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Abstract

In any classical first-order theory that proves the existence of at least
two elements, one can eliminate definitions with a polynomial bound on
the increase in proof length. In any classical first-order theory strong
enough to code finite functions, including sequential theories, one can
also eliminate Skolem functions with a polynomial bound on the increase
in proof length.

1 Introduction

When working with a first-order theory, it is often convenient to use defini-
tions. That is, if ¢(&) is a first-order formula with the free variables shown, one
can introduce a new relation symbol R to abbreviate ¢, with defining axiom
VZ (R(Z) < ¢(&)). Of course, this definition can later be eliminated from a
proof, simply by replacing every instance of R by ¢.

But suppose the proof involves nested definitions, with a sequence of rela-
tion symbols Ry, ..., Ry abbreviating formulae ¢y, ..., yx, where each ; may
have multiple occurrences of Ry, ..., R;—1. In that case, the naive elimination
procedure described above can yield an exponential increase in the length of the
proof.

In Section 2, I show that if the underlying theory proves that there are
at least two elements in the universe, a more careful translation allows one to
eliminate the new definitions with at most a polynomial increase in length. A
similar trick has been used by Solovay in simulating iterated definitions effi-
ciently, as discussed in [10, Section 3.2]. The essence of Section 2 is therefore
the observation that the construction works more generally. As a corollary, the
question as to whether there is an efficient means of eliminating definitions from
proofs in pure first-order logic is equivalent to the corresponding question for
propositional logic.

*Partially supported by NSF grant DMS 0070600. This is a not a final version; it has been
submitted for publication.



It is also sometimes convenient, in a first-order setting, to introduce Skolem
functions. If ¢(Z,y) is any formula with the free variables shown and f is a new
function symbol, one can add an axiom, VZ,y (¢(Z,y) = ¢(Z, f(F)), asserting,
in words, “if any y satisfies (&, y), f(Z) does.” There is an easy model-theoretic
proof of the fact that this does not alter the set of consequences in the original
language: any first-order model of the original theory can be expanded to a
model where f denotes such a choice function.

Explicit syntactic proofs of this fact are, however, somewhat more difficult.
The first such proof appears in Hilbert and Bernays’ Grundlagen der Mathe-
matik [8], using the epsilon substitution method; a proof by Machara using cut-
elimination is discussed in [13]; and another proof due to Shoenfield is found in
[12] (see also the discussion in [11]). All these procedures are, unfortunately,
worse than exponential.

In Section 3, I show that if the underlying theory allows for a modicum
of coding, one can also eliminate Skolem functions with at most a polynomial
increase in proof length. The idea is to use an internal, iterated forcing argument
to add the new functions. Similar forcing arguments can be found in [1, 2, 3,
4, 5]. In the case at hand, the forcing conditions are finite approximations to
the Skolem functions being added, so the constraint on the underlying theory
is that it provides an adequate representation of finite functions. The specific
requirements are spelled out below; any sequential theory of arithmetic meets
these criteria.

In Section 4, I discuss some questions that remain.

I would like to thank Samuel Buss for advice and suggestions.

2 Eliminating definitions

If d is a proof of a sentence 9 from a set of axioms I in first-order logic, then
|d| denotes the length of d, according to the number of symbols. Krajicek [9]
and Pudlék [10] provide good general references on the lengths of proofs.

In this section and the next I will show that in certain circumstances one can
eliminate definitions and/or Skolem functions from a proof d in such a way that
the length of the resulting proof is bounded by a polynomial in |d|. In doing
so, I will not make an effort to compute the exact polynomial; rather, I will
repeatedly appeal to the fact that the set of polynomials in |d| is closed under
addition, multiplication, and composition. It will be clear from the proofs that
in fact all the translations considered can be carried out in polynomial time.

By “first-order logic,” I mean first-order logic with equality, in any of the
standard natural deduction calculi, Hilbert-style calculi, or sequent calculi with
cut described in [14]. By a theorem due to Krajitek, up to polynomial-time
equivalence it does not matter whether we take proofs to be given by trees or
sequences of lines (see [10, Section 4], or [9, Section 4.5] for the propositional
case). In fact, the proof of Theorem 2.2 only assumes that there is a represen-
tation of ¢ — % which uses ¢ only once. If < is assumed to be one of the basic
connectives, one can simplify the central argument somewhat; but the proof



below works in either case.

I will use the following conventions: # and ¢ denote sequences of variables
and terms, respectively, and typically their lengths can be inferred from the
context. Introducing a formula as ¢(Z) only serves to distinguish the sequence
of variables Z, after which go(f) denotes the result of simultaneously substituting
t for #, renaming bound variables in ¢ if necessary.

Definition 2.1 Let T be a set of first-order sentences in a language L. Say that
I' has an efficient elimination of definitions if there is a polynomial p(x) such
that the following holds: whenever Ry(Zy), ..., Re(Zx) are new relation symbols
of various arities, @o(Zo),...,pr(Zr) are formulae such that each ; is in the
language LU {Ry,...,R;_1}, and d is a proof of a formula ¢ in L from

I'U {VZo (Ro(Zo) ¢ wo(Z0)), - .-, Y&k (Ri(Zk) © wo(x))},
then there is a proof d' of ¢ from T using only formulae in L, with |d'| < p(|d|).

This definition is monotone in I': if I' has an efficient elimination of defini-
tions and IV D I then, by the deduction theorem, I'' has an efficient elimination
of definitions as well. The main theorem in this section is the following:

Theorem 2.2 {3z,y (z # y)} has an efficient elimination of definitions.

Proof. The proof will occupy most of this section. Let Ry, ..., Rg, o, - - -, @k, ¥,
and d be as in the definition. We can assume that each of the defining axioms
occurs at least once in the proof, since if the axiom for R; does not occur in
- the proof we can replace each occurrence of R; by an arbitrary sentence, say
Vz (z = z). As aresult, we can assume that k and |¢o|, . .., || are all less than
|d|, and so it suffices to bound the length of the final proof by a polynomial in
these values.

Let a and b be new constant symbols. It suffices to find a short (i.e. polyno-
mially bounded) proof of ¢ from {a # b}. For, if we can find a short proof of
a # b — 1, we can replace a and b by variables and obtain a short proof of 9
from Jz,y (z # y).

First, note that without loss of generality we can assume that all the defini-
tions are given by prenex formulae. If the propositional connectives are among
{A,V,—, =} this is so because any formula involving these connectives can be
proved equivalent to a prenex formula, with a proof whose length is bounded by
a polynomial in the length of the original formula. On the other hand, if, say, <+
is a propositional connective, one can introduce additional definitions to abbre-
viate subformulae and ensure that all the definitions are prenex. Alternatively,
one can first use definitions to eliminate +» as in the proof of Corollary 2.5, and
then proceed as before.

In the following argument, if § is a formula with a relation symbol R(%)
and 7(7) is a formula with the free variables shown, it will be convenient to
write 8[n/R] for the result of replacing each atomic formula R(t) by n(¢). At
other times, I will write 8[R(t1,...,%,)] to indicate that an atomic formula



R(t1,...,tm) occurs in the quantifier-free formula 6; thereafter, 8[n] denotes
the result of replacing R(t1,...,t,) by 7. While this notation is potentially
problematic, the intention should always be clear from the context.

For notational convenience, we may assume that all of the relations R; have

the same arity. We will need a way of representing the numbers 0, ..., k. Let
20, - - -, 2 be a sequence of variables, write 0 for the sequence a,b,b,b,..., 1 for
the sequence b,a,b,b, ..., and, more generally, 5 for the sequence of length k+1

that has an o in the jth position and b’s elsewhere.

Our strategy will be to define a sequence of formulae ¢ (2, u, ©), . . . Pr (2, u, @),
with length bounded by a polynomial in |d|, such that for each i < k the fol-
lowing equivalences are all provable from a # b:

b @i(j’aaf) « (Abi—l (5} a, f)) for ea’Chj <1

@1(37 b, f) & ‘_'(151'—1(.7: a, f)? for each j <1
Vi ((ﬁz(i, a, f) ~ (pz(f)[gﬁz_l (6, a, f)/Ro, ey @i—l(i - 1, a, .’E)/Rl_l])
VZ ((ﬁz(z, b, .’E) L nd 'ﬂ(pi(f)[(,ﬁi_l (6, a, Zf)/Ro, - 7§5i—1(i —1,a, f)/Rl_l])

In other words, for each i and j < i, ¢;(j,a,%) is an efficient representation
of R;, and (;(j,b,%) is an efficient representation of —R;. The idea is to use
quantifiers wisely so that only a single instance of ¢; is used in the definition
of ¢;+1. Note that the clauses above imply that for each 7 and j < i, we have
Sbi(j,a;f) A —‘(ﬁi(j)b;f)‘

The sequence @, .. ., @k is defined recursively. Start by taking ¢o(Z,u, %) to
be the formula

(u=a—= po(Z)) A (u=b = —po(T)).
For i > 0, assuming @o, ..., ®;~1 have been defined, the following shows how to

determine ;. Since we are assuming that all the definitions are prenex, ¢;(%)
is of the form

QY1 - - - QmYm P[Ro(f0,0)s- -y Ro(to40)s -+ +» Ric1(Fic1,0)y- -+, Ric1 (Fim1.0_1)],

where ¢ is quantifier-free and the sequence in square brackets shows all instances
of atomic formulae in @ involving Rg,...,R;_1. In general, the sequences of
terms i}’p depend on the quantified variables 41, ..., y» as well as the free vari-
ables & of ¢;, but I will not display these variables explicitly. Our task is to
write down a formula ¢;(Z,u, Z) such that

1. for each j < i, v;(§,a,%) is equivalent to ;_1 (5, a, Z);

2. for each j < i, v;(7,b, %) is equivalent to —p;_1(7, a, %)

3. @i(i,a, &) is equivalent to the displayed formula above, with each R;(Z;,)
replaced by ¢;—1(j,a,t;,);

4. ¢;(i,b, %) is equivalent to the negation of the formula just described; and



5. in the definition of @;, ¢;—1 is used only once.

In order to do 3 and 4 simultaneously, we need duplicate copies of some of the
variables and terms. Let Q1,..., @, denote the quantifiers dual to Q1,..., Qm,.

Pick a new sequence of variables yi,...,y.,, and let
] ) ] )
t0,0a R 7 W A ’ti—1,0> ce ’ti—l,li_1

denote the sequences of terms obtained by replacing the y1,...,ym by ¥i,..., 95,
in each t; ;. Finally, let

V0,05 ---,00,lgy - - 3 Vi—-1,05- -5 Vi-1,1;_4
! ! f !

UO,O’ ey ’onlO’ e 7'Ui—1,0’ e ’vi—l,li_1
1" "

VgseoryUiq

be sequences of new variables. We will use the variables v, to represent the
truth values of $;_1 (7, a, t_;-,p), the variables v;-’p to represent the truth values of
?i-1(3,a, i;.’p), and the variables v to represent the truth values of ¢;_;(j, a, £),
where the “truth value” is a if the corresponding formula is true, and b if it is
false.

The formula ¢;(Z, u, Z) is defined to be

Qa1+ Qe Qih - - Qb V9,7, (Boal(7,7,5") -

Z=jAu=a—v" =a)A
J j

J<i .

/\(Z:EAu:b—H);';éa)/\

Jj<i

(ZZE/\UZCL—)@[U()’() =y U0y = Qye e Vim1,0 = Gy e v oy Vi1 0, =a])/\
(Z:f/\uzb—)—wgb[v('),o =0y Vg TGy, Ui = Gye ey Vi1, = a))

where Eval(¥,v",9") is the formula

j<i

AN NGF=FAT =, =5 A
J<i p<i;

/\ /\ (F=FAd =1, >, 8))
J<ip<ly

Here Vs € {a,b} 6 abbreviates Vs (s = aV s = b — 6). Note that Eval(¥,7",7")
also depends on the free variables Z,§, " (because the terms t;, and ¢}, do),
but I will continue to leave these variables implicit.



First, let us check that each ¢;(Z;,u) satisfies the right equivalences, and
then let us worry about the length. Inductively we know, for each j < i — 1,
that

vZ ((/si——-l (ja a, '(E) And .-'Sbi—l (5} b; f))
is provable from a # b. We can use this to show
VZ, ¥,y 30,7,7" Eval (7,7 ,7")
as well as

vZ,7,7,7,7 0" (Eval(ﬁ,q‘)”,ﬁ”) -

i<

/\ /\ (vjp = a & @i1(F,a,5)) A
J<ip<i;

/\ /\ Vip =0+ $i1(d,a, tJ,p)))
J<i p<i;

But then, going back to the definition of (;, we see that for j < i Pi (,a,%) is
equivalent to ¢;1(7,a,Z), and @;(7,b,Z) is equivalent to =p;_; (4, a, ). Also,
i3, a, %) is equivalent to

Q11 -+ Qmym@l@i-1(0,a,%0,0), ..., Pi1(0,a,T040)5 - -

i—
soi—l(i - 1, Qa, EL‘—I,O)) e 7(102'—1(’5 - 1; a, t_;'—l,l,‘_l)]

and so we have

gﬁi(f,a,:c) <~ (pz( )[QOZ 1(0 :E’)/Ro,...,g&i_l(i——_l,a,f)/Ri_l];

and @;(4, b, %) is equivalent to

Qllyi mym_‘(P[(Pz 1(6 a E(’),O)’ v 7@72—1(67 a, %,10)7 EEE
‘pz 1(7' 1 a, tz 10) 7@15—1(7; - 17a7ﬂ~1,l1~_1 ]

and so we have

@i(5,0,%) ¢ —0y(8)[@i-1(0,a,%)/Ro, ..., pi1 (i — 1,0, %)/ Ri_1],

as required.

As far as length is concerned, it is not hard to check that the number of
symbols occurring in ¢; apart from the instance of ¢;_; can be bounded by
a polynomial in |d| (in fact, even a linear one). In other words, there is a
polynomial p such that for each ¢ we have |@;| < p(|d|) + |@;—1|, and hence
|9i] < (@ + Lp(|d]) < |d|p(|d]). Similarly, it is not hard to find polynomial
bounds on the lengths of the proofs of the needed equivalences, and there are
only polynomially many of them.



This completes the proof of Theorem 2.2. g

We have handled the case where there are at least two elements in the
universe. On the other hand, on the assumption that there is only one element
of the universe, we are reduced to propositional logic.

Proposition 2.3 {Vz,y (z = y)} has efficient elimination of definitions if and
only if the corresponding assertion holds for propositional logic.

Proof. Assuming Vz,y (¢ = y), every atomic formula R(¢;,...,%) is equivalent
to R(c,...,c), where ¢ is the only element of the universe; ¢; = ¢, is always
true; and quantifiers have no effect. To be more precise, let “the propositional
simplification of ¢” denote the result of deleting all the quantifiers in 9, replacing
all atomic formulae R(1,...,%) by a propositional variable R, and replacing
t1 = to by a fixed tautology. Then any first-order proof of Vz,y (z = y) —
1 can be translated efficiently to a propositional proof of the propositional
simplification of 1, and vice-versa. ]

This implies that the general problem of eliminating definitions from proofs
in pure first-order logic is as hard (and as easy) as the propositional case.

Theorem 2.4 () has an efficient elimination of definitions if and only if the
corresponding assertion holds for propositional logic.

Proof. 1t is a straightforward exercise to check that {¢ V ¢} has an efficient
elimination of definitions if and only if {¢} and {¢} both do. In particular,
0 has an efficient elimination of definitions if and only if {Vz,y (z = y)} and

{3z,y (z #y)} do. O

As a corollary of Theorem 2.2, we have that one can eliminate < from
standard proof systems with at most a polynomial increase in proof length.
For propositional proof systems the proof (due to Reckhow, using a method by
Spira; see [9]) is considerably more difficult.

Corollary 2.5 With any of the standard proof systems for first-order logic with
equality given in [14], one can eliminate the propositional connective <+ with at
most a polynomial increase in proof length.

Proof. By Theorem 2.2, it suffices to show that one can eliminate <+ efficiently
in the corresponding proof systems with definitions. Use definitions to translate
formulae in the language with < to the language without: translate p(w) ©
%(Z) to (Ry(W) = Ry(2)) A (Ry(Z) = R,(W)), where Ry and R; are defined
to be equivalent to the translations of ¢ and v, respectively. By induction one
can show that each axiom and rule of inference can then be simulated, with
polynomial bounds on the lengths. |



3 Eliminating Skolem functions
The following is the analogue of Definition 2.1 for Skolem functions.

Definition 3.1 Let ' be a set of first-order sentences in a language L. Say
that I' has an efficient elimination of Skolem functions if there is a polynomial
p(x) such that the following holds: whenever fo(Zo), ..., fr(Zk) are new function
symbols of various arities, wo(Zo,y),...,vx(Tx,y) are formulae such that each
@i is in the language LU {fo,..., fi—1}, and d is a proof of a formula ¢ in L
from

FU{Vfo,y ((100(5:’07 y) - 30(507 fO(fO))), s ,ka,y (on(flwy) - (p(fka fk(fk)))}a
then there is a proof d' of ¢ from T using only formulae in L, with |d'| < p(|d]).
Right off the bat, we have the following.

Proposition 3.2 {Vz,y (z = y)} has an efficient elimination of Skolem func-
tions.

Proof. Roughly speaking, if ¢ is the onfy element of the universe, every term can
be replaced by c. O

By way of motivation, note that is not hard to show that, say, Zermelo-
Fraenkel set theory has an efficient elimination of Skolem functions. Argue as
follows. Suppose d is a proof of a formula ¢ from the axioms of ZF and some
Skolem functions. Let k be a bound on the complexity of the formulae occurring
in this proof. In ZF, one can prove that the set of true sentences of complexity
at most k + 1 is consistent, and hence has a countable model. This countable
model has Skolem functions, which can then be used to interpret the proof d.

This example suggests that one way to proceed is to try to determine how
little one can get away with in carrying out an internal semantic argument of
this kind. The answer turns out to be: very little.

Definition 3.3 Say a set of sentences I' codes finite functions (efficiently) if
for each n there are

o a definable element, 49, ”;

o a definable relation, “rg,...,ZTn—1 € dom,(p)”;
o o definable function, “eval,(p,zo,...,Zn—1)"; and
o o definable function, “p @, (zo,...,Tp—1 > Y)”

such that, for each n, T’ proves
o7 g dom(@n)

e Wedom(p® (T y)) & (W€ dom(p) Vil =1I)



o evaln(p®n (T y), &) =y
o W # I — evaly(p Opn (T — y), W) = eval,(p, D),

and such that the lengths of all the definitions and proofs are bounded by: a
polynomial in n.

Of course, the intuition is that elements of the universe are assumed to code
finite partial functions p; 0, is the function that is nowhere defined; evaly, (p, T)
returns the value of p at ; p @, (£ — y) is the modification of p which maps #
to y; and so on. One could, more generally, assume that the codes are elements
of a definable set; but then nothing is lost by taking the other elements of the
universe to code the empty function. If one wants polynomial-time translations
(and not just bounds on the lengths of proofs) one needs to add the constraint
that the definitions and proofs above are polynomial-time computable in n.
These requirements are not strong ones. For example, any sequential theory
of arithmetic (in the terminology of [7]) codes finite functions, since one can take
such functions to be sequences of tuples (Z,y). Below I will drop the subscripts
n in 0, domy, etc. and I will write p(%) instead of eval(p,Z). Clearly it does
not hurt to assume that all these are actually given by symbols in the language.

Theorem 3.4 Suppose I' codes finite functions. Then T has an efficient elim-
ination of Skolem functions.

Proof. The proof will occupy most of the remainder of this section. By Propo-
sition 3.2 we can assume that there are at least two elements in the universe,
and so, by Theorem 2.2, we can use definitions freely. By way of exposition, I
will first focus on the case where k = 0, i.e. there is only one Skolem function
to eliminate. (This part does not require definitions.) Then I will discuss the
steps necessary to eliminate multiple, possibly nested instances Skolem func-
tions. (This is the part that requires the definitions.)

Suppose we want to eliminate the use of a single Skolem function, with
defining axiom VZ,y (o(Z,y) = ¢(Z, f(z))). Let Ly denote the language LU{f}.
I will define a forcing relation in L, for formulae in Ly. I will then show that
I" proves that the Skolem axiom is forced; and that anything in the original
language is forced if and only if it is true. Given a proof d of 9 from I' together
with the Skolem axiom, then, T" proves that 1 is forced, and hence true.

Now for the details. Let the formula Cond(p) in the language L assert that
p is a finite approximation to a Skolem function for ¢, that is,

Vi € dom(p) Vy (p(Z,y) = ¢(Z, f(2))).

Let ¢ be a term in Ly, and let p be a variable not occurring in ¢. Inductively
we will define a term ¢ in the language of L, whose free variables are those of ¢
together with p. Intuitively, t* is the value of ¢, when f is interpreted by p. At
the same time, we will define a relation “t? is defined,” asserting that the value
of t? makes sense. Let



e P = gz, for each variable z (other than p),
o (g(to,...,tm))? = g(th,...,8,), for each function symbol g of L, and
o (f(to,...,tn))P =p(8h,...,tE).

Define “t* is defined” inductively as follows:

e “zP is defined” is always true.

o “(g(to,...,tm))? is defined,” where g is a function symbol of L, is true if
and only if ¢§,...,¢8, are all defined.

e “(f(to,...,tn))P is defined” is true if and only if ¢}, ..., are all defined
and t,...,t2 € dom(p).

If p and ¢ are conditions, say p < ¢, “p is stronger than or equal to ¢”, if p
extends q as a function:

VI (Z € dom(q) — £ € dom(p) A p(Z) = q(Z)).

Now we can define the relation p !+ 6 inductively. We can assume that the
language has connectives A, —, V, and —, with 3 and V defined from these in
the usual way.

1. pIF R(to,...,tm) if and only if Vg < p Ir < ¢q (&5,...,t", are all defined
and R(t,...,t7.)).

2. plr@Anifand onlyif pl-60 and p I+ 7.

3. plkf s nifandonly if Vg <p (gIF 8 — qlF n).
4. plF =0 if and only if Vg < p g I 6.

5. plkVz 0 if and only if Vz p IF 6.

The quantifiers involving ¢ and r above are intended to range over conditions;
so, for example, Vg < p ... abbreviates Vg (Cond(¢) Aqg < p -+ ...). For each
8, the relation p IF 6 is a formula in the language of L whose free variables are
those of 6 together with p. Note that the length of p IF § can be bounded by a
polynomial in |6| (as well as in |¢|, which is being held fixed for the moment).

The phrase “4 is forced” and the notation I+ § abbreviate Vp (Cond(p) —
p Ik 6). In the lemmata that follow, p,q,7... are assumed to range over condi-
tions. Most of the proofs are routine and standard, modulo the additional notes
provided below. It is important to recognize that the lengths of all the proofs
alluded to in the statement of the lemmata can be bounded by a polynomial in
the length of the assertion being proved, but having stated this up front, I will
not bother to repeat it each time.

Lemma 3.5 (monotonicity) For each formula 6 of Lg, T proves

plF8Ag<p—ql-8.

10



Lemma 3.6 For each formula 6 of Ly, I proves
plFeVe<pIr<qrito.
Corollary 3.7 For each formula § of Ly, T proves
p k(8 & —-6).
Lemma 3.8 For any term t of Ly, ' proves
Vg 3r < q (t" is defined).

Proof. Use induction on the term ¢. The only interesting case is where ¢ is of
the form f(so,...,sx). By the induction hypothesis, we can find an 7' < ¢

such that sj,...,s} are all defined. If 36’,...,32’ € dom(r'), take r = 7.
Otherwise, if EJy’ o(sh o sz',y), let r =7/ ,@ (s3', o szl ~ 1), for any such y;
and if Yy —p(sf ,...,s%,u), let r =7 & (sf,...,8}, — y), for any y at all. O

The next two lemmata are proved by induction on s and 8, respectively.
Lemma 3.9 Ift and s(z) are any terms of Ls, ' proves
tP =z = (s(t)F = s(2)P)

Lemma 3.10 If 6(z) is any formula of Ly and t is any term of Ly then T
proves
(t* is defined ANtP = z) — (p I+ 0(t) & p Ik 8(2)).

Lemma 3.11 For each formula § of Ly, if 0 is provable in classical first-order
logic, then T proves I+ 0.

Proof. The proof is for the most part standard and routine, though one has to
be a little bit careful with the quantifier axioms and rules since terms might
not always be “defined.” To show Vz 6(z) — 6(¢) is forced, let us argue in
first-order logic from assumptions in I'. Suppose p IF Vz 6(z). By Lemma, 3.6 it
suffices to show Vg < p 3r < ¢ 8(t). So suppose ¢ < p, and by Lemma 3.8 let
r < g be such that ¢” is defined. Let z = ¢". By monotonicity, r I Vz §(z), so
r IF 8(z). By Lemma 3.10, 7 I+ 8(2). a

A formula in the original language is forced if and only if it is true.
Lemma 3.12 For each formula 8 of L, T’ proves (p I+ 8) + 6.

Proof. Induction on 6. |

The next lemma is the important one: it asserts that the Skolem axiom is
forced.

Lemma 3.13 T proves IF VE,y (o(Z,y) = o(&, f(Z))).
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Proof. Once again, argue in first-order logic, from I'. Suppose for some &,y we
have p IF p(Z,y). By Lemma 3.12, ¢(Z,y). By Lemma 3.6, it suffices to show
Vg X p3Ir X qqlt o, f(Z)), so suppose ¢ < p. If T € dom(q), the fact that
q is a condition guarantees (%, f(Z)), and we can take r = g; otherwise, take
7 =g ® (£ = y). Either way, as above, we have r I ¢(Z, f(Z)), as required. O

Proof of Theorem 3.4, for a single Skolem function f. Suppose there is a
proof d of a formula ¢ in the language L from finitely many sentences in I' U
{VZ,y (p(Z,y) = @(Z, f(z)))}. By Lemma 3.11, T proves that this implication
is forced. By Lemmata 3.12 and 3.13, T' proves that all the hypotheses are
forced, so I' proves that 1 is forced as well. By Lemma, 3.12, ' proves .

Since each the length of each component of the derivation just described can
be bounded by a polynomial in |d|, so can the entire proof. O

To extend the proof to arbitrary nested definitions of Skolem functions, we
need to iterate the forcing definition. A similar iteration was used in [1]; the
situation here is easier, since we only have to deal with finite iterations.

Let d, fo,..., fx,%0,...,9r be as in Definition 3.1. For each ¢ < k, we will
define the notion of an i-condition, an ordering =<; on i-conditions, and a forcing
relation IF; between i-conditions and formulae 6 in the language LU{fo, ..., fi}.
An i-condition consists of a sequence py, ..., p; of finite functions, with arities
corresponding to those of f,. .., f;. As expected, po,-..,p; = qo, ..., ¢; means
that each p; extends g;, as above.

The notions Cond; and IF; are defined simultaneously, by recursion on i.
Condo(p) and p IFg 6 are defined as above, in the case where there is only
one Skolem function. Assuming Cond; and IF; have been defined, the relation
Cond;11(po,...,pitr1) is defined by

Cond;(po, ..., pi)A
P, o0 b Y841,y (Figa € dom(pisa) A @(Fisn, ) = 9(Ei11,p(2))).
In the atomic case, assuming to, . . . , iy, are terms in the language of LU{ fo, ..., fix1},
the relation pg,...,pit1 k41 Ato,- .., tm) is defined by
V@< pIF <G, .., ¢, are defined and A(t],...,t7)).

The forcing relation is then extended to arbitrary formulae in the language
as above. Notice that the relation IF; is used in the definition of Cond;y;,
which is in turn used to define IF;y;. By introducing new relation symbols to
represent the definitions of Condy, ..., Condy, we can bound the lengths of all
the formulae involved by a polynomial.

Lemma 3.14 For each i < k, Lemmata 3.5~3.11 hold for i-conditions, <;, and
.

Lemma 3.15 For each i < k, if 0 is in the language LU {fo,..., fi}, then T
proves the following:

Po; -y Pk ”’kg(—-)po,...,pi”'ie.
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Lemma 3.16 For each i < k, T proves that the ith Skolem aziom is k-forced.

Once again, the lengths of the relevant proofs can be bounded by a polyno-
mial in |d|. The proof of Theorem 3.4 now follows exactly as in the case of a
single Skolem function. O

If @ and b are distinct and f is a Skolem function for (p(Z) Ay = a) V
(—(£) Ay = b), then f(Z) = a serves as a definition for (Z). As a corollary to
Theorem 3.4 we have the following:

Corollary 3.17 Suppose T' codes finite functions and proves 3z,y (z # v).
Then one can eliminate arbitrary nested instances of definitions and Skolem
functions from proofs in T, with a polynomial bound on the increase in the
lengths of proofs.

4 Questions

In standard terminology (e.g. [9, 10]), Section 2 shows that one can eliminate
definitions from proofs in first-order logic in polynomial time if and only if
extended Frege systems for propositional logic can be p-simulated by Frege
systems. Of course, whether or not this is the case is still a major open question.
Section 2 shows that Theorem 2.2 and Corollary 2.5 hold for first-order logic
with equality. I do not know whether or not they hold when equality is absent.

It is also still open as to whether one can efficiently eliminate even a single
Skolem function from proofs in pure logic, or from theories which do not code
finite functions. The question as to the increase in proof length when eliminating
a single Skolem function from a proof in pure first-order logic is listed as open
problem 22 in [6].

The elimination of definitions in Section 2 used the law of the excluded
middle. As a result, it is open as to whether one has an efficient elimination
of definitions in intuitionistic first-order logic. (See also [11] for a discussion of
choice functions in the intuitionistic setting.)
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