state, ds=Dys. Also, denoting by p/
the probability that equipment /be available, the
probability of each state P(s) is given by:

(20)

In this way the probability of feasible operation over
both the discrete and continuous uncertainties (i.e.
problem (B2)) is given by

E(SF)=f SF(s)P(s) (21)

where E(SF) is the expected stochastic flexibility as
proposed by Straub and Grossmann (1990).

4.2 Methods

The solution of problems (18) and (21) poses
great computational challenges. Firstly, because (18)
involves a multiple integral over an implicitly defined
domain. Secondly, (19) involves the evaluation of
these integrals for 2L states. For this reason solution
methods for these problems have been only reported
for the case of linear constraints:

(22)

Pistikopoulos and Mazzuchi (1990) have
proposed the computation of bounds for the
stochastic flexibility, SF(d) by assuming that j(9) is a
normal distribution. Firstly, expressing the
feasibility function vk(d,6) as given in (15) through
the Lagrangian, this yields for (22) the linear equation

vk(d,e)=S
(23)

^ c ^ + a/d. Since (23) is linear in 9 and

these are normally distributed NQIQJZQ), then the
distribution function <)>(Yk) is also normally
distributed with mean and variance,

H¥k =

l e

(24)

(25)

where £Q is the variance-convariance matrix for the
parameters 0.

The probability of feasible operation for the
above set k is then given by the one-dimensional
integral

SF* = I (26)

which can be readily evaluated.

Lower and upper bounds of the stochastic
flexibility SF(d) are then given by

NAS

SFk - £ SFkSF'+ ]T SF"SF'SFm ... (27)
k-I

SFu(d)= rrun
(28)

where JA(q) c; JA, q=l,...Q, are all possible subsets
of the inequalities yk(d,0)<O , k=l,...NAS. It
should be noted that the bounds in (27) and (28) are
often quite tight providing good estimates for the
stochastic flexibility.

Straub and Grossmann (1990) have proposed a
numerical approximation scheme for arbitrary
distribution functions using Gaussian quadrature
within the feasible region of the projected region
R(d,6) (see Fig. 1).

Figure 3 Location of Quadrature Points.

The location of the quadrature periods is performed
by first projecting the functions \j/k(d,8), k=l...NAS



into successively lower dimensional spaces in 0 ; i.e.
:[e l fe2 , . . .eM] -> [e1>e2,...eM_1]...-*[e1] This is
accomplished by analytically solving the problems

l2Ml

(29)
)

s.t. \}/r'k(d, 0i, 02,...) < u k=l...NAS(r)

where V1Jc = fj(d,z,9), and NAS(r)

J
is the number of active sets at the rth state of the
projection.

In the next step, lower and upper bounds are
generated together with the quadrature points for each
0i component in the order 01-»02...->0M. This is
accomplished by using the analytical expressions

\(/r>k(d,01,02,...,0M+r-l) i n t h e o r d e r r = M > M-l,...,
to determine the bounds. For instance, the bounds
0!L and 0iuare determined from the linear inequalities

VM>k(d,0!)<(), k=l,...NAS(M). The quadrature

points Qft then are given by:

(eiu-eB+eiu + e{'
J 1 qi=l,..QPi

where v q i , ql=l,... , QPj represent the location of
QPl quadrature points in [-1,1]. In the next step,

bounds for 02 are computed for each e^1 from

\KM-1»k(d,01,02)<O, k=l, . . .NAS(M-l). These

bounds are denoted as 0 2 ( ^ ) since they depend on

the value of 0^ . Quadrature points are then computed

as in (30) and the procedure continues until the the

bounds 8 M[0 I ,62 -SM-I )» 9 MIQI ,82 ...9M-I ]

and quadrature points ©jj^2'"^ are determined.

The numerical approximation to (18) is then
given by

SF(d)-9

2

e 3L(e?\e
e u ( e -1) - e ki(

QPM
(31)

where wq, are the weights corresponding to each
quadrature point.

It should be noted that equation (31) becomes
computationally more expensive as the number of
parameters 0 increases which is not the case with the
bounds in (27) and (28). However, as pointed out
before, (31) can be applied to any distribution
function (e.g. normal, beta, log) while the bounds
can only be applied to normal distribution. Also,
both methods require the identification of active sets
which may become large if the number of constraints
is large.

As for the solution of equation (21) for the
expected flexibility, Straub and Grossmann (1990)
have developed a bounding scheme that requires the
examination of relatively few states which can
become quite large. They represent the states through
a network as shown in Fig. 4.

S1-{1,2,3}

S2-{1,2} S3={1,3} S4={2,3}

S5={1} S6={2} S7={3}

S8={0}
Figure 4 State Network showing different
possible sets of active units.

Here the top state has all the units active (i.e. y/ =
1), while the bottom state has all units inactive. Since
the states with active units will usually have the
higher probability, the evaluation starts with the top
state.

At any point of the search the following index
sets are defined:

E={slSF(s) is evaluated}
U={slSF(s) is not evaluated) (32)

The lower and upper bounds are then given a.<
follows:

, (33)

E(SF)L = 2, SF(s) P(s)
seE

E(SF)U = £ SF(s) P(s) + X B S F(S) p ( s

seE seU



where BSF(s) are valid upper bounds that are
propagated through the subnetwork from higher
states that have been evaluated. Convergence with
this scheme for a small tolerance is normally achieved
within 5 to 6 state evaluations (see Figure 5) provided
the discrete probabilities p/>0.5. The significance of
this method is that it allows the evaluation of
flexibility and reliability within a single measure
accounting for the interactions of the two.

1.0-1

Upper Bound

0.6
1 2 3 4 5 6 7
Number of States Evaluated

Figure 5 Example of the progression of the bounds.

5. Design Optimization

Most of the previous work (Johns et al, 1976;
Malik and Hughes, 1979) has only considered the
effect of the continuous uncertain parameters 0 for the
design optimization, and for which the minimization
of the expected value of the cost function has been
considered using a two-stage strategy:

min E [ rmn C (d, z, e) | f (d, z, 6
( 3 4 )

In order to handle infeasibilities in the inner
minimization, one approach is to assign penalties for
the violation of constraints (e.g. C(d,z,q)=C if
f(d,z,q) >0. This however can lead to
discontinuities. The other approach is to enforce
feasibility for a specified flexibility index F (e.g.
Halemane and Grossmann, 1983) through the
parameter set T(F)={6I6L -FAG" < 0 <6U+FA6+,
r(9)<0} In this case (34) is formulated as

min E [min c (d , z, e) | f (d, z, e) < ol
d 0 c TY F) ^ ^ ' •*

s.t. m a x \ j / ( d , G J < 0
0€T(F) l ;

(35)

A particular case of (35) is when only a discrete set of
points Gk, k=l..K are specified which then gives rise
to the problem

K

k=l

s.t. f(d, z\ Gk)<0 k=l..K
(36)

where w^ are weights that are assigned to each point
K

Gk, wk = 1.
k=l

Problem (36) can be interpreted as a multiperiod
design problem which is an important problem in its
own right for the design of flexible chemical plants.
However, as shown by Halemane and Grossmann
(1983) this problem can also be used to approximate
the solution of (35), This is accomplished by
selecting an initial set of points 9k, solving problem
(36) and verifying its feasibility over T(F) by solving
problem (Al) as given by (4). If the design is
feasible the procedure terminates. Otherwise the
critical point from (4) is included to the set of K 0
points and the solution of (36) is repeated.
Computational experience has shown that commonly
one or two major iterations must be performed to
achieve feasibility with this method (e.g. see Floudas
and Grossmann, 1987).

While the above procedure can be applied to
general linear and nonlinear problems, one can
exploit the structure for specialized cases. For
instance, consider the case of constraints that are
linear in d, z, and 0, and where the objective function
only involves the design variables d. This case
commonly arises in retrofit design problems.

As shown by Pistikopoulos and Grossmann
(1988), equation (23) holds for linear constraints.
Therefore, the constraint in (35) can be simplified
into NAS inequalities as shown in the following
model:

min C(d)
d

s.t.

where
dL < d < du

k=l..NAS

(37)

e,clc = {
3Gi

3Gi



The significance of problem (37) is that the optimal
design can be obtained through one single
optimization which however requires prior
identification of the NAS active sets.

Pistikopoulos and Grossmann (1988) have
presented an alternative formulation to (37) in which
one can easily derive the trade-off curve of cost
versus the flexibility index. The formulation is given
by

C (dE + Ad)min
Ad

s.t. 5 k > F

Sl + t c J
c=l,..NAS (38)

Adu<Ad<AdU , 5 k >0

where 5 \ is the flexibility index for active set k at the

u A • A Abase design dE and d\}/k

3d/
. . .

are sensitivity
coefficients that can be determined explicitly; Ad are
design changes with respect to the existing design dE-

Also, these authors extended the formulation in
(37) to the case of nonlinear constraints. Here, the
inequalities in (37) are augmented within an iterative
procedure similar to the scheme based on the use of
the multiperiod design problem, except that problem
(15) is solved for each active set to determine the
critical points and multipliers.

Finally, the determination of the optimal degree
of flexibility can be formulated for the case of linear
constraints as

max Z= E (max p(z, 9)|f(d, z, 0) <0 )) - C(Ad)
0eT(F) l z '

st . 5 k > F
k=l,..NAS (39)

, 5k>0

where p(z,8) is a profit function.

Pistikopoulos and Grossmann (1988b)
simplified this problem as maximizing the revenue
subject to minimizing the investment cost; that is (see
Fig. 6):

max Z = R(F)-C(F)

s.t. C(F) = min C (Ad)

5 k > F (40)

and where

R(F) = E j max p (z, 9) |f (d, z, 6) < 0
9eT

Ad = arg[C(F)]
(41)

which is solved by a modified Cartesian integration
method. Since problem (40) is expressed in terms ot
only the flexibility index F, its optimal value is found
by a direct search method.

R(F)

Figure 6 Curves for Determination of Optimal
Flexibility

6. Application to Multiproduct Batch
Design

The methods presented in the previous section
have been only applied to continuous processes. On
the other hand batch processes offer also an
interesting application since these plants are built
because of their flexibility for manufacturing several
products. Reinhardt and Rippin (1985, 1986) have
reported a design method when demand uncertainties
are described by distribution functions. Wellons and
Reklaitis (1989) have developed a design method for
staged expansions for the same type of uncertainties.
In this section we will summarize the recent work by
Straub and Grossmann (1990) which accounts for
uncertainties in the demands (continuous parameter)
and equipment failure (states). This will serve to
illustrate some of the concepts of Section 4 and show
how the structure of the problem can be exploited to
simplify the calculations; particularly the optimization
of the stochastic flexibility. Consider the model for
the design of multiproduct batch plants with single



product campaigns (see Grossmann and Sargent,
1978):

(42)

f , Nj=l,2.. j=l . .

i , T L l > 0 i=l,NP

Although problem (42) is nonlinear, for fixed design
variables Vj (sizes), Nj (number of parallel units), the
feasible region can be described by the linear
inequality

NP
(43)

where

If we define

= max in {Vj/Sij}.

NP
(44)

then the problem of calculating the probability of
feasible operation for uncertain demands Qi, i=l,N,
can be expressed through the one-dimensional
integral

Jo
SF= <KHA)dHA (45)

which avoids the direct solution of the multiple

integral in (18). Furthermore, the distribution (J>(HA)
can be easily determined if normal distributions are
assumed for the product demands with mean (JQ and

variance CJQ.. Then proceeding in a similar way as in

(24) and (25) the mean and the variance of <(>(HA) are
given by

NP

NP (46)

with which the integral in (45) can be readily
evaluated for the stochastic flexibility.

As for the expected stochastic flexibility, let pj be
the probability that a unit in stage j is available. Also

let n *, j=l ,M be the number of units that are available
for any given state s. Then it can be shown that the
number of feasible states where at least some
production can be obtained is given by

M

TFS = II (Nj), and that the probability of each state

is given by

M XT.

In this way the expected stochastic flexibility can be
expressed as

TFS
E(SF) = P(s)

s=l

where SF(s) and P(s) are given by (45) and (47),
respectively. The value of E(SF) can then be
obtained by applying the bounding procedure at the
end of Section 4 (eqns. (32) and (33)).

In order to determine the sizes Vj and number of
parallel units Nj that maximize the stochastic
flexibility (i.e. only uncertainties in the demands)
given a limit for the capital investment, C, one would
have to optimize in principle the integral in (45) over
the constraint set in (42). However, this can be
avoided in view of the fact that maximizing the

normal deviate z = (H-IIHAV^HA* *S equivalent to
maximizing the integral. Thus by applying
appropriate exponential transformations to (42) to
convexity the problem, the optimal design that
maximizes the stochastic flexibility for a limit in the
investment cost, can be formulated as the MINLP
(see Straub and Grossmann, 1990):

max z=(H-^HA)/aHA

s.t. bi<Vj - log(Sij)
tLi>log(tij)-Tlj
nj=lwjrlog(r)

Zw j r=l

j

, j = i

<C

i=l NP

(49)



In

AA
ln(V[)<Vj<ln(Vf) j=l,...,
wjr=O,l j = l , r=l,..M Nju

By solving this MINLP for different values of C one
can then determine trade-off curves of the expected
stochastic flexibility versus cost (see Figure 7).
Also, note that if the number of parallel units is fixed
(49) reduces to an NLP problem.

As for the optimization of expected flexibility,
problem (49) can be extended as a multiperiod design
problem if Nj is fixed, where each period
corresponds to a given state s. There is no need to
solve, however, for all the states since a preanalysis
can easily establish the relative magnitudes of (47)
and valid upper bounds for SF(s). The optimization
of Nj and Vj is in principle considerably more
complicated. However, here Straub and Grossmann
(1990) have developed an enumeration procedure that
relies on the state network representation and which
minimizes the number of multiperiod optimization
problems that need to be examined. The details of
this method can be found in their paper.

0.8-

^ 0.6-

LL

w

* 0.4-

0.2-
0.0

process simulators, should be technically feasible,
although not necessarily trivial (e.g. computation of
flexibility index and multiperiod design problems).
Stochastic methods on the other hand are in principle
computationally more expensive, except for few
specific cases (e.g. bounds for linear models,
optimization of multiproduct batch plants). However,
the major advantage with the stochastic approach is
that it offers the possibility of integrating flexibility
and reliability under a common measure as has been
discussed in this paper. It is clear that major
advances are required to make computationally
feasible the optimization with the stochastic approach.
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