
Carnegie Mellon University
Research Showcase @ CMU

Human-Computer Interaction Institute School of Computer Science

2007

Scenario-Based Requirements for Web Macro
Tools
Christopher Scaffidi
Carnegie Mellon University

Allen Cypher
IBM

Sebastian Elbaum
University of Nebraska at Lincoln

Andhy Koesnandar
University of Nebraska at Lincoln

Brad Myers
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/hcii

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Human-Computer Interaction Institute by an authorized administrator of Research Showcase @ CMU. For more information,
please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fhcii%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fhcii%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Scenario-Based Requirements for Web Macro Tools

Christopher Scaffidi
1
, Allen Cypher

2
, Sebastian Elbaum

3
, Andhy Koesnandar

3
, Brad Myers

1

1
School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

cscaffid,bam @cs.cmu.edu

2
Almaden Research Center

IBM

Almaden, CA

acypher@us.ibm.com

3
Computer Science and

Engineering Department

University of Nebraska-Lincoln

elbaum,akoesnan @cse.unl.edu

Abstract

Web macros automate interactions with web sites and

related information systems. Though web macro record-

ers and players have grown in sophistication over the

past decade, these tools cannot yet meet many needs of

users in daily life. Based on observations of browser us-

ers, we have compiled ten scenarios describing tasks

that users would benefit from automating. Our analysis

of these scenarios yields specific requirements that web

macro tools should support if those tools are to be appli-

cable to these real-life tasks. Our set of requirements

constitutes a benchmark for evaluating tools.

1. Introduction

Researchers have successfully applied the pro-

gramming-by-example (PBE) paradigm in many envi-

ronments ranging from user interface design [11] to

HyperCard [3]. In PBE, a macro recorder watches the

user perform operations, determines the user’s intent,

and generates a macro to represent that intent (gener-

ally as a sequence of steps). Later, a macro player exe-

cutes the macro on new data.

For over a decade, researchers have provided nu-

merous tools that implement the PBE paradigm in the

web context, automating actions that users take in a

web browser [1][4][5][7][8][9][10][13][16]. Such tools

provide several benefits. First, like traditional PBE

tools, they offer significant time savings to users. In

addition, when a procedure in a large web application

is complex and hard-to-learn, then users who have mas-

tered that difficult procedure can create a web macro as

a teaching tool for other users, in order to encapsulate

and communicate the steps required to perform the

procedure. Finally, web application developers can use

web macros to create automated test suites.

Given these benefits, it might seem that web macro

tools should be in widespread use, particularly among in-

formation workers, whose work in web browsers is

highly repetitive [15]. Moreover, users seem to be gener-

ally capable of understanding the process of recording

and replaying macros, as 42% of information workers

report that they or their subordinates recorded spread-

sheet macros in the past 3 months, and 33% similarly re-

port recording of word processor macros [14].

Despite these factors, web macro tools do not seem to

be in widespread use. One reason is that the web context

introduces new challenges that did not apply in tradi-

tional PBE. One such challenge is the frequent changes

to web sites’ structure, which can cause web macros to

fail without warning. In addition, whereas many tradi-

tional macro tools only need to operate in one environ-

ment (such as HyperCard [3]), many office tasks that in-

volve a web browser also involve other applications,

such as spreadsheets. Automating these tasks requires a

web macro tool to support inter-application integration.

The contribution of this paper is a methodical char-

acterization of these requirements that web macro tools

must support in order to be useful for many real-world

tasks. We anticipate that this set of requirements will

serve as a helpful benchmark to researchers for evaluat-

ing tools and identifying beneficial areas of work.

To help ensure the validity of these requirements,

we base them on a range of real-world tasks that should

ideally be automatable with web macros. We selected

these tasks because automating them would offer clear

benefits to end users. For example, automating one

time-consuming task was so desirable to one end user

that he paid a professional PHP/Perl programmer to

automate the task; open source programmers automated

two other tasks to benefit people. Some tasks were per-

formed repetitively by us, and we would like to auto-

mate these tasks to save ourselves time, but we have no

suitable PBE macro tool. Finally, we have observed co-

workers manually performing certain tasks, and auto-

mating these tasks would offer significant time savings.

We do not claim that our list of requirements is

complete in the sense that satisfying them will auto-

matically make tools perfect for all imaginable tasks.

Instead, by linking requirements to a diverse set of spe-

cific tasks, our benchmark indicates the wide range of

real-world applicability that a tool would gain by satis-

fying certain requirements. In addition, the benchmark

constitutes a seed that can grow as researchers contrib-

ute more scenarios where macros would be beneficial.

Section 3 uses a scenario format to describe tasks.

Section 4 analyzes scenarios to identify tool require-

ments, which include support for triggering macros, us-

ing objects on web pages, adapting to site changes, read-

ing and writing data outside pages, transforming data,

executing control structures, recovering from failure, and

supporting macro maintenance. Section 5 demonstrates

using requirements as a benchmark for evaluating the

Robofox tool, thereby identifying areas for future work.

2. Comparison to Related Work

Many papers use scenarios to motivate and explain a

PBE tool’s features [1][4][5][7][8][9][10][13][16].

Generally, a paper first presents the scenario in a suc-

cinct form to motivate the work; later, the paper de-

scribes the scenario in some additional detail and dis-

cusses how to use a new tool to automate the scenario.

For example, [10] presents a scenario of combining

clippings from web sites into a newspaper, and the pa-

per also discusses a scenario of repeatedly submitting a

web form in order to purchase sandwiches. As another

example, [4] describes a scenario of reading a recipe on

a web site, then using the ingredients list and another

site to compute the recipe’s nutritional value.

Such scenarios meet the intended purpose of moti-

vating and demonstrating a new tool. However, they

have two limitations.

First, each paper generally only mentions one or two

scenarios and rarely describes any scenario details that

are unsupported by the tool. Thus, such scenarios

rarely highlight opportunities for extending the tool and

provide limited support for evaluating future tools.

Second, the “pedigree” of scenarios is rarely docu-

mented: that is, it is usually unclear if each scenario was

identified by observations of end users or if it is hypo-

thetical. Consequently, it is difficult to determine if sup-

porting the scenario will make the tool useful in practice.

In this paper, we specifically select a variety of sce-

narios that highlight opportunities for future work. In

addition, we have documented the source of each sce-

nario, providing traceability to help ensure that auto-

mating each scenario would give real benefit to users.

The identified requirements comprise a benchmark to

measure tool improvement. Our intent is similar to that

behind the Test Suite for Programming by Demonstra-

tion [12], a benchmark for traditional (non-web) PBE

tools. Like that Test Suite, our benchmark illustrates the

wide range of potential applications for tools and enables

researchers to test tools with real world tasks.

3. Scenarios

Each scenario represents a task that users would

benefit from automating. Users perform a plethora of

repetitive tasks, so selecting tasks for analysis requires

applying a few judicious criteria, as follows:

First, our ultimate goal is to enable people to use web

macros for real-life tasks. Consequently, we shied away

from presenting hypothetical scenarios and focused on

real situations encountered by users in actual practice.

These are not abstract situations, but rather “instantiated”

tasks grounded in concrete user experiences.

Second, we want to provide a benchmark to measure

improvements to macro tools. Therefore, we have cho-

sen scenarios that highlight the ground that PBE web

macro tools have yet to cover. Most scenarios describe

repetitive tasks that users still must manually perform,

though a few describe repetitive actions that have been

automated with hand-coded scripts.

Last, to explore the breadth of macros’ applicability,

we have selected scenarios involving several types of

users. These include office workers, online shoppers,

financial analysts, IT staff, and others. Moreover, these

scenarios come from a variety of sources:

Contextual inquiry

Three scenarios were uncovered by our recent study

of office workers [15]. We observed the work of three

administrative assistants, four office managers, and

three webmasters/graphic designers at Carnegie Mellon

University. We watched each for one to three hours, in

some cases spread over two days, and used a tape re-

corder and notebook to record information.

Co-workers

Two scenarios were performed by co-workers. We

observed these tasks during the course of work and

later realized that they were suitable for automation.

Online sources

Three scenarios involving screen-scraping were

automated by people with scripts. In two cases, the

programmer publicly posted the script (one PHP and

one JavaScript); we have reverse-engineered these

scripts into macro scenarios. In the third case, a finan-

cial analyst publicly posted a specification for the sce-

nario (which probably was implemented by a profes-

sional programmer in Python, PHP or Perl); we have

converted this specification into a web macro scenario.

Our own experience

Two scenarios were performed by us in our role as end

users. Like all researchers, we lead double lives. On one

hand, we can program in various languages when needed.

On the other hand, we are also end users. Constrained by

time and interest, we often live within the confines of exist-

ing applications rather than write our own.

3.1. Structure of Scenarios
Users currently perform many tasks manually or by

writing a script. We hope to foster innovative devel-

opment of PBE tools that will someday be able to

achieve the same tasks.

Each scenario describes not only a task, but also pre-

conditions that must hold prior to the task as well as

post-conditions that must hold after the task. To achieve

the post-conditions, different tools may take different

implementation approaches. For example, some macro

players are agents that emulate a browser, while others

are toolbars that manipulate the browser like a puppet.

Therefore, while we specify what scenario post-

conditions must be satisfied by tools, we do not specify

how post-conditions must be satisfied. Indeed, we do

not even stipulate what examples the macro recorders

may request from users: if a recorder can do better by

requiring more input, then that innovation represents a

valid tradeoff worth considering. For example, some

recorders use a pure PBE approach, while others allow

users to augment the macro with procedural code [5].

3.2. Catalog of Scenarios
The following is a brief summary of the scenarios,

roughly sorted in order of complexity. We give the

scenario name, typical user, scenario source, pre-

conditions, post-conditions, and task overview. Full de-

tails on each scenario, with screenshots, are available

on our wiki
1
. We hope that over time, this benchmark

will grow as macro tools meet existing requirements

and other researchers contribute new scenarios.

Currency Converter – office worker (contextual inq.)

Pre: A spreadsheet has a row for each expense incurred

on a trip (showing each expense’s date and amount).

Post: Each row must also show amount in US dollars.

Overview: Use converter at www.oanda.com to do cur-

rency conversion, then copy results to the spreadsheet.

Package Tracker – online shopper (own experience)

Pre: A spreadsheet has a row for each tracking number.

Post: Each row must show the package’s status.

Overview: Use www.dhl-usa.com to look up each pack-

age’s current status, then copy results to spreadsheet.

Path to Procurement – office worker (co-workers)

Pre: A spreadsheet has a row for each item that a

worker would like the purchasing department to buy

(with item description, quantity, and price).

Post: An order must be placed for each item.

Overview: Use a web form (which is hidden deep

within a labyrinthine intranet site) to add each item to

the shopping cart, then submit the cart; this emails the

cart’s contents to the purchasing department.

1
 http://softwaresurvey.cs.cmu.edu/wmcorpus.html

Peoplesoft Scraper – IT staff (co-workers)

Pre: A Peoplesoft system contains a list of workers.

Post: A spreadsheet must be created, with one row per

worker of interest (with each worker’s name, phone

number, office code, and job title).

Overview: Submit a web form to query for a list of

workers. For each, follow a link to access a page with

the worker’s details; copy these to the spreadsheet.

Per Diem Lookup – office worker (contextual inq.)

Pre: A user is editing an expense report in a web form;

form fields show expense date and city/state.

Post: A form field must be populated with the govern-

ment-approved per diem rate for that date and locality.

Overview: Navigate image map at www.gsa.gov to

choose the state, select the year, then find the city and

date in a table to locate the result. If the city is not

shown, then look up the city’s county and try finding per

diem based on county. If the county is not shown, add

two numbers on the page to compute a default per diem.

Person Locator Scraper – volunteer developer (online)

Pre: A web site displays a multi-page list of people and

their status after Hurricane Katrina.

Post: An XML file must be created, with one node for

each person (with that person’s name, location, etc.)

Overview: Page through the list, performing minor

transformations on the data before storing as XML.

Scraper for CMS – webmaster (own experience)

Pre: A site shows a multi-page list of training events.

Post: Each event’s data must be copied from the source

site to a web form that adds the event to another site.

Overview: Page through the list, performing minor

transformations on the data, then submitting thru form.

Staff Lookup – office worker (contextual inq.)

Pre: A spreadsheet has a list of worker names, one per row.

Post: Each row must also contain the employee’s phone

number, email address, and job title.

Overview: Use form at people.cs.cmu.edu to look up

each person’s data, do minor reformatting, then save.

Stock Analysis – financial analyst (online)

Pre: A spreadsheet has a row for each stock (with the

ticker symbol and a date).

Post: Each row must show a variety of statistics on that

stock (including averaged volume, price, ratios, etc.)

Overview: Use forms at finance.yahoo.com and money-

central.msn.com to retrieve the data, which are in tables.

Date calculations are required to retrieve the right data.

Watcher for eBay – online shopper (own experience)

Pre: User has the tracking number for an item on eBay.

Post: The item’s name, image, and various statistics

must be displayed in a “pretty-printed” format.

Overview: Use www.ebay.com to retrieve data, then

concatenate with HTML to form pretty-printed format.

4. Requirements for Web Macro Tools

Our scenarios reveal requirements for effectively

enabling users to record and replay web macros. Some

requirements are partially satisfied by existing tools.

Many other requirements remain to be addressed.

Some web macro tool limitations could be ad-

dressed through Semantic Web markup [2]. However,

many other requirements are unrelated to how web sites

are marked up (particularly in Sections 4.1, and 4.4

through 4.8), and semantic web markup will not ad-

dress these requirements.

4.1. Triggering macros
All scenarios involve some pre-conditions, so the

corresponding macros should not begin to execute until

those conditions are met.

On-demand execution

Most scenarios begin after a conscious demand by

the user. These include scenarios that are driven by

spreadsheets (e.g.: Currency Conversion) and those that

perform lookup operations to help the user fill out a

web form (e.g.: Per Diem Lookup). When a macro uses

a spreadsheet as input, and then writes results back to

the spreadsheet, it would be helpful if the macro player

provided buttons in Excel so that the user could open

up the spreadsheet and play the macro.

Scheduled execution

In scraping scenarios, the input data come from a

web site, and fresh data could arrive at any time. Con-

sequently, these scenarios might benefit from sched-

uled operation of macros, in a sort of “polling” process.

The macro tool might provide a user interface so that

users could schedule playbacks. Alternatively, it could

offer a command-line interface so users could schedule

playbacks using operating system facilities.

Event-based triggers

The Watcher for eBay demonstrates the possibility

of triggering a macro based on an event that is un-

scheduled and does not represent a conscious demand

by a user at runtime. In this scenario, the macro triggers

on a page load, and then its output is formatted as

HTML and appended to the page’s HTML structure.

Subroutines

Some organizations have multiple staff directories,

so a macro might call several Peoplesoft Scraper or

Staff Lookup macros and then merge the results. In

such cases, the macro tool must support triggering a

macro through a subroutine call.

4.2. Using objects on web pages
Macros are built from primitive operations that use

a variety of objects on web pages.

Text snippets

All scenarios demonstrate that web macro tools

should be capable of retrieving web pages from servers

and extracting portions of the pages’ text. The text is

sometimes delimited with an HTML tag of its own.

However, the text may be buried in a larger section of

text with no HTML tags to delimit the target text.

Tabular information

Several scenarios involve interpreting tabular in-

formation and retrieving data from one or more rows or

columns. For example, in Per Diem Lookup and Stock

Analysis, the macro must retrieve data from specific

rows that have an appropriate date in the leftmost cell.

Achieving this requires identifying the table within the

HTML, parsing it into keyed records, filtering records

based on whether their respective keys match certain

criteria, and then retrieving fields within those records

for use in computations.

Web form widgets

Most scenarios involve getting or setting values of

web form widgets, including textboxes, dropdowns,

and radio buttons. In many cases, the tool could com-

pose http operations directly (rather than contacting the

server indirectly by rendering pages, filling widget val-

ues, and clicking a submit button), which would reduce

the need for manipulating widgets. However, the macro

player will still need to support widget get/set opera-

tions since scenarios like Per Diem Lookup require

reading inputs and writing outputs to a form that the

user has opened in another browser window.

Other HTML structures

Watcher for eBay demonstrates display of HTML.

The ideal macro tool will allow users to reformat

macro output into a textual or HTML format, possibly

using a template that the player fills in at runtime, and

then display the result.

4.3. Adapting to site changes
Web pages might change between the recording of a

macro and its playback, which could cause unintended

effects at runtime. Such page evolution in scenario sites

is documented by the Internet Archive’s Wayback Ma-

chine [6] and by comments in sites’ HTML.

Adaptation to changing page layout

Most existing tools find text on a page using one of

two approaches, each of which has limitations.

If macro players only find values based on one or

two visual characteristics of the text, then changes in

the font, color, and other visual attributes could break a

macro. For example, if a Currency Converter macro

tries to find the second red text on the page (which is

the output value in US dollars), and the site evolves so

this text changes color (as it has in the past), then the

macro will be unable to find the value.

If macro players find values based on structural char-

acteristics of the HTML, then evolution in page layout

could break macros. For example, if a Package Tracker

macro tries to find the result table based on nesting of

HTML tags, and the site evolves so the results are moved

inside of another table (as has happened in the past), then

the macro will be unable to find the values.

A successful web macro tool may need to combine

the two approaches above with additional heuristics.

For example, Creo can recognize text based on the se-

mantic category of the text (e.g.: a food item) [4].

Adaptation to changing form fields

Macro tools directly or indirectly transmit a list of

variable names and corresponding values. Variable

names must match the names that the server is expect-

ing; in particular, the names must match the names of

widgets on the web form.

Therefore, evolution in the names of form widgets

can break macro players. For example, HTML comments

indicate that in 2005, a programmer added a new hidden

field to the Path to Procurement web form; presumably

the server software was also modified so that it now uses

this new variable. Any macro recorded prior to the addi-

tion of this field would not contain any instructions for

transmitting a variable with that name. Consequently, if

the new version of the server software requires the pres-

ence of this hidden field, then the server might not per-

form as anticipated during playback.

Evolution in the valid values of form widgets can

also break macros. For example, in the Currency Con-

verter, the code for a Bulgarian Lev has changed from

“BGL” to “BGN.” If a user recorded a macro using

“BGL”, then the tool would still keep sending this old

value, which the server later might not understand.

Therefore, tools must be resilient to changes in widget

values as well as changes in widget names.

Adaptation to changing URLs

Most scenarios start with “go to this URL,” but like

page structure, page locations change. For example, the

government’s Per Diem Lookup was located on the

www.policyworks.gov server until it moved to

www.gsa.gov. Macros that use the old URL would fail

to locate the new page. Fortunately, the webmaster of

the old server put up a web page telling users that the

old content has moved and providing a link to the new

location. While some sites post pages like this when

content moves, others use an HTML META refresh tag

or an http header to redirect browsers.

In any case, the macro player should detect that the

page has changed significantly. If a macro player de-

tects that the page has changed considerably, it could

examine the page to find a new URL. With the user’s

permission, it could then retrieve the content at that

new URL and see if the structure matches the expected

structure at the old URL. If so, the macro player may

be able to update the macro and continue.

4.4. Reading and writing data outside pages
All scenarios involve reading and writing data from

the browser, but some also involve reading and writing

from other locations such as spreadsheets.

Even though our scenarios did not uncover them, we

are aware that there are a number of other systems

where web-related data often are located. These in-

clude databases, word processors, RSS feeds, web ser-

vices, and email servers. Another simple but likely pos-

sibility is the operating system clipboard.

Browser APIs

It may be desirable to display output within the

browser, but outside the web page. For example, in a

variation of the Currency Conversion scenario (docu-

mented on our wiki), the user would highlight an amount

of foreign money on a web page and tell the macro tool

to begin executing an existing Currency Conversion

macro, using the highlighted money amount as an input.

The tool would infer the correct source currency from the

source page’s URL (e.g.: Euros), then feed the amount

and the source currency into the converter to calculate

the equivalent number of US dollars, which the tool

would display in a popup window. To support this sce-

nario variation, the macro tool must be able to read high-

lighted text and the current URL at runtime, then display

results in a popup.

Spreadsheets and other files

Several scenarios involve reading data items from a

spreadsheet, using each data item to perform lookups on

the web, and then writing the results back to the spread-

sheet. In addition, the Person Locator Scraper writes an

XML document; to support this scenario, the macro re-

corder might allow the user to define a template that the

macro player would instantiate and fill at runtime.

Parameters containing user input

Although most macro input comes from the sources

described above, the user may want to parameterize the

macro and explicitly provide values at runtime.

For example, several scenarios involve authentica-

tion. When the user demonstrates the example and

types a username and password, the tool could record

the username and password, essentially hard-coding

these as part of the macro, which could inhibit sharing

the macro with other users. Or the tool could represent

the username and password as parameters that are un-

determined until runtime, which could be a hassle when

executing the macro. Since each option has trade-offs,

the tool should allow the user to choose.

It may be beneficial to support “sticky” input parame-

ters. For these, when a value is set for one execution of

the macro, the macro tool would record that value and

use it as a default value during the next execution. The

user could always override the default for a given execu-

tion, thereby changing the default value for subsequent

executions. Such “sticky” behavior could be used to store

authentication data or complex inputs. For example, a

variation of the Peoplesoft Scraper (documented on our

wiki) would accept regular expressions that filter which

employee records are retrieved. System administrators

using such a tool might appreciate not having to retype

the regular expressions unless there was a need to change

the macro’s behavior.

4.5. Transforming data
Our scenarios show that using data from the web

involves more sophisticated transformations than sim-

ply unescaping HTML (e.g.: from & to &).

Reformat to equivalent value

The details of the Per Diem Lookup scenario in-

volve a significant amount of reformatting. For exam-

ple, matching up choices in the image map with values

in the expense report involves reformatting between

state names and state abbreviations. In addition, the

scenario involves reformatting dates from MM/DD/YYYY

to Month D. Finally, it involves capitalizing the county

name for comparison to other county names.

Other scenarios also involve small reformatting op-

erations based on the semantics of the data. Examples:

• The Staff Lookup repairs phone numbers from ###-

to ###-###-#### format and strips

spaces from email addresses.

• The Stock Analysis reformats dates from

MM/DD/YYYY to DD-Mon-YY.

• The Person Locator Scraper interprets status data for

each person record to set a Boolean flag indicating if

the person was found after the hurricane. For exam-

ple, if the person is “Hospitalized” or “Deceased”,

then the Boolean is set to true. This essentially in-

volves passing the value through a lookup table.

Operations like these transform a data value to an-

other that is semantically “equivalent” for the purposes

of the scenario. Macro tools could provide a way for

users to specify transformations like these. In addition,

the tools could intelligently perform commonly occur-

ring transformations, such as those involving dates.

Extracting values’ parts

Various scenarios involve extracting part of a value.

For example, Per Diem Lookup extracts the year from

a MM/DD/YYYY value. It would also extract the city and

state from a City, ST value. Thus, tools must enable

users to extract parts of strings.

Combining values

Some scenarios involve combining data. The mode of

combination depends on values’ types. Examples include

arithmetic with numbers (in Per Diem Lookup), date

range comparisons (in Per Diem Lookup), and string

concatenation (in Watcher for eBay).

4.6. Executing control structures
Macro recorders must support three types of opera-

tions: primitive, looping, and conditional. As discussed

above, primitive operations include those required for

manipulating the web browser (such as reading tables).

We consider looping and conditional operations here.

Looping operations

Sometimes an operation’s target is a set of strings or

numbers. For example, the Per Diem Lookup picks two

numbers out of the text and adds them together to gen-

erate a default per diem rate.

Scenarios demonstrate other repetitions of an opera-

tion on each record in a set. For example, several sce-

narios repeat actions for each row in a spreadsheet. In

addition, the scraper scenarios repeat read operations

for each page in a list of pages. Finally, many scenarios

perform a read operation on each HTML table row

while paging through a web site.

Support for a general while(condition) construct

might be useful for polling web sites until a condition is

met, such as polling the Hurricane Katrina web site in

the Person Locator Scraper to watch for new data.

Conditional operations

Sometimes a scenario involves certain actions de-

pending on conditions at runtime. For example, Staff

Lookup picks text differently from the page, depending

on whether zero, one, or more people have the same

name. A single demonstration can only exemplify one

of these three conditions, so the web macro recorder

may need to incorporate multiple examples, just as

non-web macro recorders such as Eager have done [3].

4.7. Recovering from failure
In some cases, the macro tool will be unable to pre-

vent failure. For example, the computer might lose its

network connection, or the server might crash, or the

page might have evolved so much that the macro tool

cannot automatically determine how to use the new

page. In these cases, the macro player must help the

user recover from the failure as gracefully as possible.

Partial restarts

If a macro fails halfway through a scenario, it may

be safe to restart the macro from the beginning. This is

typical with scraping and lookup scenarios. For exam-

ple, if the Staff Lookup successfully retrieves data for

50 of 100 co-workers, but then the server crashes, then

there is no harm in restarting the macro later.

 Of course, repeating work is wasteful. Moreover,

some operations are not safe to repeat, due to side-

effects. For example, the Scraper for CMS scenario in-

serts records into the target site. Repeating these opera-

tions would probably result in duplicates.

Consequently, the macro tool should track how far

macros proceed. That way, if a macro fails, then the

user has the option of doing a partial restart—that is,

restarting the macro from where it left off.

Exception handlers

The macro tool should allow the user to specify how

to handle exceptions. In addition, the macro tool should

help users add exception handlers as the user adds new

examples, as these examples will uncover new response

patterns by the server. As described above, several sce-

narios involve conditionals that cope with differences in

how the servers respond to different inputs.

For example, tools could enable users to create an

assertion that fires at runtime if data looks out of the

ordinary or if the web page’s structure seems to have

changed in a way that the tool cannot automatically

handle. The tool could alert the user and ask for guid-

ance. If users could attach assertions and exception

handlers to existing macros, then they could reuse an-

other person’s macro and add assertions to help ensure

that the macro would behave as desired.

4.8. Supporting macro maintenance
Records in the Internet Archive show that many of

the sites involved in our scenarios have evolved sig-

nificantly over the years. In some cases, site evolution

might have broken macros automating the scenarios.

Therefore, macro tools should support the maintenance

of macros by end user programmers.

User-understandable representation

Before a user can perform maintenance, it is first

necessary to understand the macro’s structure. In addi-

tion, a user-understandable representation of macros

may prove extremely valuable for other activities. For

example, if one user offers to share a macro with an-

other user, the recipient can examine the macro before

executing it, in order to determine whether to trust the

macro. To support these activities, tools should provide

a user-understandable representation of macros.

Editable macros

Another basic requirement for maintenance is the

ability to make changes to existing macros. Desirable

edit operations include deleting operations, adding op-

erations, changing operations, wrapping operations in

loops, and many of the other types of edits that are cur-

rently supported in textual editing environments.

Features for debugging

Many professional programmers have come to rely

on various sophisticated debugging services within the

development environment. Tools could include features

for traces, breakpoints, step-by-step execution, and run-

time variable inspection.

Maintenance at runtime

A macro might break because site evolution prevents

the tool from finding text, getting or setting widget val-

ues, or following URLs. However, the changes leading to

the broken macro might have been minor, such as a

change of font or a renaming of a widget. In such cases,

it would be desirable if the macro tool provided a way

for the user to modify the macro to fix it at runtime. For

example, the user could highlight the data or widget so

the tool could relearn how to find the data or widget.

For larger changes, the tool may need to provide

mechanisms to add new operations. For example, the

government site in the Per Diem Lookup sometimes

displays new regulations on how to use the site. The

macro tool could let the user specify that the macro

should check at runtime if these regulations changed—

and, if so, to enter a maintenance mode so the user

could incorporate the new regulations into the macro.

5. Example Benchmark Use: Robofox

To illustrate using the requirements as a benchmark,

we analyze support for requirements by Robofox, a

web macro tool that two of us are developing [7].

As shown in Table 1, Robofox lacks support for

seven requirements and only partially supports five. For

example, although Robofox does not automatically per-

form adaptation to changing page layout, it uses visual

heuristics to find objects on pages and inserts “sanity

check” assertions after operations to test if the page’s

structure matches the tool’s expectations. If page layout

changes so dramatically that the heuristics cannot find an

object, then the tool brings the changes to the user’s at-

tention so the user can do maintenance. Similarly, al-

though Robofox partially supports accessing spread-

sheets and other files, users have limited control over

files’ structure. Robofox supports looping operations

over sets, but not arbitrary while(condition) loops.

By referring to Section 4, we see that because of these

unsupported requirements, Robofox cannot support at

least five scenarios: Per Diem Lookup, Person Locator

Scraper, Staff Lookup, Stock Analysis, and Watcher for

eBay. Variations of two scenarios are unsupported: Cur-

rency Conversion and Peoplesoft Scraper. Ongoing site

changes would have caused macros for many scenarios

to break, due to Robofox’s limited support for automati-

cally adapting to site changes.

The list of unsupported scenarios would be reduced

considerably by adding support for two requirements: us-

ing tabular information, and reformat to equivalent

value. With these additions, Robofox would support Per

Diem Lookup, Staff Lookup, and Stock Analysis fairly

well (with limited automatic adaptation to site changes),

leaving two scenarios and two variations unsupported.

In short, our scenario-based requirements enabled us

to identify two highly beneficial areas of future tool

work. We anticipate that other researchers could likewise

benefit from evaluating tools using these requirements.

Table 1. Robofox’s support for scenario requirements

Requirements Support

Triggering macros

On-demand execution Yes

Scheduled execution Yes

Event-based triggers Yes

Subroutines No

Using objects on web pages

Text snippets Yes

Tabular information No

Web form widgets Yes

Other HTML structures No

Adapting to site changes

Adaptation to changing page layout Limited

Adaptation to changing form fields Yes

Adaptation to changing URLs No

Reading and writing data outside pages

Browser APIs Limited

Spreadsheets and other files Limited

Parameters containing user input Limited

Transforming data

Reformat to equivalent value No

Extracting values’ parts Yes

Combining values No

Executing control structures

Looping operations Limited

Conditional operations Yes

Recovering from failure

Partial restarts No

Exception handlers Yes

Supporting macro maintenance

User-understandable representation Yes

Editable macros Yes

Features for debugging Yes

Maintenance at runtime Yes

6. Acknowledgements

We thank Mary Shaw and other EUSES Consortium

members for helpful discussions. This work was funded in

part under ITR grant CCF-0325273 (via EUSES) and by

NSF under ITR grants CCF-0438929 and CCF-0324861.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the sponsors.

7. References

[1] M. Apperley, D. Fletcher, B. Rogers. Breaking the

Copy/paste Cycle: The Stretchable Selection Tool.

AUIC’00: First Australasian User Interface Confer-

ence, 2000, 3-10.

[2] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic

Web. Scientific American, Vol. 284, No. 5, 2001, 34-43.

[3] A. Cypher. EAGER: Programming Repetitive Tasks by

Example. CHI’91: Proc. Conf. Human Factors in Com-

puting Systems, 1991, 33-39.

[4] A. Faaborg, H. Lieberman. A Goal-Oriented Web

Browser. CHI’06: Proc. Conf. Human Factors in Com-

puting Systems, 2006, 751-760.

[5] J. Fujima, A. Lunzer, K. Hornbæk, Y. Tanaka. Clip,

Connect, Clone: Combining Application Elements to

Build Custom Interfaces for Information Access.

UIST’04: Proc. 17th Symp. User Interface Software and

Technology, 2004, 175-184.

[6] Internet Archive Wayback Machine, www.archive.org

[7] A. Koesnandar, S. Elbaum, G. Rothermel. Building De-

pendable Web Macros with Robofox. Technical Report

TR-UNL-CSE-2006-0010, Dept. Computer Science and

Engineering, University of Nebraska—Lincoln, 2006.

[8] H. Lieberman (Ed.). Your Wish is My Command: Giving

Users the Power to Instruct their Software. San Fran-

cisco: Morgan Kaufmann, 2000.

[9] G. Little, T. Lau, J. Lin, E. Kandogan, E. Haber, A. Cy-

pher. Koala: Capture, Share, Automate, Personalize

Business Processes on the Web. CHI’07: Proc. Conf.

Human Factors in Computing Systems, 2007, 943-946.

[10] R. Miller, B. Myers. Creating Dynamic World Wide

Web Pages by Demonstration. Technical Report CMU-

CS-97-131, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, 1997.

[11] B. Myers. Creating User Interfaces by Demonstration.

PhD Thesis. Technical Report CSRI-196, Computer

Systems Research Institute, University of Toronto, To-

ronto, Ontario, Canada, M5S 1A1, 1997.

[12] R. Potter, D. Maulsby. A Test Suite for Programming by

Demonstration. In Watch What I Do: Programming by

Demonstration, 1993, 539-592.

[13] A. Safonov, J. Konstan, J. Carlis. Towards Web Mac-

ros: A Model and a Prototype System for Automating

Common Tasks on the Web. Proc. Conf. Human Fac-

tors and the Web, 1999.

[14] C. Scaffidi, A. Ko, B. Myers, M. Shaw. Dimensions

Characterizing Programming Feature Usage by Informa-

tion Workers. VL/HCC'06: Proc. 2006 IEEE Symp. Vis-

ual Lang. and Human-Centric Computing, 2006, 59-62.

[15] C. Scaffidi, M. Shaw, B. Myers. Games Programs Play:

Obstacles to Data Reuse, 2nd Workshop on End User

Software Engineering, 2006.

[16] A. Sugiura, Y. Koseki. Internet Scrapbook: Automating

Web Browsing Tasks by Demonstration. Proc. 11th Symp.

User Interface Software and Technology, 1998, 9-18.

	Carnegie Mellon University
	Research Showcase @ CMU
	2007

	Scenario-Based Requirements for Web Macro Tools
	Christopher Scaffidi
	Allen Cypher
	Sebastian Elbaum
	Andhy Koesnandar
	Brad Myers

	Microsoft Word - eu_20070922_wmtr.doc

