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ABSTRACT 
We present a major extension to our previous work on Trackball 
EdgeWrite—a unistroke text entry method for trackballs—by 
taking it from a character-level technique to a word-level one. Our 
design is called stroke-based word completion, and it enables 
efficient word selection as part of the stroke-making process. 
Unlike most word completion designs, which require users to 
select words from a list, our technique allows users to select 
words by performing a fluid crossing gesture. Our theoretical 
model shows this word-level design to be 45.0% faster than our 
prior model for character-only strokes. A study with a subject 
with spinal cord injury comparing Trackball EdgeWrite to the on-
screen keyboard WiViK, both using word prediction and 
completion, shows that Trackball EdgeWrite is competitive with 
WiViK in speed (12.09 vs. 11.82 WPM) and accuracy (3.95% vs. 
2.21% total errors), but less visually tedious and ultimately 
preferred. The results also show that word-level Trackball 
EdgeWrite is 46.5% faster and 36.7% more accurate than our 
subject’s prior peak performance with character-level Trackball 
EdgeWrite, and 75.2% faster and 40.2% more accurate than his 
prior peak performance with his preferred on-screen keyboard. An 
additional evaluation of the same subject over a two-month field 
deployment shows a 43.9% reduction in unistrokes due to stroke-
based word completion in Trackball EdgeWrite. 

Categories and Subject Descriptors 
H.5.2 [Information interfaces and presentation]: User 
interfaces — Input devices and strategies.  K.4.2 [Computers 
and society]: Social issues — assistive technologies for persons 
with disabilities. 

General Terms 
Design, Experimentation, Human Factors, Theory. 

Keywords 
Word prediction and completion, word-level text entry, text input, 
goal crossing, unistrokes, gestures, trackballs, Fitts’ law, Hick-
Hyman law, Steering law, Zipf’s law, EdgeWrite, WiViK. 

 
Figure 1. Trackball EdgeWrite with stroke-based word completion. A “t” 
has been made, and the current stroke is an “h”, so “th-” completions are 

currently offered. 

1. INTRODUCTION 
Although many technologies exist for alternative computer access 
[7], studies show that less than 60% of people who need access 
solutions actually use them [9]. Furthermore, at least 35% of 
purchased solutions are never adopted [8]. Voice recognition 
systems, in particular, are subject to high abandonment rates [15]. 
Reasons cited for these failures include the high cost of devices, 
device complexity, and the need for extensive customization. Of 
prime importance, then, is simplicity in both the design of devices 
and in the process of adoption [8]. 

In an effort to provide a simpler desktop access technology, we 
previously introduced a method of desktop text entry for use with 
trackballs called Trackball EdgeWrite [30]. Unlike most trackball 
text entry methods, which require users to mouse over an on-
screen keyboard, Trackball EdgeWrite uses unistroke gestures, 
which allow users to write “by feel” rather than “by sight.” The 
result is a faster and less tedious method of trackball text entry for 
people who already use trackballs but cannot touch-type on a 
physical keyboard. Such users may have repetitive stress injuries, 
spinal cord injuries, arthritis, or some neuromuscular disorders. 

Despite Trackball EdgeWrite’s initial success compared to on-
screen keyboards, it has been, until now, constrained to character-
level entry. This is a limitation in many text entry systems, one 
which limits speeds. To address this problem, we introduce a 
major extension to Trackball EdgeWrite that takes it from a 
character-level method to a word-level one. Our extension is 
called stroke-based word completion (Figure 1), and it allows 
users to complete words using strokes instead of selecting words 
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from a list. Stroke-based word completion is a generalization of a 
more specific technique of ours intended for styli [29] which 
relied extensively on “pigtail loops” as in-stroke delimiters. 
Trackball EdgeWrite, on the other hand, uses no loops, relying 
only on straight line segments, and includes context-based word 
predictions along with fixed frequency-based word completions. 

To our knowledge, this is the first word prediction and completion 
system that is stroke-based instead of pointing-based, and 
therefore designed to leverage feel rather than sight. This gives 
Trackball EdgeWrite significant advantages over on-screen 
keyboards. Our results for a subject with spinal cord injury show 
that stroke-based word completion provides a 46.5% increase in 
speed (8.25 vs. 12.09 WPM), a 36.7% decrease in errors (6.24% vs. 
3.95% total errors), and a 43.9% reduction in strokes compared to 
his prior peak performance with character-level Trackball 
EdgeWrite. Furthermore, word-level Trackball EdgeWrite is 
75.2% faster (6.90 vs. 12.09 WPM) and 40.2% more accurate 
(6.60% vs. 3.95% total errors) than our subject’s prior peak 
performance with his own preferred on-screen keyboard, which 
he has used for 15 years. Now he uses Trackball EdgeWrite with 
stroke-based word completion instead. 

2. RELATED WORK 
2.1 Trackball Mousing 
Most studies show that for able-bodied users, trackballs are 
slower and less accurate than conventional mice for pointing, 
dragging, and steering [2,18,19]. However, relative to other 
devices, trackballs perform reasonably well for short straight 
ballistic movements when crossing a goal. Capitalizing on goal 
crossing was the rationale behind the Trackball EdgeWrite design. 

Despite their inferior performance compared to mice for able-
bodied users, trackballs are preferred by many people [10,33]. 
Reasons include that trackballs do not require the wrist or forearm 
to elevate. They also do not require much space, making them 
suitable for placement in a user’s lap or on a wheelchair tray. 
Rolling a trackball requires little strength, and if clutching is 
necessary, one must only lift one’s finger or hand, not the device 
itself. Furthermore, trackballs are simple, readily available, 
robust, and cheap. A benefit of having an integrated text entry 
method for trackballs is that users who already use trackballs for 
mousing do not have to switch to other devices when entering 
text. 

2.2 Trackball Text Entry 
Prior trackball text entry methods have mostly used on-screen 
keyboards. Although on-screen keyboards are easy to learn, 
they have many drawbacks. For instance, they exacerbate 
mouse travel to and from a document. They introduce a second 
focus-of-attention such that a user’s eyes cannot remain on his 
or her document [4]. They also require repeated target 
acquisitions for which trackballs are not well suited. 
Furthermore, they are visually fatiguing, equivalent to typing in 
a “hunt-and-peck” fashion. Finally, they consume screen real 
estate, considerably reducing one’s visual workspace and 
increasing the need for window management. Note that 
although word prediction systems may increase speed, they do 
not alleviate these concerns. 

In contrast to on-screen keyboards, a few relevant stroke-based 
text entry methods have been devised. Besides Trackball 

EdgeWrite [30], two other methods can be used with trackballs. 
One is Dasher [28], which allows any pointing device to enter 
text by moving through expanding letter regions whose sizes 
correspond to a letter’s likelihood of entry. However, Dasher 
can be overwhelming because its letter regions continually rush 
toward the user. Another method is MDITIM [14], which 
defines letters using only the four cardinal directions. A 
drawback is that MDITIM’s strokes generally do not resemble 
Roman letters. 

2.3 Word-level Text Entry Methods 
Researchers have noted that character-level entry is inherently 
limited [34]. As a result, recent attention has shifted to word-level 
techniques, in which single strokes or operations produce entire 
words. Cirrin [23] and Quikwriting [24] are two such techniques. 
In both designs, a person moves a stylus through fixed letter 
regions arranged around the periphery of a circle or square. These 
techniques are word-level in the sense that whole words are made 
in single (rather long) strokes, but each character within the word 
must still be acquired by the stylus. 

An innovative approach to word-level stroking is SHARK [34], 
which presents a stylus keyboard over which strokes can be made. 
The shapes of these strokes are determined by the arrangement of 
letters on the keyboard. Users can gradually ramp from tapping 
words to stroking them, enabling higher speeds. This emphasis on 
gradual learning has been preserved in Trackball EdgeWrite’s 
stroke-based word completion, since users can still stroke 
individual characters as they always have. 

2.4 Word Prediction and Completion 
A common approach to enhancing text input rates is to use word 
prediction and completion to populate a list with candidate words. 
Users select from the list to enter entire words or suffixes. 
Although the number of user actions is reduced, numerous studies 
show that additional perceptual and cognitive processes often 
make such systems slower instead of faster [11,16,25]. These 
findings highlight the challenge of designing effective word 
prediction and completions systems. 

In the case of trackball text entry with an on-screen keyboard, 
candidate words appear as additional mouse targets, which 
further exacerbate mouse travel and the need for accurate target 
pointing. Although Anson et al. (2005) reported that word 
prediction and completion improved entry rates with on-screen 
keyboards, subjects reported high frustration because they 
disliked looking from their document to the word list and “felt 
that searching through the word list was tedious and 
distracting” [4]. With stroke-based word completion in 
Trackball EdgeWrite, we overcome the drawbacks of visually-
intensive word selection by providing a gestural alternative that 
performs as well or better. 

3. STROKE-BASED WORD COMPLETION 
3.1 Brief Overview of Trackball EdgeWrite 
Until now, Trackball EdgeWrite has provided a character-level 
means of writing with a trackball. Trackball EdgeWrite allows 
users to “pulse” the trackball toward the four corners of a virtual 
EdgeWrite square (Figure 2, next page). As users connect these 
corners in patterns similar to Roman characters, letters are 
produced [32]. Segmentation between letters is achieved when 
force (i.e. motion) ceases on the trackball. 



 
Figure 2. EdgeWrite gestures for “s” and “o”. The stroke segments are arcs 

determined by the corners entered. 

 
Figure 3. In pulsing to corners, users are performing goal crossings. This 

figure shows three crossings for “a”. The first crossing determines the 
gesture’s initial corner. 

The fundamental concept underlying Trackball EdgeWrite is 
crossing [1] (Figure 3). Goal crossing contrasts with pointing, for 
which one must acquire an area target and remain within it. With 
crossing, one must only pass a goal line—like a football player 
scoring a touchdown—regardless of how fast one moves. The 
demand for accuracy can be lessened with crossing instead of 
pointing because one does not have to remain inside a target [3]. 

In Trackball EdgeWrite, when a user pulses the trackball towards a 
corner, he or she is performing a crossing task. Although the mouse 
cursor is invisible, it is actually crossing the circumference of a 
circle. The angle at which this occurs determines the intended 
corner. The benefit of this type of motion is that no targets must be 
pointed at and the mouse can move arbitrarily fast—all that matters 
are the angles formed by pulses on the trackball. 

In Trackball EdgeWrite, to switch from mousing to writing, users 
can “capture” the mouse by pressing a button. Alternatively, a user 
can dwell in the corner of the desktop screen. When captured, the 
mouse cursor becomes invisible and subsequent trackball motion 
creates strokes within a revealed EdgeWrite square, sending text to 
the active application (e.g. Microsoft Word). When the user is done 
writing, a button press or dedicated stroke releases the cursor to 
resume mousing. Note that no buttons are necessary for writing—an 
advantage for motor-impaired users. 

3.2 Word Completion in Trackball EdgeWrite 
3.2.1 Interaction Design 
A key aspect of our design is that character-level stroking remains 
unchanged from the prior version of Trackball EdgeWrite. This is 
important for two reasons: (1) it allows current users to remain 
effective with the software, and (2) it allows users to gradually ramp 
up to using word completions at their own pace. 

When a user strokes, candidate words are shown at the four corners 
of the EdgeWrite square (Figure 4). In order to provide completions, 
the current stroke is recognized after each corner is entered. We call 
this continuous recognition feedback, which also displays the 

   
Figure 4. As the user makes an “h”, the system recognizes an “i” and “v” 

along the way, offering English frequency-based completions as each corner 
is entered. 

current stroke result in the center of the EdgeWrite square. Thus, the 
user knows what his or her stroke will produce before the stroke is 
segmented by a slight pause. If the user slips, he or she can simply 
restart the stroke before segmenting using a feature called non-
recognition retry [30]. 

After a stroke is segmented and a letter is produced, the user can 
continue stroking letters or, alternatively, make a short gesture to 
select a word. This gesture is a singular motion from the center of 
the EdgeWrite square to the corner containing the desired word. 

In the event of an erroneous completion, the user can make a 
backspace stroke along the bottom of the square, undoing the 
selection and restoring the completions as they appeared before. 
This makes completions quickly undoable. 

An important aspect of this design is that the same completion is 
always shown in the same corner for the same prefix. This is 
because completions are based only on English word frequencies, 
not on context. This consistency is important for enabling users to 
rely on the positions of words. For example, after stroking a “t”, the 
word “the” is always shown in the lower-right corner (Figure 1). 
Thus, users can come to rely on the position of “the” and stroke it 
by feel rather than by sight. Zipf’s law for language says that a small 
percentage of words make up a large percentage of written language 
[34,35], so an increase in the entry rates of a few words can produce 
an overall speed gain. The consistency of word positions also may 
reduce cognitive load as motor performance comes to dominate. 

In addition to showing frequency-based word completions, 
Trackball EdgeWrite also shows context-dependent word 
predictions after a word ends. Word predictions are, by definition, 
contextual and thus cannot be stroked by feel. 

3.2.2 Language Coverage 
Trackball EdgeWrite’s design for stroke-based word completion 
avoids high perceptual search times by showing only four words at a 
time, generally less than most word completion systems [16]. But 
how useful are only four words? To answer this question, we wrote 
a computer program to calculate the amount of language coverage 
obtained for 1-5 letter prefixes showing only four frequency-based 
completions per letter (Figure 5, next page). We used Kucera-
Francis frequencies for the 17,805 most common English words 
[17]. According to the graph, users have a 49.0% chance of seeing 
their intended word after just one letter! After two letters, this 
climbs to 70.8%. After three, it’s 89.3%. This is the Zipf’s law 
effect [35]. 

As explained elsewhere [29], one can achieve a slightly higher 
language coverage by not re-showing the same word completions 
once they have been shown for a given word being entered. For 
example, when “t” is written, “the” is one possible completion. If an 



“h” is written next, should “the” be re-shown? Or, since the user did 
not select “the”, should a different word be shown in its place? In 
Trackball EdgeWrite, we implement the latter because users 
sometimes miss the initial appearance of the word they want, 
entering more letters than necessary. If completions are not re-
shown, then this behavior costs them their chance to select their 
desired word. 

 
Figure 5. Coverage of the 17,805 most common English words [17] based on 
1-5 letter prefixes and four frequency-based completions shown per entered 

letter. 

3.3 Implementation 
Our word prediction and completion system has four main 
components: (1) a vocabulary list of words and frequencies, (2) an 
optional user-defined vocabulary list, (3) a trigram list with trigram 
frequencies, and (4) an adaptive bigram cache that stores a user’s 
words at runtime. The first and second provide “fixed” frequency-
based word completions as words are being made. The third and 
fourth provide context-dependent word predictions after a word has 
been completed (i.e. after a SPACE has been entered). 

The vocabulary list is stored in an alphabetically sorted array 
enabling binary search for fast lookups. Each array slot contains a 
word string and the word’s frequency count. This is all the data 
necessary for fixed frequency-based word completions. Also in each 
slot is a hash table whose keys are word indices and whose values 
are a list of word indices. The slot’s word string represents the first 
word of a trigram, its hash table keys represent second words, and 
its hash table list values represent third words. These data structures 
allow fast lookups for both fixed completions and context-
dependent predictions. 

When a letter is entered, words that match the current prefix are 
gathered from the vocabulary list. If a user-defined vocabulary list is 
loaded, its words with matching prefixes are also gathered. These 
words are then sorted in a separate list according to their 
frequencies. The top four words are then offered as completions. 
Since frequencies are based on English, these four completions will 
always be the same for a given prefix. 

When four frequency-based words are retrieved from the language 
model, they are assigned to corners such that the highest priority 
word is given the corner in which the current stroke resides. The 
two adjacent corners receive the next two words, and the lowest 

priority word is placed at the diagonal away from the stroke’s 
current corner. Once a word has been shown, it is stored in a hash 
table along with its corner and a half-life. If a word is shown again, 
it will be shown in the same corner as it was before. If the word 
goes unused for awhile, it will “decay” and be eligible for 
reassignment. If a collision occurs with two words vying for the 
same corner, the highest priority word wins. 

When a SPACE is entered, context-dependent predictions are offered. 
The most recent two words are used to look up possible third word 
predictions. The first word is found in the vocabulary array using 
binary search. The second word’s index, which was found when the 
word was entered, is hashed upon in the first word’s hash table. The 
value returned, if any, is a list of possible third words. The top four 
are shown as predictions. 

Predictions also come from an adaptive bigram cache. The cache 
holds recent bigrams so that when a user enters a previously used 
word, words that followed it can be offered as predictions. The 
cache is a list maintained in priority order such that when a new 
bigram is entered or an old bigram reused, it is placed at the top. 
Unlike the trigrams, the adaptive bigram cache accommodates out-
of-vocabulary words, enabling the prediction of last names from 
first names, etc. 

The English vocabulary list and trigrams were built by parsing 
850MB of news articles from the Wall Street Journal, Ziff Davis, Los 
Angeles Times, and Associated Press. This parsing was carried out 
with the CMU-Cambridge Statistical Language Modeling toolkit 
[6]. Our own custom parsers then pared down the toolkit’s results, 
keeping 20,000 of the most common words, and only trigrams that 
occurred 20+ times. After certain abbreviations were removed, the 
result was a 258KB vocabulary list of 19,122 words with frequency 
counts totaling 132,701,943. The maximum frequency count was 
for the word “the” at 7,686,122, or 5.79%. Our trigram list is 
10.6MB and contains 517,988 trigrams with frequency counts 
totaling 40,230,622. The maximum frequency count is for the 
trigram “the United States” at 46,947, or 0.12%. Although we used 
news articles, our procedure could easily be re-run over other 
corpora (e.g. email). 

Our stroke-based word prediction and completion system is part of 
an EdgeWrite library (DLL) that can be used with any .NET 
language. The library is built in C# and provides full EdgeWrite text 
entry in a few lines of code. Its API comes fully documented and is 
available for free at http://www.edgewrite.com/dev.html. 

3.4 Theoretical Model 
In our original discussion of Trackball EdgeWrite [30], we 
calculated a theoretical upper-bound speed based on the Steering 
law [1]. Using Fitts’ coefficients based on prior studies, we 
calculated “perfect” character entry in Trackball EdgeWrite to be 
23.1 WPM. Although this speed is probably unachievable, it is 
reasonable as an upper-bound in light of expert speeds with other 
unistroke systems [20]. 

We now extend this theoretical model to incorporate frequency-
based word completions. Using the same Fitts’ coefficients and 
formulae for calculating individual character speeds as before [30], 
we wrote a computer program to calculate WPM assuming that each 
completion is selected when it appears. We did this for all words in 
Trackball EdgeWrite’s list of 19,122 words, a list large enough to 
contain most words used in everyday English. 



We can calculate the speed Scps for our corpus using Equation 1: 
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Here, Scps is the weighted speed of text entry in characters per 
second (CPS), w is a word in corpus C with length |w|, Tw is the time 
to write word w in milliseconds (ms), and Fw is the frequency of 
word w such that ΣFw = 1.00. The “+1” in the numerator is for the 
space that is added after a completion is selected, and the “×1000” 
converts from characters per ms (CPMS) to CPS. 

To calculate Tw in ms for each word in the corpus, we need to 
calculate the time Tℓ to perform each letter ℓ ∈ wp, where wp is the 
minimum prefix that will show w as a completion (1 ≤ |wp| ≤ |w|). To 
this we add Tselect, the time to select the completion itself (Equation 
2). Note that part of the time included in Tℓ and Tselect is τ, the 
segmentation time after a letter or completion is made. As in our 
prior model, we use τ = 150 ms. Readers interested in the 
calculation of Tℓ itself are directed to the prior model [30]. 
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For words which themselves are prefixes of at least four other more 
common words (e.g. “ad”), there is no such wp that will show w as a 
completion. For these words, w must be entered fully along with a 
trailing space, which is modeled by Equation 3: 
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To convert Scps in Equation 1 from CPS to WPM, we use the standard 
definition of 5 characters per word: 

chars 5
 word1

min 1
sec 60

××= cpswpm SS  (4) 

Using Equations 1-4, our model yields an upper-bound text entry 
rate of 52.5 WPM. This is 227% faster than the 23.1 WPM obtainable 
with only character-level strokes. Like before, this result is 
unachievable by a real user. It represents perfect entry, lacking 
considerations for hesitation, cognitive processes, visual search, 
slips, or mistakes. Still, it is useful as an upper-bound for theoretical 
comparisons with prior models. 

For a better estimate, we can enrich our model by adding a term for 
visual search time based on the Hick-Hyman law [12,13]. This term 
Tn is added after the entry of every letter ℓ and represents the time it 
takes for a user to find their word amidst n choices, where n is the 
number of completions offered for the current prefix  
(0 ≤ n ≤ 4). Using the rationale from [26], our formula for Tn in ms 
is: 

( ) 1000log2.0 2 ××= nTn  (5) 

Incorporating the Hick-Hyman law, Equations 2-3 become: 
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Using Equations 5-7, our result drops 36.2% from 52.5 WPM to 33.5 
WPM. This is a more realistic result. Note, however, that even with 
the addition of visual search time, this result still represents perfect 
entry. This result is 45.0% faster than the 23.1 WPM result from the 
character-level model [30]. 

A limitation of this model is that it does not account for word 
prediction. However, modeling word prediction is more difficult 
because it depends on context, including the user’s adaptive cache 
of recent words. Such a model is therefore beyond the current scope. 

4. EMPIRICAL VALIDATION 
In order to empirically test stroke-based word prediction and 
completion in Trackball EdgeWrite, we conducted two evaluations 
with a 15-year trackball veteran with a spinal cord injury. The first 
was a comparison to the WiViK on-screen keyboard. The second 
was an analysis of our subject’s log files over two months of 
intermittent use. 

4.1 Comparison to On-screen Keyboard 
4.1.1 Subject 
Our subject, who we will call “Jim,” has had a spinal cord injury for 
over 15 years and has used a trackball for about as long. Although 
he also uses voice recognition, he is often dissatisfied with it and, 
until recently, has relied on an on-screen keyboard as a 
complementary method. His on-screen keyboard of choice has been 
the Microsoft Accessibility Keyboard, which does not have word 
prediction or completion. However, the keyboard does have useful 
visual feedback when hovering over keys, which Jim relies on to 
enter text since he cannot reliably click. About six months ago, Jim 
stopped using on-screen keyboards in favor of Trackball EdgeWrite, 
even before it had word completion capabilities. 

Jim’s best prior performance with character-level Trackball 
EdgeWrite was 8.25 WPM with 6.24% total errors, and with his on-
screen keyboard was 6.90 WPM with 6.60% total errors. However, 
these entry rates seemed to be plateaus. Our goal was therefore to 
see how Jim’s speeds would compare when these methods were 
given word prediction and completion. 

4.1.2 Apparatus 
Since Jim’s preferred on-screen keyboard does not have word 
prediction, we configured the popular WiViK on-screen keyboard 
(http://www.wivik.com) to match Jim’s desired settings: 550 ms 
dwell, about 650×250 pixels in size, and no “dead space” between 
keys. For word prediction and completion, WiViK uses a program 
called WordQ, which we loaded with the “US Advanced” database 
containing 15,000 words. WiViK shows a vertical 6-item word list 
to the left of the keyboard. The same action for selecting a key 
selects a word in the word list—in Jim’s case, by hovering for 550 
ms. 

Jim keeps his monitor set to 800×600 resolution. Test phrases [21] 
were randomly presented using the TextTest program, which creates 
XML log files that can be analyzed with the StreamAnalyzer 
program [31]. StreamAnalyzer produces results according to the 
measures in [27,31]. 

4.1.3 Procedure 
The study was a single-subject 2-factor design, with factors for 
method (WiViK, EdgeWrite) and word prediction (on, off). Jim did 
the word prediction versions second within both methods. A coin 



toss determined that he used WiViK first. Thus, the order was: 
WiViK, EdgeWrite, WiViK+WP, EdgeWrite+WP. Jim entered 3 
practice phrases and 8 test phrases in each condition. Each phrase 
was approximately 30 characters long. 

4.1.4 Quantitative Results 
Figure 6 shows Jim’s speeds for the four conditions in the current 
study. It also shows Jim’s prior peak speeds with his own on-screen 
keyboard and with character-level Trackball EdgeWrite. Note the 
substantial speedups of both methods due to word prediction and 
completion. Figure 7 shows corresponding total error rates. 
However, because Jim fixed almost every error during entry, these 
total error rates are really just corrected error rates [27]. Corrected 
errors, which slow entry rates, are of less concern than uncorrected 
errors, which are at odds with speed. Thus, Trackball EdgeWrite is 
producing similarly accurate text in a tad less time, albeit with more 
errors made (and fixed) along the way. 

A Wilcoxon sign test for speed is not significant (z=3.0, p=0.25). 
However, the general trend is in favor of Trackball EdgeWrite. This 
advantage is only slight for the current study, however, probably 
because WiViK is superior to Jim’s preferred keyboard, the 
Microsoft Accessibility Keyboard, even though WiViK was 
configured with Jim’s usual settings. 

A Wicoxon sign test for total errors is also not significant (z=2.0, 
p=0.50). However, both methods were producing error-free text in 
the end, since uncorrected errors for both methods were ~0.00%. It 
is interesting that Trackball EdgeWrite’s errors were low in the 
current study even without word completion, probably because Jim 
has had more practice since his prior peak performance. 

It is worth noting that the speed of WiViK improved 32.0% with 
word prediction compared to without. This confirms prior results [4] 
and highlights the strength of WiViK’s commercial word prediction 
and completion technology. 

Taken together, these results show a 46.5% increase in speed and a 
36.7% decrease in errors for word-level Trackball EdgeWrite 
compared to Jim’s prior peak performance with character-level 
Trackball EdgeWrite. The results also show that word-level 
Trackball EdgeWrite is 75.2% faster and 40.2% more accurate than 
Jim’s prior peak performance with his preferred on-screen 
keyboard. Finally, the results show that word-level Trackball 
EdgeWrite is competitive with a major commercial product, the 
WiViK on-screen keyboard with word prediction and completion. 

4.1.5 Qualitative Results 
We asked Jim to describe his experience of each of the four 
conditions in his own words:  

• WiViK: “[Y]ou are constantly either scribbling around so you 
don’t accidentally trigger the wrong letter, checking to see if you 
typed the right thing, or looking for the next key to hover over. 
Too much work both mentally and visually.” 

• WiViK+WP: “Somewhat of a relief to hover over large words but 
it just increased the amount of mental and visual work required. 
[It’s] one more section of the screen you need to scan constantly. 
Only thing is, I wish EdgeWrite had its vocabulary.” 

• EdgeWrite: “EdgeWrite without word prediction is like using a 
286 or something. It’s much better than a keyboard or an on-
screen keyboard, but the ultimate is when you can flick the cursor 
into a corner and just pop the rest of the word in.” 

• EdgeWrite+WP: “The best thing about EW is there is no eye strain 
or constant scanning between programs, letters, words, etc. The 
word choices are right there where your eyes already are. It 
actually helps you stay focused on what you’re writing.” 

 
Figure 6. On-screen keyboard and Trackball EdgeWrite speeds. Higher 

values are better. 

 
Figure 7. On-screen keyboard and Trackball EdgeWrite total error rates. 

Lower values are better. 

Jim’s sentiments confirm what prior studies of on-screen keyboards 
have found: that they are exceedingly tedious and visually intense 
[4]. Although word prediction and completion improved WiViK’s 
speed by 32.0%, it did not resolve these drawbacks. Trackball 
EdgeWrite, on the other hand, proved to be just as fast but without 
the same visual tedium. 

4.2 Log File Analysis of Extended Use 
A single-session lab study allows us to formally quantify speed and 
errors, but it is over the long-term that we hope Trackball 
EdgeWrite will be useful. Indeed, prior studies of word prediction 
systems have shown that long-term use is critical for accurate 
evaluations [22]. Furthermore, the design of our stroke-based word 
completion system supports gradual adoption as users familiarize 
themselves with the consistent positions of words. 



Although log files do not enable us to rigorously quantify speed and 
accuracy, they do allow us to measure the stroke savings gained by 
using word completion. We can also look at the number of 
completions undone as an approximation of selection accuracy, and 
compare this to the number of letters undone (backspaced). 

 
Figure 8. Results over 11 weeks from extended use showing usage of word 
completion and backspace. Week 3 is omitted because Jim did not use his 

computer. 

Figure 8 shows these quantities graphed over two months of Jim’s 
intermittent use. It represents 897.52 hours of software running-time 
for 13,288 total strokes. Of these, 8774 were character strokes and 
2201 were word-selection strokes. In all, 15,629 characters were 
entered, 6855 of which were from completions. 

The top line (blue) shows the percent of letters entered as 
predictions or completions. Without stroke-based word completion, 
these letters would all have to be entered in full. The weighted mean 
over all weeks is 43.9%. The spike in week 6 is an outlier due to a 
week of relative inactivity. Only 70 letters were entered that week, 
compared to most weeks which saw 1500-3500 letters. A regression 
line shows this trend to be slightly increasing. 

It is interesting that the 43.9% savings shown in Figure 8 is about 
the same as the 46.5% speedup shown in Figure 6. That is, the 
stroke savings more or less translate to speed gains. This suggests 
that the perceptual, cognitive, and motor costs of stroke-based word 
completion are not overly taxing, as often has been the case with 
prior word prediction systems. 

The bottom line (green) is the percentage of word completions 
undone. The weighted mean over all weeks is 7.7%. As an indicator 
of completion errors, this value is probably high, since users may 
undo selected completions for reasons other than errors (i.e. as a 
result of changing what they intended to write). A regression line 
shows this trend to be slightly decreasing. 

For comparisons, the percentage of letters undone (backspaced) is 
shown as the middle line (orange). The weighted mean for undone 
letters is 16.5%. Although this value is high, it is not surprising in 
light of previous results indicating that BACKSPACE is the second 
most common keystroke in desktop text entry [20]. A regression 
line shows this trend to be slightly decreasing. 

Across all weeks, the average number of characters entered per 
completion was 3.11. Thus, with a simple “pulse” into one of four 
corners, users avoid entering over 3 more characters for every word 
they write. 

5. FUTURE WORK 
Although stroke-based word completion substantially improves the 
speed of Trackball EdgeWrite, it could still be improved upon. One 
of Jim’s quotes in section 4.1.5 indicated that he preferred the words 
offered by WiViK to those offered by Trackball EdgeWrite. We 
could recreate EdgeWrite’s language models using sources other 
than newspaper articles, perhaps including some of Jim’s own texts. 
The culmination of this idea would be to provide the end-user with 
an interface to incorporate their own texts into EdgeWrite’s 
language models. 

An obvious next step is to run a study with a larger number of users. 
At this stage, we preferred to study one subject in-depth to verify 
the usefulness and usability of our technique. Now we believe it is 
ready for a broader assessment. We have one user in Sweden who is 
already using Trackball EdgeWrite, and we intend to formally 
evaluate her speed and accuracy. 

We are also studying how Trackball EdgeWrite performs with an 
isometric joystick embedded in a mobile phone [5]. Like trackballs, 
isometric joysticks have no notion of position, so the same software 
works without modification. Initial results suggest that stroke-based 
word completion is competitive with T9 (http://www.tegic.com) on 
mobile phones, allowing able-bodied users to reach speeds near 20 
WPM. 

6. CONCLUSION 
We have shown that Trackball EdgeWrite greatly benefits in terms 
of speed and accuracy from having stroke-based word prediction 
and completion. Our subject’s best prior performance with 
character-level Trackball EdgeWrite was both slower and less 
accurate than his performance with the new word-level version. We 
also demonstrated that Trackball EdgeWrite rivals a major 
commercial on-screen keyboard. Our study confirms that Trackball 
EdgeWrite is just as fast using word prediction and completion, and 
that it is less visually tedious. Although Trackball EdgeWrite is 
more error prone during entry, it produces error-free text in the 
same amount of time due to efficient error correction. These results 
could be important for motor-impaired users who wish to write with 
their trackballs instead of hunting and pecking. 
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