Jul 22nd, 11:30 AM - 12:00 PM

The Behavior of Interest Rates and Exchange Rates: Assessing the merits of Monetary Policy Coordination Among Emerging Economies

Semih Cekin

Menelik Geremew

Follow this and additional works at: http://repository.cmu.edu/sem_conf

Part of the Economics Commons

This Event is brought to you for free and open access by the Conferences and Events at Research Showcase @ CMU. It has been accepted for inclusion in Society for Economic Measurement Annual Conference by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
Transitory Movements, Inflation Trends and Volatilities during the Great Recession

Semih E. Çekin and Victor J. Valcarcel

The Great Recession brought:

- Increased macroeconomic volatility
- The Zero Lower Bound (ZLB)
- Threat of deflation

⇒ End of the Great Moderation?
⇒ Should inflation targets be raised?
Inflation and inflation volatility have positive relation
During Great Recession, inflation rate decreased but inflation volatility increased.
Question of Paper

- Is the increase in inflation volatility due to permanent effects or transitory effects?

- Is the relationship between inflation and its volatility weaker or even negative at very low levels of inflation?
Methodology

- Decompose inflation into permanent and transitory components.

- Analyze whether relation between inflation and inflation volatility has changed using,
 - Simple regression
 - Markov-switching estimation
 - MI(xed) Da(ta) S(ampling) (MIDAS) Regression
Simple Regression

\[\hat{\sigma}_t^\pi = \alpha + \beta_t \hat{\pi}_t + u_t \]

- Estimate using two time periods
 - 1965:1-2015:3
 - 2008:1-2015:3

⇒ Analyze whether simple regression can find a "break" in \(\beta_t \)
Simple Regression

Table: Linear relationship where \(\hat{\sigma}_t^{\pi} = \sigma_t^{\pi} \)

\[
\hat{\pi}_t = \pi_t \\
\hat{\pi}_t = \pi_t^{HP} \\
\hat{\pi}_t = \pi_t
\]

<table>
<thead>
<tr>
<th>Parameter/Period</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.156**</td>
<td>-0.057</td>
<td>0.202**</td>
<td>-0.506**</td>
<td>0.329**</td>
<td>-0.428**</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.026)</td>
<td>(0.013)</td>
<td>(0.121)</td>
<td>(0.009)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>(\text{Corr}(\hat{\sigma}_t^{\pi}, \hat{\pi}_t))</td>
<td>0.482</td>
<td>-0.248</td>
<td>0.541</td>
<td>-0.440</td>
<td>0.822</td>
<td>-0.543</td>
</tr>
</tbody>
</table>

(***), (*) denote significance at 1% and 5% respectively.

Table: Linear relationship where \(\hat{\sigma}_t^{\pi} = \sigma_t^{HP\text{Trend}} \)

\[
\hat{\pi}_t = \pi_t \\
\hat{\pi}_t = \pi_t^{HP} \\
\hat{\pi}_t = \pi_t
\]

<table>
<thead>
<tr>
<th>Parameter/Period</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.09**</td>
<td>-0.002</td>
<td>0.11**</td>
<td>-0.013</td>
<td>0.21**</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.011)</td>
<td>(0.03)</td>
<td>(0.06)</td>
<td>(0.01)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>(\text{Corr}(\hat{\sigma}_t^{\pi}, \hat{\pi}_t))</td>
<td>0.390</td>
<td>-0.127</td>
<td>0.409</td>
<td>-0.288</td>
<td>0.727</td>
<td>-0.646</td>
</tr>
</tbody>
</table>

Table: Linear relationship where \(\hat{\sigma}_t^{\pi} = \sigma_t^{HP\text{Cycle}} \)

\[
\hat{\pi}_t = \pi_t \\
\hat{\pi}_t = \pi_t^{HP} \\
\hat{\pi}_t = \pi_t
\]

<table>
<thead>
<tr>
<th>Parameter/Period</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
<th>Full sample</th>
<th>post-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.066**</td>
<td>-0.043*</td>
<td>0.091**</td>
<td>-0.370**</td>
<td>0.124**</td>
<td>-0.319**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.019)</td>
<td>(0.007)</td>
<td>(0.093)</td>
<td>(0.006)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>(\text{Corr}(\hat{\sigma}_t^{\pi}, \hat{\pi}_t))</td>
<td>0.411</td>
<td>-0.284</td>
<td>0.489</td>
<td>-0.472</td>
<td>0.610</td>
<td>-0.556</td>
</tr>
</tbody>
</table>
Simple Regression: Implications

- Results of simple regression suggest that a break might be present after 2008.
 - Volatility of transitory part of inflation experiences strong "break".
 - Volatility of permanent part of inflation experiences weak "break".

Drawback: sample chosen arbitrarily, not endogenously.

⇒ Utilize Markov-switching estimation to determine breaks endogenously.
Markov-Switching Estimation

\[\hat{\sigma}_t^\pi = \alpha S_t + \beta S_t \hat{\pi}_t + uS_t \]

- Analyze full period 1965:1-2015:3
- Assume two regimes such that \(S_t = \{1,2\} \) is the prevailing regime at time \(t \).
- Does the relationship between inflation and its volatility switch after Great Recession?
Markov-Switching Estimation

Table: Non-linear relationship with variance switch where $\hat{\sigma}_t^\pi = \sigma_t^\pi$

<table>
<thead>
<tr>
<th>Parameter/Regime</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.11**</td>
<td>0.15**</td>
<td>0.12**</td>
<td>0.19**</td>
<td>0.32**</td>
<td>0.29**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.67**</td>
<td>0.23**</td>
<td>0.67**</td>
<td>0.21**</td>
<td>0.31**</td>
<td>0.24**</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.003)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Figure: ($\hat{\sigma}_t^\pi = \sigma_t^\pi$ and $\hat{n}_t = n_t$)
Markov-Switching Estimation

Table: Non-linear relationship with variance switch where $\hat{\sigma}_{t}^{\pi} = \sigma_{t}^{\text{HP Trend}}$

<table>
<thead>
<tr>
<th>Parameter/Regime</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>-0.07^{**}</td>
<td>0.08^{**}</td>
<td>-0.09^*</td>
<td>0.08^{**}</td>
<td>0.14^{**}</td>
<td>0.10^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.58^{**}</td>
<td>0.20^{**}</td>
<td>0.56^{**}</td>
<td>0.20^{**}</td>
<td>0.54^{**}</td>
<td>0.17^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.003)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Figure: ($\hat{\sigma}_{t}^{\pi} = \sigma_{t}^{\text{HP Trend}}$ and $\hat{\pi}_{t} = \pi_{t}$)

Figure: ($\hat{\sigma}_{t}^{\pi} = \sigma_{t}^{\text{HP Trend}}$ and $\hat{\pi}_{t} = \pi_{t}$)
Markov-Switching Estimation

Table: Non-linear relationship with variance switch where $\hat{\sigma}_t^\pi = \sigma_t^{HPCycle}$

<table>
<thead>
<tr>
<th>Parameter/Regime</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 1</th>
<th>Regime 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.01*</td>
<td>0.05**</td>
<td>0.04**</td>
<td>0.11**</td>
<td>0.04**</td>
<td>0.12**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.009)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.25**</td>
<td>0.14**</td>
<td>0.23**</td>
<td>0.14**</td>
<td>0.25**</td>
<td>0.12**</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.003)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Figure: $(\hat{\sigma}_t^\pi = \sigma_t^{HPCycle}$ and $\hat{\pi}_t = \pi_t)$

Figure: $(\hat{\sigma}_t^\pi = \sigma_t^{HPCycle}$ and $\hat{\pi}_t = \pi_t)$
Markov Switching: Implications

- Markov-switching estimation implies a break for β_t:
 - Volatility of transitory part of inflation experiences switches after Great Recession.
 - Volatility of permanent part of inflation experiences no break after Great Recession.

\Rightarrow Break in relation likely to be the result of switch in volatility of transitory part of inflation.
MIDAS Regression

- Data used for LR and MS uses monthly data.
- Can the use of daily inflation data enhance/confirm results?
- Apply MIDAS to see whether negative relation can be captured.

\[
\sigma_t^{\pi M} = \alpha_0 + \sum_{j=1}^{p_1} \alpha_j \sigma_{t-j}^{\pi M} + \phi_0 \pi_t^M + \beta \sum_{i=0}^{N_D-1} \bar{\omega}_{N_D-i}(\theta^D) \tilde{\pi}_{N_D-i,t}^D + u_t
\]
MIDAS Regression

Table: MIDAS regression \(\hat{\sigma}_t^\pi = \sigma_t^\pi \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\hat{\pi}_t = \pi_t)</th>
<th>(\hat{\pi}_t = \pi_t^{HP})</th>
<th>(\hat{\pi}_t = \bar{\pi}_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>0.0154* (0.012)</td>
<td>0.0123 (0.012)</td>
<td>-0.0147 (0.020)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>1.8820** (0.054)</td>
<td>1.8925** (0.044)</td>
<td>1.8155** (0.066)</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-0.8879** (0.059)</td>
<td>-0.9236** (0.044)</td>
<td>-0.8279** (0.067)</td>
</tr>
<tr>
<td>(\phi_0)</td>
<td>-0.0028** (0.013)</td>
<td>0.0217** (0.009)</td>
<td>0.0159** (0.006)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>-0.3225** (0.157)</td>
<td>-0.3456** (0.153)</td>
<td>-0.3018** (0.154)</td>
</tr>
</tbody>
</table>

(**), (*) denote significance at 1% and 5% respectively.

⇒ Results similar qualitatively and quantitatively when \(\sigma_t^{HP} \) is used as volatility measure.
MIDAS Regression: Implications

- Inflation volatility is a highly persistent process.

- Correlation between inflation and its volatility is:
 - Negative when monthly or daily inflation rate is used,
 - Positive when slow moving measures of inflation are used.

⇒ Correlation is different for high-frequency vs. low-frequency measures of inflation.

⇒ Confirms MS result that long-term considerations of monetary policy have likely not changed.
Increase in inflation volatility probably attributable to transitory effects:

- Great Moderation is not necessarily over.
- Long term considerations of monetary authority have probably not changed significantly.
- Raising inflation target not necessarily optimal strategy (supporting the result of Coibion et al. (2012)).

⇒ Break in relation likely to be the result of switch in volatility of *transitory* part of inflation.
THANK YOU!