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Abstract

This paper addresses the problem of how to evaluate and optimize the probability of
feasible operation for a design that is described by a nonlinear model. This property, which is
denoted as the Stochastic Flexibility, represents the cumulative distribution over the feasible region
in the space of the uncertain parameters. It is shown that the evaluation problem, which requires a
sequence of optimization problems, can be formulated as a single nonlinear programming model
which can be extended to design optimization problems for maximizing the stochastic flexibility
subject to a cost constraint. A solution method based on Generalized Benders Decomposition is
proposed to effectively solve this problem. A comparison with Taguchi's method for minimizing
quadratic loss is also presented to point out that the use of a reward function can lead to more
sensible designs. Finally, several process design examples are presented to illustrate the
_ determination of trade-offs between cost and flexibility.
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1. Introduction

An inherent part in the design of a chemical process involves accounting for
uncertainties. Uncertainties can be of two basic types. those that are characterized by
continuous probability distributions (continuous uncertainties) and those characterized by
discrete probability distributions (discrete uncertainties). Examples of the first type would
include feed flowrates, rate constants and product demands. Equipment availability would
be an example of an uncertainty characterized by a discrete distribution. Both types of
uncertainties can have a significant impact on the feasibility of operation for a process.

Numerous methods have been developed to account for uncertainties. The most
well known is reliability, which measures the probability that a process is available given
only discrete uncertainties (see Dhillon 1984). When the process contains only continuous
uncertainties, severa different flexibility metrics have been developed which characterize
the ability of a process to tolerate the uncertainties for feasible operation. Examples of
these types of metrics can be found in Swaney and Grossmann (1985), Kubic and Stein
(1988) and Straub and Grossmann (1990). The latter authors have proposed a measure
known as the Stochastic Flexihility that corresponds to the probability of feasible operation,
but whose solution-has been restricted to linear systems. Until recently no work had been
reported on systems containing both types of uncertainties, but Straub and Grossmann
(1990) and Pistikopoulos et al. (1990) have developed a framework for their integration.
While these metrics have been aimed at measuring capabilities-'for feasible operation,
Taguchi methods in terms of quadratic penalties, have been aimed at measuring capabilities
for consistent performance in the face of continuous parameter uncertainties. Furthermore,
Taguchi concepts have emerged as a mgjor design tool in many industrial applications.

The goal of this paper is twofold. The first is to develop solution methods for the
Stochastic Flexibility (SF) metric for nonlinear systems. Methods for both evaluation and
optimization will be presented. The secondary goal of the paper is to discuss the similarities
and differences between the SF and Taguchi methods that are based on the quadratic loss
function which have motivated the development of a new Taguchi metric in terms of a
reward function. .A number of different examples will be presented to illustrate the
application of the proposed methods and their scope in the evaluation and optimization of
systems design.




2. Review of Stochastic Flexibility

The stochastic flexibility, SF, is a probabilistic measure of a system's ability to
tolerate continuous uncertainties. It is defined as the probability that a given design will
operate feasibly. The concept of the stochastic flexibility is shown in Figure 1. The
triangle represents the feasible region of operation for the system in the space of the
continuous uncertainties, 0j and 02- Each of the continuous uncertainties is described by a
probabilistic distribution. In this case, Q\ and 02 are independent parameters characterized
by normal distributions, which gives rise to ajoint distribution whose contours are circles.
The stochastic flexibility is the cumulative probability of the joint distribution that lies
within the feasible region; that is, the integral of thejoint distribution over the shaded
region.

The systems of interest are modeled mathematically with a set of equality and
inequality constraints:
h(d,z,x,0)=0
0(d,z,x,0)<£0

These equations can be linear or nonlinear. The variables in these equations are classified
as follows:

d design variables that define the capacity or sizes of units

z control variables representing degrees of freedom which can be adjusted to
compensate for changesin 0

X state variables

0 uncertain continuous parameters

In this model the continuous uncertain parameters 0, (m=l,...,M) are

characterized by ajoint probability distribution function j(0). This distributions that
compose j(0) may or may not be independent. Typical distributions include normal,
uniform, and triangular. These distributions are modified with additional constraints,
called sigma bounds to reflect the fact that after a certain point the cumulative probability
exhibits negligible changes. - For example, if O is characterized by a normal distribution,
sigma bounds limiting the range of 0! from 0M'N=0,""-3a to OMA*=0,"""+3a would be
introduced, where Qf°" corresponds to the mean value of the parameter. These bounds
prevent the integration over insignificant portions of thejoint distribution. They also insure
a closed feasible region which prevents difficulties with numerical integration schemes.




3. Evaluation and Optimization of SF for Nonlinear Systems

The fundamental idea of the proposed integration scheme of (1) is similar to the one
described by Straub and Grossmann (1990). The integral for the SF will be represented as
follows:

" ONABLR2-M41)
se=1 | | i(6) deM....de2dsi

where 8p 65 67(6i), 8°(61)... describe the boundary of the feasible region,

For the sake of clarity in the presentation, we will restrict ourselves to two-
dimensional problems, since the extension of the proposed ideas to higher dimensions is
straightforward. As shown in Figure 2, lower and upper bounds 0”, 6™ on 8] are
determined first. Quadrature points G' are then generated for a fixed choice of QI nodes,

ql=1,..Ql.

The next step is then to determine lower and upper bounds G2-* G2 for 62 at
each point G, Finally, quadrature points 6,%92 are generated in G, space for a fixed
choice of Q2 nodes, with which one can then apply a Gaussian quadrature formula (see
egn. (3) below) to estimate the multiple integral. Figure 2 shows how the placement of the
quadrature points might appear in a two dimensional case. Note that all the quadrature
points are located within the feasible region. Because of this feature the quadrature scheme
has proven to be very accurate.

4. Sequential Approach

For fixed design d, the simplest approach to determine the bounds described above
is to solve a sequence of optimization problems. Again, for clarity in presentation only the
inequality constraints over a two dimensional parameter space will be shown in the
equations below. The sequence of optimization problems is as follows. First, the lower
and upper bounds of Qy are given by,

Gi-=arg [ min Gi| g(d,z,x,6i,G,)<0} GiWg{ max 611 g(d,z,x,ei,ez)so} (2a)

The quadrature pointsin Q spéce arethen determined from




ef=05[&V o+vi)+eVav?)]  gisi,.Q (2b)

wherethe v ! correspond to the location of the quadrature pointsin the [-1,1] interval (see
Carnahan et al. 1969). The lower and upper bounds of 8, at each quadrature point can then
be obtained as follows,

Glz'qi-arg{lmin 62! g(d,z,x,Gf*',ez)<;O} qi=I,...Qi

(20)
u, | . .
6,"=arg{ max 6,| g(d,z,x,6",e)<0} qi=l,...Qi
Having the bounds on 6,, the quadrature pointsin 8, are determined asfollows:
6?%=0.5 [<#* (I+ij+ qui d-V52)] QI-|Q| qZ:|,...Q2 (2d)
Finally, the estimation of the SF is given by,
ugl F (eVal_gLal gl glg2
SFilzﬁL% wﬂ’l—zﬁz——’% w2 jof 6"
ql=1 q2=t (3)

Wherew"l, W%z are the weights corresponding to each quadrature point (see Carnahan et
al-1969). It should be noted that the above equations can bereadily generalized to higher
dimens ons of the parameter space 0. .

For the linear case the problem of solving the 2(1+QP1(1+QPy(...-(1+QPy_1))))
optimization problemsin (2a),(2b) and (2c) was circumvented by Straub and Grossmann
(1990) by using an inequality reduction scheme in which constraints are successively
projected into lower dimensions of the uncertain parameters, with which bounds and
quadrature points can be computed analytically. Whilethisisan elegant scheme, it hastwo
drawbacks: firg it islimited to a modest number of congraints asit relies on identification
of active sets; secondly, it cannot be easily extended to the optimization of the design
variablesd. Also, extending the inequality reduction scheme to nonlinear congtraintsis not
graightforward. Therefore, a amultaneous approach that embeds the equations of (2) into
asingle_optimizatiph problem will be consdered. - ;




5. Embedded Approach

We can implicitly embed the sequential optimizationsin (2), and the evaluation of
the SF asgiven in (3), into one single the NL P model in which the bounds and quadrature
points are selected to maximize the SF. The formulation is given by:

1 Ugl oLql
U oL ql_gLg _
max SF=81—91 % woll = -6°7) % o ](eclll ,egl'qz)
2 qi=1 2 Q=1

st ghdzoxoet 6 )so

eldzox06! 85 )<0

0F'=0.5[6f Q+v¥)} 01 1v?Y)]  qi=l,..Qi

g V@zox08] ;% )0 q=1,.Q1

8y Haz0x008 %150 quet,..Q

051 %= 050" (1+vi+ 05 T (1v8)]  q=1,..Q1 q=1,..Q

oM™ <o} <o'<0}A*

e%"'"se-f "‘se-,‘.’ U eghtax q=1,...Q

(NLP1)

In (NLP1) the notation z<* x('),0,”, denotes variables that are associated with each set of
constraints since they must be chosen independently to determine the lower and upper
bounds d?, o”, and 8"‘ 1 9"" ,lq"l".QI. For instance, in the first two constraints
different z, x, and 9, values must be chosen for determining the bounds 0,- and 0.
Also note that in (NLP1), Q" and Q" correspond to the sigma bounds that limit the

range of the distributions.

As shown in the Appendix A, the sequential optimization and calculation of the
quadrature points (2) are equivalent to (NLP1) provided a sufficiently large number of
quadrature points is selected. Qualitatively the idea is that for a sufficient number of
quadrature points, the bounds (5\, OU, and O"‘l, oW l g'=l,...Ql will be placed on the
boundary of the feasible space so as to evaluate the approximation of the integral for the
SF. Although problem (NLP1) is potentially large in size, it has two attractive features.
The most significant is that (NLP1) _Can easily be extended to desi gn optimization problems
in which the design variables are selected to maximize SF subject to an upper limit a of a
cost function, cost(d), over a set D for the design variables. Thisis shown in (NLP2).




' 1 Uql ALql .
mxSl’-—-i——'-euj."L % w8 ") q; h % wp ierl g3la2,
* qgl=l ‘ q2=l

sU gdz0x0,8f 65’ )<0

gl@zx08! 85 <0

07 05 [9? (1+vjV tf (IvP)]  g=l,..Qi

9% U z0x0,67,00% )0 qi=1,..Q1

@08 o' >0 =i, Qi
0 P=05(0," (+viV B d-v?)] q.-1-Qi g=,.Q2
cost(d)sex (NLP2)
0} <p}-<ol'<}A*
03 ™ <0y ¥ <) V<X =1,
83 ™ <o) <g)A
d€D

The second feature of (NLPI) is that it provides a single modd for eva uating the
SF, dthough there is a trade-off between solving one large NLP or a sequence of
2(1+QP;(1+QPx(....(1+QPy.i)))) smaler NLPs. Finaly, also note that by solving
(NLP) one can determine sengitivity information for the design variables. That is,

3F_JIEQ_j AN
3 Kdk 3d K 3d (4)

where \ are the Kuhn-Tucker multipliers of (NLPI), assuming the Lagrangian is written
as the objective function minus the congtraint terms.

6. Remarks

With regard to the gpplication of the sequentid optimizationsin (2) or (NLPI) to
nonlinear feasible regions, severd points can be made. Firs, if the region is convex then
the method will place al of the quadrature points insde the feasible region. This is
important since the quadrature scheme is then an appropriate gpproximation to (1). When
the region is nonconvex the quadrature scheme will still approximate (1) correctly if the
feasble region is 1-d convex in each parameter Oy, m=l,..M (see Swaney and
Grossmann, 1985; and Figure 2). On the other hand, if thisis not true, then the quadrature
scheme may or may not correctly integrate over the feasble region. In this case portions of
the feasible region may be excluded from the integral while portions of the infeasible region
may be included. It should be noted that the problem with nonconvex regions is less




important the larger the SFis. When the SF islarge we are essentially integrating over the
region bounded by the distribution constraints, not the system bounds. Thus, in this case,
the influence of nonconvexities is small.

There are several ways to reduce the complexity of the integration scheme to
evaluate and optimize the SF. These include modifications to the integration method and
also the solution techniques for the NLP problem. The simplest technique is to determine if
an uncertain parameter is bounded on only one side. For example, if the activation energy
in an adiabatic CSTR is uncertain, decreases from the nominal value will not cause
infeasibilities in many cases. Thus, in the formulations (NLP1) and (NLP2) the lower
bound on the activation energy can be fixed to the value of the corresponding distribution
constraint instead of being avariable in the NLP. Obvioudly it is to our advantage to place
the uncertainties with fixed bounds last in the integration scheme, since this will have the
largest effect on the size reduction.

Another simple change is to integrate apriori over one parameter 6y (last uncertain
parameter) and write the cumulative distribution, F(Oyu" 0MUX as a function of the bounds.
This eliminates the need for quadrature pointsin Oy space, further reducing the size of the
NLP. In the two-dimensional case the objective takes the following form with this.
modification:

1
nax =0 3 o oy gk oY 9
2 n
Q (5)

Note that this simplification assumes that Oy is independent of o1,...6M-1- Finally, even
with the above provisions, problems (NLP1) and (NLP2) may become very large. The
next section addresses this issue for the design optimization problem (NLP2).

7. A Benders Decomposition Procedure

As discussed earlier, one of the advantages of the nonlinear programming
formulation in (NLP1) is that the evaluation problem can be embedded into a single NLP.
This allows us to easily extend the evaluation problem to a design optimization problem
given by (NLP2). This NLP though, may become too large to solve in a reasonable
amount of time. In order to be able to solve these larger problems we propose a
computational scheme based on Generalized Benders decomposition.




The basic idea behind Benders decomposition (Geoffrion 1972) is to partition the
variablesinto two sets. complicating and non-complicating variables. By fixing the former,
the problem yields a subproblem whose solution yields alower bound (maximization case);
the complicating variables are then updated with a master problem that accumulates
Lagrangian approximations of previous iterations and whose solution yields an upper
bound. This upper bound decreases monotonically as the sequence of iterations proceeds.
The procedureis then to repeatedly solve the subproblems and master problems until the
lower and upper bounds conver ge within a specified tolerance. It will be assumed herethat
the reader is familiar with the details of Generalized Benders decomposition. A recent
review can befound in Sahinidis and Grossmann (1991).

In applying Benders decomposition to (NL P2) we designate the design variablesd
to be the complicating variables. The subproblem then corresponds to problem (NLP1),
and the master problem is defined in terms of the design variables d. Although this
decomposes the problem somewhat, we are ill left with alarge NLP in the subproblem.
Theway around this is to decompose this subproblem into a sequence of NL Fs similar to
(2). Each of these NLP'sis sgnificantly smaller than NLP1. For reasons that will become
apparent, it is convenient to determine the lower and upper bounds for each 6 with asingle
NLP. That isfor 8], instead of obtaining the bounds from

9V=arg{ min 8i| g(d,z,x,91,92)<0 } 9P:arg{ max 9i| g(d,z,x,9,92)<0}

(22)
we solve the NL P problem:
max eF-e}-
st ghdzoxeel 6 )0
g?(d.z"
or do¥e'ke (NLP3)

OleNsef")g‘ezMAX

It is easy to show that the Kuhn-Tucker conditions for (NLP3) are identical to the
combined Kuhn-Tucker conditions for (2a). We can proceed in a smilar manner for
finding the lower and upper bounds for 9" gx=l,...Qi. The subproblem then consists of
sequentially solving the following NL Ps for a fixed d¥, |

1) Solve (NLP3) for d=d*.




2) Fo qi=l,...Qi, solve

max (6}’ 9! g}-41)

st gjfhekzaxeel 63 )<0
g q‘(dk,zc ax0.6? 6" o (NLP4)
0™ <6; %' <67 V<o

Based on the results of these two steps, the lower bound for the SF, , corresponding to d¥,
can be calculated using equation (3). Having solved the problemsin (NLP3) and (NLP4)
the master problem can be formulated. However, the multipliers %, of these problems do
not correspond to the ones for problem (NLPI) for the fixed dK For instance, the vector
of multipliers for thefirst congraint in (NLP3) correspond to~* = d(8,"-8,")/9gi"; while
thevector of rhultipliers for the first congraint in (NLPI) correspond to A*” SF/dgxk
Thetwo multipliers can easily berdated with the following correction factors obtained by
comparing the Kuhn-Tucker conditionsof (NL PI) and (NLP3), (see Appendix B):

CFp-L A b : % v jef e
S E
Uql 1 ql ql.q2 Lql
3 [e”—& w07 3 9%"‘ % wpdi®i 87 4'2*‘113“2! ;.‘2"1‘332 {1 avih)
ql l q2=1 aef’ o8] oo}’
(6a)
- Uql _ oLql
CF{-L . M“M % op j ol 03192
gl=l
1 1.2 1 U
BYC 2 P % el A7) jradn” wadn i a0
| 2 a6 o' 26"
(6b)
Hence, for problem (NLP3), the corrected multipliersfor thetwo congtraintsare
L L U

Similarly in relating the:problems in (NLP4) with (NLPI), the corrected multipliers are
given by

MWURCEIA T Ay gEer Tr Al qi=LQl ©




10

where

CF'i“‘=°—1——‘—";°L i T jof 63"
@=1

I T A NP of -"51"12’\(-1!2) (1%
@) 2 2 o3 ’
ql=1,..Q1 (9a)

[ H
CFUA-8L yp(ly % wp j ol o3
2 2 q=1

Uql_gL gl : @31 o91:92
'z {9‘”;"1‘ w80 g8 o q‘:’%z U ang
993 q1=1..01 (9b)
Given different values of the design variables d*, k=1,...K, that yield a corresponding
stochadtic flexibility SI* k=l,...K, one can then define the master problem as follows:

SFB= max ffe
Mad

Ql
st o s SF - A1 ahauly - 0 gty - 3 [027 g @t nas ™ i vaa ™ |
q =
cost(d)<a k=1,.K
deD Pae %!
(NLPS)

where SFg¥ is the predicted upper bound and u;"*,u,%,U2"<i™ and U2"** correspond to
the optimal values of z,x and 0 in the subproblems (NL P3) and (NL P4) for a given design
d“. It should be noted that SFgX is only guaranteed to be a rigorous upper bound if the
inequalities g(0 are convex and theintegral in (1) is quasi-concave (see Geoffrion, 1972).
Also, note that (NLP5) reducesto an LP if the design variables d appear in linear form in
the congraints.

Summarizing, the steps involved in the Benders decomposition scheme are as

follows:

1) Select an initial design d*. Set the lower bound SF =-©°, K=I, and select a
tolerance e, |

2a)  Solve (NLP3) to obtain Ok, 07 . ftf and ftf and calculate er*, gl=I,...QI with
(2b).
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2b)  For gl=l,...Ql, solve (NLP4) to obtain G**, Q,Y"> A~ A?' and calculate
e**2 with (4.2d).

20) Calculate SF with (3) and update the lower bound, SF =max{ SF,SF}

339 CdculaeCF~Y, CF~' gl=l,...Ql and CF, CF” asin (9) and (6) to obtain the
contacted multipliers \\, XHandX"\ X"%’ for gql=I1,...Ql asin (7) and (8).

3b)  Solve the master problem in (NLP5) to obtain a new design d“** and an upper
bound SFgX.

4) If SFgXESF, +e, stop; the solution is the design d with stochastic flexibility SF..
Otherwise, set K=K+1 and return to step 2.

It should be noted that in the above procedure it is assumed that the NLP
subproblems in step 2 are feasible. In our experience we have not found computational
difficulties with infeasibilities provided the initial design d* has a non-empty feasible
region. Furthermore, we have also found that the number of major iterations is quite
modest (typically 3 to 7 iterations). We attribute this to the fact that most of the inequalities
in (NLP3) and (NLP4) are always active by which the Lagrangians in the master problem
yield good approximations. Also note that the programs solved in the subproblem are
nearly identical. This is significant because the information generated during the solution
of thefirst NLP is used to aid in the solution of the second NLP, and so on. This helpsto
reduce the total CPU time necessary to perform each subproblem.

In practice the correction factors are occasionally negative. This is the result of
roundoff errors in the large number of numeric computations required to calculate the
correction factors. Based on our experience, the magnitude of the negative correction
factors are much smaller than the magnitude of the positive correction factors, thus, the
optimal solutions are not effected.

A Small Design Optimization Problem

A small example will be presented to illustrate the proposed method. The systemis
given by 3 inequality constraints and acost constraint involving two uncertain parameters
9,,0, and two design variables dy and d,:

«g”-3-dj SO ' ‘ (10a)
9,=25-d,;* e,<0 © (10b)
gs=€,-dy* (i-exp(-e;))<o (ioc)

cost(d)=d! +d,<16 (10d)
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The uncertain parameters are assumed to be described by norma distribution functions;
N(6,1.5) for B, and N(6,l) for 6,. The god of this problem is determine the values of d,
and d, that maximize the stochastic flexibility subject to the cost congraintin (10d).

Two different solution techniques were used to solve the problem with 5 point
quadrature for each parameter (QI=5, Q2=5). The initid point seected for the design
variableswas dj=7, d,=7. Thefirg technique was to directly solve the mode in (NLP2),
that is the entire problem embedded as asingle NLR This NLP has 64 equations and 47
variables and required 2.23 CPU seconds on an IBM RS6000 usng GAMSMINOS, The
optima solution wasd”. 09 d,=8.91 resulting in SF=0.968. The feasbleregions for the
initid and find designs are shown in Figures 3 and 4.

The problem was aso formulated using the Benders decomposition scheme
described in the previous section. Here the subproblems in step 2 involved solving 6
NLFs. The first NLP (NLP3) has 7 equations (a feasibility congtraint requiring Q"< 9,"
and (10a) (10b) (10c) repeated for both the lower and upper bounds) and 4 variables (0J-,
6", 6,™,6,) Theremaining’5 NLFs (NLP4) each had 5 equations (feasibility and (10b)
(10c) repeated for both the lower and upper bounds) and 2 variables (6,-*'0,"*1). The
master problem, containing (K+l) constraints and 3 variables, was an LP since the
congraints are linear in d for fixed 0. The modified Benders scheme required 7 mgor
iterations to reach the optimal solution within a tolerance of 0.0001 for the lower and upper
bounds. The convergence of the boundsis shown in Figure 5. The subproblems required
atota of 3.30 CPU seconds and the master 0.46 CPU seconds for a total of 3.76 CPU
seconds. The optimal solution was essentialy the same as the full NLP. In this smdl
example no computational savings were obtained. Aswill be shown later in the paper in
Example 2 thistrend isreversed in larger problems.

8. Taguchi Quadratic Penalty Methods

The purpose of this section of the paper is to demonstrate how Taguchi's design
method based on quadratic loss functions can be accommodated with the methods
presented in this paper, and how the resulting method compares with the SF. The
fundamenta element of Taguchi's methods is the quadratic loss function that penalizes
. deviations from targets under conditions of uncertainty. In practice, signa-to-noise ratios
are used to determine the optimal design variables to minimize the effect of uncertainty
(Kackar, 1985). The relationship between the signa-to-noise ratios and the qua}dratic
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penalty function has been established by Leon et al. (1987)- Thereationship isexact under
gpecial circumstances, that is when the system modd is of the following form:

x=f1(d,2)*f.(d,9) (12)

We now wish to proceed in thedirection of directly applying the quadratic penalty
to design problems. We will refer to theresulting metric as the the Taguchi metric (TG).

In the context of the process model given described by the equality and inequality
condraints, the Taguchi design approach associates a penalty with one of the sate variables
X. Other penalties associated with the inequality congtraints are not considered. The
allowable penalties on the single x variable take one of the three forms shown below:

a) A target valueisdesired for x, x=x"which leads to the penalty ¢ x-x*)2.

b) The smallest possible value is desired for x, in terms of upper bounds, x<x"
which leads to the penalty c"(x/x")?.

c) Thelargest possible value isdesired for x, in terms of lower bounds, x=x"
which leads to the penalty cK x"/x)?.

wherec’, ¢ and c" are specified cost coefficients. The above is rather restrictive if there
are several output variables of interest, or if we wish to impose penalties on the values of
other variables or combinations of variables. In most design problems we will often
require multiple penalties and also satisfaction of the inequality constraints. In order to
allow for multiple penalties we can smply redefine the penalties shown above asfollows:

a) q'(Xj-x"forxpx® i €T
b) c'(xi/xi")2.for Xi<Xi” ie U.
0) cACxMXj)? for XixXj- i € L.

where g’ q* and " are cost coefficients. The overall penalty can then be defined as
follows:
PO)=I coxix?%+ | cF(XixP? | ok (xxd?
ieT ieJ ieL (12
Penalties can, of course, be defined with other norms as discussed in Feldmann and
Director (1991).

Thegoal in the design problem isto minimize the expected value of this penalty, the
TGP metric, which takes the form shown below
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X ol
'I’GP—-] ] P(x(G)) j(i8) doM....d62 dé

o™ %o (13)
where x(6) is determined by the equality constraints and O™'™ and GM** represent the
limits of the digtribution values or sgma bounds. While (13) allows us to have multiple
penalties on the Sate variables it doesnot allow penaltiesinvolving inequality congraintsin
terms of d,z,6. One way to handle this is to treat these inequalities constraints as soft
condraints, that iswe introduce the non-negative variabley such that

g(d,z,x,9)<y (14

One could then include a penalty for 7>0in (12). While this may be appropriate for some
problems, in others the inequalities need to be hard congtraints, rictly lessthan or equal to
zero. Thiswould involve an infinite penalty for y>0 if we were to penalizeviolationsin a
manne Smilar to the soft congraints A rigorousway to impose these congraintsisto have
themredtrict the bounds on the variables, smilar to the SF formulation in (1); that is,

P(x(0)) j(0) dOM...d02 dGi

ra}' [95’(91) ]e&qm.em)

TGP= Jgif Je%@,)

where the lower and upper bounds are defined by the feasible regjion exactly asin the SF
case, see (2). Theproblem with (15) isthat it may assign zero quadratic penalty to O that
lie outsde the feasible region. Since both choices, infinite penalty or zero penalty are not
acceptable we have to modify the formulation. The easiest way to do thisisto create a
reward function as shown below

R(x)=C-P(x) (16)

where C mugt be sufficiently large such that R(xX)=20V d GD. The objective of the design
formulation is now given by

rol ro¥en  rotkmmmn)
TGR= | ] R(X(6)) j(6) dOM...dG2 doi
e e : 'h(‘l-"zv-ﬁM-l) (17




Naturally the metric is dependent on the choice of C. However, this formulation is more
appropriate and can be easily accommodated in the model (NLPL1) for evaluation and model
(NLP2) for optimization. Furthermore, a Benders decomposition scheme can also be
applied that isvirtually identical to the one for the SF metric. In the next section a small
example will be presented to clarify the points of the this section and to show how (13) and
(17) relate to the SF metric.

9. Example with TG and SF Metrics

In order to understand the relationship between the SF and TG metrics consider the
following system which is described by the following equation and inequality:

x-dy-d18=0 (18)
40<5d,d,+58 (19)

where d, and d, are the design variables, x is the state variable and 6 is the uncertain
parameter characterized by a uniform distribution between 9"'N=7 and GM**=13. Note
that in this case there are no control variables. Also, (18) is the equation that describes the
system while (19) is a hard constraint that must be satisfied by the chosen design.

Let us assume that the state variable x must lie within specified limits x-°=15 and
x"P=20, but that ideally the design should be such that x be as close as possible to atarget
value of 18; that isx"=18.

In the case of the SF metric, the goal is to choose d; and d, such that the probability
that the state x lies within the specified limits [x'°, x“P] is maximized. By solving (18) for
0" and G" in terms of x*-° and x"P, the feasible region in 8 space as afunction of dj and d,
can be expressed as,

oL>(xL0.d)/d, (202)
BV<(xVP-d,)/d, (20b)
8Y<1.25d, -0.25d, +14.5 (20c)
GMIN<QL<OU<GMAX | - - (20d)

The SF of the design (dj,d,) is simply the integral of the distribution on 0, j (0)=I/(0™-
0™"), over the feasible region defined by [0~> 0],
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oU
SF=[ i) deJMQxQTM"L

o (21)

where 8- and 6" are determined by the congtraints in (20). The problem of selecting dj
and d, to maximize (21) is then given by the following NLP problem that is smilar to
(NLP1),

max SF=(6V-8") / (§MAX.gM™)

ol>(xlo.d2 )/ dh

QV<(xUP-d2 )/ d1

9Y£1.25 di - 0.25 d2 +14.5 (NL P6)

di, d220 eM'N<e'“e“4eMA
Solving the above NLP, leads to the solution d*0.8 d,=9,4 with SF=1, which implies
that this design can meset the specification 15<x<20 for all 0 in 7<0<13. The physical
meaning is best demongtrated with Figure 6, Here the horizontal axis represents the space
0, while the vertical axis represents the space x. Equation (4.18) represents a line whose
dope is the design variable d\ and whose intercept is the design variable d,. Equation
(4.19) represents a condraint in 0 space, as dj decreases and d, increases the congraint
cuts off more of the O space. This figure also clearly demonstrates the concept of
projecting the uncertainties from 0 space into the space of x. For a particular O go along
the vertical axis until the line defined by (4.18) is reached, then go left horizontally to
determine the corresponding x. With regard to the SF, as shown in Figure 6 with d” . 8
and d,=9.4, the best design that can be obtained according the the SF metric, the entire
digribution of O is projected into the feasible space of x. However the distribution on x is

widely scattered with X=17.5 and a=2.08.

Alternatively, consder the Taguchi metric with the quadratic penalty loss, which
can bewritten as,

(X-XT)2=(d2+d:0-xT)2 22)

Thus, from (13), the Taguchi metric is the expected value of the loss or,

eMAX
TGP—( (d2 +4,6-xT)"§(8) 08 -—J—f (d +d16-xT)? dO
\ﬂwMAulvnnJe..m,.
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Selecting dy and d, so as to maximize the TGP metric above yields d* d,=18
with TGP=0. That is, this method predicts a zero violation of the target value x'=18 with
thedesign d* and d,=18. Although this appears to be a superior design than with the SF
thereisamajor problem as seen in Figure 7; namely, for the chosen design variablesd *
d,=18, the inequality in (4.19) becomes infeasible for the range 10 £ 8 £ 13. That is,
whilethedigribution on x hasx=18.0 and 0=0, the SF=0.5 which isclearly undesrable.

Therefore, the penalty approach for target specifications may produce designs which do not
have the capability of meeting as large arange for 6 values as the SF metric does. On the
other hand there is a clear trade-off here. The SF design can handle a larger range of
variation but then with a higher quadratic loss, while with the TGP metric the opposite
trend holds. Nevertheless, on balanceit would appear that the designswith the TGP metric
arelessdesrable, and that in any case, the Taguchi metric with the reward function asin
(17) provides a more sensible approach. '

Formulating the design problem with thereward function in (16) yieldsthe NLP,

GU
TGH=-1—f
GMAX_gMIN
sL  &=2{jv>-4a)l &\
9“£(xUP-d2)/di (NL P7)
9Y<1.25di- 0.25 d2+14.5
didizo é"'N<d-<e'<d'*

{c-(d, +di9-xT)?j(e) de

For a value of C=0 (NLP?7) is smilar to the TGP metric in (13) except that the inequality
(19) is enforced and bounds 0" and 6" are variables asin the modified formulation (15).
Thisis not a good metric, however, since, for instance, an optimal solution is given by
dj=I d,=8 with OL=eu-7; This design does produce zero violation at 9=7 since
x=d;+d,6=18. However, due to the form of the objective with C=0 the sensitivity with
the upper bound 6” has been lost Although the inequality in (19) is satisfied for 6=13, the
design isin fact infeasible for 0=13 as then x=21 which exceeds the upper limit for x.

On the other hand a large value of C will make the solution ofl(NL P7) tend to the
one for the SF metric. For ingance with C=9 the solution of (NLP7) isd” .7 and d,=11
with 0-=7 and 6”=12.623, see Figure 8. In this case the SF=0.938, X=17.87 and
a=1.28, compared to the SF solution, the variance of x has been reduced by sacraficing
some feagbility.
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In summary, what this example has shown is that the SF metric is in general
superior to the Taguchi metric, TGP, with quadratic loss since the latter ignores the effect
of hard inequality constraints. However, since in general trade-offs might exist between
capability for handling ranges (SF metric) and consistent performance (TGP metric), the
suggested reward model for the Taguchi metric (TGR) can be used to explore these trade-
offs by solving problem (17) for different values of C. Furthermore, in all cases the basic
form of the model (NLP2) can be applied to solve these problems.

A fina difference between the SF and TGR is that the SF has a simple physical
meaning. We can say that the difference between design one which has SF=0.7 and design
two which has SF=0.9, is that the second design is expected to operate feasibly 20% more
of the time. One the other hand the TGR metric might go from TGR=20 to TGR=30, this
only tells us that the second design results in a greater centering of the output around the
target.

10. Examples

In this section two examples will be considered. The first is to illustrate the
application of (NLP2) and to show a comparison with the quadratic loss approach.

Adiabatic Reactor Example

The first example involves the following Diels-Alder reaction in an adiabatic plug
flow reactor (Hill, 1977).

ICHZ /CH2

HC CHo HC H2
+
|"‘| V QEC‘H I V ,cI;HZ
In this problem the uncertain parameters are the heat of reaction AHr,and the activation
energy, AE. The design variable is the space time t. The state variable is the overall

conversion, conv. There are no control variables. Note that in this problem the uncertain
parameters are not functions of time, simply unknown at the time of design.

The two uncertainties are assumed to be characterized by normal distributions. The
heat of reaction AHr has mean -30,000 cal/mol with standard deviation 500 cal/mol. The
activation energy has mean 27,500 cal/mol and standard deviation of 400 cal/mol.




The condraints describing the system are shown below (see Hill, 1977),

a) mass balance on reactor

Co
T_I nv_T__g.-ﬁQ_)zdf=0

ToJ kCo(1-£" (24a)
b) ener gy balance on reactor:
T-To_ ARl = (24b)
° 57+2.5*f
C) rateequation-
k - 10"-’exp(-AE/RT) =0 (24c)

wherefistheconverson, To=273 K istheinlet temperature, k istherate of reaction, C, is
theinitial concentration of either species (equimolar feed is assumed), T isthe temperature
along the reactor and R is the gas constant The first and second constraints result from
mass and energy balances on the reactor. The third congtraint defines the rate of reaction.
Finally, an inequality congtraint specifiesalower bound on the conversion;

d) specification:
convL B -conv< O (24d)

The parameter conv'-® was chosen to be 0.1, restricting conversions to be greater than or
equal to 10%. Five quadrature points were selected for each parameter to evaluate the SF
for different alternative designs. To solve problem (NLPL1) required 274 variables and 282
equations. The results are shown in Figure 9 which shows the relationship between SF
and the design variable x. As shown in thisfigure, as the space time increases the larger
the SF becomes. For instance with a space time of 40 seconds the SF=0.3, while at x=60
the SF=0.82. If costing information were available, that related the value of the design
variables to the cost incurred then a trade-off curve could be developed to determine the
cost of flexibility.

A second case was also solved in which the output conversion wasrestricted to be
between 8% and 12%. Theresults of thiscase are shown in Figure 10. Note that too large
a value of the space time will cause the SF to decrease. Clearly the space time has a
sgnificant impact on the SF. If we expected the flowrate into the reactor to vary then we
would want to regulate this so that the variations are diminated.
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During the solution of the NL Ps it was evident that the uncertainty in the activation
energy was more significant than the heat of reaction. The bounds on the heat of reaction
were nearly always those from the distribution constraints, while the bounds on the
activation energy were generated by the conversion congraints. Thisinformation can be
very useful. For example, if additional experiments were to be done to more accurately
determine the parameters then one would obvioudy investigate the activation energy.

In determining the response curve, the NL Ps wer e solved usng GAM SCONOPT
(Drud 1991) asthe NLP solver. Each NLP, on average, required 1.22 CPU seconds to
solveon an IBM RS/6000.

The Taguchi approach was also applied to this example but with the reward
function asin (16) with C=2.5. Thetarget valuefor the converson is0.1. Theresults of
the program are shown in Figure 11, which can be directly compared to Figure.10. Note
that thelargest TGR value and the largest SF value are in approximatey the samelocation.
In determining the response curve, the NL Ps were solved usng GAMSMINOS as the
NLP solver. Each NLP, on average, required 8.56 CPU seconds to solve on an |BM
6000, which is sgnificantly higher than for the SF.

Reactor Flowsheet Example

The second example involves a plug flow reactor, a fractionator and a recycle
dream described by Pistikopoulos and Grossmann (1989). The model is presented in
Straub and Grossmann (1992). The flowsheet is shown in Figure 12.

Thedesign variablesin this problem are thereactor volume V, and the limitson the
power s of the two pumps, Wj and W,. The uncertain parameters are the composition of
gpecies B in the feed stream, and the forward and reverse rate constants, kj and k,. The
flow into the system and the pressure and temperature of the fractionator act as control
variables. The modd characterizing the system contains 21 congraints (18 equalitiesand 3
inequalities) and 27 variables. The goal of this problem is to develop a trade-off curve
relating the SF to investment. The modified Benders decomposition scheme was used to
determine the optimal design variable values and the corresponding SF for a fixed
investment. For each of the 3 uncertain parameters 5 quadrature points were used. The
modified subproblem contained 31 NLPs. Each NLP contained 44 equations and 49
variables. In comparison, the NLP corresponding to NLP1 contains 1290 equations and
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1484 variables. The mager problem contains4 variablesand (K +1) congraintswhereK is
the iteration number. In determining the trade-off curve the modified Benders scheme
required an average of 3 iterations to conver ge to the optimal solution with atolerance of
0.002. On average each subproblem (31 NL Fs) required atotal of 42.75 CPU seconds on
an HP 9000/835. The master required on average 0.6 CPU seconds. Thus, each
optimization problem required on average 130.05 CPU seconds to solve. In comparison
theNLP corrapondihg to NLP1 required 2690 CPU seconds to evaluate the SF for afixed
design. Thisclearly demondrates the effectiveness of the modified Bender s scheme.

Thetrade off curverdating SF to invessment (ain NLP5) is shown in Figure 13.

Asone would expect the morethat isinvested in the flowsheet the larger the praobability of
feasible operation. This figure also shows how the price for flexibility increases. The
larger the SF is, the more it coststo increase it by a fixed amount. Two other curves are
also presented. These curves show the values of the design variables at the optimal SF for
afixed investment. Figure 14 shows the optimal pump capacities versusinvestment. This
curve demongr ates the value of the SF analysisin overdesigning equipment. For a fixed
investment it is sub-optimal to overdesign each piece of equipment by afixed amount As
this figure shows, it is not desirable to overdesign the feed pump until an investment of
$330,000 ismade. On the other hand, the recycle pumps capacity in increased from the
dart. Figure 15 shows the optimal values of the reactor volume. Note that the reactor
volume also increases steadily from the very beginning. Thedragticrise at theend isdueto
the fact that both pumps reach maximum capacity at $390,000. Therefore, when going
from an investment of $390,000 to $400,000, all of the capital isinvested in thereactor.
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11. Conclusions

This paper has presented methods for evaluating and optimizing the stochastic
flexibility metric in designs that are described by nonlinear models. For the evaluation
problem it has been shown that the procedure based on sequential optimizations can be
embedded into a single nonlinear programming model (NL P1) which can then bereadily
extended as problem (NLP2) in order to optimize the SF under a cost constraint To
circumvent the large size of this problem, a Benders decomposition scheme has been
proposed which can greatly reduce the computational requirements as was shown in the
flowsheet example problem.

This paper has also shown that the Taguchi design approach based on quadratic
loss may not yield satisfactory results due to itsinability to handle hard congraints. This
can have the effect of producing designs that have consistent performance but only over a
small parameter range. To avoid this problem a new variant of Taguchi's method has been
proposed that incorporates a reward function. The results on a chemical reactor have
shown that this metric produces smilar designsasthe SF metric.
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Appendix A
Proof for Equivalence of Sequential and Embedded Problems

Prapasitian: The SF predicted by (NLPI), SFY, isidentical to the SF calculated with (3),
SF®, and the sequential optimizations in (2) provided a sufficiently large number of
quadrature pointsis selected

Progf:  We will restrict ourselves to the two dimensional case which can be readily
extended to higher dimensions.

By construction, SF° as given by (3) and using the bounds computed in (2) will
converge to the multiple integral in (1) within asmall error e if alarge number of quadrature
pointsQi , Q2 is selected; that is,

U

85
SFS+e =§F= | I i(6) deg doy
el' 95’{01) ( A |)

Let us assume that for the same number of quadrature points, @ , 62 , SEN
predicted by (NLPI) is different from SF°. This implies that at least one of the lower or
upper boundsin (NLPI) isdifferent from the onesin (Al). For definiteness, let us assume
that this is the case for only the lower bound of 0;; for which (NLPI) yields (QiH)™ * 9~
where 0!" is the lower bound of the integral in (A 1). )

If (811N < Qng this contradicts that 8" is the smallest lower bound, and hence a
solution of the minimization problem in (2a).

If (0j“)™ >6i", we have that for the quadrature points, Qi, Q2, the objective
function in (NLPI) is given by,

U ce¥en

SN + & = SF= " I j(8) do2 doy
(e)” Joken | (A2)

. where8isasmall error term.

Since the multiple integral in (A2) has a smaller value then theonein (Al) it follows
that
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SFN + 8 SSFS +¢ (A3)

Furthermore, sincetheintegral in (A2) is defined over a smaller domain, for a sufficiently
large number of quadrature points, Qi, Q2, the errors are related by 5£e. Hence,
SFN<SF®. The bounds 67, 07, Ga™?, G2, qI:I,...6i and quadrature points G**,
ql=l,....0i, e9'92, g2=1,...Q2, of SFS, however, satisfy the congtraints of (NLP1),
which contradicts the assumption that SF" is a solution of the maximization problem in
(NLP1). Thus it follows that SFN=SF® for a sufficiently large number of quadrature
points.

Q.E.D.




26

Appendix B
Derivation of Correction Factors.

In this appendix the correction factorsin (6) and (9) will be derived. Thiswill be
done by comparing the Kuhn-Tucker conditions of the embedded optimization problem
(NLP2) with those of the sequentia problems (NLP3 and NLP4).

The Lagrangian of the embedded problem (NLPL) can be written:

u gt & Uql _,Lql
L0 3 i 8 ) S il )
ql=l q2=I

At gt 68)
Areler )
7 u'{ef'- 0.5 t6F aevi)+ oF (1viH 1)
3 Ay el 6% )
q

Ugqt
12 q glzj(ll(e‘ll U‘!l )

q' | 1
1 zug“ﬂ{ez* 05re? (i+vj vel-* vy 1)
ql @ (Bi)

Smilarly the Lagrangians of (NLP3) and (NLP4), the sequentid problems, arc asfollows:

£3= (e-e}) AT geer 85 ) At Ve 68) (82)

~L q1 ~Uql
g-of U gkaly A7Vl o1 ).y Az g Vel of )
ql ql , (B3)

Having defined the Lagrangians for each of the problems, the Kuhn-Tucker conditions can
be compared to determine the relationship between the multipliers. For L* werequirethe
following conditions:

_l_ % 1(&Uql_ﬂz['_q_5 f w;z (eql egl'qz lLB_sL zu‘il{( 12) -viH} =0

3% 2 g1y B9
1 1 qLql, 02 U

oLy e V-e ) |7 wp et 63192 -?L‘fait -2 awihl =0

Y 2qi=| 2 g % d (B5)
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oLt g‘ﬁ-_ (92 g % w?aj(o?l 031"'2 _x:li.qlagliql ) 'qlaﬂgql __uql=
- Q=1 ! ae?' “ae? ' °
ql=1,..Ql (B6)

oL S ey ¥ e gie arednt -2 W) ) =0
36, ¥*" @
<J2-1

q1=1,..Q1 (B7)

oLt oVl ql .ql.q2 qlag yat qlq2 _
P 'ITL é.glwm(e 83 >12 207 }%“’ -12) 1+v3H =0

ql=1,..Q1 (B9

oL oigh u(al e okt Laiet of)
aoalq?' 2 2 aeg|,q2

_ugqu:O
q1=1,..Q1 q2=I,...Q2 (B9)

Thereavent Kuhn-Tucker conditions corresponding to £2 and£* are shown below:

9_ 13 Q-i"i
&1 331 (BIO)
aL?_ 'a_g£=o
30!° aeP (BII)
4 at
aL l_ 1X2 ——=0
oL 00 ql=l,...Ql (B12)
3{.5,4; . i‘gql BE:ql =0
V4 o6y al gl=l,...Ql (B13)

Thefirst comparison will be between (B7) and (B12), to determine cEJ9Y such that
Ay U=cplal fhal - g1 Q1 (B14)

It isclear that if (B12) is multiplied by
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Cry -2k wr T ol M) i o
=1 @ ql=1,..Q1 (B15)

the resulting equation isidentical to (B7), which then defines the correction factor. This
equation, however, contains the multipliers of the equations defining the quadrature points,
information not available from the sequential problems. This can be over come by solving
(B9) for |i’j1q2and subgtituting into (B15), which resultsin:

Q2
cry -2l uf () 7 wp jof' P
g2=l
+z[e§’-e% walz 4 -07 ) wfal“’? 47 (-112) (1-v}
¢| 2 2 e

ql=1_Q1 (B16)

Note that this correction factor only requires information on the bounds and quadrature
points, which is available from the sequential problems. The same procedur e can be used
to determine the correction factor for the multipliers corresponding to the upper bound; that
is,

A5 1=cFy 9 Al qi-is o (B17)

The correction factor is shown below:

U AL '
CF;’“‘=‘31-2‘-9L w?(l) f wp j ot 63192y

q2-=I
Uql_gLql j @31 g3192
5 {e%’;e{' w6 - V) g 9 C1 :ﬁz N1 e
@ 3" q1=1,..Q1 (B18)

The correction factors for multipliersfor constraints corresponding to the bounds on 0j can
be determined by comparing (B4) and (BIO) resultingin,
Q2 . :
cRi-l | WKWl s A<t s xnf((R) (VA
1

2 qgl=l 2 q2=l Q (B19)

Subgtituting for themultipliers\L*l\ from (B6)
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CFi-1 3 ..,«,qu_L T e o o2,

ql-l q2=l
1 gla2 Lql
o foet oo O % v@a‘“’q L SRV ’-z‘"agz {1 i)

(B20)
Herex‘,l‘ll and Xlzlq Lere previoudy detennined in (B14) and (B17); the corresponding

derivativesare detennined analytically For the upper bound
CRJ-L PRTCARLALS Py ol gg142)

2 gi=I 2 g2=l
Uql _gLql a1 gqla2, ql Uat
S levek oo -ak) F 2jef o -x;-q'aéi 29998 Ye1n) i)
alf 2 2 =1 o} y 1

(B21)

Thus the corrected multipliers for the constraints corresponding to the lower and upper
bounds on 6] can be obtained asfollows:

I=CF ﬁll_‘, Ay!=CF ’AIIJ.

This procedureisreadily generalized to higher dimensions.
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Captions

Figure 1 Feasible region for evaluating the stochastic flexibility.

Figure2 Demondrating the determination of the bounds and quadrature points,
for g~ =1,2,3,4, 0,=1,2,3

Figure 3 Feasible region for initial design and contours or distribution.

Figure4 Feasbleregion corregponding to optimal solution and contour s of
distribution.
Figure 5 Convergence of the bounds in the Benders scheme.
Figure 6 System for optimal d from SF problem.
Figure 7 System for optimal d from Quadratic Penalty problem*
Figure 8 System for optimal d from TGR problem.
Figure 9 Results of Example, with lower bound on conversion (0.1).
Figure 10. Results of Example, with lower and upper constraints on conversion [0.8 .12]
Figure 11. Results of Example, quadratic reward problem.
Figure 12 Flowsheet for Example 2.
Figure 13 Trade-off curve relating SF to investment for Example 2.
Figure 14 Pump Capacities for Optimal SF versus Investment for Example 2.

Figure 15 Reactor Volume for Optimal SF versus Investment for Example 2.
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