
Carnegie Mellon University
Research Showcase

Human-Computer Interaction Institute School of Computer Science

1-1-2006

From Letters to Words: Efficient Stroke-Based
Word Completion for Trackball Text Entry
Jacob O. Wobbrock
University of Washington - Seattle Campus

Brad A. Myers
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/hcii

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted
for inclusion in Human-Computer Interaction Institute by an authorized administrator of Research Showcase. For more information, please contact
research-showcase@andrew.cmu.edu.

Recommended Citation
Wobbrock, Jacob O. and Myers, Brad A., "From Letters to Words: Efficient Stroke-Based Word Completion for Trackball Text Entry"
(2006). Human-Computer Interaction Institute. Paper 172.
http://repository.cmu.edu/hcii/172

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fhcii%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fhcii%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii/172?utm_source=repository.cmu.edu%2Fhcii%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

From Letters to Words: Efficient Stroke-based
Word Completion for Trackball Text Entry

Jacob O. Wobbrock1,2 and Brad A. Myers2
1The Information School
University of Washington

Mary Gates Hall, Box 352840
Seattle, Washington 98195-2840

wobbrock@ischool.washington.edu

2Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA
bam@cs.cmu.edu

ABSTRACT
We present a major extension to our previous work on Trackball
EdgeWrite—a unistroke text entry method for trackballs—by
taking it from a character-level technique to a word-level one. Our
design is called stroke-based word completion, and it enables
efficient word selection as part of the stroke-making process.
Unlike most word completion designs, which require users to
select words from a list, our technique allows users to select
words by performing a fluid crossing gesture. Our theoretical
model shows this word-level design to be 45.0% faster than our
prior model for character-only strokes. A study with a subject
with spinal cord injury comparing Trackball EdgeWrite to the on-
screen keyboard WiViK, both using word prediction and
completion, shows that Trackball EdgeWrite is competitive with
WiViK in speed (12.09 vs. 11.82 WPM) and accuracy (3.95% vs.
2.21% total errors), but less visually tedious and ultimately
preferred. The results also show that word-level Trackball
EdgeWrite is 46.5% faster and 36.7% more accurate than our
subject’s prior peak performance with character-level Trackball
EdgeWrite, and 75.2% faster and 40.2% more accurate than his
prior peak performance with his preferred on-screen keyboard. An
additional evaluation of the same subject over a two-month field
deployment shows a 43.9% reduction in unistrokes due to stroke-
based word completion in Trackball EdgeWrite.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
interfaces — Input devices and strategies. K.4.2 [Computers
and society]: Social issues — assistive technologies for persons
with disabilities.

General Terms
Design, Experimentation, Human Factors, Theory.

Keywords
Word prediction and completion, word-level text entry, text input,
goal crossing, unistrokes, gestures, trackballs, Fitts’ law, Hick-
Hyman law, Steering law, Zipf’s law, EdgeWrite, WiViK.

Figure 1. Trackball EdgeWrite with stroke-based word completion. A “t”
has been made, and the current stroke is an “h”, so “th-” completions are

currently offered.

1. INTRODUCTION
Although many technologies exist for alternative computer access
[7], studies show that less than 60% of people who need access
solutions actually use them [9]. Furthermore, at least 35% of
purchased solutions are never adopted [8]. Voice recognition
systems, in particular, are subject to high abandonment rates [15].
Reasons cited for these failures include the high cost of devices,
device complexity, and the need for extensive customization. Of
prime importance, then, is simplicity in both the design of devices
and in the process of adoption [8].

In an effort to provide a simpler desktop access technology, we
previously introduced a method of desktop text entry for use with
trackballs called Trackball EdgeWrite [30]. Unlike most trackball
text entry methods, which require users to mouse over an on-
screen keyboard, Trackball EdgeWrite uses unistroke gestures,
which allow users to write “by feel” rather than “by sight.” The
result is a faster and less tedious method of trackball text entry for
people who already use trackballs but cannot touch-type on a
physical keyboard. Such users may have repetitive stress injuries,
spinal cord injuries, arthritis, or some neuromuscular disorders.

Despite Trackball EdgeWrite’s initial success compared to on-
screen keyboards, it has been, until now, constrained to character-
level entry. This is a limitation in many text entry systems, one
which limits speeds. To address this problem, we introduce a
major extension to Trackball EdgeWrite that takes it from a
character-level method to a word-level one. Our extension is
called stroke-based word completion (Figure 1), and it allows
users to complete words using strokes instead of selecting words

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ASSETS'06, October 22–25, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-290-9/06/0010...$5.00.

from a list. Stroke-based word completion is a generalization of a
more specific technique of ours intended for styli [29] which
relied extensively on “pigtail loops” as in-stroke delimiters.
Trackball EdgeWrite, on the other hand, uses no loops, relying
only on straight line segments, and includes context-based word
predictions along with fixed frequency-based word completions.

To our knowledge, this is the first word prediction and completion
system that is stroke-based instead of pointing-based, and
therefore designed to leverage feel rather than sight. This gives
Trackball EdgeWrite significant advantages over on-screen
keyboards. Our results for a subject with spinal cord injury show
that stroke-based word completion provides a 46.5% increase in
speed (8.25 vs. 12.09 WPM), a 36.7% decrease in errors (6.24% vs.
3.95% total errors), and a 43.9% reduction in strokes compared to
his prior peak performance with character-level Trackball
EdgeWrite. Furthermore, word-level Trackball EdgeWrite is
75.2% faster (6.90 vs. 12.09 WPM) and 40.2% more accurate
(6.60% vs. 3.95% total errors) than our subject’s prior peak
performance with his own preferred on-screen keyboard, which
he has used for 15 years. Now he uses Trackball EdgeWrite with
stroke-based word completion instead.

2. RELATED WORK
2.1 Trackball Mousing
Most studies show that for able-bodied users, trackballs are
slower and less accurate than conventional mice for pointing,
dragging, and steering [2,18,19]. However, relative to other
devices, trackballs perform reasonably well for short straight
ballistic movements when crossing a goal. Capitalizing on goal
crossing was the rationale behind the Trackball EdgeWrite design.

Despite their inferior performance compared to mice for able-
bodied users, trackballs are preferred by many people [10,33].
Reasons include that trackballs do not require the wrist or forearm
to elevate. They also do not require much space, making them
suitable for placement in a user’s lap or on a wheelchair tray.
Rolling a trackball requires little strength, and if clutching is
necessary, one must only lift one’s finger or hand, not the device
itself. Furthermore, trackballs are simple, readily available,
robust, and cheap. A benefit of having an integrated text entry
method for trackballs is that users who already use trackballs for
mousing do not have to switch to other devices when entering
text.

2.2 Trackball Text Entry
Prior trackball text entry methods have mostly used on-screen
keyboards. Although on-screen keyboards are easy to learn,
they have many drawbacks. For instance, they exacerbate
mouse travel to and from a document. They introduce a second
focus-of-attention such that a user’s eyes cannot remain on his
or her document [4]. They also require repeated target
acquisitions for which trackballs are not well suited.
Furthermore, they are visually fatiguing, equivalent to typing in
a “hunt-and-peck” fashion. Finally, they consume screen real
estate, considerably reducing one’s visual workspace and
increasing the need for window management. Note that
although word prediction systems may increase speed, they do
not alleviate these concerns.

In contrast to on-screen keyboards, a few relevant stroke-based
text entry methods have been devised. Besides Trackball

EdgeWrite [30], two other methods can be used with trackballs.
One is Dasher [28], which allows any pointing device to enter
text by moving through expanding letter regions whose sizes
correspond to a letter’s likelihood of entry. However, Dasher
can be overwhelming because its letter regions continually rush
toward the user. Another method is MDITIM [14], which
defines letters using only the four cardinal directions. A
drawback is that MDITIM’s strokes generally do not resemble
Roman letters.

2.3 Word-level Text Entry Methods
Researchers have noted that character-level entry is inherently
limited [34]. As a result, recent attention has shifted to word-level
techniques, in which single strokes or operations produce entire
words. Cirrin [23] and Quikwriting [24] are two such techniques.
In both designs, a person moves a stylus through fixed letter
regions arranged around the periphery of a circle or square. These
techniques are word-level in the sense that whole words are made
in single (rather long) strokes, but each character within the word
must still be acquired by the stylus.

An innovative approach to word-level stroking is SHARK [34],
which presents a stylus keyboard over which strokes can be made.
The shapes of these strokes are determined by the arrangement of
letters on the keyboard. Users can gradually ramp from tapping
words to stroking them, enabling higher speeds. This emphasis on
gradual learning has been preserved in Trackball EdgeWrite’s
stroke-based word completion, since users can still stroke
individual characters as they always have.

2.4 Word Prediction and Completion
A common approach to enhancing text input rates is to use word
prediction and completion to populate a list with candidate words.
Users select from the list to enter entire words or suffixes.
Although the number of user actions is reduced, numerous studies
show that additional perceptual and cognitive processes often
make such systems slower instead of faster [11,16,25]. These
findings highlight the challenge of designing effective word
prediction and completions systems.

In the case of trackball text entry with an on-screen keyboard,
candidate words appear as additional mouse targets, which
further exacerbate mouse travel and the need for accurate target
pointing. Although Anson et al. (2005) reported that word
prediction and completion improved entry rates with on-screen
keyboards, subjects reported high frustration because they
disliked looking from their document to the word list and “felt
that searching through the word list was tedious and
distracting” [4]. With stroke-based word completion in
Trackball EdgeWrite, we overcome the drawbacks of visually-
intensive word selection by providing a gestural alternative that
performs as well or better.

3. STROKE-BASED WORD COMPLETION
3.1 Brief Overview of Trackball EdgeWrite
Until now, Trackball EdgeWrite has provided a character-level
means of writing with a trackball. Trackball EdgeWrite allows
users to “pulse” the trackball toward the four corners of a virtual
EdgeWrite square (Figure 2, next page). As users connect these
corners in patterns similar to Roman characters, letters are
produced [32]. Segmentation between letters is achieved when
force (i.e. motion) ceases on the trackball.

Figure 2. EdgeWrite gestures for “s” and “o”. The stroke segments are arcs

determined by the corners entered.

Figure 3. In pulsing to corners, users are performing goal crossings. This

figure shows three crossings for “a”. The first crossing determines the
gesture’s initial corner.

The fundamental concept underlying Trackball EdgeWrite is
crossing [1] (Figure 3). Goal crossing contrasts with pointing, for
which one must acquire an area target and remain within it. With
crossing, one must only pass a goal line—like a football player
scoring a touchdown—regardless of how fast one moves. The
demand for accuracy can be lessened with crossing instead of
pointing because one does not have to remain inside a target [3].

In Trackball EdgeWrite, when a user pulses the trackball towards a
corner, he or she is performing a crossing task. Although the mouse
cursor is invisible, it is actually crossing the circumference of a
circle. The angle at which this occurs determines the intended
corner. The benefit of this type of motion is that no targets must be
pointed at and the mouse can move arbitrarily fast—all that matters
are the angles formed by pulses on the trackball.

In Trackball EdgeWrite, to switch from mousing to writing, users
can “capture” the mouse by pressing a button. Alternatively, a user
can dwell in the corner of the desktop screen. When captured, the
mouse cursor becomes invisible and subsequent trackball motion
creates strokes within a revealed EdgeWrite square, sending text to
the active application (e.g. Microsoft Word). When the user is done
writing, a button press or dedicated stroke releases the cursor to
resume mousing. Note that no buttons are necessary for writing—an
advantage for motor-impaired users.

3.2 Word Completion in Trackball EdgeWrite
3.2.1 Interaction Design
A key aspect of our design is that character-level stroking remains
unchanged from the prior version of Trackball EdgeWrite. This is
important for two reasons: (1) it allows current users to remain
effective with the software, and (2) it allows users to gradually ramp
up to using word completions at their own pace.

When a user strokes, candidate words are shown at the four corners
of the EdgeWrite square (Figure 4). In order to provide completions,
the current stroke is recognized after each corner is entered. We call
this continuous recognition feedback, which also displays the

Figure 4. As the user makes an “h”, the system recognizes an “i” and “v”

along the way, offering English frequency-based completions as each corner
is entered.

current stroke result in the center of the EdgeWrite square. Thus, the
user knows what his or her stroke will produce before the stroke is
segmented by a slight pause. If the user slips, he or she can simply
restart the stroke before segmenting using a feature called non-
recognition retry [30].

After a stroke is segmented and a letter is produced, the user can
continue stroking letters or, alternatively, make a short gesture to
select a word. This gesture is a singular motion from the center of
the EdgeWrite square to the corner containing the desired word.

In the event of an erroneous completion, the user can make a
backspace stroke along the bottom of the square, undoing the
selection and restoring the completions as they appeared before.
This makes completions quickly undoable.

An important aspect of this design is that the same completion is
always shown in the same corner for the same prefix. This is
because completions are based only on English word frequencies,
not on context. This consistency is important for enabling users to
rely on the positions of words. For example, after stroking a “t”, the
word “the” is always shown in the lower-right corner (Figure 1).
Thus, users can come to rely on the position of “the” and stroke it
by feel rather than by sight. Zipf’s law for language says that a small
percentage of words make up a large percentage of written language
[34,35], so an increase in the entry rates of a few words can produce
an overall speed gain. The consistency of word positions also may
reduce cognitive load as motor performance comes to dominate.

In addition to showing frequency-based word completions,
Trackball EdgeWrite also shows context-dependent word
predictions after a word ends. Word predictions are, by definition,
contextual and thus cannot be stroked by feel.

3.2.2 Language Coverage
Trackball EdgeWrite’s design for stroke-based word completion
avoids high perceptual search times by showing only four words at a
time, generally less than most word completion systems [16]. But
how useful are only four words? To answer this question, we wrote
a computer program to calculate the amount of language coverage
obtained for 1-5 letter prefixes showing only four frequency-based
completions per letter (Figure 5, next page). We used Kucera-
Francis frequencies for the 17,805 most common English words
[17]. According to the graph, users have a 49.0% chance of seeing
their intended word after just one letter! After two letters, this
climbs to 70.8%. After three, it’s 89.3%. This is the Zipf’s law
effect [35].

As explained elsewhere [29], one can achieve a slightly higher
language coverage by not re-showing the same word completions
once they have been shown for a given word being entered. For
example, when “t” is written, “the” is one possible completion. If an

“h” is written next, should “the” be re-shown? Or, since the user did
not select “the”, should a different word be shown in its place? In
Trackball EdgeWrite, we implement the latter because users
sometimes miss the initial appearance of the word they want,
entering more letters than necessary. If completions are not re-
shown, then this behavior costs them their chance to select their
desired word.

Figure 5. Coverage of the 17,805 most common English words [17] based on
1-5 letter prefixes and four frequency-based completions shown per entered

letter.

3.3 Implementation
Our word prediction and completion system has four main
components: (1) a vocabulary list of words and frequencies, (2) an
optional user-defined vocabulary list, (3) a trigram list with trigram
frequencies, and (4) an adaptive bigram cache that stores a user’s
words at runtime. The first and second provide “fixed” frequency-
based word completions as words are being made. The third and
fourth provide context-dependent word predictions after a word has
been completed (i.e. after a SPACE has been entered).

The vocabulary list is stored in an alphabetically sorted array
enabling binary search for fast lookups. Each array slot contains a
word string and the word’s frequency count. This is all the data
necessary for fixed frequency-based word completions. Also in each
slot is a hash table whose keys are word indices and whose values
are a list of word indices. The slot’s word string represents the first
word of a trigram, its hash table keys represent second words, and
its hash table list values represent third words. These data structures
allow fast lookups for both fixed completions and context-
dependent predictions.

When a letter is entered, words that match the current prefix are
gathered from the vocabulary list. If a user-defined vocabulary list is
loaded, its words with matching prefixes are also gathered. These
words are then sorted in a separate list according to their
frequencies. The top four words are then offered as completions.
Since frequencies are based on English, these four completions will
always be the same for a given prefix.

When four frequency-based words are retrieved from the language
model, they are assigned to corners such that the highest priority
word is given the corner in which the current stroke resides. The
two adjacent corners receive the next two words, and the lowest

priority word is placed at the diagonal away from the stroke’s
current corner. Once a word has been shown, it is stored in a hash
table along with its corner and a half-life. If a word is shown again,
it will be shown in the same corner as it was before. If the word
goes unused for awhile, it will “decay” and be eligible for
reassignment. If a collision occurs with two words vying for the
same corner, the highest priority word wins.

When a SPACE is entered, context-dependent predictions are offered.
The most recent two words are used to look up possible third word
predictions. The first word is found in the vocabulary array using
binary search. The second word’s index, which was found when the
word was entered, is hashed upon in the first word’s hash table. The
value returned, if any, is a list of possible third words. The top four
are shown as predictions.

Predictions also come from an adaptive bigram cache. The cache
holds recent bigrams so that when a user enters a previously used
word, words that followed it can be offered as predictions. The
cache is a list maintained in priority order such that when a new
bigram is entered or an old bigram reused, it is placed at the top.
Unlike the trigrams, the adaptive bigram cache accommodates out-
of-vocabulary words, enabling the prediction of last names from
first names, etc.

The English vocabulary list and trigrams were built by parsing
850MB of news articles from the Wall Street Journal, Ziff Davis, Los
Angeles Times, and Associated Press. This parsing was carried out
with the CMU-Cambridge Statistical Language Modeling toolkit
[6]. Our own custom parsers then pared down the toolkit’s results,
keeping 20,000 of the most common words, and only trigrams that
occurred 20+ times. After certain abbreviations were removed, the
result was a 258KB vocabulary list of 19,122 words with frequency
counts totaling 132,701,943. The maximum frequency count was
for the word “the” at 7,686,122, or 5.79%. Our trigram list is
10.6MB and contains 517,988 trigrams with frequency counts
totaling 40,230,622. The maximum frequency count is for the
trigram “the United States” at 46,947, or 0.12%. Although we used
news articles, our procedure could easily be re-run over other
corpora (e.g. email).

Our stroke-based word prediction and completion system is part of
an EdgeWrite library (DLL) that can be used with any .NET
language. The library is built in C# and provides full EdgeWrite text
entry in a few lines of code. Its API comes fully documented and is
available for free at http://www.edgewrite.com/dev.html.

3.4 Theoretical Model
In our original discussion of Trackball EdgeWrite [30], we
calculated a theoretical upper-bound speed based on the Steering
law [1]. Using Fitts’ coefficients based on prior studies, we
calculated “perfect” character entry in Trackball EdgeWrite to be
23.1 WPM. Although this speed is probably unachievable, it is
reasonable as an upper-bound in light of expert speeds with other
unistroke systems [20].

We now extend this theoretical model to incorporate frequency-
based word completions. Using the same Fitts’ coefficients and
formulae for calculating individual character speeds as before [30],
we wrote a computer program to calculate WPM assuming that each
completion is selected when it appears. We did this for all words in
Trackball EdgeWrite’s list of 19,122 words, a list large enough to
contain most words used in everyday English.

We can calculate the speed Scps for our corpus using Equation 1:

1000
1

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

+
= ∑

∈Cw
w

w
cps F

T
w

S (1)

Here, Scps is the weighted speed of text entry in characters per
second (CPS), w is a word in corpus C with length |w|, Tw is the time
to write word w in milliseconds (ms), and Fw is the frequency of
word w such that ΣFw = 1.00. The “+1” in the numerator is for the
space that is added after a completion is selected, and the “×1000”
converts from characters per ms (CPMS) to CPS.

To calculate Tw in ms for each word in the corpus, we need to
calculate the time Tℓ to perform each letter ℓ ∈ wp, where wp is the
minimum prefix that will show w as a completion (1 ≤ |wp| ≤ |w|). To
this we add Tselect, the time to select the completion itself (Equation
2). Note that part of the time included in Tℓ and Tselect is τ, the
segmentation time after a letter or completion is made. As in our
prior model, we use τ = 150 ms. Readers interested in the
calculation of Tℓ itself are directed to the prior model [30].

select
w

w TTT
p

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈l
l

 (2)

For words which themselves are prefixes of at least four other more
common words (e.g. “ad”), there is no such wp that will show w as a
completion. For these words, w must be entered fully along with a
trailing space, which is modeled by Equation 3:

space
w

w TTT +⎟
⎠

⎞
⎜
⎝

⎛
= ∑

∈l
l

 (3)

To convert Scps in Equation 1 from CPS to WPM, we use the standard
definition of 5 characters per word:

chars 5
 word1

min 1
sec 60

××= cpswpm SS (4)

Using Equations 1-4, our model yields an upper-bound text entry
rate of 52.5 WPM. This is 227% faster than the 23.1 WPM obtainable
with only character-level strokes. Like before, this result is
unachievable by a real user. It represents perfect entry, lacking
considerations for hesitation, cognitive processes, visual search,
slips, or mistakes. Still, it is useful as an upper-bound for theoretical
comparisons with prior models.

For a better estimate, we can enrich our model by adding a term for
visual search time based on the Hick-Hyman law [12,13]. This term
Tn is added after the entry of every letter ℓ and represents the time it
takes for a user to find their word amidst n choices, where n is the
number of completions offered for the current prefix
(0 ≤ n ≤ 4). Using the rationale from [26], our formula for Tn in ms
is:

() 1000log2.0 2 ××= nTn (5)

Incorporating the Hick-Hyman law, Equations 2-3 become:

() select
w

nw TTTT
p

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

∈l
l

 (6)

() space
w

nw TTTT +⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

∈l
l

 (7)

Using Equations 5-7, our result drops 36.2% from 52.5 WPM to 33.5
WPM. This is a more realistic result. Note, however, that even with
the addition of visual search time, this result still represents perfect
entry. This result is 45.0% faster than the 23.1 WPM result from the
character-level model [30].

A limitation of this model is that it does not account for word
prediction. However, modeling word prediction is more difficult
because it depends on context, including the user’s adaptive cache
of recent words. Such a model is therefore beyond the current scope.

4. EMPIRICAL VALIDATION
In order to empirically test stroke-based word prediction and
completion in Trackball EdgeWrite, we conducted two evaluations
with a 15-year trackball veteran with a spinal cord injury. The first
was a comparison to the WiViK on-screen keyboard. The second
was an analysis of our subject’s log files over two months of
intermittent use.

4.1 Comparison to On-screen Keyboard
4.1.1 Subject
Our subject, who we will call “Jim,” has had a spinal cord injury for
over 15 years and has used a trackball for about as long. Although
he also uses voice recognition, he is often dissatisfied with it and,
until recently, has relied on an on-screen keyboard as a
complementary method. His on-screen keyboard of choice has been
the Microsoft Accessibility Keyboard, which does not have word
prediction or completion. However, the keyboard does have useful
visual feedback when hovering over keys, which Jim relies on to
enter text since he cannot reliably click. About six months ago, Jim
stopped using on-screen keyboards in favor of Trackball EdgeWrite,
even before it had word completion capabilities.

Jim’s best prior performance with character-level Trackball
EdgeWrite was 8.25 WPM with 6.24% total errors, and with his on-
screen keyboard was 6.90 WPM with 6.60% total errors. However,
these entry rates seemed to be plateaus. Our goal was therefore to
see how Jim’s speeds would compare when these methods were
given word prediction and completion.

4.1.2 Apparatus
Since Jim’s preferred on-screen keyboard does not have word
prediction, we configured the popular WiViK on-screen keyboard
(http://www.wivik.com) to match Jim’s desired settings: 550 ms
dwell, about 650×250 pixels in size, and no “dead space” between
keys. For word prediction and completion, WiViK uses a program
called WordQ, which we loaded with the “US Advanced” database
containing 15,000 words. WiViK shows a vertical 6-item word list
to the left of the keyboard. The same action for selecting a key
selects a word in the word list—in Jim’s case, by hovering for 550
ms.

Jim keeps his monitor set to 800×600 resolution. Test phrases [21]
were randomly presented using the TextTest program, which creates
XML log files that can be analyzed with the StreamAnalyzer
program [31]. StreamAnalyzer produces results according to the
measures in [27,31].

4.1.3 Procedure
The study was a single-subject 2-factor design, with factors for
method (WiViK, EdgeWrite) and word prediction (on, off). Jim did
the word prediction versions second within both methods. A coin

toss determined that he used WiViK first. Thus, the order was:
WiViK, EdgeWrite, WiViK+WP, EdgeWrite+WP. Jim entered 3
practice phrases and 8 test phrases in each condition. Each phrase
was approximately 30 characters long.

4.1.4 Quantitative Results
Figure 6 shows Jim’s speeds for the four conditions in the current
study. It also shows Jim’s prior peak speeds with his own on-screen
keyboard and with character-level Trackball EdgeWrite. Note the
substantial speedups of both methods due to word prediction and
completion. Figure 7 shows corresponding total error rates.
However, because Jim fixed almost every error during entry, these
total error rates are really just corrected error rates [27]. Corrected
errors, which slow entry rates, are of less concern than uncorrected
errors, which are at odds with speed. Thus, Trackball EdgeWrite is
producing similarly accurate text in a tad less time, albeit with more
errors made (and fixed) along the way.

A Wilcoxon sign test for speed is not significant (z=3.0, p=0.25).
However, the general trend is in favor of Trackball EdgeWrite. This
advantage is only slight for the current study, however, probably
because WiViK is superior to Jim’s preferred keyboard, the
Microsoft Accessibility Keyboard, even though WiViK was
configured with Jim’s usual settings.

A Wicoxon sign test for total errors is also not significant (z=2.0,
p=0.50). However, both methods were producing error-free text in
the end, since uncorrected errors for both methods were ~0.00%. It
is interesting that Trackball EdgeWrite’s errors were low in the
current study even without word completion, probably because Jim
has had more practice since his prior peak performance.

It is worth noting that the speed of WiViK improved 32.0% with
word prediction compared to without. This confirms prior results [4]
and highlights the strength of WiViK’s commercial word prediction
and completion technology.

Taken together, these results show a 46.5% increase in speed and a
36.7% decrease in errors for word-level Trackball EdgeWrite
compared to Jim’s prior peak performance with character-level
Trackball EdgeWrite. The results also show that word-level
Trackball EdgeWrite is 75.2% faster and 40.2% more accurate than
Jim’s prior peak performance with his preferred on-screen
keyboard. Finally, the results show that word-level Trackball
EdgeWrite is competitive with a major commercial product, the
WiViK on-screen keyboard with word prediction and completion.

4.1.5 Qualitative Results
We asked Jim to describe his experience of each of the four
conditions in his own words:

• WiViK: “[Y]ou are constantly either scribbling around so you
don’t accidentally trigger the wrong letter, checking to see if you
typed the right thing, or looking for the next key to hover over.
Too much work both mentally and visually.”

• WiViK+WP: “Somewhat of a relief to hover over large words but
it just increased the amount of mental and visual work required.
[It’s] one more section of the screen you need to scan constantly.
Only thing is, I wish EdgeWrite had its vocabulary.”

• EdgeWrite: “EdgeWrite without word prediction is like using a
286 or something. It’s much better than a keyboard or an on-
screen keyboard, but the ultimate is when you can flick the cursor
into a corner and just pop the rest of the word in.”

• EdgeWrite+WP: “The best thing about EW is there is no eye strain
or constant scanning between programs, letters, words, etc. The
word choices are right there where your eyes already are. It
actually helps you stay focused on what you’re writing.”

Figure 6. On-screen keyboard and Trackball EdgeWrite speeds. Higher

values are better.

Figure 7. On-screen keyboard and Trackball EdgeWrite total error rates.

Lower values are better.

Jim’s sentiments confirm what prior studies of on-screen keyboards
have found: that they are exceedingly tedious and visually intense
[4]. Although word prediction and completion improved WiViK’s
speed by 32.0%, it did not resolve these drawbacks. Trackball
EdgeWrite, on the other hand, proved to be just as fast but without
the same visual tedium.

4.2 Log File Analysis of Extended Use
A single-session lab study allows us to formally quantify speed and
errors, but it is over the long-term that we hope Trackball
EdgeWrite will be useful. Indeed, prior studies of word prediction
systems have shown that long-term use is critical for accurate
evaluations [22]. Furthermore, the design of our stroke-based word
completion system supports gradual adoption as users familiarize
themselves with the consistent positions of words.

Although log files do not enable us to rigorously quantify speed and
accuracy, they do allow us to measure the stroke savings gained by
using word completion. We can also look at the number of
completions undone as an approximation of selection accuracy, and
compare this to the number of letters undone (backspaced).

Figure 8. Results over 11 weeks from extended use showing usage of word
completion and backspace. Week 3 is omitted because Jim did not use his

computer.

Figure 8 shows these quantities graphed over two months of Jim’s
intermittent use. It represents 897.52 hours of software running-time
for 13,288 total strokes. Of these, 8774 were character strokes and
2201 were word-selection strokes. In all, 15,629 characters were
entered, 6855 of which were from completions.

The top line (blue) shows the percent of letters entered as
predictions or completions. Without stroke-based word completion,
these letters would all have to be entered in full. The weighted mean
over all weeks is 43.9%. The spike in week 6 is an outlier due to a
week of relative inactivity. Only 70 letters were entered that week,
compared to most weeks which saw 1500-3500 letters. A regression
line shows this trend to be slightly increasing.

It is interesting that the 43.9% savings shown in Figure 8 is about
the same as the 46.5% speedup shown in Figure 6. That is, the
stroke savings more or less translate to speed gains. This suggests
that the perceptual, cognitive, and motor costs of stroke-based word
completion are not overly taxing, as often has been the case with
prior word prediction systems.

The bottom line (green) is the percentage of word completions
undone. The weighted mean over all weeks is 7.7%. As an indicator
of completion errors, this value is probably high, since users may
undo selected completions for reasons other than errors (i.e. as a
result of changing what they intended to write). A regression line
shows this trend to be slightly decreasing.

For comparisons, the percentage of letters undone (backspaced) is
shown as the middle line (orange). The weighted mean for undone
letters is 16.5%. Although this value is high, it is not surprising in
light of previous results indicating that BACKSPACE is the second
most common keystroke in desktop text entry [20]. A regression
line shows this trend to be slightly decreasing.

Across all weeks, the average number of characters entered per
completion was 3.11. Thus, with a simple “pulse” into one of four
corners, users avoid entering over 3 more characters for every word
they write.

5. FUTURE WORK
Although stroke-based word completion substantially improves the
speed of Trackball EdgeWrite, it could still be improved upon. One
of Jim’s quotes in section 4.1.5 indicated that he preferred the words
offered by WiViK to those offered by Trackball EdgeWrite. We
could recreate EdgeWrite’s language models using sources other
than newspaper articles, perhaps including some of Jim’s own texts.
The culmination of this idea would be to provide the end-user with
an interface to incorporate their own texts into EdgeWrite’s
language models.

An obvious next step is to run a study with a larger number of users.
At this stage, we preferred to study one subject in-depth to verify
the usefulness and usability of our technique. Now we believe it is
ready for a broader assessment. We have one user in Sweden who is
already using Trackball EdgeWrite, and we intend to formally
evaluate her speed and accuracy.

We are also studying how Trackball EdgeWrite performs with an
isometric joystick embedded in a mobile phone [5]. Like trackballs,
isometric joysticks have no notion of position, so the same software
works without modification. Initial results suggest that stroke-based
word completion is competitive with T9 (http://www.tegic.com) on
mobile phones, allowing able-bodied users to reach speeds near 20
WPM.

6. CONCLUSION
We have shown that Trackball EdgeWrite greatly benefits in terms
of speed and accuracy from having stroke-based word prediction
and completion. Our subject’s best prior performance with
character-level Trackball EdgeWrite was both slower and less
accurate than his performance with the new word-level version. We
also demonstrated that Trackball EdgeWrite rivals a major
commercial on-screen keyboard. Our study confirms that Trackball
EdgeWrite is just as fast using word prediction and completion, and
that it is less visually tedious. Although Trackball EdgeWrite is
more error prone during entry, it produces error-free text in the
same amount of time due to efficient error correction. These results
could be important for motor-impaired users who wish to write with
their trackballs instead of hunting and pecking.

7. ACKNOWLEDGEMENTS
The authors thank Richard Simpson and Duen Horng Chau. This
work was supported in part by Microsoft, General Motors, and the
National Science Foundation under grant UA-0308065. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of the National Science Foundation.

8. REFERENCES
[1] Accot, J. and Zhai, S. (1997) Beyond Fitts' law: Models for

trajectory-based HCI tasks. Proceedings CHI '97. New York:
ACM Press, 295-302.

[2] Accot, J. and Zhai, S. (1999) Performance evaluation of input
devices in trajectory-based tasks: An application of the
Steering Law. Proceedings CHI '99. New York: ACM Press,
466-472.

[3] Accot, J. and Zhai, S. (2002) More than dotting the i's:
Foundations for crossing-based interfaces. Proceedings CHI
'02. New York: ACM Press, 73-80.

[4] Anson, D. K., Moist, P., Przywara, M., Wells, H., Saylor, H.
and Maxime, H. (2005) The effects of word completion and
word prediction on typing rates using on-screen keyboards.
Proceedings RESNA '05. Arlington, Virginia: RESNA Press.

[5] Chau, D. H., Wobbrock, J. O., Myers, B. A. and Rothrock, B.
(2006) Integrating isometric joysticks into mobile phones for
text entry. Extended Abstracts CHI '06. New York: ACM
Press, 640-645.

[6] Clarkson, P. R. and Rosenfeld, R. (1997) Statistical language
modeling using the CMU-Cambridge toolkit. Proceedings of
Eurospeech '97, 2707-2710.

[7] Cook, A. M. and Hussey, S. M. (2001) Assistive Technologies:
Principles and Practice, 2nd ed. St. Louis: Mosby Press.

[8] Dawe, M. (2006) Desperately seeking simplicity: How young
adults with cognitive disabilities and their families adopt
assistive technologies. Proceedings CHI '06. New York: ACM
Press, 1143-1152.

[9] Fichten, C. S., Barile, M., Asuncion, J. V. and Fossey, M. E.
(2000) What government, agencies, and organizations can do
to improve access to computers for postsecondary students
with disabilities: Recommendations based on Canadian
empirical data. International Journal of Rehabilitation
Research 23 (3), 191-199.

[10] Fuhrer, C. S. and Fridie, S. E. (2001) There's a mouse out there
for everyone. Proceedings CSUN '01. California State
University Northridge.

[11] Goodenough-Trepagnier, C., Rosen, M. J. and Galdieri, B.
(1986) Word menu reduces communication rate. Proceedings
RESNA '86. Arlington, Virginia: RESNA Press, 354-356.

[12] Hick, W. E. (1952) On the rate of gain of information.
Quarterly Journal of Experimental Psychology 4, 11-26.

[13] Hyman, R. (1953) Stimulus information as a determinant of
reaction time. Journal of Experimental Psychology 45 (3), 188-
196.

[14] Isokoski, P. and Raisamo, R. (2000) Device independent text
input: A rationale and an example. Proceedings AVI '00. New
York: ACM Press, 76-83.

[15] Koester, H. H. (2003) Abandonment of speech recognition by
new users. Proceedings RESNA '03. Arlington, Virginia:
RESNA Press.

[16] Koester, H. H. and Levine, S. P. (1996) Effect of a word
prediction feature on user performance. Augmentative and
Alternative Communication 12 (3), 155-168.

[17] Kucera, H. and Francis, W. N. (1967) Computational Analysis
of Present-Day American English. Providence, Rhode Island:
Brown University Press.

[18] MacKenzie, I. S., Kauppinen, T. and Silfverberg, M. (2001)
Accuracy measures for evaluating computer pointing devices.
Proceedings CHI '01. New York: ACM Press, 9-16.

[19] MacKenzie, I. S., Sellen, A. and Buxton, W. (1991) A
comparison of input devices in elemental pointing and

dragging tasks. Proceedings CHI '91. New York: ACM Press,
161-166.

[20] MacKenzie, I. S. and Soukoreff, R. W. (2002) Text entry for
mobile computing: Models and methods, theory and practice.
Human-Computer Interaction 17 (2), 147-198.

[21] MacKenzie, I. S. and Soukoreff, R. W. (2003) Phrase sets for
evaluating text entry techniques. Extended Abstracts CHI '03.
New York: ACM Press, 754-755.

[22] Magnuson, T. and Hunnicutt, S. (2002) Measuring the
effectiveness of word prediction: The advantage of long-term
use. Speech, Music and Hearing 43, 57-67.

[23] Mankoff, J. and Abowd, G. D. (1998) Cirrin: A word-level
unistroke keyboard for pen input. Proceedings UIST '98. New
York: ACM Press, 213-214.

[24] Perlin, K. (1998) Quikwriting: Continuous stylus-based text
entry. Proceedings UIST '98. New York: ACM Press, 215-216.

[25] Soede, M. and Foulds, R. A. (1986) Dilemma of prediction in
communication aids. Proceedings RESNA '86. Arlington,
Virginia: RESNA Press, 357-359.

[26] Soukoreff, R. W. and MacKenzie, I. S. (1995) Theoretical
upper and lower bounds on typing speed using a stylus and soft
keyboard. Behaviour and Information Technology 14 (6), 370-
379.

[27] Soukoreff, R. W. and MacKenzie, I. S. (2003) Metrics for text
entry research: An evaluation of MSD and KSPC, and a new
unified error metric. Proceedings CHI '03. New York: ACM
Press, 113-120.

[28] Ward, D. J., Blackwell, A. F. and MacKay, D. J. C. (2000)
Dasher—A data entry interface using continuous gestures and
language models. Proceedings UIST '00. New York: ACM
Press, 129-137.

[29] Wobbrock, J. O. and Myers, B. A. (2006) In-stroke word
completion. Proceedings UIST '06. New York: ACM Press. To
appear.

[30] Wobbrock, J. O. and Myers, B. A. (2006) Trackball text entry
for people with motor impairments. Proceedings CHI '06. New
York: ACM Press, 479-488.

[31] Wobbrock, J. O. and Myers, B. A. (2007) Analyzing the input
stream for character-level errors in unconstrained text entry
evaluations. Transactions on Computer-Human Interaction
(TOCHI). To appear.

[32] Wobbrock, J. O., Myers, B. A. and Kembel, J. A. (2003)
EdgeWrite: A stylus-based text entry method designed for high
accuracy and stability of motion. Proceedings UIST '03. New
York: ACM Press, 61-70.

[33] Wu, T.-F., Wang, H.-P. and Chen, M. C. (2005) Enabling
computer access for children with cerebral palsy. Proceedings
HCI Int'l '05. Mahwah, New Jersey: Lawrence Erlbaum. On
proceedings CD.

[34] Zhai, S. and Kristensson, P. (2003) Shorthand writing on stylus
keyboard. Proceedings CHI '03. New York: ACM Press, 97-
104.

[35] Zipf, G. (1932) Selective Studies and the Principle of Relative
Frequency in Language. Cambridge, Massachusettes: MIT
Press.

	Carnegie Mellon University
	Research Showcase
	1-1-2006

	From Letters to Words: Efficient Stroke-Based Word Completion for Trackball Text Entry
	Jacob O. Wobbrock
	Brad A. Myers
	Recommended Citation

