1969

Fixed point theorems for sums of operators

James S. W. Wong

Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/math
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
FIXED POINT THEOREMS FOR
SUMS OF OPERATORS

James S. W. Wong
Report 69-40

December, 1969
ERRATA on 'Fixed Point Theorems for Sums of operators', James S. W. Wong.

p. 1 line 11 \(Ax < Ay \) should read \(Ax - Ay \).

p. 3 line 2 completely should read strongly.

p. 6 line 6 Insert after Note that the words ' for large i '

line 8 \(Bx_i \) should read \(\|Bx_i\| \).

p. 7 line 7 The whole line should read ' Let \(t > 0 \), we obtain from above with \(x = x_0 + th \),'

line 2 from bottom. The whole line should read

\[
\frac{1}{1 - q} \limsup_{\|x\| \to \infty} \frac{\|Bx\|}{\|x\|} + \limsup_{\|x\| \to \infty} \frac{\|(I-A)^{-1}B\|}{\|x\|}.
\]

Let T be a mapping from a Banach space X into itself and K be a closed bounded convex subset. The celebrated Schauder fixed point theorem states that if $T(K) \subseteq K$ and T is completely continuous then T has a fixed point in K. We are here concerned with extensions of Schauder's theorem to sums of operators. An operator A defined on X is called a contraction if there exists some constant $0 < q < 1$, such that $\|Ax - Ay\| \leq q\|x - y\|$ for all $x, y \in X$. The following is a generalization of Schauder's theorem due to Krasnosel'skii for sum of operators.

THEOREM I. (Krasnosel'skii [8], Sadovskii [11])

Let $T = A + B$, where A is a contraction and B completely continuous, and $T(K) \subseteq K$. Then T has a fixed point in K.

The operator A is called non-expansive if $\|Ax - Ay\| \leq \|x - y\|$ for all $x, y \in X$. We call the operator B strongly continuous if for every weakly convergent sequence $\{x_k\}$, with limit x, there exists a subsequence $\{Bx_{k_i}\}$ such that $Bx_{k_i} \rightarrow x$ strongly. Recent interests in the theory of non-expansive mappings led to the following analogue of Theorem I:

THEOREM II. (Zabreiko, Kachurovskii and Krasnosel'skii [12]). Let X be a real Hilbert space, $T = A + B$, where A is nonexpansive and B is strongly continuous, and $T(K) \subseteq K$.
Then \(T \) has a fixed point in \(K \).

When the operator \(B = 0 \), Theorem II reduces to the recent well known result of Browder [1], Kirk [7] and Gohde [4], establishing the existence of fixed points of nonexpansive mappings on Hilbert spaces.

In a number of applications of Schauder's theorem, it is sometimes difficult to find a desired bounded convex set \(K \) which is mapped into itself by \(T \). One is thus led to impose other conditions directly on the operator \(T \) which ascertains the existence of some large closed ball being mapped into itself by \(T \). For this purpose, the notion of quasi-norm of \(T \) is introduced which is defined by

\[
\|T\| = \limsup_{\|x\| \to \infty} \frac{\|Tx\|}{\|x\|}.
\]

By requiring that \(\|T\| \) is small, we have the following analogue of Schauder's theorem concerning the solvability of functional equations.

Theorem III. (Dubrovskii [2], Granas [5]). If \(T \) is completely continuous, and \(\|T\| < 1 \), then \(\mathcal{R}(I-T) = X \), where \(\mathcal{R}(T) \) denotes the range of \(T \).

The purpose of this note is to prove analogues of Theorems I and II by imposing quasinorm conditions on \(A \) and \(B \) in place of the condition \(T(K) \subseteq K \).

Theorem 1. If \(T = A + B \), where \(A \) is a contraction and \(B \) is completely continuous, and \(\|A\| + \|B\| < 1 \), then \(\mathcal{R}(I-T) = X \).
THEOREM 2. Let \(X \) be a real Hilbert space. If \(T = A + B \), where \(A \) is nonexpansive and \(B \) is completely continuous, and \(\|A\| + \|B\| < 1 \), then \(\mathcal{R}(I-T) = X \).

Roughly speaking, Theorems I and II remain valid when the condition that \(T(K) \subseteq K \) is being replaced by the quasinorm condition that \(\|A\| + \|B\| < 1 \). Of course, in Theorems I and II the operator \(T \) need only to be defined on \(K \) rather than the entire space \(X \). However, the conclusions of Theorems 1 and 2 are also stronger.

As an immediate consequence of Theorem 1, we obtain the main theorem of Nashed and Wong [10] as a corollary:

COROLLARY 1. If \(T = A + B \), where \(A \) is a contraction and \(B \) is completely continuous, and \(\|B\| < 1 - q \), then \(\mathcal{R}(I-T) = X \).

Note that if \(A \) is a contraction with contractive constant \(q \), then we have

\[
\|A\| = \limsup_{\|x\| \to \infty} \frac{\|Ax\|}{\|x\|} \\
\leq \limsup_{\|x\| \to \infty} \frac{\|Ax - AO\| + \|AO\|}{\|x\|} \\
\leq \limsup_{\|x\| \to \infty} q\|x\| + \|AO\| = q.
\]

Thus if \(\|B\| < 1 - q \) then \(\|A\| + \|B\| < 1 \), and the result follows from Theorem 1.

PROOF OF THEOREM 1. For each \(y \in X \), define \(A_y x = Ax + y \) for every \(x \in X \) and \(T_y = A_y + B \). It is easy to see that \(A_y \) is a contraction with the same contractive constant \(q \),
and the operator \(T_y \) satisfies the same hypothesis as that of \(T \). Moreover, \(O \in \mathcal{R}(I-T_y) \) if and only if \(y \in \mathcal{R}(I-T) \).

Thus, it suffices to show that \(O \in \mathcal{R}(I-T) \). For any fixed element \(z \in X \), let \(L_z \) denotes the unique solution of

\[
(2) \quad L_z = AL_z + B_z,
\]

which is possible because \(A \) is a contraction. For any pair of elements \(u, v \in X \), we deduce from (2) the following inequality

\[
\|Lu - Lv\| \leq \frac{1}{1-\rho} \|Bu - Bv\|,
\]

from which and the complete continuity of \(B \) it follows that \(L \) is also completely continuous. For each positive integer \(n \), denote \(B_n = \{ x : \|x\| \leq n \} \). We wish to show that there exists a positive integer \(N \) such that

\(L(B_n) \subseteq B_N \). Suppose not, there must exist a sequence \(\{u_n\} \subseteq B_n \) such that \(\|Lu_n\| \geq n \) for all \(n \). Since \(L \) is completely continuous, so \(\|u_n\| \to \infty \) as \(n \to \infty \). Note that from (2), we have

\[
(3) \quad \|u_n\| \leq n \leq \|Lu_n\| \leq \|ALu_n\| + \|Bu_n\|.
\]

For each \(\epsilon > 0 \), we may choose \(n_0 \) such that for all \(n \geq n_0 \),

\[
\|ALu_n\| \leq (\|A\| + \frac{\epsilon}{2}) \|Lu_n\|, \quad \text{and also} \quad \|Bu_n\| \leq (\|B\| + \frac{\epsilon}{2}) \|u_n\|.
\]

Using these estimates, we can obtain from (3)

\[
\|Lu_n\| \left(1 - \|A\| - \frac{\epsilon}{2}\right) \leq \|Bu_n\|
\]

which implies
\[(1 - \|A\| - \frac{\epsilon}{2}) \leq \frac{\|Bu_n\|}{\|Lu_n\|} \leq \frac{\|Bu_n\|}{\|u_n\|} \leq \|B\| + \frac{\epsilon}{2}, \]

from which it follows \(1 \leq \|A\| + \|B\| + \epsilon. \) Since \(\epsilon > 0 \) is arbitrary, this provides the desired contradiction and proves the theorem.

Proof of Theorem 2. As in the proof of Theorem 1, it suffices to show that \(\Omega \in \mathcal{R}(I-T) \). To this end, we define for \(0 < \lambda < 1, A_\lambda = \lambda A, B_\lambda = \lambda B \) and \(T_\lambda = \lambda T \). First note that \(A \) nonexpansive implies \(A_\lambda \) is a contraction with contractive constant \(\lambda \). Next, since \(B \) is strongly continuous and \(X \) is reflexive, \(B \) is also completely continuous so does \(B_\lambda \) for every \(\lambda \). Thus, an application of Theorem 1 to the operator \(T_\lambda \) shows that there exists \(x_\lambda \in X \) satisfying

\[(4) \quad x_\lambda - (A_\lambda + B_\lambda)x_\lambda = 0, \]

for each \(\lambda, 0 < \lambda < 1 \). We claim that the set \(\{x_\lambda : 0 < \lambda < 1\} \) is bounded. For otherwise, there exists a sequence \(\{\lambda_i\} \) such that \(\|x_{\lambda, i}\| \to +\infty \) as \(i \to \infty \). Using (4), we observe that

\[
1 = \frac{1}{\|x_{\lambda, i}\|} \| (A_{\lambda, i} + B_{\lambda, i}) x_{\lambda, i} \| \\
\leq \frac{\lambda_i}{\|x_{\lambda, i}\|} \| Ax_{\lambda, i} + Bx_{\lambda, i} \| \\
\leq \frac{1}{\|x_{\lambda, i}\|} (\|Ax_{\lambda, i}\| + \|Bx_{\lambda, i}\|),
\]
which upon letting \(i \to \infty \), gives a contradiction. Now, since the set \(\{x^i\} \) is bounded, there exists a subsequence \(\{x^i\}, \lambda^i \uparrow 1 \), which converges to an element \(x_0 \in X \). Since \(B \) is strongly continuous, there exists a subsequence \(\{\lambda^i_n\} \) such that \(\lambda^i_n \uparrow 1 \) and \(Bx^i_n \) converges strongly to \(Bx_0 \).

We write \(x^i = x^i_n \) for short. Note that

\[
\|Tx^i - x^i_n\| = \|Ax^i + Bx^i - Ax^i_n - Bx^i_n\| \\
\leq \|Ax^i - Ax^i_n\| + \|Ax^i_n - Bx^i_n\| \\
\leq \|x^i\| + 2\|Ax^i_n\| + (\|Bx^i_n\| + 1),
\]

from which it follows that the sequence \(\{Tx^i\} \) is also bounded independent of \(i \), say \(\|Tx^i\| \leq M \). Now, we observe that by (4)

\[
\|Tx^i - x^i\| = \|Tx^i - \lambda^i_nTx^i\| \\
\leq (1 - \lambda^i_n)\|Tx^i\| \leq (1 - \lambda^i_n)M,
\]

hence \(\lim_{i \to \infty} \|Tx^i - x^i\| = 0 \). Also the strong convergence of \(Bx^i \) to \(Bx_0 \) may be used to prove that the sequence \(\{x^i - Ax^i\} \) converges strongly to \(Bx_0 \), since

\[
\|x^i - Ax^i - Bx_0\| \leq \|x^i - Tx^i\| + \|Bx^i - Bx_0\|.
\]

Finally, let \(x \in X \); and obtain from the nonexpansiveness of \(A \) the following inequality

\[
(x - Ax - x^i + Ax^i, x - x^i) \geq 0.
\]
Note that
\begin{align*}
&|(x - Ax + x_i + Ax_i, x - x_i) - (x - Ax - Bx_0, x - x_0)| \\
&\leq |(-x_i + Ax_i + Bx_0, x - x_i)| + |(x - Ax - Bx_0, x_0 - x_i)|,
\end{align*}
which tends to zero as $i \to \infty$. Thus passing the limit in (5), we obtain
\[(x - Ax - Bx_0, x - x_0) \geq 0.\]

Since $t > 0$, we obtain from above
\[(x_0 - A(x_0 + th) - Bx_0, h) \geq 0.\]

Letting $t \to 0$ in the above inequality, we find
\[(x_0 - Ax_0 - Bx_0, h) \geq 0.\] The fact that h is arbitrary yields $x_0 = Tx_0$. This completes the proof of the theorem.

Remark 1. We note that the original proof of Corollary 1 is similar to that of Theorem 1. However, by a direct application of Theorem III, we can now provide a shorter proof.

It is well known that if A is contraction then $(I - A)^{-1}$ exists and is Lipschitzian with Lipschitzian constant $(1 - q)^{-1}$. Since B is completely continuous and $(I - A)^{-1}$ Lipschitzian, it follows that $(I - A)^{-1}B$ is completely continuous. Now we observe that
\[
\|(I-A)^{-1}B\| \leq \limsup_{\|x\| \to \infty} \frac{\|(I-A)^{-1}(Bx - BO)\| \|x\| + \|(I-A)^{-1}BO\|}{\|x\|} \\
\leq \frac{1}{1-q} \limsup_{\|x\| \to \infty} \frac{\|Bx\| + \|BO\| + \|(I-A)^{-1}BO\|}{\|x\|} \\
\leq \frac{1}{1-q} \|B\| < 1.
\]
Applying Theorem III to the operator \((I-A)^{-1}B\), we obtain
\(\mathcal{R}(I-(I-A)^{-1}B) = X\). Thus,

\[\mathcal{R}(I-T) = \mathcal{R}((I-A)(I-(I-A)^{-1}B)) = (I-A)X = \mathcal{R}(I-A). \]

Again since \(A\) is a contraction, we have \(\mathcal{R}(I-A) = X\).

Remark 2. As a historical remark, we wish to point out that in [8], Krasnoselskii assumed the stronger condition that \(Ax + By \in K\) for every pair \(x, y \in K\). The stronger result was first given in Sadovskii [11]. An alternative proof of Theorem I in case \(X\) is a Hilbert space was also given in Zabreiko, Kachurovskii and Krasnoselskii [12]. We remark also that under the above stipulated stronger condition, Theorem II was first proved by Kachurovskii [6]. Dubrovnii [2] originally proved Theorem III under the stronger hypothesis that \(\|T\| = 0\), such an operator is also called asymptotically zero. The introduction of quasinorm and the present improvement was due to Granas [5]. Extensions of Theorems I and II in a different direction may also be found in Fučik [3]. For applications of fixed point theorems for sums of operators to the study of nonlinear integral equations we refer to Krasnoselskii [9] and Nashed and Wong [10].

Remark 3. Although Theorem 2 is stated and proved for a real Hilbert space it obviously remains valid for Hilbert spaces over complex numbers. In particular, inequality \((5)\) and the following arguments remain valid if one simply replaces the inner product by its real part.
REFERENCES

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213