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Abstract:  Research on machine learning in design has concentrated on the use and ‘
development of techniques that can solve simple well-defined problems. Invariably, this
effort, while important at the early stages of the development of the field, cannot scale
up to address real design problems since al existing techniques are based on simplifying
assumptionsthat do not hold for real design. In particular they do not addressthe dependence
on context and multiple, often conflicting, intereststhat are constitutiveof design. This paper
analyzesthe present situation and criticizes anumber of prevailingviews. Subsequently, the
paper offers an aternative approach whose god is to advance the use of machine learning in
design practice. The approach is partialy integrated into a modeling system called n-dim.
The use of machine learning in n-dim is presented and open research issues are outlined.




1 Introduction

In order to Stuate our argument, we begin with a declaration of our perspective and orientation: we
care about design first and only about computational modelsor toolsin so far asthey support design. In
contragt, theprevalent approach displayed by most of thoseinter ested in machinelearning (ML) in design
isto carefirst about the creation of learning programs and only second, typically with scant attention, to
their utility and usability in real design tasks.

Whether this downplaying of practice is intended or not, it most often results from one crucial
overriding assumption: computational tools can be built that exhibit intelligent behavior, especially
insofar asthey can learn. Thisoverriding assumption unfortunately blindsresearchersinto neglecting
the pragmatics of research[1].

Recently, however, some early optimistic proponents of developing intelligent learning programs
have become skeptical. For example, Wilkes [2] has recently commented upon forty years of work
in Al programming simulated by Turing's famous paper " Calculating Machinery and Intelligence.”
Initially, Wilkes enthusiasm led him to explorevarious simple learning programs, and then to work on
generalized learning programs. His initial hopes wer e fulfilled neither by his own work nor by that of
hiscolleagues. Wilkes summarized hisreflections by suggesting that " we take as a working hypothesis
that intelligent behavior in Turing's sense is outside the range of digital computer” (p. 20). Theam
of computational research with respect to learning should not be to produce learning algorithms that
mimic human lear ning behavior, but rather should beto produce computational environmentsthat fit and
enhance human practice.

Fruitful design practiceis collabor ativeinvolving different per spectives and knowledgefrom diver se
disciplinesrequiring the creation of shared meanings of the designed artifact [3, 4, 5]. Designs are
produced, used, and evaluated in rich and varied environments. Processes are needed to capture the
rich contextual information for application to futuredesigns. The essence of design isthe reconciliation
of multiple disciplines, perspectives, knowledge sources, and modes of legitimacy. Moreover, the
traditional approach of assessing user needs through non-participative approaches such as surveys,
mar keting resear ch, and indirect feed-back from the marketplace viaproduct failure, are insufficient [6].

An example might crystallize these points. Consider the design of the Golden Gate Bridge [7].
In addition to the usual need for physiographical, geological, functional, and technical consideration,
political, demographic, social, and environmental consider ation are needed aswell. Theseintervened at
various stages of the project requiring, for example, the creation of an adminidrative unit, the Golden
Gate Bridge and Highway Digrict, to manage the bridge. It also led to two long litigations about the
power of the digrict to tax, and even to the issuing of a permit from the Department of War (resolved
through palitical supporters). It took almost 16 year s from thefirst proposal (of arather ugly bridge), to
the completion of the congtruction. Thisincluded several failures, one of which wasthe construction of
thefender ringrequiringfour revisonstothedesign. To condense an important design story, the Golden
Gaterequired sgnificant negotiations between different, incommensurate, and often conflicting interests
in order toresult in thedesign of a bridge which today symbolizes a major metropoalis.

Toignoretheproblem of multiplicity of inter estsand concomitant isto missthepoint of all engineering
design practice: that the improvement of design is a pragmatic activity that includes time-to-market,
usability, quality, producability, disposability, and other considerations. In short, to improve design,
design mugt essentially be approached as multi-dimensional and heter ogeneous.

Conseguently, learningin adesign context cannot ber educed to a consider ation of gener ating abstract
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data structures over sets of representations as is done in inductive machine learning, or of compiling
operators as in explanation-based learning. If such computational tools are expected to play arolein
design (though precisely what roleisstill an open question), their utility, inevitably limited and supportive
in nature, hasto beestablished by their applicability in real heter ogeneousdesign tasks. Oneshould keep
in mind that such learning techniques are only a small part of the design process and only create aniche
insofar as designers find the techniques to be usable and useful. Designing requires the resolution of
terminology, misunder standings, and cor r éations of factor s spanning multiple per spectives, all of which
arepervasvein design. Learningin design mugt anticipate, allow for, or incor por ate, thismultiplicity. An
approach that isolateslearning into a fixed set of enumerable techniques begs the question of relevance.

What must be studied is how meaning is shared among multiple disciplines, groups, and group
members. Shared meaning, and itsper sistent form asshared memory [3], always requires car eful mutual
trandation or linking of terms and concepts acr oss groups because members of design groups working
on the same artifact do not share the same experiences, concepts, per spectives, exemplars, methods, or
techniques. Thisproblem is readily demondrated in several case studies [8,4, 5]. Shared memory not
only concer ns sharing among variegated professions but also among members of the same profession.
The need for sharing within a professon arises from the differences in functioning context (as, for
example, among eectrical engineersin academe, in manufacturing plants, in design shops, in systems
integrators, aerospace, etc.). In short, design is not only inescapably concurrent, but also, to use other
currently fashionableterms, collaborative or participatory.

Design isan evolving process in which all the participants continually learn about the problem from
the per spective of their discipline as they interact with other team members from different disciplines.
When a design is repeatedly revised, what is learned also needs to be re-negotiated. Moreover, rapid
changesintechnology often resultsin patternsbecoming obsolete, hencefurther complicatingthelearning
and negotiation processes.

In what follows, we provide a brief tour of the ML landscape, Stuate learning in the design context,
draw out the potential role of ML in such a context, and offer a few notes indicating what an approach
that advances learning in design might look like.

2 An overview of current approachesto machinelearningin design

Most developers of machine learning (ML) techniques operate within certain rigid assumptions about
the nature of the input to ML programs, especially as to the ease with which viable, unambiguous
representations can be created and statically maintained throughout the learning process. Experience,
however, showsthat theseassumptionsarerardy if ever valid in the context of the design situation which
isinherently multi-per spective and heter ogeneous. Each of these multiple interactive per spectives could
potentially have its own representation. The multiplicity of design cannot typically bereduced to the
per spective of a single participant, since any one participant does not fully undersand the problem, nor
can any single participant complete thedesign alone. Hence, one cannot take atechnique effectivefor a
singledesigner and conflate it for the multi-per spectivedesign problem.

Our position is that what is central to both the development of computational design tools and
their subsequent uses in real design situationsis their capacity to support multiple design participants
[9,10,11, 6]. Thisview should not come as a surprise; we take the position that development of ML
toolsfor design is as multi-per spective asisdesign itsdf.
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2.1 Usng ML programs

In what follows, we describe six stepsin the development and use of ML programs based on the tacit
assumptionin prevailingresear chpractice, each of which isfollowed by our comments and criticism.

(1) Formulation of the learningproblem in aparticular design context.

ASSUMPTIONS: Thedesign problem and what needsto belearned arealready under stood.
The formulation of design and learning problems is not difficult and once a formulation
is gpecified, it tends not to change.

COMMENTSCRTTiegM:  Given such assumptions, a learning tool would not be viable
when the user has only a partial or evolving undersanding of the design stuation —
something that isquitecommon, especially in the early phasesof design. Theformulation
of the design problem and what needs to be learned in a given design context hasto be
supported iteratively and continually.

(2) Preparing input for ML programs.

ASSUMPTIONS:  Theintegration of multiple sour ces of information and the processes for
integrating them, e.g., selecting the sour ces, reconciling their terminology, and selecting
theinformation that can best aid learning, insofar asthey areconsidered, areeither ignored
or assumed to require minimal effort

COMMENTSCRITICISM: Interesting and useful design data are not easily identified,
gathered, and integrated into a form that is amenable to being trandated into computer
programs (see also step 3). For one thing because design cases are the products of
multiple per spectives, this multiplicity and its reconciliation must be captured in ther
description. Such a descriptivetask is difficult in itself and becomes even more difficult
when technology advances and a particular reconciliation becomes obsolete.

Moreover, in order for designersto turn past cases into useful sources of information,
[12, 13, 14] these cases have to be described meaningfully relative to the present gate
of design knowledge. Even when this is done, descriptions are always from the point of
view of those recording them and tend to incorporate only a partial under sanding of the
overall design problem. Assumptionscan be easily hidden in design cases. For example,
bridges congructed in the U.S. as compared to those congructed in Britain for similar
sites may be different smply because their respective design sandards give rise to the
tendency to select different Sructural elements for similar functions [IS]. Such factors
may beimplicit in theminds of thosedescribingthese cases and ther efore not be expressed
in their descriptions, let alone be made availablefor learning programs.

(3) Devisingadescriptionschemafor representinginformationto beusedasinputtothelearning
program.

ASSUMPTIONS. Oncecasesarecollected from varioussour ces, aschemafor representing
them must be devised. A list of property-value pairsisthetraditional representation for
most learning programs. It is supposed to capturethe properties used to describe cases,
their values, and their relativeimportance.

COMMENTSCRIinasM:  While fixed formalisms have their value in organizing infor-

mation, they do not solve (with step 2) the problem of encoding the knowledge in the-
schema. In real world design situations, thiscan require a knowledge representation of a-
breadth and depth that cannot be satisfied by the techniques and methods used on toy or
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demongration design problems. Moreover, it istheinteraction between the schema and
the information content that creates the problem of learning bias which is only partially
understood even for trivial artificial cases [16,17].

M oreover, the above assumption presupposesthat repr esentational forms are sufficient to
enconnpass the needs of the design problem. Instead of looking for representations that
are appropriatefor design [18,19], ML in design has shoe-homed design problemsto fit,
apriori,representationalfoims.

(4) Selecting the learningprogram.

ASSUMPTIONS: In principle, the selection of the learning program is based on the
properties of the learning problem created after smplifying the design problem. It is
unnecessary to assess the relevance of this selection by testing the learning program in
the context of the original design problem.

COMMENTSCRITICISM:  In mogt cases, programs are selected because they are readily
available and not because they are actually the best for thetask [20]. In many cases, the
representation " supposedly natural* to the domain, is selected to fit the learning program
available. Even if programs are sdected based on steps 1 to 3, it israre that the reasons
underlying the selection are well articulated or that their validity is reviewed based on a
test of thelearning system in real design situations.

(5) Selecting operational parametersfor the learning program, and testing them.

ASSUMPTIONS  Thesdlection of operational parameersistrivial. Furthermore, parame-
tersareoften built intolear ning programsin an ad hoc manner to improve performanceon
particular smplified learningtasks. Itisassumed that theseparameterscan then generalize
to new learning contexts.

COMMENTSCRITICISM: It iscommon practice amongr esear cher sto use oper ational
parameters to tune the performance of ther learning programs to obtain the best possible
results through extensive experimentation on demongration problems. These selections,
however, donot easily generalizeto new contexts. Thereason isthat different parameters
control different aspects of the program behavior (e.g., the complexity of the schema,
noisy data, or the amount of sear ching allowed) and it is not clear which ones contribute
to good or bad performance. In consequence, the selection of parameters that result in
good performance in a particular learning context remains non-trivial and not clearly
understood.® It isonly recently, and then only in smple cases, that comparative studies
on the selection of operational parameters were performed [21,22].

(6) Analyzingthe results.

ASSUMPTIONS:  Analysis of learning is often one-dimensional. A common dimension
for evaluation of the quality of learning is the reduction of errors in arriving at correct
solutions. Asadirect consequence of thisassumption, it is implicitly assumed that such
analysisissufficient to deal with evaluation from the multipledimensionsthat char acterize
design problems.

COMMENTS/CRITICISM: Analysis of knowledge, whether created by ML or not, is
inher ently multi-dimensional. Content and functional propertiesof thelearned knowledge
must be assessed to provide a more comprehensveview of itsquality [23]. Theselection

'"The selection of parameters, is therefore, itsdf, a full-fledged learning problem.
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of particular evaluation metrics and their interpretationsis reative to the multiplicity of
dimensions and per spectivesthat are embodied in adesign.

The multi-per spective nature of evaluation must be addressad by testing the relevance
of learned knowledge in design practice. It is only through user participation in the
development, use, and evaluation that the multiplicity of perspectives are permitted to
ariseinitsfullest form toevaluatether e evanceof what hasbeen learned. Thisobservation
applieswith even greater forcein the context of ML [9,10,6].

In the accepted, and optimistic, view of ML in design, activities 1-3 are perceived as preparatory
and minor and theremaining activities asrelatively simple. Namely, (1) the creation of a description
schema is graightforward — that is, the consequences of choosing a lear ning bias are unimportant; (2)
themeaning of terminology isclear and iseasily discerned; and (3) learning can becarried out with little
regard totheneed for knowledge and purpose but purédy as a manifestation of the algorithmic nature of
almog all learning programs [24]. Therefore, the difficulties of preparing design input information are
ignored or thought to beunder control. On thebasisof thisassumption, it isexpected that ML techniques
will learn all therest of domain knowledge autonomousdy and even learn how to perform new tasks as
well.

Thisisamisguidedview: learningbiashasmajor importanceand impact on lear ning[25], ter minology
iscritical and non-trivial [26], and knowledge about what isto be learned is crucial. Without addressing
thesefactors, the use of ML isreduced to performing pragmatically irreevant algorithmic tasks.

In the next section, we briefly discuss two types of learning using only selected techniques that
generate new knowledge gructures (e.g., inductive learning techniques), rather than techniques that
improvetheefficiency of problem solving (e.g., explanation-based lear ning techniques). We have chosen
to illustrate the deficiencies of inductive learning methods as an example of how these methods fail to
address the criticisms of learning systems described above. Explanation based learning technlques are
really directed at automated techniquesthemselvesrather than design procedures.

2.2 Inductivelearning

Inductive learning techniques consist of: supervised and unsupervised concept learning. These do not
differentiate between techniquesthat areimplemented differently (e.g., symbolicvs. neural learning), an
issue orthogonal to the functionality of learning viewed at theknowledge level [27]. A brief summary is
provided of each.

Supervised concept learning can only support the task of classifying new objectsinto a set of pre-
defined classes. For most learning programs, design examples are represented by a list of specific
property-valuepairs and are classified into a set of classes that can represent a single design descriptor.
Thetask isto predict thisdesign descriptor based on these specific properties. Toillustrate, Arciszewski,
Mugafa, and Ziarko [28] used a supervised concept learning technique (a descendant of a program
previoudy developed by thethird author) to differentiate between feasible and infeasible designs. They
smplified thedescriptionof artifactsto several propertiesandrestrictedthetask to classifyingartifactsinto
two classes, feasible and infeasible, essentially extracting evaluation, rather than synthesisknowledge.

Unsupervised concept lear ning providesabetter basisfor acquiring synthesisknowledgethan super-
vised concept learning [29]. The principal idea is that design specifications and solutions (i.e., design
descriptions) are correlated; certain combinations of the chosen properties give rise to corresponding
combinations of design descriptionsthat satisfy design specifications. A clustering based on this cor-
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rcgpondence allows the retrieval of appropriate designs given a new specification smilar to an existing
one. Toillustrate, Lu & Chen [30] described an approach for treating multiple propertiesin the design
specification. The representation of artifacts they used was again redricted to a short list of property-
value pairs. The ML techniques they used were CLUSTER and AQLS. In their approach, the design
specifications are clustered into a finite set of classes using unsuper vised lear ning.

The classfication generated by an unsupervised learning program can then be used by a supervised
concept learning program to generate evaluation rules as before. Theresults of supervised learning are
rules that assign the description of a design to theright class, i.e., approximatdy identify the design
specification satisfied by the design solution. Thusused in conjunction with each other, thesetwo types
of lear ning programs allow for the generation of synthesis and evaluation knowledge.

In spite of the seeming power of these programs to learn design knowledge, the smplifications
that underiie both of them (and their examples) are subjea to the same criticisms enumerated earlier
of learning programs. Such simplifications occur in many ML projects in design (including one by a
co-author of thispaper [31,32]). Notethat our criticism about the simplifications made by these projects
is not meant to dismiss their contribution. In fact, they congtitute the foundation that enabled further
under ganding of the issuesinvolved in theuse of ML in design. Our criticism is directed againg those
per ceiving that the stuation today correspondsto that of 10 years ago, or those persisting in believethat
working on smplified problems will lead to sgnificant progress in addressing the critical problems of
learningin design.

23 Multigtrategy learning

To overcomethelimitationsof existing lear ning techniques, machine lear ning resear cher s postulated that
the solution to diversity in learning Stuations requires the use of multiple ML techniques. Thiswould
enable a variety of information available for learning to be taken into account. The use of a multiplicity
of techniques was called multistrategy learning [33].

Theideaof multistrategy learningin not new. Several proposalsincoipor atingknowledgeor heuristics
in selecting machine learning techniques have been presented in the past. Salzberg [34] described
heuristicsto be used in inductive learning such as usualness, conser vatism, ambivalence, and proximity.
While these heuristics may improve the use of ML techniques, they do not resolve the issue of how to
choose among theinfinite ways in which these heuristics can be used. More recently, smilar ideashave
been discussed by Stepp, Whitehall, and Holder [35]. Their view is that intelligent ML techniques can
be improved by embedding fixed inter pretationsof levelsinto an algorithm.

In general, two levelscan beidentified within themultistrategy approach to learning [36]: themacro
and themicro. Themacro level dealswith the use of a collection of lear ning programs each addressng
a sparate learning problem even though they interact. However, it isthe non-trivial task of the user
to assemble these techniques and resolve ther interactions. As was pointed out earlier, ML should be
seen as integrated with a suite of computational tools that support design participants in various tasks
includingthosewhich may assst them in usng ML tools.

Themicrolevel dealswith thedevelopment of lear ning programsthat employ avariety of fine-grained
learning strategiesfor solving a specific learning task. In this case,-the learning program is expected to
automatically select its own srategies without user intervention; an expectation that is questionablein
light of criticism already made.




BRIDGER, an experimental system developed to explor e the extent to which learning can aid in the
creation of design support systems, illustratestheuseof theselevelsin building a learning system. Atthe
macro level, BRIDGER's lear ning task was manually decomposed into two subtasks, learning synthesis
knowledge and learning redesign knowledge, with pre-defined interaction scheme. Each of thesetasks
was assigned to a different learning program [37]. At themicro level* each of these systemsuses several
learning operators to accomplish its subtask. The control over these operators was fixed aswell. The
designs of the macro and micro levels wer e independent of each other.

Inthemultistrategy approach, onceasystem iscongtructed by integratingthemacro and microlevels,
it isexpected to operate completely within the scope originally defined by theuser. Thus, such asystem
doesnot deal with per spectives different from thoseinitially embedded in it, oversmplifyingthedesign
task.

In conclusion, our criticismsof M L research may seem toindicatethat weare against the development
of techniques such asthosebriefly reviewed. On the contrary, our task hereisto stuatethesetechniques
in the context of the practice of design. This means that we do not set our goals for ML researchto be
that of " creating systemsthat passthe Turingtest" but to explorethecritical rolethey can play in design
insofar asit is evolutionary, negotiated, and multi-per spective.

3 ML for design practice: research areasand issues

Thereissignificant potential for ML in design. Thispotential can berealized if the criticismsin Section
2 are addressed. We posit that this can be done by revising therole of ML from an automatic processto
onethat ispart of a design support system aiding humans in performing the tasksrequiredin designing.

In what followswe briefly describelear ning activitiesthat occur in design and discusshow thesecan
guidethe design of better ML programs for design practice.

3.1 Whatislearned in Design?

In order toexploretheroleof ML in design, we need to discussthekindsof thingsthat are learned inthe
design process. Learning activitiescan take several formsand assume several roles.

First, designers learn technical (in most cases analytical) knowledge; in fact, over the years, it
became the primary, if not the sole, function of the professonal education system [38, 39, 40]. For
example, designers learn how to use finite-dement programs for calculating the strength of sructures,
these programs calculate the strength of models of the actual structures, whileleaving the responsibility
of creating the models and interpreting the analysis results to designers. Such modéds creation and
interpretation are the points where multiple per spectives must be negotiated and reconciled. If they are
not, the analysismay beincorrect and subsequent failur es of designsmay occur [41].

Second, in a sudy of learning and design, Cross and Nathenson state: " in the cour se of designing,
designers learn about the problem, its solution, and their rdationship” [42]. Such learning has been
observed in empirical studiesof human designer s[43]. While Crossand Nathenson concer ned themselves
with the singledesigner, the context of actual design generally has multiple design participantslearning
about ther part in the problem and their peers’ per spectives; additionally, since all participants modify
their under sanding, thetar get knowledge about the problem is never gatic.
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Third, designers assimilate experiences for use in future design problems. These experiences are
what differentiate expert and novice designers [44]. Designers mugt always be aware that new design
dtuationsprevent the" as-is' application of previousexperiences. Designersneed to learn thesimilarities
aswell asthediffer ences between current and previouspr oblemsand adapt old solutionstonew situations.
Therearecurrently no algorithmic solutionsto thisproblem. What isneeded is research that recordsand
evaluates how current automated techniquescan support such learning.

Fourth, from user feedback or from the failures of artifacts, designers learn about the viability of
certain design beliefs,judgments, decisions, or practicesin certain Stuations[45,12,14]. Feedback from
users (customers) about design arrives after a product isreleased to themarket  When a product fails,
designers attempt to analyze the reasons underlying the failure, sometimes, for example, to find them
rooted in smpleinattention to customers concerns[46].

One of the central roles of ML techniques should be to amplify the ability of designersto perform
thesefour learning activities[47]. Further, thethird and fourth points above, about theroleof learningin
design, suggest the need for developing data or text bases of design cases and information management
toolsfor maintaining, sear ching, and learning from, these.

32 How can we design better ML programs?

Thedesign of "good" ML programs suited even for amplified design tasks is complex. For example,
the design of decision treesthat are optimal in the number of testsis NP-complete [48]; furthermore, the
wealth of information in numerous reviews on the design of decision trees suggeststhat many different
approaches are being and need to be tried. We, as designers of ML programs, cannot know in advance
how to build ML programs because we are still learning about what the problem is. While we collect
infor mation about relevant disciplines, wehavenot even sarted to accumulate experiencesfrom past uses,
nor have we accumulated meaningful users’ feedback. The wealth of information about ML programs,
their testing, and experiences using them, must be documented and managed effectively. Therefore, our
approach to thedesign of ML toolsrelies on the following premises:

(1) Thestudy of design must accompany the development of ML tools for design; they need to
beinterlinked.

(2) ML toolsmug bedeveloped in a context in which infor mation about the successand failure
of previousdesign practicesis accessible from multiple points of view. Keepingthe history
of tools development in an accessible fonn, for example, can be as beneficial as keeping
design rationales. Themoreorganized such repositoriesarethebetter. Such an organization
requiresa framework similar to the one we outlinein Section 4.

(3) ML toolsmust betested in actual design settings.

Wenext describeaparticular approach that facilitatesaddressngtheissuesraised in thissection. We
defer the argument that this approach can addressthecriticism raised in Section 2 to Section 4.32.

Notethat althoughwewill detail aspecificimplemented system, it isnot theparticular implementation
that isthe focus, rather, the critical characterigtic is the approach thai admits, facilitates, and records
arbitrary and evolutionary modificationsin response to actual practice.
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4 ft-dim: Information modeling and creation of shared memory

The mativation for developing n-dim (n-dimensional information modeling) emer ges from the need to
addressissuesobserved in actual design practice. Aslearningisintegral to design, n-dim must provide
facilities for learning. In addition, since our approach involves the design of ML programs, n-dim
becomes a candidate for aidingin this activity.

41 Anoveview of n-dim

The space of objectsin n-dim is conceptually flat; that is, objects do not contain other objects, per se.
Ingtead, multiple structures can be imposed on thisflat space by means of models, which are comprised
of links, or relationshipsbetween obj ects (modelsthemsalvesbeing objects). 1nthisway, the same object
may participatein many models. '

n-dim isimplemented in a prototype-based object system called BOS, the Basic Object System [49].
Since it is prototype-based, there are no classes, per se; rather, any object is a potential prototype for
another object For more information on prototype-based object systems, see [SO].

Thereis a basic cleavage in the space of n-dim objects between atomtv and structured objects. As
the name indicates, atomic objects cannot be broken down any further, e.g. an integer, alink, apiece of
text, an image, an audio bitstream, etc. One could think of atomic objects as things that have values of

2
some son.

Theprimary form of structured object isthemodel. A model isa set of links, which are, themselves,
atomic objects. Thevalueof alink object isa 3-tuple, <source; target, type> wheretypeismerely alabel
for thelink; link typesare given their meaning(s) by themodeling language(s) in which they occur > All
objects, whether structured or not, arecongructed using another mode acting astheir modelinglanguage.
Topically, modeling languages specify what objects can bein amode and what relationsthey can have
to one ancther. Such specificationscan be thought of as grammars.

Threemain features of n-dim form asort of critical mass, in which the wholeis greater than the sum
of the parts.

(1) Flat Space captures the fact that an individual object can be situated in multiple contexts.
Thereisaspecial link called apar t link, which iscanonically represented asabox inside of
abox; i.e., objects"ingde' models. All other links are shown asdirected and labeled lines.
It must be stressed that due to the flat space of n-dim, a modd does not (in any physical
sense) contain objects that appear insideit. Also, things can be found in the contexts) in
which they areused (referred to, referenced by, placed inréationshipto other things, etc.).
Hence, rich contextscan be created with virtually zero overhead. Also, thingscan be found
in the contexts) in which they are used (referred to, referenced by, placed inreationshipto
other things, etc.).

(2) Generalized Modeling allowspeopleto operate on thingsand kindsof thingsinter changeably,

*The creation of new atomic object types generally requires some programming, since new types of values often indicate
new types of fundamental operations.

3t is quite possible to have the same link type mean totally different thingsin different contexts; weview the meaning of
linksassomething to benegotiated by user sof the system over time. Operationalizing the semanticsof par ticul ar ~terpretations
of links is consitler ed an open-ended process; n-dim provides mechanismsfor doing so, but doesnot requireit to bedonein
order to usealink type.
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and move fredly from one level of abdraction to the other. Every unpublished (see item
3) modd is mutable, and can have operations and attributes defined on it as an individual
without affecting any other model. This means that models (information structures) can
serve as prototypes: potential ancestors of other models* Any mode can serve as the
gdarting point for another model, in the sense that it can be copied and the copy modified
in ways independent of the original (not as with classinstance relationship). Models can
also serveasmodeling languages: schemasfor sructuringinformation. If, for instance, one
wereto ask n-dim to use an I nteger object® with the value 1 as a modeling language,
onewould get an object inthelanguage 1, which could only have asitsvaluethenumber 1.
Thisgrammar has only one legal sentence. Modeling languages are represented as models
themsdlves (i.e., asthingsto be designed, negotiated, etc.). In thissense, modelscan act as
typesfor thecreation of other models. In afundamental way, thenation of prototypesismore
basicthan of modeling language, in that one modeling language can serve as a prototypefor
another moddling language.

(3) Publishingisamechanism for making models for mally exchangeable and persstent follow-
ingthelibrary as a metaphor. Hence, traces of the evolution of information and its sructure
over time can be found in the growing repostory of published objects.

One can map a gructure of an n-dim modd onto multipleprojections, which discriminate between
possible views of that sructure. Any projection can be mapped onto multiple displays, which fix the
characteristics of a projection vis a vis its rendering.® Projections are models, as are renderings. The
system mer dy inter prets these model's appropriately when needed.

M odding languages can also specify semantic, as well as syntactic, infor mation about models. One
way thiscan bedoneistoincluderulesin modeinglanguages. Therearetwo broad classesof rules. rules
on gructure and ruleson content If arul€e's predicate takes as arguments only objectsthat appear inthe
mode itsdf, and are not the contents of parts of the modd, then it isa rule on sructure, e.g., it operates
only on the visible sructure of the model. For example, arulethat limited how many of a certain kind of
object could appear in amodd would bearuleon sructure. If arul€spredicatetakesany argumentsthat
are contents of the parts of the model, then the ruleis a rule on content If one were creating a mode to
beused as atask-assgnment modeling language, one might want arulewhich restricted thetotal number
of hours of work assigned to an individual to be lessthan 40. Such a rule would not operate on tasks
assigned to individualsbut on the hours of work contained as part of the mode for individuals.

Toillustratethe above concepts, consider themode called BuildingJPart-Hierarchy inFigure
1. Themodd'sdisplay is used to illustrate several of /i-dim's facilities. Three menus and one overlay
aredisplayed in addition tothemodd (thelatter in reversed video). Theleft menu appearswhen clicking
on theword n-dim in the left hand side of the top banner; it can be used to obtain help about n-dim,
publish objects, aswell asto copy and save abjects. The middle overlay provides information about the
model and appears when clicking on the modd's name in the middle-top banner. The data displayed
includethe unique mode! identifier, title, language used to create themode, the creator and thetimethe
model was created. Theleft menusincludethe facilitiesfor creating the mode in addition to searching
for objects; they appear when clicking on themodeling languagename in theright-top banner. Whenthe
Create... isclicked, themostrightmenu appears, allowingto create new objectsthat areper mitted by
the Part modding language. The modd itself containsfive part objectslinked with either sub-part

*Wewill usetheterms” instance" and " prototype’ somewhat interchangeably in what follows, since, in a prototype-based
system, the two conceptscoincide; the different connotations are useful in distinguishing various usesof a model, however.

°Notethat I nteger objectsareatomic .

® A rendering of amodel can be something like awindow presented to the user for interaction, a printed file, etc.
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or alternative) linksin additionto atext object containing notes about this modd.
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Figure 1. A smplen-dim model

We now discuss how n-dim supportsthe four learning activitiesintroduced in Section 3.1.

42 Coding design knowledge

This section addresses the firg learning activity in section 3.1. Design knowledge includes formd and
informal components.” Figure 2 consisting of four separate model sshows how n-dim facilitatesthecoding
of knowledge of both types.® Thetop-left model, writteninthe Expressi on modeling language, shows
the relationship between the siffness matrix of a structure, its displacements, and the externd forces
actingonthestructure. Thismode can be used to cal culatethe displacements giventheexternd forcesor
the externa forces given displacements. The smdl overlay window, displaysthe modd Stiffness as
aframe with dotsdescribing: itsvaue, procedure of calculation, as well as the assumptionsunderlying
the modeling of the structurd dements as finite dements. The assumptions provide the context for
assessing the viability of the modding. Note that the Stiffness object is written in the Operand
modeling language, which was prototyped using the Frame modeling language; it requiresthat thethree
dotsdisplayed will be provided for each operand in the Ex pressi on modeling language.

The top-right modd, cdled Building-Part_Hierarchy?2 written in the Part modding lan-
guage, shows an elaborated verson of the the part/sub-part hierarchy that appeared in Figure 1. The
lower-left modd, cdled Denver-Building-1ssues and written in the rl Bl S modeling language
(i.e., arecursivevariant of issue-based language [ S3]), describes issuesrelated to the design of abuilding

"Elsewher ewe havedemonstrated that even the most "forma** component involves, and is based on, informal components
[511.

'The examples below contain brief data from analysis of protocol interviews of engineers and architects collected in a
knowledge acquisition study of tall building design conducted by Steven Meyer and Steven Fenves[52]. We thank them for
allowing us accessto theseprotocols.
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Figure 2: Knowledge of structural design

in Denver. Some of the objects are primitive issues while the others are rIB1S models themselves,
demonstrating how models can be embedded in other models. Finaly, the lower-right model, called
Building.Cases and written in the Case language, depicts several cases of building designs, includ-
ing the Denver-Building which includes the aforementioned issues.

One may ask what is the significance of this knowledge coding for ML? The answer comes from
the bi-directional relationship between contextual infoimation and learning. First, information situated
in arich context can focus learning on missing information that is needed in that design context and
might belearned. Second, information always iscreated, modified, and evolvesby learning, for instance,
the Building-Part.Hierarchy?2 represents part of the product of learning from interview data of
designers.

43 Learningwith atoolbox of ML programs

This section addresses the second and third learning activitiesin section 3.1. Learning design knowledge
has to be responsive to the multiplicity of perspectives and the volume of information. As discussed in
Section 2.1. the preval ent way of handling these difficulties, onewe disagreewith, reducesthe multiplicity
andthe volume at the source. All information and perspectives, are analyzed, organized, and represented
before starting to develop a design; no new perspectives are permitted once the initial representationis
determined, and therefore, no conflicts can arise.
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I'n contragt, our approach supports compressing the volume of information in context and according
to one or anaother perspective. We will use ML and natural language processing techniquesin order to
facilitate the compression of information into a usable form only in context and according to a selected
per spective.

The type of data in engineering databases and the diversity of potential designers background
knowledgeand pr efer ences, requireadopting an inter active approach to learning [ 26,10]. Designersand
computerswill beinextricably involved in thelear ning process. Our approach aimsto providedesigners
with facilitiestomodd thelear ning problem and itssolution in an incremental manner; it differsfrom the
development of learning toolboxes. Thelatter are limited to providing a framework for interacting and
managing a collection of learning tools by providing formalisms that facilitate transfer of results from
one system to ancther [54]. Beingfixed apriori* such formalismsrestrictthetechniquesavailabletothe
designer: In contragt, our approach doesnot restrict thekind of techniquesused or theway they areused.

We view learning as any activity of "information growth.” For example, asking a question and
receiving an answer is learning. In this sense, we consder even communication and search facilities
learning tools. In fact, n-dim provides both facilities. Nevertheless, we now focus on the use of ML
techniques to support the second and third learning activities discussed in Section 3.1. In this focus,
we mainly describe one particular learning mechanism that provides natural language processing for
n-dim. It will be used to demongrate the kind of flexible integration of ML programsin n-dim and the
functionality expected from such integration.

4 J.1 Natural language processing

One of the lear ning capabilities being integrated into n-dim is natural language processing (NLP). NLP
enables the discovery of terminological patterns implicit in large text corpora. The discovered patterns
can act as a basis for building multiple conceptual networksin various sub-domains. The example that
follows istaken from the domain of architectural and engineering design of tall buildings.

Theinformation sructuring techniques described will allow different participantson the samedesign
team to: (1) retrieve efficiently information relevant to their current tasks and decisions, (2) support
fagt introduction of new team members to on-going projects, and (3) support the construction of shared
meaning vialinks among conceptual networks as specified and negotiated by the participants[3].

To illugrate this capability, consider the model NLP Run created in the Execution modeling
language and displayed in Figure 3. It isan example of how n-dim can facilitatethe use of NL P and how
NL P can help establish shared vocabulary and meaning for various activities. Applicability to activities
such as indexing and building multi-per spectiver epresentationsof artifacts is shown. Applicability to
other activities such as query formation and knowledge acquisition, also facilitated by use of NLP, is
discussed in [55].

Themode shown in Figure 3 contains a sequence of steps, not all automated, that lead from text to
various kinds of NL P assisted analysis and information structuring. Everything that is shown is either
implemented or in various stages of implementation in n-dim.

The process shown garts with marking up a file containing text (Building-Protocols) that
is then tagged, parsed, analyzed, and sructured by NLP tools (Syntactic-Tagger, NL-Parser,
Term-Clusterer,; and Concept-Modeler). These contribute to the building of an n-dim model.
TheFonnatted-Protocols mode containstranscriptionsof interviewsthat are marked for later in-
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Figure 3: Integrating NLP in n-dim

dexing via operations available in the Text.Marker. A small section of one of the transcriptions,
Interview2.Parti, appears at the lower part of the figure The Building-Terminology
mode contains syntactic well-formed phrases that represent meaningful chunks of information in
the building domain. These chunks have indices into the original document according to the pre-
vious text mark-up operations. Information from Building.Terminology and an object con-
taining synonym information are used by the Term.Clusterer to produce ancther /t-dim objea
called Terminological .Clusters. The Synonyms object is annotated by an r1BIS modéd
(Synonyms-Discussion)representingwhy termswer econsider ed synonymous. TheT er minological
.Cluster s arefurther gructured viathe use of concept modeling tools (Concept-M odeler) to pro-
duce a concept network which still maintains indexing links back to the original document. Concepts
can therefore beviewed in the context in which they occur.

Figure 4 displaysa very small portion of the Ter minological .Cluster s object in a particular
rendering. Theposition from left-to-right indicatesthe reative importance of theterms asthey appear in
theprotocolsanalyzed. Thefigureshowstermsfrom thelargest clustersand indicatessome redationships
amongthem. Theserdationshipsneed to beevaluated, refined, and labeled through negotiation by design
participants. Theteem b uildinghasseveral sub-terms. Thesecan be organized accordingto categories
decided on by the design participants. For example, thebuilding sub-termscan be organized along
the following lines: particular building (e.g., hancock and empire state), properties of building
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Figure4: Termsdiscovered by NLP

(e.g., form and width)®, and types of buildings (e.g., of fice and apartment).

The Concept-Modeler provides tools for manipulating the Terminological .Cluster s*
including their presentation according to various per spectives and for using the indexing linksto access
contexts in the original document Besides viewing terms in context, the indexing links providethe
basis for iterative processing of documents* such as resolving the referents of vague words like 'thing'*
dividingthe document into smaller or larger chunks® mapping synonymouswor ds into an agreed upon
singleteem* and correctingerrors.

Termscreated by the NLP analysiscan serve aslabelsfor other n-dim models. They can also beused
in creating various sructured representations of domain concepts from a single discipline or different
disciplines. Theserepresentations can be used as a basdine for negotiating shared meaning and ther eby
facilitate communication and interdisciplinary learning. The models described and their associated
facilities are embedded in modeling languages such as Execution. These languages provide for
interactive learning in arich context.

While NLP tools provide facilities for capturing textual context* n-dim*s modeling facilities also
allow for capturing other forms of context such as drawings® photographs® audio* and video. Future
advancesin various fields may allow the extraction of infor mation from theseforms aswell.

I n addition* the NL P techniquesdescribed abovearenot theonly kind of techniquesthat can facilitate
the establishment of consensusover terms. Other tools* such asKS30 [56]* that are developed to beused
in multi-expert elicitation processt can beused aswell. In fact, such toolscan be integrated into n-dim.

4,3.2 Contextualized useof ML

ML techniques can also be integrated into n-dim in a manner ‘similar to the NLP programs* viathe
Execution modeling language. Figure5 showsthemodel ML_Run which enable usersto managethe

*Thenotation™:" standsfor apreposition.
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use of different ML programs. We will use thismodd to illustrate how n-dim improves on present use
of ML techniquesby addressingthe issuesraised in Section 2.1.

n-dim Execution

D8Sign_CDnt8xt j.apt. = Schema_F¥eparation

M‘
Input_Rrparation Description_Schema
N
ougput ingput

INput p————iORUL g ML_Selection

+ \ ouf.":ut

Resultsjtoalysis -4—jjapjtf——Results «g———utpuLt:

Figure5: Integration of a ML program

We addressthefirg threeissuesraised in Section 2.1 together

(1) formulation of the learning problem in particular design contexts,

(2) preparinginput for ML programs, and

(3) devisingadescription schemafor representinginformation to beused asinput tothelearning
program.
In response to these issues, we have provided, in the previous section, an example of
how n-dim enables a user to deal with changing context by the interactive use of NLP
programs, n-dim enablesthe use of ML techniquesin contextsthat may change over time
(Design-Context in Figure5). Oncevarious portionsof the context of a design problem
aremodeled in n-dim, ML techniques can make use of thiscontext. Asthe context changes,
the changes are accounted for in the mode.
Thelnput-Preparation and Schema-Pr epar ation contain operationsfor mapping
items in the context into sructured input suitable for ML programs. A mapping can be
elaborated by r1 Bl S models that record the assumptions behind the mapping operations
and their origin in thedesign context
Creating the modeling languages for interactive use of NLP programs to support learning
was relatively easy since: (1) the NLP programs accept undructured text as ther input;
and (2) at least some important aspects of a new design context are reflected smply by the
availability of new texts, such as available project memos, manuals, reports, etc., aswell as
literaturefrom disciplinesrdevant to the design project.
The creation of languages for interactive learning of most ML programs is more difficult
than the one needed for NLP programs since they require sructured data, such as lists of
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property-value pairs, astheir input Theinput isnot simply mariced-up text, but a mapping
from new design contexts into the sructured input required by the ML program. By in
large, the operations provided by such languages are manual, rather than automatic. These
languages need to evolve in response to better understanding of design problems and the
mapping oper ations.

Thenext two issuesraised in Section 2.1 are handled separately.

(4) Selectingthelearning program.
Gradually, we intend to build models of uses of different learning techniques (included
in the model M L-Selection). Initially, a model can be specified according to ba-
sicdimensions such as: supervised/unsupervised, incremental/non-incremental, smilarity-
based/explanation-based learning. Later, more detailed characteristics of the methods em-
ployed such as: divide-and-conquer/coveringcan beemployed (seeFigure6).'® New models
will be gradually created that incor porate the specific context of using these techniques.
Such modelscan provideinformation for selecting lear ning programsin particular situations.
The selection process, including its pro and con arguments, can be recorded by using the
riBI'S modeling language. When experience about the use of particular ML program
grows, the reasons documented in the selection model, can bereflected upon and corrected.

(5) Selecting operational parameters for the learning program, and testing them.
This activity is part of the ML-Program mode. The problem of selecting operational
parameters for learning programs can be addressed in a way similar to addressing theissue
of program selection. Each program can haveitsown model evaluating different usesof the
program in different design contexts, different oper ational parameters, and different feedback
on performance. These evaluations can be used to select operational parameters for new
lear ning problems.

Addressngthelast issue,

(6) analyzing the results, is a culmination of addressng the first five. Theresults of learning
programs always refer to the design context and to the choices made in the five preceding
steps. It isthese analyzesthat closetheloop and allow experienceto accumulate and better
inform future usesof ML programs.

4.4 Validation—learning from feedback

Thissection addressesthefourth learning activity in Section 3.1. Webelieve that design practice can be
enhanced by the use of computer toolsthat help professionalsin ther task. The development of these
toolsmust bedonein collabor ation with the professionalswho are expected to usethetools[57,58,59].
Our initial conjecture, based on the sudy of many approaches, isthat improved practice can be achieved
in thismanner [6, 60]. The participation of designers means that the tools must be flexible enough to
accommodate their needs and theregulations of their organization much in the same way as n-dim is
able to accommodate the needs of the ML techniques expected to be integrated with it. We propose
that a sgnificant part of this flexibility is achieved by providing designers with an ability to adapt their
computing environment totheir needs. The aforementioned flexible modeling featur e of n-dim, provides

" Most of theobjectsin Figure6, (L e, AUTOCLASS BRIDGER, CN2, ECOBWEB, EPROTOS FOCL, FOIL, IBL, IND-famtty,
andNEW | D) axenot merely " empty" boxes, but containinformation about thepr ogramsincludingdocumentations, sour cecode,
datafilesandresults.
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thisfunctionality to designers.

Thispractical goal, is also the key to validation of computer toolsaimed at improving practice. The
development of toolsin collabor ation with practitionersmeansthat practitioner susethetoolsand provide
input asto how it can be further improved. This approach providesthe basis for validation of computer
toolsin the context of practice.

/i-dim contains some facilities to collect and oiganize feedback from users. Modeling languages
such astherIBIS can be used torecord and daborate issues raised by users. Feedback in the form
of text can be analyzed by the NL P procedure and subsequently, models that oiganize this information
can be created. Improvementsin n-dim can then refer directly to issues and feedback models, thereby
maintaining their rationale and preventingrecurringmistakes.
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5 Summary and Futurework

Sarting with a critical examination of the received view of developing and using ML techniques in
(computational models of) design, we arrived at describing an approach that is aimed at supporting
design practice. Thisapproach relieson several principles:

(1) Thegoal of theresearch isto advance design practice.

(2) Design is multi-faceted and heter ogeneous, therefore, any technique that supports design
must address these properties. Most computational techniques are limited to a smple
subtask of design or one that operates on a fixed formalized model of the designed artifact.

(3) The creation of shared meaning and the management of shared memory is fundamental to
the success of design. It isthrough this evolving body of information that successful design
is possible.

(4) Flexiblemaodeling facilitiescan aid in the creation, management, and use of shared memory.
These facilities can be significantly enhanced by the creation of indexing mechanisms that
usethe evolving conceptual networks of the particular domain.

Based on these principles we propose an approach for using machine learning in design. Fird,
research must be built on top of a flexible modeling facility to allow for impacting practice. Second,
the ressarch must address the development of a toolbox of techniques that can be used by designers
depending on their particular learning needs. Third, research on flexible modeling and ML mugt be
performed in paralld.

We described an implemented system called n-dim that provides the integration framework for
our approach and illugtrated how it can support four primary learning activities in design. We also
discussed how this approach circumvents critical problems faced by current ML approaches in design,
but nevertheless, createsitsown research agenda.

Our proposed approach addressesthecriticism raised in section 2 but creates anew set of issuesthat
must be addressed for attaining its Sated goal: improved use of ML programsin design practice. Two
issues arecritical to our approach: usability and validity in practice. Theseissuesopen a host of other
issuesto be addressed.

The issue of usability means that the activities described in the description of n-dim must be easy
enough to execute so as not to discour age potential users. The activitiesinclude:

(1) The creation of modeling languages.
A critical part of the activitiesdiscussed in Section 4 involved creating modeling languages
with the functionality required to carry out interactive learning in context. Currently, such
languages are created by programming. Whilethisis sufficient for the initial development
and it also provides a basic set of languagesthat can be used by any n-dim user, it cannot
serve as amode of usefor design practitioners.
Thecritical issueis not having the ability to create languages with fancy syntax and func-
tionality, but the provision of facilitiesto create such languages without programming, that
is, viamodeling: thenatura way of doingthingsin n-dim.

(2) Thepresentation of learnedinformation.
Most ML programsarelimitedintheway they present lear ned infor mation, themost common
waysbeingdecision trees, rules, or, even lesscomprehensble, weightsin aneural network.-
L ear ning from the enor mous amount of information expected to accumulatein using n-dim
requires additional ways of inspectinginformation. We proposeto do it by creating models
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on top of learned information and providing multiple ways of viewing these models. This
separation of content and presentation of models is in the process of being integrated into
the next version of n-dim.
" (3) Thelearning from unstructured data.

The data presented in n-dim models are ungructured. While at some level, one sees
objectsand linkswith labels, these objects and linkscan represent arbitrary complex n-dim
information, including text, figures, and voice bitsreams. The use of thisinformation goes
beyond concepts such as multistrategy learning. We address such learning by providing
manual mappings from ungructured to sructured data but, by in large, thisitem remains
completely open toresear chinitiatives.

Theissueof'validitymeansthat thebenefitsfrom usingML techniquesin our approach must outweigh
the benefits currently available from the use of ML. Furthermore, we would like to demongrate that it
improvesdesign practice. Therefore, addressing usability becomes mandatory for addressingthevalidity
issue. Two of the issuesredated to validity are

(1) Howdowe accumulateinformation on learning experiences?
Since we would like to impact practice, feedback must be collected from practitioners.
Experiencewill becollected directly through practitionerscreating models as part and par cdl
of doingdesign. Thisinformation must then be analyzed which iswhere ML techniquesare
expected to play asignificant role.
One conceptual issue to be addressed is the development of methods that learn from semi-
gructured information stored in relational databases, where n-dim mode gructures are
sored. It seems possible that this process will bootgtrap itsdlf: the more the approach is
used, theeasier it will becometo design and integrate thesetechniques.
In addition, the deployment of computer programs for their evaluation and further develop-
ment — technology trandfer in a broad sense — presents a critical problem which wetry to
addressthrough participatory design [6].

(2) Creation of shared memory.
Implicit in the use of ML techniques by different practitioners is the creation of a shared
memory for organizations [3]. We conjecture that such memory can be created by the
approach outlined in thispaper, and that subsequently, thisevolvingbody of shared memory
can improve design practice. In keeping with our general approach, this conjecture must
itself be tested constantly to further guide the development of our approach.
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