Carnegie Mellon University
Research Showcase

Department of Electrical and C t
cpartmeit of Hlectrical and omputet Carnegie Institute of Technology

Engineering

1-1-1991

An introduction to ASCEND : its language and

Interactive environment

Peter C. Piela
Carnegie Mellon University

Roy McKelvey
Arthur W. Westerberg

Carnegie Mellon University.Engineering Design Research Center.

Follow this and additional works at: http://repository.cmu.edu/ece

Recommended Citation

Piela, Peter C.; McKelvey, Roy; Westerberg, Arthur W.; and Carnegie Mellon University.Engineering Design Research Center., "An
introduction to ASCEND : its language and interactive environment" (1991). Department of Electrical and Computer Engineering. Paper
160.

http://repository.cmu.edu/ece/160

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase. It has been accepted
for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase. For more information,

please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece/160?utm_source=repository.cmu.edu%2Fece%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Introduction to ASCEND: Its Language
and Interactive Environment

P. Piela, R. McKelvey, A. Westerberg

EDRC 06-111-91

An Introduction to ASCEND: ItsLanguage and
I nteractive Environment

Peter Piela, Roy McK elvey, Arthur Westerberg
Engineering Design Resear ch Center
Carnegie Mdlon University
Pittsburgh, PA. 15213

Abstract

Recently there has been a growing realization among re-
searchersandpractionersthat current technologiesdo not
adequatelysupportmathematical modeling” inthelarge” In
~ thispaper we discuss a technology called ASCEND, which
addressesthisissue. We describetwo aspectsof thetechnol-
ogy: amodelinglanguageandan interactivemodel -building
environment. TheASCENDIanguageisstructured,declara-
tive, and strongly-typed and incorporates object-oriented
extensions. Theinteractiveenvironmentisbasedonthenotion
of aconcurrentsetof toolswhichreflectthevariousphasesof

ASCENDmodeling. Thesetool sdonotenfor ceastrictsequence

of operations, but rather have been designed to support the
flexible accessimpliedbydeclaratively specifiedmodels. We
claimthat ASCEND offerssolutionsto several of the issues
raisedbyArthur Gegffrion and use categoriesintroduced by
himtoframethisdiscussion.

1.0 Introduction

In a paper summarizing plenary addresses given at the
IFORS 87 confer encein BuenosAir esand the 1988 Canadian
Operations Research Society Meeting, Arthur Geoffirion[9]
addresses the shortcomings of current computer-based mod-
elingenvironments. Asanimpetustocorrectingthissituation,
he proposes five characterigtics that should be found in any
system attempting to support the full spectrum of modeing
activity. He then steps back from these characterigtics and
discusses the three main design challenges that gand in the
way of realizing such systems. In hisconcluding remarks he
calls for the reader to congder these issuesin light of ther
modelingenvironmentsand tobegin work on closingthegaps
‘between hisadmittedly ideal system and their own.

Inthispaper, wetakeup thischallenge. Weareparticularly
motivated by thefact that the system we are developing—an
eguational modeingenvironmentcalled ASCEND (Advanced

System for (imputations in Engineering Design)—already -

possesses many of Geoffrion'srequired featuresand seemsa
promising platform in which to address many of the others.

Our aim is to discuss the ASCEND system—its moddling
languageand inter active environment—within the Geoffrion
framewor k, andwhenappr opriate discusshowtheASCEND
paradigm suggests alter native approaches to modeling sys-
tems. Further, we hope that the reader, after completing the
paper, will have a good sense of the current ASCEND
implementation and itsuse.

Thispaper isorganized asfollows: Section 2 describesthe
dominantthemesof theA SCEND appr oach; Section 3describes
the ASCEND language in detail and Section 4 analyzesthe
languagewith respect to Geoffrion'spoints; Sections5and 6
smilarly discuss the details of the interactive ASCEND en-
vironment and ther relation to Geoffrion'sideal.

2.0 The ASCEND approach

I n cooper ation with agroup of academicsandindudrialists
wehavedevel opedapr otoypemodel descriptionlanguageand
acomputer system through which user scan createand interact
withmodelsdefinedin thelanguage. Thesetoolsform thebass
of an experimental program in which observation of users
solving problems and subsequent discussions are used to
refineandevaluatetheunder lyingtechnology. Thestated goal
for the ASCEND project istocreatean environment in which
engineers are able to produce complex equational models
involving thousands of equations much more rapidly than
possble with existing technology. The ASCEND system
reflects certain hypotheses about how best to support large-
scalemathematical modeling. Thesewewill discussin some
detail.

2.1 Modelsshould be highly structured.

ASCEND is a gructured approach to developing and
solvingequational models. By astmctur ed appr oach, wemean
that the user is able to define groupings of equations and
variablescalled models, and manipulatethesesmodelsusinga
st of language-defined operators.

University Libraries -
Carnegie Médlon UnWsrs%
Pittsburgh PA 15213-389

Today, a majority of equational modeling is done with
undructured languages such as GAM §[4], AMPL[7], and
L PL[13],which arebased on algebraicnotation. Althoughthe
use of theselanguages has led to significant improvementsin
productivity, we believe that the lack of a capability for
defining and managing abdract data models significantly
limitsthecomplexity of tasksthat can practically beattempted.
Thisview isshared by Muhanna and Pick[16] whowrite

"Present modding tools do not support combining of
models. Thisisaseriousdeficiency. By usingexisting models
as "building blocks" for new composite models, the new
mode isdeveloped with lesseffort than would be necessary if
it werebuilt from scratch. Furthermore, thisenablesakind of
"gructured” modd building in that small modes may be
independentlybuiltand debugged and then used ascomponents
in larger mocfes. Traditiorally models are developed (often
from scratch) as sand-alone entities. As a ©suit, mode
integration through direct model-to-mode linkage istedious
anderror-prone”

In thefollowing sectionswefurther support theneed for a
dructured approach to mathematical modeling by giving a
brief overview of three issues that we consder to be particu-
larly important in the development of complex models. They
are hierarchical decomposition, evolutionary modeling, and
debugging.l neach,themode builder mustbeabletomanipulate
individual partsof alinked modd gructure

Hierarchical(kcomposithn—Omtxpenénct[I9] and that
of other workers in a number of disciplineg3, 16, 21, 25]
suggest a need to support thebuilding of hierar chically orga-
nized networks of equations. In chemical engineering,
Westerberg and Benjamin[27] write " Complex models are
almost alwaysbuiltin ahierarchical fashion. An exampleisa
digtillation column which is built up of trays, flash units,
Fplitters mixer s, heat exchanger s, pumpsetc. A flash unitisin
fact a hierarchical gructure” In their work on synthesis of
eectriccircuits, Sussman and Steel €[24] proposealanguage
for describing hierar chical congtraint networ ksin which com-
pound models are defined in terms of existing parts. They
write, "In this way we can build arbitrarily complicated
compound abjects in a hierarchical manner. The hierarchy
allowsthecomplexity atonelevel tobelimited.” Inoperations
resear ch,Geoffirion[10] demongtr atesthatatr anshipmentmode
can be hierarchically decomposed into two trangportation
model swith aset of condr aintsthat definer esour celimitations
for thewar ehouses. Also, Muhannaand Pick[16] contend that
an effectivemode management system must provide support
for modular and hierarchical model development, and have

derhongrated adrategy fa* aooompli'shingthisin their modd -

development languageM DL [15].
Evolutionarymodeling—M odel evolutionhasbeenadvo-
cated asan efficient approach to solving large problems. For
example, in arguing againg abatch oriented approach, L ocke
and Westerber g[14] writethat " lar geattemptsfail moreoften

than not,” and suggest that " a more efficient approach isto
solvethelargeproblem in stages, beginningwith afew pieces
of equipment and working up to a complete flowsheet"

Another typeof evolutionoccur swhenamodelbuilder fir st
describes his or her problem in terms of smplified models
which arerobug and conver ge quickly. Based on these cal-
culations the modd builder selectively specializes certain
models to more rigorous representations, and resolves the
problem with thevaluesgener atedby thesmplified modelsas
initial guesses. L ockeand Wester ber g[14] associatethisstyle
of modelingwithmovemental onganaxisof" model complex-
ity."

Modeling can also involve moving along an axis of -
" computational control"[14]. For example, achemical engi-
neer might initialize the flowsheet shown in Figure 1 by
guessing therecyclesream ($4),and separatdy solvetheunits
MIX,REACT,ami STILL inaseguencesuchthat theoutputs
from oneunit becometheinputstothenext Theengineer can
then alter the degreesof fieedom (i.e., which variablesare
specified, and which are computed), and solve the entire
flowsheet smultaneoudly.

Debugging—Although Muhannar efer sto the benefits of
developingindependently debugged models, modd instances
alsoneedtobedebugged during solving. I n such situationswe
havefound it hepful tobeabletopick atroublesomepart, and
work onit (e.g., re-scalevariables and equations) in isdation.
Thiskindofdebuggingofteninvolveswor kingwith asequence
of parts as the problem is traced back to its cause. Having
corrected the problem, the mode builder isableto solvethe
completeinstancedructure

SA

S MIX S2 REACT S3

i

Figure 1. A simple flowsheet with arecycle stream.

22 Modelingisan inherently interactive process*

*Based on our statementsabout evolutionary modelingand
debugging, webelievethat themoded builder should havethe
choice of working interactively at any point in the modeling
process. This includes both formulation of the model, and
interrogation and manipulation of the mode instance.

23 Simulation is best represented as a system of con-
straints

At present, amgjority of smulation in engineering design
isdonewith parametric systems. In these systems, equations
are specified and ordered for procedural computation. Al-
though this approach is useful for routine problems that have
established solution proceduresanddo not change frequently,
non-routineproblemsrequirethemodel builder torewriteand
reorder the model equations.

Inresponseto theneed for moreflexiblesystems, therehas
been agrowing interest in declarative equation-based tech-
niques. Problem solving with equational models involves
specifying the values of certain variables and computing the
otherswith an independent solver. Animportantfeatureofthis
approachisthat it allows users to examine different scenarios
with onemodel structureby simply changing which variables
are specified, and which are computed

For example, in chemical engineering process simulation
there are two mgjor types of calculation: simulation, and de-
sign. Simulation is considered to be the easier of the two
calculations, and requires the user to specify all input streams
and equipment parameters (e.g., size). The solver will then
compute the remaining intermediate and output streams. A
designcalculationismoreorlesstheinverse; theuserspecifies
variablesintheoutput streams, and the solver computeseither
equipment parameters or input streams.

Tlie design calculation is difficult for a number of reasons
including the possibility of making aspecification on an output
stream that is physically impossible to achieve. Locke and
Westerberg[14] suggest that the correct way to approach a
design problem is to start out with a sequence of smulation
cal culationswhich generate converged sol utionsapproaching
thedesired solution, and then switch to thedesign calculation
by altering which variabl esarefixed,andwhicharecomputed.

3.0 The ASCEND language

Wheat follows isabrief overview of what we consider to be
some of the most important attributes of the ASCEND lan-
guage”], and how they relate to the issues raised in the
[devioussection. ASCEND wasoriginally designedto support
thedecl arativeand structured specificationoflarge systems of
equationsthatariseinengineering design. Thelanguagebuilds
on concepts used in object-oriented programming and con-
ventional strongly-typed languages such as Pascal. We will
discussthe A SCEND languageusi ng thebenchmark examples
of Geoffrion which include the transportation and forecasting
models. (Model definitions can be fotnd in AppendicesA, B,
andC.)

é.l Information hiding

Thereisno information hiding in ASCEND. One can gain
access to ay part of any model using qualified names (path).

Fa* example, in the transportation model shownin Appendix
A, the total cost of shipping product from plant i is accessed
using the namep[i].ShipmentCost Notethat qualified naming
eliminates the problem of syntactically ambiguousreferences
which may result from name clashes within two separately
defined components. However, itdoesnot completely address
the broader (semantic) issue of unique name violations that
need to beresolved during model integration1].

3.2 Operators

The language has only five operators: REFINES, IS A,
IS_REFINED_TO, AREJTHEJSAME, and ARE_ALIKE
which, we conjecture, simplifieslearning. REFINES imple-
ments monaotonic inheritance, IS _A implements incorpora-
donJS_REFINED_TO implements refinementofmodel parts,
ARE_THE_SAME implements a way of recursively
equivalencing structured objects [3,25], and ARE.ALIKE
implements grouping of objects over which structura varia-
tionsaretobemade. Further discussion of theseoperatorswill
be offered as they relate to features discussed bel ow.

33 Arrays

Arraysof variables, relations, and model sareindexed over
sets of integers or symbols (or refinements of these). The
contentsof theseindex setscanbefixed duringarray declaration
or computed asapart of theproblem formulation. For exampl e,
inthetransportation model presentedin appendix A, the set of
plantsfrom which customeri istorecei veproduct, iscomputed
from thelistof customersspecifiedforeachplant,c[i].plantld
:=[j INplantld I i IN p(j].customerld].

3.4 Dimensional consistency

ASCEND providesdimensional checking(e.g., mass'time)
foraUrdeatioris (equations, inequalities, and objecdvefunctk)ns).
Thus, dimensiona inconsistencies among variables in an
equation are readily detected. Without automatic checking of
dimensionality, such errorsaregenerally very difficulttofind.
Oncethedimensionality of avariableisknown, its value may
be assigned or displayed in any set of compatible units (for
example, tomes/year). In the case of the tansportationmodel,
the type definition for the variable "flow" is given by:

ATOM flow REFINES solver_var
DIMENSION M/T

DEFAULT 1000{ tonnes/year};
nominal := 1000{ tonnes/year} ;
END flow; '

It should benoted that every numericvalueinan ASCEND
mode has an associated dimensionality that isimpliedby (1)
aunits specification(e.g., 1000 tomeVyear, 55 miles/hr), (2)
a type definition (e.g., "f IS_A flow" implies that f has

dimensionality mas$time),or (3) propagation of dimensional-
ity through relations.

Inaddition, theuser can definehisor her own measurement
unitsin termsof the fundamental units associated with each
dimension, or any previoudy defined derived units. For ex-
ample,

UNITS
mol:=kmol/1000;
g :=kg/1000;
Ib :=kg/2.20462;
N :=kg*m/s*2;
J =N*m;
END;

3.5 Object-based features

ASCEND is based on object-oriented concepts which
allow modelstobe gructured morelikethe sysemsthey are
meant torepresent Weconjectur ethat such decompositions
aregenerally easier for userstoundergtand. Thisargument is
analogous to the suggested preference for object-oriented
databases over reational databases in engineering applica-
tions.

An example of this style of modeling is given for the
trangportation problem (shown below) which iscomposed of
a set of plants (p[plantld]), and a set of customers
(c[customer|d]). Each plant isitself a gructured object con-
taining product flow (flcusomerld]) to a st of cusomers
(custcmerld). The following sections briefly illusrate the
object-oriented features of ASCEND.

MODEL plant;
up IS _A supply_capacity;
customerld IS _A set OF integer,
maxCugtomer |S A integer,

CARD(customer I d)<= maxGistomer,

ffcustomerid], totalFlow IS_A flow;
cost[customerld] IS_A unitCogt;
totalFlow=SUM (f[customer 1d])
totalFlow <= sup;

shipmentCost IS A cost;
shipmentCost= SUM[f[i]*tost[i] I i N customer|d);
END plant;

M ODEL transportation; :
plantld, cusomerld IS A set OF integer,
pfplantld] 1S_A plant;
c[customerld] IS_A customer,

END trangortation;

3.5.1 Inheritanceand part refinement

I nheritanceissupportedthr oughtheREFINESoper ator .It
promotesr eusability and or ganization thr ough thebuilding of
inheritance hierarchies, and provides a mechaniam for type
checking.

For example, in the integrated transportation/forecasting
mode shown in Appendix C, acustomer_forecast modd has
been defined which locally inheritsthe attributes of the cus-
tomer model, and isfurther specialized by adding an insance
of aforecaging mode and ardation which specifiesthat the

- demand (dem) will be computed using dieforecasing model.

Thetrangportation with forecastingmodd (trans forecast)
is then defined as a refinement of the basic trangportation
modd with twoadditk)nalconstraints Thesecongr aintspecify
that the set of customers defined in the basic trangportation
mode will be"refined” to cusomerswhose demand will be
predicted by a forecasting model (c[customerld]
IS REHNED_TO customerjbrecast), and that for each
customer, demand will be predicted using an exponential
forecast(c[custcmer|(I] J71 SIIEFINEDJT O expFor ecast).

This refinement of parts, supported through the
ISJREFINED_TO operator, per mitsevolutionary modeling
and improvesthepossibilitiesof modd reuse. An example of
part refinement is shown above where the gructure of a
customerforecast isrefined to anexponentialfor ecastPossible
refinements are defined by the gructure of the inheritance
hierarchies, and the refinement process is validated by the
languagecompiler.

3.5.2 Merging

The recursve merging of sructured objects is supported
throughtheARE_THE_SAME operator. Thisfacility isused
to connect complex models by sdlecting parts (connectors)
within models through which the connection isrealized, and
makingthesepartsequal .M er ging sever al connector stogether
resultsinasingleequational gructurethatcan ber efer enced by
all naming schemesdefined by theconnectors. For example,
the intent of making the statement p[i].f[j], customer (j].f[i]
AREJTHEJS AME isthat the numeric value of the flow of
product from plant i to customer j isequal to the valueof the
flowthat cusomer j r eceivesfromplanti. T hiscouldhavebeen
written p[i].f[j] = customer [j]i[i]; however, thiswould need-
lessly createan extraeguation, and maintain aduplicatecopy
ofthe flowvariableByusngARE_THE_SAME, noeguation
is created. The reduction in resources achieved by usng .
AREJTHE_SAME is especially important in engineering
applications where connectors may contain several hundred
eguations. *

3.5.3 Grouping

Propagation of gructural variations is supported through
theARE_ALIKEoperator.For example,inthetrans forecast

model one could write the statement c[customerld].F
ARE_ALIKE which expresses the intent that all customers
will use the same type of forecasing model. A dructural
change made to any individual forecasting modd will auto-
matically propagatetotheothers.

3.5.4 Strongtyping

Strong typing, which requiresoneto indicate the type of
every part in every modd, reduces the debugging effort
(during solving) for complex modes. The base type of apart
isdedared usng the IS A construct Also, the type syssem
providesamechanism by which theuser can definelegitimate
waysin which partscan bemerged together. For example, in
the case of the inheritance hierarchy shown in Figure 2, it
woukl beinvalkl toattempt tomer geaningtanceofUquid_stream
with an ingtance of vapor_stream becausethe liquid.stream
and vapor .stream modesare net conformable. (Two models
aresaid tobeconformableif oneistheancestor ofthecther.)
Errorsthat mightariseinan attempt tomakesuch aconnection
aredetected by thelanguage compiler. It should benoted that
that satementscan beincrementally compiled.

3*55 Procedures

ASCENDmodelscanoptionallycontainprocedures. These
areused tocomputeinitial values, and set degr eesof freedom
(e.g.,theassignment xI.fixed := FAL SE states that thevalue
of the variable can be assgned by a solver). Several alternate
procedures might concurrently exist (e.g., procedure
init_example28a and init_example28b) which can bebein-
voked sdectively by the modd builder prior to solution. A
complete description of the prooedura language is outsde the
sompeofthispg)er.However ,asshownbebw,pitx»duiesaieable
toinvokeather proceduresdefined locally or within visbleparts

MODEL example28;

xl,x21S A unscaled.variable;

xI1*x2-1=0;

xI* x| +x2*x2-3=0;

INITIALIZATION

PROCEDUREassign.bounds;
xI lower_bound :=0;
xl.upper_bound :=4.0;
x2.lower_bound :=0;
x2.upper_ bound :=4.0;
xl.fixed:= FAL SE;
x2.fixed:= FAL SE;

ENDassignJxxinds;

PROCEDUREInit_example28a;
RUN assignjxninds;
xl:=2;

X2:=2;
END init_example28a;

PROCEDUREInit_example28b;
RUN assign_bounds;
xl:=4;

X2:=2;
END init_example28b;
ENDexample28;

4.0 A discussion of the ASCEND language

In this section we explicitly relate characterigtics of the
ASCEND modelinglanguagetothechar acteristicsanddesign
implications outlined by Geoffrion[9]. In some cases we
directly evaluatethe ASCEND languageby aGeoffrion ideal,
in otherswequegtion or modify thepremiseembodied by his
ideal. Webegin by focusing on the notion of " executability"
proposed by Geoffrion as a necessary attribute of a flexible
modeling environment

4.1 What ismeant by executable?

Geoffrionwrites/'theadj ective'executabl€e refer stofunc-
tions that programs in the modeling environment should be
ableto perform upon receiving amodel written in an execut-
ablemoddinglanguage.” If onereadstheprevious satement
literally, ASCEND isnot an executablelanguage. At present,
theonly ASCEND program that readsmode descriptionsisa
compiler, which takesamodeldescriptionandgener atesadata
gructurewhich can beinterrogated using a set of procedures
that weprovide. External programssuch asgraphers, solvers,
and spreadshedtsar eintegr atedintotheenvir onmentbywriting
softwar ebridgesthatallowvaluesinanASCEND datastructure
to be accessed by the external program in a format that it
requires, andvicever sa. Thisapproach hasseveral benefits, (1)
a single bridge can be written that will work with all models
written in the ASCEND language, (2) the modd builder
composes and revises models using only the modding lan-
guage, the solver input is automatically regenerated by the
bridge, (3) the external programscan be used " asis* without
any internal modifications, and (4) a single bridge can be
congructed for a family cf programs (e.g., an MPS file
generator).

Figure 2. An Inheritance hierarchy for describing
material streams.

42 Can one language support all users?

Geoffrion writes that the modeling language should be
"aufficiently natural that non-modeling pr ofessonalscan un-
derstand it with only a modest amount of training.”® Our
experience suggests that this may not be achievable. An
extensivediscussion of our viewson thistopic canbefoundin
[20].

Our ressarch respondsto criticisms of languages such as
GAM Sheingtoolow-level andtooinflexiblefor solvingreal-
wor ld problemg]5].However ,itshould benaoted that theuseof
gructured moddinglanguagesiscurrently outsidetheexperi-
ence of many model builders.

For thepasttwoyear swehavebeen wor kingwith academic
and indugtrial user sin an attempt tounder gand, evaluate, and
refine the hypotheses underlying ASCEND modeding. In
interviews conducted with off-campus users, the following
two themes were recurrent. First, unfamiliarity with object-
oriented conceptscontained intheASCEND language caused

" difficulties, and second, no precedent existed for taking a
gructured approach to the formulation of equational models
(as opposed toflat lists cf algebraic specifications).

We suggest that rather than trying to make the modding
language intuitive for all users, designers should develop
adequate support structires (e.g., help systems, coaching,
worked examples) for different skill levels and requirements.

43 Evolutionary modeling

Geoffrion writes, " Flexibility is important because few
modeling professonals ever get a modd or modd-based
system 100% right thefirg time.Evenifby somemiraclethey
do, therequirements usually change over time and thus will
soon inducethe need for revision. In any case, evolution will
be necessary for genuine excellence” We agree, and the
current ASCEND language supports model evolution in two
related ways. Fir &, thereismoded inheritancewhich allowsthe
mode! builder to defineamodel that locally inheritstheentire
gructure (variableg/eations, procedures, and default valics)
from asingleparent modd. Heor shecan then add statements
to the new model. Thistypeof inheritance or ganizes models
hierar chically. Second, thereispart refinement which allows
amodelbuUdertochangethetypeofapar tofamodel Thepart
can only berefined to a member of the set of models which
inherit from the current model or any of its descendents. By
adoptingagrictly monotonic view of inheritanceweareable
to guarantee that refinement of parts will yield well-formed
mode gructures.

4,4 Declar ative and procedural

Geoffrion writes that for a modding language to be un-
derstandable and natural it should be" declar ativer ather than

procedural and highly mnemonicrather than cryptic." While

weagreethat adeclarativerepresentation isnatural for equa-

tional modding,wehavedecidedtoincdudeprocedural notions
inthedefinition of models. An ASCEND modd isdividedinto
two sections both of which are optional. The firg contains
declar ativestatementswhich ar eused tospecify theequational

gructureof themode. Thesecond containsaset of procedures
written in a small imperative language, that are used to
computeinitial valuesof variables, to specify which variables
are fixed and which are to be computed. Whereas other

modeling systems only provide mechanisms for importing
externally computed values we believe that the knowledge
encoded in procedures should be an explicit part of amodel

formulation.

4.5 A common modeling language

Geoffrion writes" in a true modeing environment, there
should be a lingua franca (common language) for moded
formulation that is very broadly applicable and not biased
toward any particular problemdomain, or solver technology."
We have adopted this approach in the devdlopment of AS-
CEND, and havewor kedwith user stodevelop modd libraries
inseveraldomains. Theseinclude, chemical engineering[22],
geometricreasoninginar chitectural design [30], mathematics,
physics, and oper ationsresear ch.

4.6 Consistency checking

Geoffrion writes that " an executable modeling language
should be able to perform extensive consistency checking*®
Wehavedealt with thisissuethrough theuseof strong typing.
Oneofthemajor rationalesfor astrongly typed languageisthe
problem of providing good diagnositic information in the
eventof solver failur €1 8]. Adequatediagnogticinformationis
difficult to providebecause the mathematical decomposition
employed by solvers is usually different from the physical
decomposition favored by mode builders.

Given thedifficulty in debuggingduringsolving,wedecided
that theASCEND languageshould bestrongly typed, with the
aim that problem specifications submitted to a solver should
accurately reflect a user's intent both in terms of values and
dructure

ASCEND's type sysem enables the compiler to detect
errorsliketryingtoconnect (merge), group, or refineincom-
patibleparts By makingdimensonality an explicit part of the
declaration of an ATOM (variable) we are ableto report
equationswhich aredimensionally inconsistent, and to vali-
datenumeric assgnments madetovariables. Wealso usethe
type system to define which objectsan external program can
operateon. For example, plotting programswill only extract
datafromingtancesofthe** plot” model or any ofitsr efinements.

5.0 The ASCEND Environment

Wenow turnour attentiontotheinter activeinterfacetothe
ASCEND system. What followsisan overview of thebasic

Rgure 3. The toolbox Is used to control the visibility of toolkits on the desktop.

toolsprovided for theuser to analyzeand solve smulations.

Once a modd has been specified with the ASCEND
language, instancesof thosemodel sar cdisplayed, solved, and
evolvedthroughaninteractivegraphicinterface Theinterface
uses the metaphors of a " toolbox" (figure3) and " desktop”
(figured). Thetoolbox isa pemanert area of the screen vhich
contains buttons symbalizing available toolkits, and buttons
which organize the interface. The desktop occupies the re-
mainder of the screen and containstool kitscurrently in use.
Underlyingthe ASCEND system isadatabasethat stor esboth
model definitions and any instances of mode definitions
created through the interface (smulations). Each tool kit
implementsasemantically different view oftheproblem being
examined (e.g., source code, gructural, mathematical, etc.)
and these views arc maintained concurrently with the under-
lying database. That is, a change made in one toolkit is
immediately reflected in theothers.

Our experience with ASCEND has shown that multiple
viewsarcrequired to support complex problem solving, and
this has been suggested by other workers in the area of
mathematical modding (e.g.,[lI]). In keeping with adirect
manipulation paradigm, the user is able to share information
generatedin onetool by exporting referencestoobjectswithin
that tool directly into others. It should be noted that, unlikea
conventional “clipboard," onlyr cfer encestoobj ectsar epassed
and not thedatawithintheobj ect Ther eisonly onecopy of any
piece of data stored in the database Following is a brief
descriptionoflhecur rentlyimplemented toolkits—theLibrary,
Sims, Browser, Solver, Probe, Units, Display, and Script

ToolsintheLibrary Tool Kit arc used tocreate, view and
manipulatetheinheritance hierar chiesin which mode defini-
tionsarcorganized Thesehierarchiesarc created by loading
modeldefinitionsftom text files. After loading,theuser selects
oneofthemodelsin thelibrary tobecompiled intoadatabase
of equations and variables called a smulation. A number of
different smulationscan co-exist; each islisted in thetool kit
labeled Sims. Oncecr eated, asmulation canbe” played with"
in many waysby thecther toolsin thesystem.

The Browser tools arc used to select objects of interest
within asmulation either by incremental navigation or direct
query. Other tools perform operations on these objects: for

example, displaying attributes in order to verify sructure, -

creation of new partswithin theobjects, and refinement of the
objectsin an evolutionary modeling process.

Since complex models are created by merging together
partsusing the ARE_.THE_SAME operator, many partsof a
smulation will have alternate names. Oneof the toolsallows

theuser todisplay all the names for apart and to pick one of
theseasthecurrent focus. Another tool in theBrowser allows
proceduresdefinedinthel NI TIAL 1 ZE sectiontobeexecuted.
Theprimary functions of the Solver arcto apply achosen
algorithm to the solution of the system of relationsdefined by
theobject it isviewing (the current d>jet), and toassist in tte *
investigation of failuresthat occur during solving. Thecurrent
object is continually analyzed to seeif it forms a well-posed
problem. Ifit doesnot, the user can return tothe Browser and
resst some of the variable flagsto indicate that some of them
arctobefixedrather thancomputed| ftheseflagsar econtained
in the current object, ASCEND will immediately reanalyze
andreporttheconsequences. An effort to solvethesystem of
equationsdefined by thecurrent obj ect can beattempted even
ifitisnot" quare” For asystem of equationswhich hasmore
variablesthan equations, our solver SLV will arbitrarily select
someofthevariablesasfixed and sol vefor ther emainingones.
Onetooal in the Solver isadebugger whereonecan display
the incidence matrix fa the eguations (rows of the matrix)
versusthevariables(columns) in theproblem. Solving canbe
done by single-stepping or by executing until a maximum
number of iter ationsor atimelimitisexceeded. At present, the
user can select any one of the following solving packages
which iscompatiblewith thecurrent object. Only compatible
selectionsareactively displayed to the user.

* SLV[28,29] is our own solver for solving n nonlinear
algebraic equationsin n unknowns. It isbased on a modified

Rgure 4. Atypical desktop configuration.

Marquardt method[26]. Thevariablescan haveboundsspeci-
fied for them, which will causethesolver toregrict itssearch
for solutionswithin thebounds. SLV partitionsthenonlinear
equations and solvesthepartitionsin aprecedenceor dering.

* MINOS-Augmented[17] isanonlinear optimization code
capable of handling several thousand equality and inequality
condraints. It isavailable from Sanford University.

» SQPisasquential quadratic programming solver avail-
able from L. T. Bieger (Chemical Engineering, Carnegie
Mdlon University). The current implementation is adense
ver sonand moreappropriatefor snail problems (on theorder
of one hundred congtraints).

* LSODEJ[12], as usad in the ASCEND system, is for
solving dynamic modelswhich involveamixtureof ordinary
differential equationsand algebraicequations. Itintegratesthe
model over timeor spacefromaknown initial condition. Itis
availablefrom theL awrence Livermore National L abs.

TheProbeprovidestheuser with thecapability of forming
collectionsof variables, equations, or complex partsthat ar eof
interestfrom digpar atelocationsinasmulation,andtomonitor
their values during solving. The Probe containstools which
allow the user to detect whether any variableslisted in it are
poorly scaled or near oneof ther bounds.

The Unitstool kit allowsthe user to specify the measure-
ment unitsin which thevaluesof variablesaredisplayed. The
user can definesetsof unitswhich can besavedin text filesfor
later reuse. _

TheScript can beusedin twoways. Firg, it can read a set
of ingructions fromatextfile specifyingasequenceof actions
to be taken by the system (e.g., read a modd definition file,
createasmulation, solveasmulation, plot agraph). Theuser
canchoosewhichingructionsar eexecuted. Duringexecution,
theinterfaceisanimated asif the user wereactually pressng
thebuttons. Second,thescriptcan beused torecord commands
invoked through theinterfacewhich can bewritten toatextfile
for later replay. Weinténd the Script tobeboth aconvenience
for expert usersand an aid in teaching new users about the
system.

In addition to the tool kits described above, there are
number of support tools which can be invoked through the
interface. For example, obj ectscan beviewed andmanipulated
usingaUnix spreadsheet program, plotted usng anumber of
x-yandx-y-zplottingpr ograms,andusedtocr eatehighquality
reports(e.g., equipment specification sheets) usng Postscript
templates generated by sandard drawing programs or word
processors.

6.0 A Discussion of the ASCEND environment

Geoffrion'sdiscussion of system design issuesfocuseson
choices of representation, language issues, sysem compo-
nents, and the attributes of an ideal system. Little detail is

provided concerning specific interface design, or issues of
usability. In the following section we explor e some of these
guestionsin the context of our work on ASCEND.

6.1 Designingthe ASCEND system: methodology

Beforewediscusstheimplicationsof the ASCEND inter-
activeenvironment asan artifact, it isimportant toreview the
methodsbywhkhit hascomeabout Theinterfaceto ASCEND
wasdeveloped usingaiter ativedesign approach. Our process
isclosely aligned with what hasbecomeknown asParticipa-
tory Design[2,6], an approach tosystem development which
emphasizes close and continuousinteraction between devel-
opersand users, and techniques of rapid prototyping. An in-
depth discussion of this design methodology and our inter-
pretation of itisthesubjectof another paper [20]. What follows
isa summary of some of this paper's major points.

The ASCEND project's primary focus is to investigate
whether a design system based on a Sructured, declarative
modelinglanguage, and asupportingenvironmentinwhichto
work with themode sthatr esult, canimprovemodeingspeed,
reduceerrors, expand thecomplexity of problemsattempted,
and support significant rates of modd re-use. While we
believed that the underlying technology had the potential to
achievetheseaims, wehad nogood way of verifying progress
on these complex issueswithout directly capturing the expe-
rience of our intended users as they attempted to solve real
problems. T othisend, theASCEND envir onmentwascr eated,
not as an embodiment of how its developers expected the
system to beused; but rather asan experimental apparatus to
test the feasbility of the ASCEND paradigm and to provide
input intoitsfurther development

Because our primary interests centered on what people
could accomplish with an environment likeASCEND, wefelt
that thisinformation could best be assessed through situated
use. By situated we mean problem-solving in the user's
wor kplacewith theuser'sown problems. Thisisin contrast to
themorecommon practiceof evaluating asystem by examin-
ing its performance on a ¢andard set of exampleproblemsin
acontrivedexperimental setting. Further,becauseour primary
aim wasto extend the boundaries of existing modeling prac-
tice, weconscioudy designed thesystem tosupport advanced
modeling practice.

To dudy Stuated use, a method must be established for
determining which aspects of a user's experience actually
verify or contradictapr oj ect' shasic hypotheses. Italsoimplies
that clear criteriafor judging therdative successor failure of
an encounter with thetechnology can bedeter mined. Wehave
employed three intertwined sour ces of data to analyze user
performance Thefirst comes from opinions: our own, and
thosevolunteer edby user sininformal discussionsandin taped
interviews. The second source comes from observation of
people asthey worked on problems, dther in real-timeor by
use of videotape. Thefinal sour ceof information comes from

studying the outcomes of modeling efforts—the partial or
compl ete solutionstoawiderangeof modeling tasks. Thislast
set of data gives us a clear sense of what types of problems
model builders expect the system to handle, what fraction of
the system's features are typically employed, whether there
wasanyre-useof codeandtowhat degree, whereproblemsare
typically encountered, etc.

The system has been under continual evaluation and evo-
[ution for thelast three years. Itsusershave comefrom awide
range of academic dsciplines (chemical engineering, opera-
tionsresearch, physics, architecture) and alsoinclude aset of
industrial users. The development team has consisted of a
faculty member oftheChemical EngineeringDepartment who
is expert in the area of mathematical modeling, aresearcher
whose thesiswoik wasdirectly tied to the project, two repre-
sentativesofthe Design DepartmentwithexpCTiencein human
factors, graphic design and user-interface issues, an expertin
document design and on-line help systems, and two under-
graduate programmers.

62 Interface Design Issues

Here, we focus on the particular design issues that have
emerged from the devel opment process described above. We
isolate five basic features of the ASCEND environment and
discuss their derivation, their implementation, and when
possible, their effect on actual problem-solving behavior.
Thesefeatures are listed here, and are dealt with individually
in subsequent sections. They are:

1. Ahi ghdegrééofi ntegrationandbehavioral consistency
among tools;

2. Supportforflexibleinteractionamongmodelingphases,

3. Support for arbitrarily fine accessto models, instances,
equations and variables;

4. Support for user-configurability of system organization
and behavior;

5. Domain-independence;

62.1 Tool Design and Integration

ASCEND modeling can be conceptualized as a set of
severa distinctactivities. These are: model formulation (cod-
ing), loading of models into the system, model instantiation,
browsing and selection of instance structures, solution, and
display of results. Throughour analysisof syssemuse, wehave
determinedthat theseactivitiescan vary widely in frequency,

“sequence, and duration. Further, these variances depend on
both the type of problem being attempted, and on people's
- modelingsty le. Aswebegantoevol veinteractivemechanisms
to support ASCEND's various modeling phases, it became
quiteclear that each suggested adifferent view of thedatawith

itsown set of supporting operators. For example, browsing of
instance structures requires some view of that structureand a
seriesof operatorswhich providemeansfor navigationthrough
it TheSolver, on theother hand, shoulddisplay characteristics
of theproblem in terms of numbers of equationsand variables,
and provide operators to assist in bringing the model to
convergence.

Developingasystem of thiscomplexity isachallengein its
own right, however in the case of ASCEND, the devel opment
is complicated by the existence of a well established work

. practice which does not necessarily map directly to the new

approach. Werelied on our experience, and discussionswith
other experienced model buildersto arrive at tool definitions
which could clarify the differences between the new and the
old.

In early manifestations of the ASCEND interface, we
attempted to integrate all phases of modeling into a single-
window environment with a static display and alarge set of
loosely organized commands. As we observed people using
thisenvironment and attempted torefineit, several problems
kept cropping up. For example, certain operations seemed to
belong to several of the modeling phases, but with adightly
different semantic—this left us with thechoiceof producingan
interface with many "modes", or creating operators with
marginally different functionality and artificialy different
names. |n our observations of users, it wasclear that during a
typical modeling session, itwasdesirabletohaveaccesstothe
information producedinonemodelingphasewhileworkingin
another. For example, it is common for a model builder to
engagein browsing theinstance structurewhileattempting to
bring a simulations convergence. (Thisisonly one of many
examples.) Theneedtosee many typesofinformation, coupled
with the large size of these information structures (e.g, hun-
dreds of lines of computer code, deeply nested instance
structures) created a crisis inmanaging screen real estate.

Our solution to these problems was to adopt the toolbox/
toolkit approach as described in section 5. Thisapproach has
allowed ustoisolateeach modelingphaseintoitsown context
We define an ASCEND toalkit (see figire 5) as consistirg of
threeparts: aframe, aset of menus, and aview. Aframe, which
defines a toolkit's size and location, includes the toolkit's
name, mechanismsfor repositioning andre-sizing thetoolkit,
and access toasetof user-definabl eattributeswhich determine
itsmetarlevel behavior. Forinstance, theBrowser canbesetto
display sub-itemsat adepth greater than one, oritcan be setto
display objects of a given grain size, such as showing only
instances of models, and ignoring specific equations and
variables. Thevi*w isadisplay that showsobjectsof arelevant
data-typeto dietoolkit in aparticular format For example, in
theModel Library theview showsthosemodel sloadedintothe
systemintheform of aninheritancehierarchy. Themenushold
all toolswhichoperate drectlyon thedataelements) cirrently
intheview. In creating thisabstracted tool definition, wecan

easily bringahighlevel of consistency toall modeling phases,
and providewhar GeofiBroncallsa* conceptual unity™[9] tothe
systemJndiscussk>nswith aiff user s, thistoolkitappr oachhas
been cited as greatly reducing the time spent on learning to
control theenvironment

622 Flexible Interaction

Because ASCEND modelsaredeclar atively specified and
maintained asa dynamic system of congraints, user interac-
tionwiththemodedingenviionmentissmilariynon-pfocedural.
Although modd builder swill eventually encounter each of the
general modelingstepsmentionedin section 6.1, thesequence
of different steps is not pre-ordained. For example, once a
smulation has been ingantiated, they may decide to solve
individual partsbeforeaddressingthewhole, or in debugging
asimulation, they may inspect sever al aspectsof theproblem
in order to make sense of diagnostic infor mation provided by
thesolvingalgorithm.

Given the breakdown of functionality into independent
toolkits, it is critical that the state of each toolkit be tightly
coupled with that of others. We have frequently witnessed
users employing multiple toollkits to make decisions, and
requirethat dieinformation within thevariousviewsof these
toolkits be up-to-date and present a consistent picture of the
model database. T oolswhich maintain thisdegr eeof commu-
nication aresaid tobecOncu/ren/[8].T heyar eimplemented so
that any change to the database made by onetool isimmedi-
ately broadcast totheother s. T hisfeatureisimportant because
often while a particular tool may seem to naturally reside
withinonetoolkit fromafunctional sandpoint,ther esultsmay
bebettter communicated through theview in another toolkit
A common examplein ASCEND isfixingavariablewithinthe
Browser, and seeing its effect on the block gructure of the
problem within the Solver.

However, projecting a notion of concurrency to our users
has been difficult The notion of a set of multiple tools
"hovering' over a single mode representation iscontrary to
themorefamiliar " cut & paste" paradigm presented by many
systems. Users often conceptualize that they are moving
objects from tool to tool, rather than seeing the tool as a
particular lensthrough which toview asingledata sructure.

Another aspect of ASCEND modeling that must be ac-
commodated, is support for the user in shifting between the
representationsin building and solving models. Theserepre-
sentations include the model code, the model hierarchies
maintained by theModd Library, and the instance Sructure
which results from model compilation. Where we have ob-

served theneed for quick reference between representations, -

wehaveprovided specific functionsthat optimizethistypeof
interaction. For example, in browsingan ingancegructure, it
is typical to want to view the code which defines a specific
object Thecodedescription of amodd isnormally accessed
throughtheModd Library. In order toseeit, onewould have

tolocatethemode in theinheritancehierarchy and select the
"show code" function. To smplify this, we have partially
automated thisprocedurewhorea mouse-click on thecurrent
object'stypeindicator (infigure5, thisisthe area that reads
"1S A heatjexchanger") will reault in focusing the Modd
Library view on that type definition.

The inability to predict the exact sequence of ASCEND
modeling activity makes supporting users difficult, because
deviation from some "gandard" sequenceis not always in-
dicative of trouble. For example, the usr might decide to
engagethe Solver before specifyingwhich variablesaretobe
fixedandwhich aretobecomputed. TheSolverwillreportthat
thestateof thesystem of equationsis" under specified,” whereas
thedesiredstateis” square™ Thismay or maynot beinter preted
asaproblem, dependingonwhat theuser doesnext I f thenext
step is to execute a procedure which makes the necessary
assgnments, then thedecision ismainly amatter of style. On
theother hand, if the subsequent actionscan bedetermined to
congtitutefloundering, then theremay beagenuinepr oblem—
i.e., what isamisstep when many alter native steps can justi-
fiably betaken?

623 Flexible data access

The ASCEND approach is predicated on the belief that
mode! builder srequireaccesstoall partsof amodel, down to
specific equations and variables. Having decided what is of
interest, theuser may need to alter theviewspresented by the
toolkitsto reflect this interest The system provides various
mechanismsfor locatingspecificobjects. Theseindudemanual
navigation (browsing), search by name, and sear ch by mode
type.

Oncelocated, objectscan beincor por atedintotoolkit views
inanumber of ways. For example, theProbeallowsthemode

Figure 5. The Browser exemplifies the design of a
prototypical ASCENDtool.

builder to create arbitrary lists of objects from disparate
locationsin theproblem gructure Thistoolkit hasbeen used
extensively, and hasunder goneseveral revisions. Although it
wasoriginally conceivedtosupport thepassiveobser vation of
variables and their values, it has proved to be a convenient
placeto locate certain toolsfor analyzing the problem data.
Theseincludetodsthat check whether variablesareproperly
scaled, or jammed againg their bounds.

6.2.4 User-configurability

A natura outcome of the decision to cast ASCEND intoa
multi-tool, multi-window for m, wastheneed topr ovideahigh
degreeofuser contr ol over theenvironment Giventheevidence
that user sneeded tointer act with variouscombinationsof tools
and in various modeling contexts, and the fact that relevant
information to a modeling activity could easily exceed the
available screen space, decisions about tool sizeand screen
layout wer ebest madeby user sthemselves. Theideal arrange-

" ment of tools can only be determined in the context of the
current modeling Stuation. For example, if a Smulation is
being investigated to determine the details of its sructure, it
wouldber easonabletowantaBr owser that occupiesthewhole
screen, with a skeletal view of an instance structure showing
only ingtances of models; in other stuations, the Browser
might smply beusedtoselect avariablewithin asinglemodd
and requirereatively little screen space.

Although the ASCEND interface makes no assumptions
about toal size, shape, location or even presence, it hasbeen
designed to prevent catagtrophic failures such as'losing" a
tool, or reshaping it to an unmanageable sate (i.e., where
important controls cannot be accessed). In anticipating such
problems however, we have been careful not to introduce
unnecessary congraints on tool management, following
Suchman'sadvicethat an interface should support " thenego-
tiation of troublerather than trying to precludetrouble” The
overall management of toolsis facilitated by the presence of
theT oolbox which allowsthem tobeeasily removed fromthe
screen and restored to their previoussize, location and sate.
We also provide users with the means to store personally
designed screen configurationsfor later retrieval. Thisallows
theuser notonlytoper sonalizethe ASCENDenvironmenUbut
to also develop specific configurations for typically encoun-
tered modeing Situations.

Inadditiontocontrolsonitsphysical properties atool also
provides the meansto modify its behavior viaa set of meta-
level controls. Two examplesof thisarethe previoudy men-
tioned " filters" within thebrowser, and an option within the
Solver which determineswhether or not theincidencematrix
should be partitioned into block triangular form.

We have observed a clear rdationship between a model

builder'sgrasp of theASCEND approach and ther useofthese .

configuration options. Typically, new userswill createatiled
layout in which all toolscan be monitored smultaneoudy. As

they gain experience, ther default layouts consist of fewer
toolsand usually anticipate a specific modeling task.

The ASCEND environment does not borrow the entire
screen—it coexistsfredy with other processesand windows.
Thisgivestheuser addedflexibilitytousethesysteminalar ger
computing context For example, thecurrent implementation
of the Model Library organizes models with respect to an
inheritancehierar chy, but doesnot r eflect the or ganization of
thesemodelswithin thefilesthat contain their definitions. I tis
not unusual for usersto create afile-oriented view of modeds
by invoking their favoritetext editor and setting it along side
of other ASCEND toolkits. Thisis an example of use that
emer ged completely outside of thedevel oper's conception of
thesystem. |n Geoffrion'spaper, hepr oposesahigh degr eeof
integr ation between toolsand utilitiesfor communication. In
the above example, we see that it is important that such
integr ation doesnot alwaysr uleout unanticipated, but helpful
user innovation.

6.2.5 Domain Independence

Although ASCEND was conceived with the needs of
Chemical Engineering in mind, it was developed to support
expression of mathematical modeling needsin avery general
way. Thisgenerality hasnot only madeit applicabletoawide
range of problems in Chemical Engineering, but also to
problemsin other disciplines. Becausethesystem wasviewed
as an experimental apparatus we attempted to keep the se-
manticsofitsinter actionclosdly tied tothe ASCEND modeling
approach.

Themain effect thisdecision had on theimplementation of
the system was a deliberate avoidance of the " real-world"
metaphor approach to interface design. In this sense, the
ASCEND environment is more like a programming/debug-
ging environment than a modeling application. That is, the
only domain-specific semanticswhich arepresent in smula-
tionsaredetermined by themodd builder in choosing names
for various components of the models.

Despitethislackofsupportfor specificdisciplines, wehave
seen sgnificant use of ASCEND in several disciplines, as
mentioned in Section4.W ehave however ,encounter ed some
complaintsabouttheover -genexality of ASCEND. Thesehave
come particularly from indugtrial users, who cite sgnificant
increasesincomplexity,especiallyincomparisonwithexisting
domain-specificenvironments. Weacknowledgethisproblem,
especiallyinthecaseof relativelyroutinetasks. T oaddr essthis
issue, we are currently investigating how domain-specific
layer smightbelayer edon topofthebasic ASCEND" engine.”

7.0 Conclusion

In thispaper we haveargued for the need for agructured
approach to mathematical modding, digtilling user require-
mentsintothreemajor categories: hierar chicaldecomposition,

evolutionary modeling, and debugging. We described the
syntax and semanticsof thelanguagewhich resulted from our
attempts to support these needs. Our experience so far indi-
cates that it supports the rapid writing of complex models.
However .ther eisal soacost involvedin lear ningthelanguage,
because the approach isforeign to most modd-builders.

In designing theinter activeenvironment to thislanguage,
it hasbeen important to support thekind of flexibleinter action
that isimplied by congraint-based models. We have argued
that thismeansdecomposingthemcxielingpr ocessintodistinct
subtasks and providing toolkits that are designed to specifi-
cally support them. Although we have reified the moddling
process to this extent, we have avoided prescribing a grict
order in which thesetasks mugt be carried out

Our experience has shown that modd-builders need a
dynamic view of largeand complex setsof data. By dynamic,
we mean both changing content and changing level sof detail.
By data, we refer to model code, ingtance values, and the
gdructures by which they arc organized. We argue that this
means allowing people a high degree of contral over ther
environment

Wehavebeen encour aged by thesuccessof user swho have
taken vagtly different approachesto formulating and solving
problemswith ASCEND, and by thedegreetowhich features
havebeen utilized in actual practice. We seethisasevidence
for the efficacy of the ASCEND technology.

Appendix A: The Trangportation M odel
IMPORT trangportation.atoms

MODEL plant;
sup IS_A supply_capacity;
customerld IS_A set OF integer;
maxCustomer|S_A integer,

CARD(customerld) <= maxCustomer,

flcustomerld], totalFlow IS_A flow;
cost[customer|d]IS_AunitCost;
totalFlow = SUM (f[customer1d]);
totalFlow <= sup;

shipmentCogt IS_A cost;
shipmentCost = SUM (f[i]*cost[i] | i IN customer|d);
END plant;

MODEL customer;
dem |S_A demand;
plantld IS_A set OF integer,
f[plantld]IS_Aflow;
SUM (f[plantld]) = dem;
END customer,

MODEL transportation;
plantld, customerld IS_A set OF integer;
p[plantld] IS_A plant;
c[customerld] IS_A customer;
FOR i IN customerld CREATE
c[i].plantld :=[j INplantld | i IN p[j].customer|d];
END;

FORi IN plantld CREATE
FORj IN p[i].customerld CREATE

p[i].f[j], customer[j].f[i] AREJTHE_SAME;
ND;

END;

obj: MINIMIZE

SUM (p[i].shipmentCost | i IN plantld);

END transportation;

Appendix B: ForecastingM odels
IMPORT forecast_atoms;

MODEL product;
TfIS_A integer,
dem[l..Tf] IS_A demand;
END product;

MODEL forecast;
TfIS_A integer,
D[I..Tf]IS_A demand;
E[l..Tf] IS_A expectedValue;
S[2..Tf] IS_A smoothedValue;
F[2.Tf] IS_A forecastedValue;
END forecast;

MODEL expForecast REFINES for ecast;
aphalS_A dimensionlessConstant;
E[1) = D1}

FORiIN [2.Tf] CREATE
E[i] = alpha*D[i] + (I-alpha)*E[i-I];
F[i] = E[i]+S[i]/alpha;
END;
S[2] =E[2]-E[1];
FORIiIN [3.Tf] CREATE
S[i] = alpha* (E[i]-E[i-I]) + (I-alpha)* S[i-1];
END;
END expForecas;

Appendix C: Transportation Model with For ecasted
Demand

IMPORT trans,
IMPORT forecast;

MODEL forecastedProduct;
plS_A product;
fIS_A forecad;
p.Tf, £Tf ARE_THE_SAME;
p.dem, f.D ARE_THE_SAME;
END forecastedProduct;

MODEL customer_forecast REFINES customer';
FIS_A forecad;
dem = F.E[F.tf];

END customer_forecad;

MODEL trans forecast REFINES transportation;
c[customerld] IS REFINED_TO customerjbrecast;
c[customerld].FIS REFINED_TOexpForecast;

END trans forecast;

References

1

10.

11

12.

13.

14.

15.

16.

Bhargava, H., Kinbrough, S., Krishnan, R., " Unique Names
Violations: A Problem for M odel Integration or You Say
Tomato, | say Tomahto" Vol. 3:2, pp. 107-121, ORSA
Journal of Computing, 1991

Bjerknes, G., Ehn, P., and Kyng, M. (1987). Computers
andDemocracy. England: Avebury.

Borning, A. (1979). ThingLab: A Congraint Oriented
Simulation Laboratory. Ph.D. Thesis, Sanford University.

Brooke, A., Kendrick, D., and Meeraus, A. (1988). GAMS:
A User'sGuide. Scientific Press, Redwood City, CA.

Dhar, V., and Ranganathan, N. (1990). Integer Program-
ming vs. Expert Systems: An Experimental Comparison.
CommunicationsoftheACM, Vol. 33, No. 3.

Floyd, C, Mehl, W-M ., Reisin, F-M., Schmidt, G., and
Wolf, G. (1989). Out of Scandinavia: Alternative Ap-
proaches to Softwar e Design and System Development.
Human-Computer | nteraction, Vol. 4, pp. 253-350.

Fourer, R., Gay, D.M ., and Kemighan, B.W. (1990). A
Mathematical Programming L anguage. Management
Science, 36:5, pp. 519-554.

Garlan, D. (1987). Viewsfor Toolsin Integrated Environ-
ments. Ph.D Thesis, Deptartment of Computer Science,
CarnegieM ellon Univer sity, Pittsburgh, PA.

Geofffion, A. (1989). Computer-Based M odeling Environ-
ments. European Journal of OperationsResearch, 41, pp.
33-43.

Geoffrion, A. (1990). Reusing Structured ModelsVia
M odé Integration. Working Paper No. 362. Western
Management Science I ngtitute, University of California,
LosAngeles.

Greenberg, H.J., and Murphy, F.H. (1991). Views of
Mathematical Programming Models and Their I nstances.
Technical Report Mathematics Department, Univer sity of
Colorado at Denver, Denver, CO.

Hindmarsh, A.C. (1980). L SODE and L SODI, Two New
Initial Value Ordinary Differential Equation Solvers. ACM-
SignumNewsdletter.,\VVol.I5,pp. 10-11.

Hurlimann,T. (1989). ReferenceManual for theLPL
Modeling Language (Version 3.1). Ingtitute for Automation
and Operations Resear ch, University of Fribourg, CH-1700
Fribourg, Switzerland.

Locke M .H., and Westerberg, A.W. (1983). TheAS-
CEND-II System - A Flowsheeting Application of a
Successive Quadratic Programming M ethodology.
Computersand Chemical Engineering, Vol. 7, No. 5, pp.
615-630.

Muhanna, W.A., and Pick, R.A. (1988). Composite M odels
in SYMMS. Proceedings of the 21st Annual Hawaii
I nternational Conference on System Sciences, pp. 418-427.

Muhanna, W.A., and Pick, R.A. (1991). Meta-M odeling
Conceptsand Toolsfor Model Management: A Systems

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Approach. Working Papers Series91-1. College of
Business, The Ohio State University.

Murtagh, B.A., and Saunders, M .A. (1985). MINOSUser's
Guide. Technical Report SOL 83-20. SystemsOptimization
Laboratory, Dept. of Operations Resear ch, Stanford
University, Palo Alto, CA.

Perkins, J.D., (1983). Equation-Based Flowsheeting.
Proceedings of the Second | nternational Conferenceon
Foundations of Computer-Aided Process Design. Arthur
W. Westerberg, Henry H. Chien (eds.). Snowmass,
Colorado.

Piela, P. (1989) ASCEND: An Object-Oriented Computer
Environment for Modeling and Analysis. Ph.D. Disserta-
tion. CarnegieMellon University.

Piela, P.C.,McKelvey, R.D., Katzenberg,B., and
Mehlenbacher, B. (1991). Integrating the User into
Resear ch on Engineering Design Systems. EDRC Report.
Carnegie Méelon University, Pittsourgh, PA 15213.

Sapossnek, M. (1989) Resear ch on Constraint-Based
Design Systems. Proceedings of the 4th I nternational
Conference on Applications of Al in Engineering. Cam-
bridge, England.

Smith, O. (1988). Solving Optimal Control Profiles as
Algebraic Equations. Technical Report Engineering
Design Resear ch Center, CarnegieMellon Univer sity,
Pittsburgh, PA 15213.

Suchman,L. Common Sensein Interface Design. Techne:
Journal of Technological Studies, June 1987.

Sussman, G.J., and Steele, G.L. CONSTRAINTS-A
Language for Expressing Almost-Hierar chical Descrip-
tions. Artificial I ntelligence, 14, pp. 1-39.

Sutherland, 1. (1963). Sketchpad: A Man-Machine
Graphical Communications System. Technical Report No.
296.MTT Lincoln Laboratory.

Westerberg, A.W., and Director, SW. (1978). A Modified
L east Squares Algorithm for Solving Sparsen x n Sets of
Nonlinear Equations. Computersand Chemical Engineer-
ing, Vol. 2, No. 2/3, pp. 77-81.

Westerberg, A.W., and Benjamin, D.R. (1985). Thoughts
on a Future Equation-Oriented Flowsheeting System.
Computersand Chemical Engineering, Vol. 9, No. 5, pp.
517-526.

Westerberg, K.M. (1989a). Development of Softwar e for
Solving Systems of Linear Equations. Technical Report
Engineering Design Resear ch Center, CarnegieMellon
University, Pittsburgh, PA 15213.

Westerberg, K.M. (1989b). Development of Softwar e for
Solving Systems of Nonlinear Equations. Technical Report
Engineering Design Resear ch Center, CarnegieMellon
University, Pittsburgh, PA 15213.

Woodbury, R.F. (1990). Variationsin Solids: A Declarative
Treatment Computersand Graphics, Special | ssue on
Features an Geometric Reasoning, Vol. 14, No. 2.

	Carnegie Mellon University
	Research Showcase
	1-1-1991

	An introduction to ASCEND : its language and interactive environment
	Peter C. Piela
	Roy McKelvey
	Arthur W. Westerberg
	Carnegie Mellon University.Engineering Design Research Center.
	Recommended Citation

