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Introduction

Engineering design problems involve quantitative as well as qualitative aspects.

This is particularly true in the case of synthesis problems in which the selection of a

topology as well as its parameter values commonly requires qualitative knowledge cm

design alternatives as well as quantitative models to predict the pcifmmancc of a system.

Artificial intelligence and optimization provide basic frameworks for the representation

and solution of problems in engineering design. However, given the qualitative and

quantitative nature of these problems it is often not clear how to best formulate and solve

these problems. Furthermore, the problem is compounded by the fact that very different

solution methods can be applied to the same design problem.

Over the last few years Combined Al/Optimization has been CHIC of the research

thrusts in the Synthesis Laboratory of the Engineering Design Research Center at

Carnegie Mellon. This thrust has been complemented by an interdisciplinary graduate

design course in which AI and optimization approaches to design were taught (see Fenves

and Grossmann, 1991). These efforts were motivated by the fact that earlier work in the

center involved the development of synthesis methods that either relied only on AI

techniques (commonly expert systems) or only on optimization techniques (commonly

NLP and MINLP models). It became evident that there were several shortcomings in

approaching synthesis problems with only one methodology. The major problems for the

Al-based methods were difficulties in integrating qualitative knowledge with analysis

models that are used in engineering design, and accounting for interactions of design

decisions. The major problems for the optimization-based methods were difficulties in

making use of engineering knowledge that is not expressible in the form of equations, and

limitations in solving large-scale problems.

Rather than presenting an overview of the research projects of the Combined

Al/Optimization thrust at the EDRC, it is the objective of this paper to present some of

the insights and concepts that we have learned from the interplay between qualitative and
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quantitative issues in engineering design problems. Our specific objective in this work is

to propose generalized representations of engineering design models, and to propose

taxonomies and classifications. This is performed first in the context of design models to

identify major classes of problems and solution methods that are used.. We then present a

general classification of AI and OR models in terms of model attributes and establish

mappings with generic solution techniques. We discuss the requirements of the solution

methods and several schemes for the integration of AI and optimization to identify future

research directions. Finally, we illustrate with several design problems various ways in

which AI and optimization can be combined for tackling engineering design problems.

V

Classification of Models in Engineering Design

The development of computational models in engineering design is generally a

complex activity. It normally involves an iterative procedure that is composed of the

following steps:

1. Definition of search space for the design alternatives. This may be based on past

experience, on qualitative knowledge or on a well-defined search space.

2. Problem formulation which involves the development of the computational model.

3. Solution of the problem through an appropriate technique.

4. Verification and critique to establish whether the solution indeed satisfies the

design objectives.

Given that we have defined the search space and its corresponding representation

(e.g. graph, network) in step 1, a crucial step in the above procedure is the development

of a computational model. In this section we will present a classification of computational

models for design that will help us to identify the solution techniques that may be applied

and that will be discussed later in the paper.

First, it is useful to characterize a computational model in terms of four elements:

a) Variables or unknowns

b) Parameters or inputs

c) Relations or equations and inequalities



d) Goals or objectives

By the type of variables* a computational model may be classified as (a) Continuous, (b)

Discrete, or (c) Mixed Discrete/Continuous. The continuous model will involve

quantitative variables such as areas, forces, stresses, flows ami voltages. The discrete

model will involve symbolic variables such as selection ofa given item (a 0-1 decision)

or quantitative variables that are restricted to finite values (e.g. standard sizes for

equipment). The mixed model will contain both types of variables.

By die type of parameters, a computational model may be:

(a) Deterministic if the inputs are exactly known.

(b) Stochastic if the inputs axe subject to fluctuations.

By the nature of the relations or equations a computational model may be classified in

three different ways:

1. (a) Quantitative if the equations are mathematical in nature

(e.g. algebraic, differential). These in turn can be linear or nonlinear,

(b) Symbolic if the relations are expressed in terms of

prepositional logic (e.g. IF - THEN statements) or predicate logic.

2. (a) Static if there is no time dependence.

(b) Dynamic if the equations are time dependent

3. (a) Spatial if there is a dependence with physical dimensions,

(b) Non-spatial

Many design problems may involve a mixture of classes of equations (e.g. quantitative

and symbolic). Most computational models in design, however, will tend to be

quantitative in nature since equations are used to model physical laws and specifications

that a process or artifact must obey.

By the type of goals a design model may be:



(a) Satisficingy if the objective is to find any values of the variables that meet
the relations or equations.

(b) Optimizing, if the objective is to find not only any values of the variables

that meet the relations or equations, but those that maximize or minimize

one or several objective functions. The former case corresponds to a

single criterion optimization, while the latter corresponds to a

multiobjective optimization problem.

Conceptually, we can represent computational models for design as

follows. Let the continuous variables be x and the discrete variables bey. We could
refine our representation by partitioning the variables x into static v and dynamic

variables dv/dt. For the sake of simplicity however, we will not introduce this

distinction. The parameters which are normally specified are represented by d.

Equations and inequality constraints can be represented as die vectors of functions

h and g, that must satisfy,

h(x,y,d) = 0 (1)

0

It should be noted that the representation in (1) could range from a relatively

simple model to a very complex model that tries to capture as much detail as possible the

underlying physics of the system. The solution to the equations in (1) are often not

uniquely defined since they commonly involve several degrees of freedom.

The logical relations that define symbolic relations will be given by a set of

propositions that must hold true; that is,

(2)

Finally, the design goal (or goals) can be expressed as the objective function

F(x,y,d). This function is a scalar for a single-criterion optimization, and a vector of

functions for a multiobjective optimization.

With the above definitions for a design model, the general computational problem

for a design can be formulated as follows:



GivetMi possibly with a description of its fluctuations (e.g. distribution functions),
find values for x and y in order to satisfy:

h(x,y,d)=0
(3)

while possibly optimizing the goal or goals as given by die objective function F(x,y,d).

Classes of Design Problems

The problem formulation given in (3) can be used as a basis to represent major
classes of design problems. For this let us partition the continuous variables x into the z
state variables and the design parameters u which are to be chosen. The space of design
alternatives can then be represented by the sets Y and U, the former representing the
space of topologies and the latter the space of design parameters.

If the sets Y and U, and the equations h, g, L, and variables y,u,x, are given
explicitly, together with the design goals in F, this gives rise to a declarative model. In
this case it is possible to make a clear separation between the model and the solution
technique. In fact modeling systems such as GAMS, AMPL, ASCEND, and expert
systems such as VPExpert and EXSYS are based on this principle. In the context of
engineering design, explicit models are commonly simplified representations.

In contrast, if very detailed models are used (e.g. based on finite elements), this
will give rise to implicit or procedural models. Typically this mode of computation is
based on specifying the variables y and u for a fixed d, with which the states z are
computed as an implicit function; that is,

h(u,z,y,d) = 0 -» z = z(u,y,d) (4)

This has the effect that the inequalities, logic relations and goals, all become implicit
functions as well; that is,

(5)
L (u, z (u, y, fl), y,,d) = TRUE
F(u, z (u, y, d), y,,d).



Finally, the sets Y and U may be implicitly defined. This is commonly the case in
discrete design problems in which the set Y = {yjf i=l,2,...n)is generated within a tree

search with the recursion of the form,

yi+i - f (yi .yi-i •> y i ) . us U(yi+i) (6)

Based on the above, some of the classes of design problems that we can identify

are the following:

V

1, Heuristic design

Given explicit Yand U, and fixealf find y,u,z, such that as large a subset of

L(u,z,y,d)*TRUE (7)

is satisfied One way to approach this problem is through rule-based systems.

2. Enumeration of feasible designs.

Given Y and U in implicit form as in (6), and for fixed d, find all y, with its

corresponding u and z such that

g(u,z,y,f l)<0 (8)

L(u,z,y,d)=TRUE

is satisfied. One way to approach this problem is through a tree search based on

hierarchical decomposition.

3. Superstructure optimization.

Given Y and U in explicit form as part of a superstructure of alternatives, and

fixed9, find y,u,z, such that,

min F(x,y,O).

s.t h(x,y,$)=0 (9)

g(x,y,d)<0

One way to approach this problem is through mixed-integer nonlinear programming.



4. Innovative Design

Given fixed&, find Y and U such that for instance the conditions in any of the

three above problems be satisfied.

White die classification given above is rather general, it docs serve as a unified

framework for the representation of design problems. In addition it also serves to identify

difficulties in design problems. For instance, handling of uncertain parametars d and

handling of multiobjectives are not easily expressible in closed form. Also, die generic

problem in (3) as well as some of its specific variations as in (8) gives rise to the

intriguing possibility of posing and solving problems that contain both quantitative as

well as qualitative information. Finally, a major question is how to actually solve the

design problems once these are formulated as a particular case of (3) as was shown

above.

Overview of solution techniques

In this section we will briefly overview some of the major solution techniques that

can be used to solve particular cases of problem (3). The intent is not to provide a

comprehensive review, but rather give a brief sketch of algorithmic tools that are

available to designers.

Two major problems that arise in design are analysis or evaluation and synthesis

or optimization. The solution techniques for analysis can be generally classified as:

a) Equation solving

b) Symbolic analysis

For synthesis and optimization they can be generally classified as:

a) Mathematical programming

b) Heuristic search techniques

Equation solving techniques are widely used and implemented in most of the
design tools. Here, the particular model:

Given d and y, find x to satisfy



h(x,y,d) = O (10)

gives rise to a system of algebraic equations for the static case. Linear models can be

effectively solved with matrix factorization methods (e.g. L/U decomposition) which can

exploit the inherent sparsity in large scale design problems (Carnahan and Wilkes, 1980;

Dahlquist and Anderson, 1974; Pissanetzky, 1984). Nonlinear models are considerably

more difficult to solve, and in general require the iterative solution of linearized

equations. This is for instance the case in Newton's method and it variants known as.

Quasi-Newton methods. The former requires analytical derivatives for the jacobian

matrix of (10), while the latter will predict jacobian approximations based on function

values (Dahlquist and Anderson, 1974). First order methods, such as successive

substitution, can also be used. They have the advantage of not requiring derivative

information, but are slower to converge (Carnahan and Wilkes, 1980). Methods far

solving algebraic equations are available in many computer codes (e.g. IMSL, 1987; Piela

et al, 1991; Rice, 1983). It should also be noted that for the case of large and complex

nonlinear equations, which for instance arise in simulators (e.g. ASPEN in chemical

engineering (Aspen-Technology, 1991), SPICE in electrical engineering (Banzhaf,

1989)), most of the equations are treated as a "black box" routine which is converged

externally as an implicit function.

For the dynamic case, the problem in (10) gives rise to differential/algebraic

systems of equations. In the simplest case (only non-stiff ODE's) explicit methods such as

Euler and linear multistep methods can be used (Carnahan and Wilkes, 1980; Dahlquist

and Anderson, 1974). For stiff ODFs implicit methods such as backward differences and

collocation methods are required. These can be extended to the case when algebraic

equations are included, but care must be exercised to handle the so called "index

problem" which may introduce large errors even if small integration steps are used with

implicit methods. Codes implementing methods for integrating differential equations

include IMSL (1987) and DASSL (Petzold, 1982).

When spatial equations are also included in a model this will often give rise to

partial differential equations which are commonly solved by finite element methods

(Becker et al, 1982). These have become a major tool for design analysis and are

implemented in codes such as ANSYS (1992).

Symbolic analysis tools are used mostly on design problems that are expressed in

qualitative terms. Here the particular model has the form:



Given d, find x and y to satisfy

(11)

Most of the computational techniques for logic are restricted to the case when the

variables x are absent or prespecified Symbolic methods for solving these problems

include theorem proving and resolution techniques such as the ones implemented in

PROLOG (Dodd, 1990). For simpler cases (e.g. Horn clauses), forward and backward

chaining methods can be used (Barr and Fcigenbaum, 1981). The latter are implemented

in a number of expert systems shells (e.g. VP-Expert (1989), EXSYS (1990)).

Quantitative approaches to solving problem (11) have also been developed (e.g. see

Hooker, 1988). They rely on the idea that it is possible to systematically transform (11)

into a linear programming problem with which the inference problem is solved as an

optimization problem.

As for synthesis and optimization problems mathematical programming models

have the general form:

Given d, find x and y to

minimize F(x,y,d)

subject to
0 (12)

Here F(x,y,d) is assumed to be a scalar function. The case when F(x,y,d) is a vector of

functions gives rise to multiobjective optimization problems, which as opposed to the

scalar case, have in general an infinite number of solutions. These are given by trade-off

or pare to-optimal curves in which the various objectives cannot be improved

simultaneously.

Computationally multiobjective optimization problems are always reduced in one

form or another into a scalar optimization problem. This is done by either taking a

weighted sum of the function, or by placing all functions except one as a constraint

whose value is varied parametrically (Nemhauser et al, 1989).



The mathematical programming problem in (12) gives rise to the following major

cases in which F, h and g are algebraic functions:

(a) Linear program (LP): F,h,g, are linear and discrete

variables y are not present

(b) Mixed-integer linear program (MILP): F,h,g are linear

and both variables x and y are present

(c) Nonlinear program (NLP): F,h,g are generally nonlinear

and only continuous variables x are present

(d) Mixed-integer nonlinear program (MINLP). F&gare

generally nonlinear and both variables x and y are present

There are erf course some more specific cases than the ones cited above. For

instance a problem with only discrete variables y corresponds to an integer programming

problem. An NLP with quadratic objective function and linear constraints corresponds to

a quadratic program. Also, for the case when some of the equations are ODFs or PDE's,

these problems are either reformulated as NLP problems by using algebraic

approximations to the differential equations (e.g. using collocation techniques), or else

they are solved in a "black box" and treated as implicit functions (Biegler, 1990). The

latter option, by the way, is also used for the case mentioned previously for simulators in

which the algebraic equations are large and complex.

For LP problems the most common method is the simplex algorithm (Hillier and

Lieberman, 1986) which is implemented in many computer codes (SQCONIC (1986),

OSL (IBM, 1991), LINDO (Schrage, 1986), ZOOM (Marsten, 1986)). Interior point

methods have been recently developed which have shown to outperform simplex in

problems involving many thousand of constraints (Marsten et al, 1990). MILP

techniques rely commonly on branch and bound methods that use the simplex algorithm

for LP as subproblems in each node of the tree (Nemhauser et al, 1989). Therefore, these

are commonly available in the same simplex codes. It should also be noted that the

structure in special cases of LP and MILP problems can be greatly exploited, such as is

the case in network flow problems. Here specialized algorithms can efficiently solve

very large scale versions of these problems as opposed to the general purpose LP and

MILP methods.

The most common techniques for NLP are the reduced gradient method (Reklaitis

et al, 1983), which is available in the computer codes MINOS (Murtagh and Saunders,

10



1985), GINO (Licbman ct al, 1986), CONOPT (Drud, 1991), and the successive

quadratic programming (SQP) method (Nemhauser et al, 1989), which is available in the

cxxksNPSOL(Gmctal, 1983) and OPT (Vasantharajanetal, 1990) The former method

tends to be better suited for models with explicit equations and the latter for "Made box"

models. Finally, MINLP techniques which are only recently starting to be applied in

design problems, include the Generalized Benders decomposition (Geoffrion, 1972) and

the Outer-Approximation method (Grossmann, 1990) which is implemented in

DICOPT++ (Viswanathan and Grossmann, 1990). All these nonlinear optimization

methods can only find a local optimum solution, unless the problem is convex in which

case a local optimum is also a global optimum (Bazaiaa and Shetty, 1979).

It should be noted that modelling tools such as GAMS (Brooke et al, 1988) and

ASCEND (Piela et al, 1991) interface automatically with several of the computer codes

cited above, greatly facilitating die formulation and solution of optimization problems.

Heuristic search techniques are methods, which do not necessarily have a rigorous

mathematical basis, but have the advantage of being simple to implement Furthermore,

for most cases they do not make any special assumption on the form of the equations or

functions which can make them useful for complex or poorly understood design

problems.

Most heuristic search techniques are aimed at solving discrete optimization or

symbolic problems. For instance the A* method (Nilsson, 1980) is in essence a branch

and bound enumeration method such as the one discussed in section 2. The major

difference is that only a partial set of nodes is commonly examined since heuristics rather

than rigorous bounds are used to prune nodes in the tree. Although this will in general

not guarantee optimality, the advantage is that only few nodes may be examined in a

search tree.

Other heuristic search techniques include simulated annealing (Aarts and van

Laarhoven, 1985) which is a statistical method motivated by the physical equilibrium that

is attained in the cooling of substances. This technique has had success in solving several

combinatorial optimization problems, although the method can be computationally

expensive due to its probabilistic nature.

Heuristic search techniques for symbolic logic problems rely on the use of

simplified enumerations to perform inferences. An example are forward and backward

chaining schemes that are used in expert systems (Bair and Feigenbaum, 1981).
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Finally, all the above cited methods are aimed at deterministic problems in which

the parameters are exactly known. When these are subjected to fluctuations a number of

techniques have been developed which build on the deterministic methods. Common

techniques include Monte Carlo simulation (Hillier and Lieberman, 1986) and

multidimensional integration methods to estimate expected values when die parameters

are described by distribution functions. Deterministic methods are also available for

analyzing parameter variations and these commonly give rise to minimax optimization

problems. It should be noted that one of the difficulties when dealing with parameter

uncertainties is the choice of an appropriate design objective. For instance, we may

minimize the expected cost, or alternatively, minimize the largest cost that occurs at the

"worst" parameter point The former requires the evaluation of a multidimensional

integral, while the latter require the solution of a minimax optimization problem.

From the brief overview that we have presented in this section, it is clear that

there is a large number of computational techniques that are available for analysis and

synthesis problems in design. As was noted before the choice of a given technique is

highly dependent of the nature of the computational model which in turn depends on the

representation that is used. The importance of problem formulation cannot be

overemphasized. It is not enough to have powerful solution tools if they are not properly

used. The next section provides a classification of solution techniques.

Classification of AI and OR Models

Having presented a classification of models and solution methods from an

engineering design perspective, we now address the more general question as to what

makes a model an OR model or an AI model? One way to answer this question is to

classify models along three dimensions, each of which has a pole associated with OR and

one associated with AI. This analysis clarifies the various senses in which OR and AI

can be combined. It also helps one to say more precisely what sort of research thrusts

could profitably combine AI and OR styles of modeling. The latter will be addressed in

the next section.

The three axes along which models can be classified are:

1. numeric/symbolic

2. specific/general

3. structured/unstructured
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In each case, the first attribute is normally associated with OR models, and the second
with AI models. We begin with a brief description of these polarities*

L Quantitative vs. symbolic models*

In the schema presented earlier, quantitative models have only constraints of the
form h(x,y,d) = 0, g(x,y,0) £ 0, and symbolic models have only constraints of the form
L(x,y,0) =TRUE. A symbolic model might also be called a logic model, particularly if
the propositions in L£t,;y,0J belong to a formal logical language.

To avoid classifying all models as symbolic models, we can assume that the
propositions in L(x,y,0) do not assert quantitative relations h(x,y,9) = 0, g(x,y,0) £ 0.
Nonetheless it is useful to acknowledge that, in a significant sense, all models are logic
models. They consist of a problem description in a formal language (or a language that
can in principle be formalized), from which one can deduce facts about the solution. To
solve a model is to cany out the deduction.

Quantitative models are those in which numerical predicates play a major role.
The deduction techniques are specialized to be efficient for arithmetical predicates. They
often take the form of numerical computation or algebraic manipulation.

The realization that numerical computation is a form of logical deduction,
credited to Leibniz and exploited by Boole, was a breakthrough. It allowed people to
exploit the power of automatic computation without presupposing mathematical
structure. This is still the primary rationale for logic programming. It also suggested that
computers can think, at least to the extent that thinking is logical deduction. It was
primarily this suggestion that inspired the field of artificial intelligence in the 50's and
60fs, and the classical AI approach to problem solving has been to use symbolic
computation. AI has more recently moved toward numeric models of neural networks,
but it remains much more strongly identified with symbolic reasoning than OR.

2. Structured vs. unstructured models.

Although it is hard to define what is meant by a structured model, it is a concept
widely employed by modelers. Consider, for instance, an assignment model, which is a
very special case of a linear programming problem (Nemhauser and Wolsey 1988). All
instances of an assignment model are very similar. They all exhibit the same, fairly
simple pattern. This makes an assignment model highly structured. A linear
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programming model need not in general be as structured If one examines a wide range

of linear programming models, there is not much similarity aside from their linearity.

(Some linear programming models, of course, exhibit a high degree of structure, not only

assignment models but network flow models, models with staircase or block diagonal

structure, etc.) Nonlinear and integer programming models can be even less structured.

Structured models tend to have two advantages. One is that their relative

simplicity is more conducive to understanding. If one can fit a structured model to a

situation, he is likely to improve his grasp of it One reason for the popularity of network

flow models is that they are easy to understand and seem to illuminate the subject matter:

Another advantage of structured models is that they tend to be easier to solve.

Network flow models, for instance, are much easier to solve than general linear

programming problems (Bazaara etal. 1990).

In feet, it is tempting to define a structured problem as one that has ^exploitable"

structure—structure that is conducive to fast solution—since otherwise it is unclear what

kind of patterns count as structure. But an occasional structured problem, such as the

famous traveling salesman problem, is very hard to solve despite its highly structured

nature. In fact this very anomaly seems to intrigue mathematicians, as witnessed by the

attention given to the traveling salesman problem. So we must continue to define

structure as a Supreme Court Justice once defined pornography: we know it when we see

it

3. Specific vs. general models.

A specific model is one that applies only to a narrow range of problems, whereas

a general model fits a wide variety of problems. A specific model "presupposes structure

in the problem." An assignment model is very specific; problems are rarely so neat.

Logic programming, on the other hand, presupposes little structure in the problem. It

applies to any problem that is expressible in its logical formalism. This results in

considerable generality, particularly if one considers's W. V. Quine's assertion that first

order predicate logic is adequate to formulate all of science (Quine 1961).

A highly structured model need not presuppose structure in the problem; i.e., it

need not be specific. A neural network model, for instance, is structured because because

it is a particular type of nonlinear regression model in which the gradient of the error

function can be computed recursively via back propagation (Rumelhart et al. 1986). A

math programmer would regard this as a highly structured nonlinear programming model.

14



But it is very general because it can formulate problems ranging from traveling salesman

problems to visual recognition problems.

Figure 1 attempts to classify some models along the specific/general and

numeric/symbolic axes. One can imagine a structured/unstructured vertical axis, with the

structured pole at the upper end OR models should occur on the left side of the diagram,

with preference for the upper left; they should also have a high elevation on the vertical

axis. AI models should gravitate toward the right, with a preference for the lower right

(although neural networks, genetic algorithms, ctcM are moving the center of gravity

toward die upper right). They should occur mainly at low elevations on the vertical axis.
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Fig. 1. Classification of models.
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What We Want In a Model

We want general models because they presuppose less structure in the problem.
They are more likely to fit messy, real-world situations. One software package will have
wide application.

We want structured models because they reveal structure that helps us to
understand the problem, and because they are more likely to be tractable.

The ideal would seem to be models that are as general as possible while being as
structured as possible. This is reasonable but needs qualification, because it suggests,
implausibly, that neural networks are close to the ideal. Despite their structuredness,
neural networks do not reveal problem structure and often present a difficult "training"
problem.

To obtain a more adequate analysis, we must a) develop a more nuanced
understanding of how a model models, and b) acknowledge an additional desideratum for
models: ease of calibration.

a) A neural network does not model a problem in the same way that an
assignment model does. An assignment model mirrors the structure of an assignment
problem, whereas the neural network model mirrors a neural netwoik! In other words, an
assignment model models by reflecting the structure of the problem, whereas a neural
network models by reflecting the structure of a problem-solving device. (We will see
shortly that this sort of second-order modeling is characteristic of AI.) We should not
infer, however, that a neural network does not actually model a problem. There are
philosophical difficulties with saying that a model can model only by mirroring. It is
safer to grant that a neural network models an assignment problem in the full sense of the
word, because it can be used to solve the problem. But it models in a way that sacrifices
one type of explanatory power.

b) An ideal model is easily calibrated, where "calibration* is used in the general
sense of tailoring a model to a specific problem. It might involve adjusting parameters
and coefficients, formulating constraints for a mathematical programming model, or
designing a solution space for a local search algorithm (more on this later). In the case of
the assignment model, both calibration and solution are easy. But calibration of the
neural network is hard, since it must be "trained" on a large test set that one never knows
quite how to design. In fact, in this case nearly all of the calculation involved is
dedicated to calibrating the model. Even once the calculation is done, the result may be a
poor calibration.
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Just as less structured models tend to be harder to solve, more general models

tend to be harder to calibrate, or at least harder to calibrate in a way that makes a good

solution possible. In a genetic algorithm, for example, it is relatively easy to define a

problem representation, a crossover operation, mutations, etc. But it is harder to define

these so that good solutions evolve (Goldberg 1989).

So we want models that are a) general, b) structured, and c) easy to calibrate, all

the while acknowledging that a structured model may fail to be tractable and may fail to

have explanatory value.

To check the validity of this analysis, we can examine whether it accounts for die

merits and demerits of several models, such as those listed in Table 1. Each model is

scored on the three criteria from -6 to +4. Remarks on the right indicate when the

structuredness of the model has unexpected implications. Models with higher scores

should be more widely used (or at least worthy of wider use), except when the score is

mitigated by the remark.

• Linear programming (Dantzig 1963). Its success is based on two key advances.

One was Dantzig's discovery that this rather structured model is surprisingly general; it

applies to a remarkably wide variety of problems. The other was his invention of a

solution method (simplex) that exploits the structure. Calibration is usually not hard,

since once one knows a few modeling tricks, he can represent a wide variety of problems.

• Network flows with gains (Bazaara et al. 1990). This highly structured special

case of LP is very easy to solve but retains a surprising generality. The reticulate

structure tends to illuminate the problem. The model is therefore popular in practice.

• Economic order quantity model for inventory management (Lee and Nahmias

1993). This ridiculously simple model is used rather widely because it is quite general as

an approximation. It applies to a wide variety of inventory problems in which only a

rough approximation is needed. It is hard to calibrate because it requires estimation of

holding and stockout costs, but this seems to be offset by its use as a rough

approximation. A number of back-of-the-envelope models are general as approximations

and receive wide application for that reason. (In fact, the notion of model generality

should be generality with respect to a stated degree of accuracy.)
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Table 1. Evaluation of Some Models

Model

Linear programming

Network flows with gains

EOQ, etc.

Traveling salesman

Assignment, etc.

Integer nonlinear

programming

Neural networks

Randomized local search

Logic programming

Horn expert system

Gener-

ality

0

-1

+1

-4

-6

+1

+4

+4

+6

+1

Ease of
calib-

ration

42

+2

0

+2

+2

+2

+2

-3

0

-3

Degree

of struc-
ture

+2

+3

+2

+3

+3

-4

-3

-1

-4

44

Total

44

44

43

41

-1

-1

43

0

+2

42

Remarks

Very

explanatory

Hard to solve

Not explanatory

Easy to solve

suboptimally
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• Traveling salesman and other NP-hard combinatorial optimization models

(Nemhauser and Wolsey 1988). The traveling salesman, classical vehicle rooting, and

other highly structured combinatorial models have seen limited application because they

are too specific. Worse, they aie hard to solve despite their structure. (Their positive

score is offset by the difficulty of solution.) From this point of view it seems

questionable to commit so much attention on such highly structured, hard problems as the

traveling saksmnn problem, although this kind of study may teach lessons that are useful

elsewhere-

• Assignment and other easy combinatorial models (Lawlcr 1976). These include

bipartite matching, problems with matroid structure, etc. They have received much

attention because their high degree of structure permits fast algorithms. But they model

only a few highly structured problems and so are seldom useful.

• Nonlinear integer programming (Hansen et al. 1994). This model has seen

fairly limited application because, although quite general, it seems to be too unstructured

mathematically to permit a good solution algorithm.

• Randomized local search models. Simulated annealing (Aarts and Korst 1989),

tabu search (Glover 1989,1990), and genetic algorithms are similar to neural networks in

that they model (in the mirroring sense) the problem-solving process. This allows them

to remain fairly structured even while achieving a good deal of generality. These

algorithms do local search in the sense that they go from one solution to a "neighboring"

solution, except for probabilistic jumps. (In tabu search the latter are known as

"diversification," in genetic algorithms as mutations.) Modeling the solution process

requires that one define the problem space, and in partiuclar what counts as a neighboring

solution. Local search models tend to be fairly simple and therefore to have a fairly high

degree of structure. Although their simplicity does not make it easy to find an optimal

solution, it often makes it easy to find good suboptimal solutions (for reasons that are not

well understood). This factor alone would probably raise the above score of zero to +3 or

+4, because their tractability is the main attraction of local search models. Their

drawback is that modeling the solution space is itself a nontrivial task on which the

success of the heuristic depends.

•Neuralnetworks. These are discussed above.

• Logic programming (Lloyd 1993). Logic programming follows a strategy

similar to that of randomized local search heuristics: it gives up the idea that a model

should "mirror" the problem. But rather than mirror a problem solving process, logic
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models move to a discursive, as opposed to a "pictorial," model of the problem. This is

equally effective at modeling a wide range of problems, but the resulting "declarative"

models tend to be complex and unstructured, despite the small number of language

elements involved. (This is a characteristic of discursive representations: a verbal

description of an assignment problem uses only 26 letters, but the letters evince no

particular pattern.) So logic models can be hard to solve. An extreme case are full first

older logic models, which are incredibly general but often intractable. PROLOG is more

restricted but currently has no efficient solution algorithm. European experience has

shown that logic programming, thanks to its generality, can find a fair degree of

application despite the lack of good algorithms- But it remains little used in the U.S., less

than its score of +2 would justify.

• Horn expert systems. These highly special cases of logic programs, however,

are widely used in the U.S.r largely for historical reasons- Their generality is surprising

in view of their very limited expressiveness (Hooker 1988). They main attraction is that

the inference problem is extremely easy for Horn formulas.

Research Directions

OR emphasizes structured, numeric models. They have narrow application but

provide a good deal of explanatory power when they do apply. They may also benefit

from effective solution algorithms. AI has emphasized unstructured models, with a

historical preference for symbolic representations. An extreme example is one of die

first, H. Simon's General Problem Solver (Newell and Simon 1972). But these models

sacrifice explanatory power when they overlook structure. Solutions may be

computationally elusive and of poor quality when obtained.

There is merit in combining OR and AI, because many problems call for models

that lie between these extremes. They have both numeric and symbolic elements. They

have less structure than classical OR models but enough to be exploited by algorithms

more specialized than those typical of AI.

The specific research strategies that could combine OR and AI seem to depend on

which quadrant of Fig. 1 one is looking at We therefore survey die quadrants.

Specific structured models.

These typically OR models can move toward AI by becoming more general, and

one route to greater generality is to become more symbolic.
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One way to make a quantitative model more symbolic is to mix symbolic

constraints with quantitative ones. Constraint programming does this (Van Hentenryck

1989). In this field the goal is generally to find a feasible solution, one of which may be a

bound on the objective function. A job shop scheduling problem, for instance, can be

described by a mixture of logical rules and numerical inequalities, plus a lower bound cm

themakespan. The object is to find a feasible schedule that meets this bound Constraint

programming has found some acceptance in Europe but less in die U.S. It is largely

ignored by the OR community. Perhaps one reason for this is that, except to the extent it

is undergirded by the theory of logic programming, constraint programming does not

generally have the kind of theoretical grounding and deep analysis enjoyed by

mathematical programming. OR people who have heard of it tend to dismiss it as little

more than a collection of heuristics. But it is unclear that mixed logical/numerical

constraint sets cannot be systematically analyzed in the way that numerical constraint sets

have been. So here is a research program, to which OR people can contribute.

A related thrust is the use of logical methods in the solution of mathematical

models, particularly those with combinatorial complexity. Prepositional logic, for

instance, is useful in the solution of mixed integer programming problems. In fact one

can develop logic-based concepts and theory parallel to those of branch-and-bound,

cutting planes, facet-defining cuts, etc. (Hooker 1994).

Another related idea is to replace some quantities with qualitative descriptions and

to try to deduce properties of the solution. This occurs in symbolic differentiation,

monotonicity analysis, etc. To date these approaches have been used primarily to guide

numerical algorithms, but they may have potential as more general models.

We have already noted an interesting way to make quantitative models more

general without making them more symbolic: they can be used to model (in the

mirroring sense) the problem solving process, rather than the problem itself. The

influence of AI is clear here, particularly in the case of neural networks, which crudely

model a problem-solving brain. Genetic algorithms (which are somewhat less numeric)

model a problem-solving evolutionary process. Simulated annealing algorithms and

some neural networks model nature's way of minimizing energy. Tabu search models a

search process with short-term memory; the early literature even suggested 7 as the ideal

length of a tabu list, because human short-term memory generally has room for 7 chunks

of information. An obvious research direction is to continue to model problem-solving

processes, and it is being actively pursued. Such new search strategies as scatter search
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are being invented, such social problem-solving processes as asynchronous teams are

being investigated, and so on.

Specific symbolic models.

There are two related classes of problems in this quadrant: a) problems from

classical combinatorics (stable marriage problem, matching, etc.), as well as some

combinatorial problems associated with OR (set covering, clique partition, etc.); b) highly

structured logic programming problems (arranging queens on a chessboard, etc.). They

are already symbolic to a large degree and need to be generalized.

One effort toward generality has been toward abstraction: matroids, greedoids,

submodularity, etc. (Nemhauser and Wolsey 1988, Korte and Lovasz 1984). This has not

significantly increased the range of application. Abstraction produces an even simpler

model that is equally unlikely to apply.

Another approach studies structured problems with "side constraints,*9 such as network

flow problems with a few additional constraints. This gives rise to relaxation and

decomposition strategies. The former enumerates relaxations of the problem (i.e., the

hard constraints are thrown out), as is done in A* search. The latter views a problem as

consisting of structured subproblems coupled by a few additional constraints, which

again leads to an enumeration of relaxations. These approaches have been applied most

often in mathematical programming; decomposition, for instance, is used in the the

methods of Dantzig-Wolfe, Benders, and Lagrangian relaxation. A possible research

direction is to try to apply them to "purer" combinatorial problems.

General quantitative models.

Here, as noted earlier, the bottleneck is model calibration. This suggests that

research on probabilistic local search heuristics should evolve into research cm solution

space models. Rather than dividing the field into tabu search, annealing, etc., we can

divide the field into solution space models of this sort, models of that sort, etc.

Another research direction is to study empirically the behavior of heuristics on

certain classes of problems. Good experimental design may be able to isolate some

problem characteristics that predict the performance of heuristics. For instance,

simulated annealing may work best on vehicle routing problems when it creates a Markov

chain having certain properties, and certain problem traits may give rise to these

properties. Empirical algorithmic science therefore lies somewhere between the
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specificity of typical OR models and the generality of local search metaheuristics. It

relies cm some structural knowledge about a problem in order to help design a heuristic

for it, but it need not presuppose the high degree of structure required by typical OR

models. There is a good deal ofmformalwoik man e^

have not yet evolved

General symbolic models.

These are in essence logic models* They can be moved closer to OR by making

them more structured, perhaps by making them more numeric.

The project of making logic models more numeric goes by the name of constraint

logic programming (not quite the same as constraint programming). It generally adds a

few specifically numeric predicates to a logic programming language, usually related to

linear inequalities, and tries to develop partially numeric algorithms to conduct logical

inference. A typical problem is to answer such a query as, Tor some xl> x2, xl £x2," in

a logic program that contains a linear constraint set Ax £ b. A response to such a query

would be a description of possible values of xlpc2 consistent with Ax £b and xl£ x2.

The problem is solved as a polyhedral projection problem. (The main difference with

constraint programming is that constraint logic programming works within the

framework of a formal logic model, whereas constraint programming need not) This is a

wide-open research area, particularly as logic programmers in this area often do not have

equal training in operations research.

Examples

In this section we examine some examples of recent research which combines AI

and Optimization. Although a complete sampling of the different models and methods is

not presented, this section should give the reader a flavor of the merging of the two

approaches. We first examine the combination of Logic in MHJP methods. Next we

examine monotonicity analysis, a symbolic approach abstracted from formal optimization

criteria (the Karusch-Kuhn-Tucker conditions). Monotonicity analysis is then used in

conjunction with a set of mathematical heuristics to expand a design space (modifying the

topology). Finally, an approach to generate the optimal topology of a network flow

problem is discussed.
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Integration of Logic in Mixed-Integer Optimization Models for Synthesis

Raman and Grossmann (1993) have proposed methods for the symbolic
integration of prepositional logic relations between potential units in a superstructure to
aid the branch and bound search in MILP synthesis models. The objective of this
integration is to reduce the number of nodes that must be enumerated by using the logic
to decide on the branching of variables and to determine by symbolic inference whether
additional variables can be fixed at each node. A unique feature of this approach is that it
does not require additional constraints in die MILP since die logic relations arc expressed
and processed symbolically. Figure 2 presents an example of a separation network
superstructure for which the logic of relations between the units is postulated in the form
of prepositional logic.

Two different strategies for performing the symbolic integration of logic in the
LP-based branch and bound method can be used. In one strategy the prepositional logic
is expressed in conjunctive normal form (CNF); i.e. a conjunction of clauses containing
only disjunctions. The logic inference for fixing additional variables at each node is
performed with unit resolution. The other strategy consists in converting the logic into
the disjunctive normal form (DNF); i.e. a disjunction of clauses containing only AND
operators. The logic inference for fixing 0-1 variables is performed by solving the
resulting boolean equations. This strategy is suitable for synthesis problems in which the
superstructures have significantly fewer design configurations than the total number of 0-
1 combinations. An interesting theoretical result in this approach is that the number of
nodes required in the proposed branch and bound method is not more than twice the
number of clauses in the DNF form. It should also be noted that a formalization of the
above ideas has been accomplished by Hooka: et al. (1993) who introduced the concept
of logic cuts for process networks with fixed cost charges.

The algorithms described above were automated using OSL both as stand alone
software and within the GAMS modelling environment. As an example consider the
problem in Figure 2 of synthesizing a four component separation system that in addition
involves heat integration by allowing for heat matches between reboilers and condensers
of the various separation columns in order to reduce the utility cost for operation. Binary
variables are required to model the selection of columns and for the matches between
reboilers and condensers. For the four component system, 100 binary variables are
needed - 10 to model the existence of the distillation columns and 90 to model the
existence of heat exchange matches between the reboilers and condensers of the various
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columns. The results for this problem are shown in Table 2. The first column

corresponds to the original MILP model, the second to the MILP in which the logic is

added in the form of inequalities, and the third to the MILP in which the logic is

integrated symbolically with the DNF approach. Note that in the case when die logic is

added as inequalities the number of constraints is almost doubled, although in this case

this has no effect on the LP relaxation. The branch and bound search with logic

inequalities ami with the symbolic integration shows a considerable improvement over

the original MILP model. While ZOOM, SQCONIC and OSL were not able to solve the

problem even after 100,000 nodes and after more than 30 minutes on the IBM

RISC/6000, the DNF based approach solves the problem to rigorous optimality in 18S

nodes with ZOOM, 29 nodes with SQCONIC and 20 nodes with OSL, and in all cases in

less than 10 seconds! Using the formulation with logic inequalities the reductions in

CPU time are also very significant, although not as large as with the symbolic DNF

approach. This example then shows how the integration of logic in quantitative

optimization models can have a great impact
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Figure 2. Superstructure for 4 component separation sequence
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Table 2. Computational results for different MILP models

SIZE
constraints
variables
binary

LP
relaxation
MILP
solution

ZOOM

nodes

CPU time

SCICONIC
nodes
CPU time *

OSL
nodes
iterations
CPU time *

Original
Formulation

258
291
100

1117.72

1900.58

could not
solve

> 2,000

> 100,000
> 2,000

> 100,000
> 1,000,000

> 5,000

Formulation
with Logic

473
291
100

1117.72

1900.58

78

20.78

18
4.8

74
540
8.37

DNF based
Approach

258
291
100

1117.7

1900.58

185

8.5

30
1.6

20
238
2.76

* sec IBM R6000 / 530
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Qualitative Optimization

Monotonidty analysis (Papalambros and Wilde, 1988), an abstraction of the

Karush-Kuhn-Tucker (KKT) Conditions, can be used as a fonn of qualitative

optimization. Developed as a pie-optimization technique to guarantee well-boundedness

for numerical optimization, the technique is based on two rales:

Rule One!// the objective function is monotonic with respect to (w.r.t.) a

variable, then there exists at least one active constraint which bounds the variable in the

direction opposite of the objective. A constraint is active if it acts at its lower or upper

bound.

Rule Two:/fa variable is not contained in the objective function then it must be

either bounded from both above and below by active constraints or not actively bounded

at all (Le., any constraints monotonic WJT.L that variable must be inactive or irrelevant.)

Choy and Agogino (1986) and Agogino and Almgren (1987) use monotonicity

analysis as a fonn of qualitative reasoning. Monotonidty analysis identifies sets of

constraints that, when active, satisfy the first order necessary conditions of optimality

(KKT). For monotonic problems, their SYMON/SYMFUNE programs generate

symbolic solutions to the optimization problems; for constraint-bound problems these

solutions can be closed-form, leading to parametric design charts (see Agogino and

Almgren, 1987). Michelena and Agogino (1990), Rao and Papalambros (1987), Azram

and Papalambros (1984), and Hansen, et a/., (1989) have also implemented heuristic

optimization programs employing some form of monotonicity analysis.

Design Space Expansion/Design Innovation

The lstPRINCE methodology was introduced by Cagan and Agogino (1987) to

generate innovative designs where innovative designs are defined as those designs in

which new variables or features are introduced relative to a known set of variables or

features, expanding the useful design space. The design problem is formulated as an

optimization problem of engineering first principles. lstPRINCE uses optimization

information, via monotonicity analysis when possible, to identify sets of active

constraints which model optimally directed designs, and to determine how to expand the

design space to introduce the new variables or features. Expansion techniques

manipulate the mathematics of the problem formulation, thereby introducing new design

variables. One of these techniques, called Dimensional Variable Expansion - DVE

(Cagan and Agogino, 1991a) expands the design space in a serial fashion; a different
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technique called Input Variable Expansion - IVE (Aclion, et. al, 1991b) expands the

design space in a parallel fashion. Expansion is not done arbitrarily; rather critical

variables are identified from optimization information and an appropriate expansion

technique is then selected. Once the design space is expanded, it is searched by

monotonicity analysis or numerical techniques. Induction techniques are also introduced

to examine, from optimization information, the constraint activity over generations of

design expansions to determine the limiting solution of the design process (Cagan and

Agogino, 1991b. Because the optimization technique uses monotonicity analysis, the

method woiks best with monotonic problems.

lstPRINCE has been used to derive solutions to problems in various domains. A

class of hollow tubes and composite rods were derived from a solid round rod under

torsion load to minimize weight; the same rod under flcxural load leads to tapered beam

solutions and I-beam solutions. A wheel was invented from a rectangular block to

minimize resistance to spinning. Aclion, et. al9 (1991a) derived the solution for a plug

flow reactor (PFR) from the initial design of a well-mixed reactor (CSTR) to maximize

conversion; under different conditions, a sequence of reactors in parallel were generated

also to maximize conversion. Other applications generated a powder catalyst from an

initial sphere to maintain surface area while minimizing weight, and a sequence of

columns were designed form a single column in order to generate a feasible design from

an initially infeasible design. lstPRINCE is thus able to generate new design topologies

by using optimization information for both design space search and expansion.

An application of lstPRINCE to the design of chemical reactors is shown in

Figure 3. The goal of this design is to maximize a first-order chemical reaction, subject

to a maximum volume constraint. The initial design is that of a well-mixed reactor. The

well-mixed reactor is an ideal conception in which all the contents are perfectly mixed.

The design becomes:

The primitive prototype is given by:

minimize C\\

Subject to £AfL.i+k£L (hi)
C V0

V\ * 0 (gi)
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where CAO * inlet concentration of species A [moles/liter],

CA1 = outlet concentration of species A [molcs/litcr],

k * reaction rate constant [sec*1],

UO = volumetric feed rate [litcrs/scc],

Vl = reactor volume [liters],

Vmax = maximum allowable reactor volume [liters]*

The problem minimizes exiting reactant concentration subject to a well-mixed

reactor mass balance and an upper bound cm reactor volume.

A detailed analysis of this and similar problems can be found in [Action, et al.,

1991 and 1992]. Applications of DVE on reactor volume and IVE on input flow pn

serial and parallel reactor systems. Of particular interest is the limit of infinitely many

and differentially small well-mixed reactors in series produced from DVE* which

produces the identical behavior of a plug-flow reactor. Here, * monotonicity analysis of

the input optimization formulation identifies that ccmstraint hi must be active to balance

the increase of C A I in the objective function; this requires that ccmstraint g2 become

active to avoid an unbounded increase of the reactor volume. DVE is then applied across

volume Vi producing the new optimization problem of two reactors. Successive

application of DVE leads to successive series of reactors which, in the limit, produce die

plug-flow reactor through inductive techniques. This reactor type is another theoretical

conception, where there is no axial mixing. There is only radial mixing in every

differential slug traversing the reactor. lstPRINCE is able to innovate this design based

purely on variable and constraint typing and the application of DVE.
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Figure 3. Application of lstPRINCE to chemical reactor design

Shape Annealing

As a different example of how optimization can generate design topologies by
breaking away from local minima, we examine the design technique of shape annealing

introduced by Cagan and Mitchell (1993). Here a design problem is again formulated as
an optimization problem. However, the problem knowledge is modeled as a shape

grammar with all the properties of shapes described by Stiny (1980). Concepts of
simulated annealing are used to create a technique which generates optimally directed
solution shapes.

The shape annealing algorithm executes by applying a shape rule to an initial
design. If the modification improves the design based on an objective it is accepted. If it
generates an inferior design then it can still be accepted with a certain probability which
is a function of the number of iterations executed; toward the beginning of the process
almost all inferior solutions are accepted and as the algorithm progresses, only those
solutions which improve the objective are accepted. In shape annealing, previous designs
can be re-gained if they are superior; for every rule which modifies a shape, there is a
complementary rule which removes that modification. Thus, shape annealing is an
evolutionary design technique to explore the exponentially large number of possible
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design configurations. Inferior solutions are pursued to get out of local minima, and
optimally directed design topologies are derived

Applications of the shape annealing technique include solutions to constrained
gecmietric knapsack problems - knapsack problems constrained by geometry and relative
component orientations - (Cagan, 1994), generation of truss structures (Reddy and Cagan,
1993) and component layout (Szykman and Cagan, 1993). As an illustration of shape
annealing, Figure 4 shows a shape grammar that manipulates triangles. Reddy and Cagan
use this grammar to modify the topology of truss structures. Each time a truss topology is
modified, the structure is shape optimized with gradient based methods interfacing with
finite element methods. This modification continues until the final configuration is
achieved. A variety of constraints can be incorporated through the finite element
analysis. Figure 5 shows two structures generated from shape annealing; one without
buckling constraints (Sa) and one that includes buckling constraints (5b). Curtrent weak
is further integrating the AI and optimization technologies; a new implementation uses
simulated annealing for both topology modfications and shape optimization (Reddy and
Cagan, 1994).

Rulel

Rule 2 / \ -^ *

Rule 3 / X -^ * v\
Figure 4: Shape grammar for truss generation (from Reddy and Cagan,
1993)
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Figure 5a

Figure 5b

Figure 5: Truss structures generated by shape annealing topology without

buckling constraints (5a) and with buckling constraints (Sb) (from Reddy

and Cagan, 1993)
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Conclusions

This paper is meant to both provide a conceptual overview of the problem of
combining artificial intelligence and optimization, and to motivate the need for and
suggest directions of future research. AI and optimization together make sense: few
problems can be solved by structured optimization methods alone, and AI techniques are
limited in their search for general designs. Rather, the combination of AI and
optimization can provide problem specific reasoning, symbolic representations, and
powerful numerical optimizing search. The framework is here; future work must
continue to marge and expand the focus of combined AI and optimization problem
solving.
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