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Abstract

Recently there has been a growing realization among re-
searchers and practioners that current technologies do not
adequately support mathematical modeling "in the large" In
this paper we discuss a technology called ASCEND, which
addresses this issue. We describe two aspects of the technol-
ogy: a modeling language and an interactive model-building
environment. The ASCEND language is structured, declara-
tive, and strongly-typed and incorporates object-oriented
extensions. The interactive environment is based on the notion
of a concurrent set of tools which reflect the various phases of
ASCEND modeling. These tools do not enforce a strict sequence
of operations, but rather have been designed to support the
flexible access implied by declaratively specified models. We
claim that ASCEND offers solutions to several of the issues
raised by Arthur Geqffrion and use categories introduced by
him to frame this discussion.

1.0 Introduction

In a paper summarizing plenary addresses given at the
IFORS 87 conference in Buenos Aires and the 1988 Canadian
Operations Research Society Meeting, Arthur Geoffirion[9]
addresses the shortcomings of current computer-based mod-
eling environments. As an impetus to correcting this situation,
he proposes five characteristics that should be found in any
system attempting to support the full spectrum of modeling
activity. He then steps back from these characteristics and
discusses the three main design challenges that stand in the
way of realizing such systems. In his concluding remarks, he
calls for the reader to consider these issues in light of their
modeling environments and to begin work on closing the gaps
between his admittedly ideal system and their own.

In this paper, we take up this challenge. We are particularly
motivated by the fact that the system we are developing—an
equational modeling environmentcalled ASCEND (Advanced
System for (imputations in Engineering Design)—already
possesses many of Geoffrion's required features and seems a
promising platform in which to address many of the others.

Our aim is to discuss the ASCEND system—its modeling
language and interactive environment—within the Geoffrion
framework, and when appropriate, discuss how the ASCEND
paradigm suggests alternative approaches to modeling sys-
tems. Further, we hope that the reader, after completing the
paper, will have a good sense of the current ASCEND
implementation and its use.

This paper is organized as follows: Section 2 describes the
dominantthemesof the ASCEND approach; Section 3 describes
the ASCEND language in detail and Section 4 analyzes the
language with respect to Geoffrion's points; Sections 5 and 6
similarly discuss the details of the interactive ASCEND en-
vironment and their relation to Geoffrion's ideal.

2.0 The ASCEND approach

In cooperation with a group of academics and industrialists
wehavedevelopedaprotoypemodeldescription language and
a computer system through which users can create and interact
withmodelsdefinedin the language. These tools form the basis
of an experimental program in which observation of users
solving problems and subsequent discussions are used to
refine and evaluate the underlying technology. The stated goal
for the ASCEND project is to create an environment in which
engineers are able to produce complex equational models
involving thousands of equations much more rapidly than
possible with existing technology. The ASCEND system
reflects certain hypotheses about how best to support large-
scale mathematical modeling. These we will discuss in some
detail.

2.1 Models should be highly structured.

ASCEND is a structured approach to developing and
solving equational models. By astmctured approach, we mean
that the user is able to define groupings of equations and
variables called models, and manipulate these models using a
set of language-defined operators.
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Today, a majority of equational modeling is done with
unstructured languages such as GAMS[4], AMPL[7], and
LPL[13], which are based on algebraic notation. Although the
use of these languages has led to significant improvements in
productivity, we believe that the lack of a capability for
defining and managing abstract data models significantly
limits thecomplexity of tasks that can practically beattempted.
This view is shared by Muhanna and Pick[16] who write

"Present modeling tools do not support combining of
models. This is a serious deficiency. By using existing models
as "building blocks" for new composite models, the new
model is developed with less effort than would be necessary if
it were built from scratch. Furthermore, this enables a kind of
"structured" model building in that small models may be
independentlybuiltand debugged and then used as components
in larger mocfels. Traditiorally models are developed (often
from scratch) as stand-alone entities. As a ©suit, model
integration through direct model-to-model linkage is tedious
and error-prone."

In the following sections we further support the need for a
structured approach to mathematical modeling by giving a
brief overview of three issues that we consider to be particu-
larly important in the development of complex models. They
are: hierarchical decomposition, evolutionary modeling, and
debugging.Ineach, the modelbuildermustbeable to manipulate
individual parts of a linked model structure.

Hierarchical(kcomposithn—Omtxpencnct[l9] and that
of other workers in a number of disciplines[3, 16, 21, 25]
suggest a need to support the building of hierarchically orga-
nized networks of equations. In chemical engineering,
Westerberg and Benjamin[27] write "Complex models are
almost always built in a hierarchical fashion. An example is a
distillation column which is built up of trays, flash units,
splitters, mixers, heat exchangers, pumps etc. A flash unit is in
fact a hierarchical structure." In their work on synthesis of
electric circuits, Sussman and Steele[24] propose a language
for describing hierarchical constraint networks in which com-
pound models are defined in terms of existing parts. They
write, "In this way we can build arbitrarily complicated
compound objects in a hierarchical manner. The hierarchy
allows thecomplexity atone level tobe limited." In operations
research,Geoffirion[10] demonstrates thatatranshipmentmodel
can be hierarchically decomposed into two transportation
models with a set of constraints that define resource limitations
for the warehouses. Also, Muhanna and Pick[ 16] contend that
an effective model management system must provide support
for modular and hierarchical model development, and have
demonstrated a strategy fa* accomplishing this in their model
development language MDL[ 15].

Evolutionary modeling—Model evolution has been advo-
cated as an efficient approach to solving large problems. For
example, in arguing against a batch oriented approach, Locke
and Westerberg[14] write that "large attempts fail more often

than not," and suggest that "a more efficient approach is to
solve the large problem in stages, beginning with a few pieces
of equipment and working up to a complete flowsheet"

Another typeof evolution occurs whenamodelbuilder first
describes his or her problem in terms of simplified models
which are robust and converge quickly. Based on these cal-
culations the model builder selectively specializes certain
models to more rigorous representations, and resolves the
problem with the values generatedby the simplified models as
initial guesses. Locke and Westerberg[14] associate this style
of modelingwithmovementalonganaxisof"model complex-
ity."

Modeling can also involve moving along an axis of
"computational control"[14]. For example, a chemical engi-
neer might initialize the flowsheet shown in Figure 1 by
guessing the recycle stream (S4),and separately solve the units
MIX, REACT, ami STILL in a sequence such that the outputs
from one unit become the inputs to the next The engineer can
then alter the degrees of freedom (i.e., which variables are
specified, and which are computed), and solve the entire
flowsheet simultaneously.

Debugging—Although Muhanna refers to the benefits of
developing independently debugged models, model instances
also need to be debugged during solving. In such situations we
have found it helpful to be able to pick a troublesome part, and
work on it (e.g., re-scale variables and equations) in isdation.
This kindofdebuggingoften involves working with a sequence
of parts as the problem is traced back to its cause. Having
corrected the problem, the model builder is able to solve the
complete instance structure.

S4

S1
IVI IX

S2
REACT

S3

S
T

L
L

Figure 1. A simple flowsheet with a recycle stream.

22 Modeling is an inherently interactive process*

Based on our statements about evolutionary modeling and
debugging, we believe that the model builder should have the
choice of working interactively at any point in the modeling
process. This includes both formulation of the model, and
interrogation and manipulation of the model instance.



23 Simulation is best represented as a system of con-
straints

At present, a majority of simulation in engineering design
is done with parametric systems. In these systems, equations
are specified and ordered for procedural computation. Al-
though this approach is useful for routine problems that have
established solution procedures and do not change frequently,
non-routine problems require the model builder to re write and
reorder the model equations.

In response to the need for more flexible systems, there has
been a growing interest in declarative equation-based tech-
niques. Problem solving with equational models involves
specifying the values of certain variables and computing the
others with an independent solver. An importantfeatureof this
approach is that it allows users to examine different scenarios
with one model structure by simply changing which variables
are specified, and which are computed

For example, in chemical engineering process simulation
there are two major types of calculation: simulation, and de-
sign. Simulation is considered to be the easier of the two
calculations, and requires the user to specify all input streams
and equipment parameters (e.g., size). The solver will then
compute the remaining intermediate and output streams. A
design calculation is more or less the inverse; the userspecifies
variables in the output streams, and the solver computes either
equipment parameters or input streams.

Tlie design calculation is difficult for a number of reasons
including the possibility of making a specification on an output
stream that is physically impossible to achieve. Locke and
Westerberg[14] suggest that the correct way to approach a
design problem is to start out with a sequence of simulation
calculations which generate converged solutions approaching
the desired solution, and then switch to the design calculation
by altering which variables arefixed,andwhichare computed.

3.0 The ASCEND language

What follows is a brief overview of what we consider to be
some of the most important attributes of the ASCEND lan-
guage^ ] , and how they relate to the issues raised in the
[devious section. ASCEND was originally designed to support
thedeclarativeand structured specificationoflarge systems of
equations that arise in engineering design. The language builds
on concepts used in object-oriented programming and con-
ventional strongly-typed languages such as Pascal. We will
discuss the ASCEND language using the benchmark examples
of Geoffrion which include the transportation and forecasting
models. (Model definitions can be fotnd in Appendices A, B,
andC.)

3.1 Information hiding

There is no information hiding in ASCEND. One can gain
access to any part of any model using qualified names (path).

Fa* example, in the transportation model shown in Appendix
A, the total cost of shipping product from plant i is accessed
using the namep[i].ShipmentCost Note that qualified naming
eliminates the problem of syntactically ambiguous references
which may result from name clashes within two separately
defined components. However, it does not completely address
the broader (semantic) issue of unique name violations that
need to be resolved during model integration 1].

3.2 Operators

The language has only five operators: REFINES, IS_A,
IS_REFINED_TO, AREJTHEJSAME, and ARE_ALIKE
which, we conjecture, simplifies learning. REFINES imple-
ments monotonic inheritance, IS_A implements incorpora-
donJS_REFINED_TO implements refinementofmodelparts,
ARE_THE_SAME implements a way of recursively
equivalencing structured objects [3,25], and ARE.ALIKE
implements grouping of objects over which structural varia-
tions are to be made. Further discussion of these operators will
be offered as they relate to features discussed below.

3 3 Arrays

Arrays of variables, relations, and models are indexed over
sets of integers or symbols (or refinements of these). The
contentsof these index sets can be fixed during array declaration
or computed as apart of theproblem formulation. For example,
in the transportation model presented in appendix A, the set of
plants from which customer i is to receiveproduct, is computed
from the listof customersspecifiedforeachplant,c[i].plantld
:= [j IN plantld I i IN p(j].customerld].

3.4 Dimensional consistency

ASCEND provides dimensional checking (e.g., mass/time)
foraUrdatioris (equations, inequalities, and objecdvefunctk)ns).
Thus, dimensional inconsistencies among variables in an
equation are readily detected. Without automatic checking of
dimensionality, such errors are generally very difficult to find.
Once the dimensionality of a variable is known, its value may
be assigned or displayed in any set of compatible units (for
example, tomes/year). In the case of the tansportationmodel,
the type definition for the variable "flow" is given by:

ATOM flow REFINES solver_var
DIMENSION M/T
DEFAULT 1000 {tonnes/year};

nominal := 1000 {tonnes/year};
END flow;

It should be noted that every numeric value in an ASCEND
model has an associated dimensionality that is implied by (1)
a units specification(e.g., 1000 tomeVyear, 55 miles/hr), (2)
a type definition (e.g., "f IS_A flow" implies that f has



dimensionality mas$ftime),or (3) propagation of dimensional-
ity through relations.

In addition, the user can define his or herown measurement
units in terms of the fundamental units associated with each
dimension, or any previously defined derived units. For ex-
ample,

UNITS
mol:=kmol/1000;
g := kg/1000;
lb := kg/2.20462;
N :=kg*m/sA2;
J :=N*m;

END;

3.5 Object-based features

ASCEND is based on object-oriented concepts which
allow models to be structured more like the systems they are
meant to represent We conjecture that such decompositions
are generally easier for users to understand. This argument is
analogous to the suggested preference for object-oriented
databases over relational databases in engineering applica-
tions.

An example of this style of modeling is given for the
transportation problem (shown below) which is composed of
a set of plants (p[plantld]), and a set of customers
(c[customerld]). Each plant is itself a structured object con-
taining product flow (f[customerld]) to a set of customers
(custcmerld). The following sections briefly illustrate the
object-oriented features of ASCEND.

MODEL plant;
sup IS_A supply_capacity;
customerld IS_A set OF integer,
maxCustomer IS_A integer,

CARD(customerId)<= maxGistomer,

ffcustomerid], totalFlow IS_A flow;
cost[customerld] IS_A unitCost;
totalFlow=SUM(f[customerId])
totalFlow <= sup;

shipmentCost IS_A cost;
shipmentCost= SUM[f[i]1|tost[i] I i IN customerld);

END plant;

MODEL transportation;
plantld, customerld IS_A set OF integer,
pfplantld] IS_A plant;
c[customerld] IS_A customer,

END transportation;

3.5.1 Inheritance and part refinement

InheritanceissupportedthroughtheREFlNESoperator.lt
promotes reusability and organization through the building of
inheritance hierarchies, and provides a mechanism for type
checking.

For example, in the integrated transportation/forecasting
model shown in Appendix C, a customer_forecast model has
been defined which locally inherits the attributes of the cus-
tomer model, and is further specialized by adding an instance
of a forecasting model and a relation which specifies that the
demand (dem) will be computed using die forecasting model.

The transportation with forecasting model (trans_forecast)
is then defined as a refinement of the basic transportation
model with twoadditk)nalconstraints.Theseconstraints specify
that the set of customers defined in the basic transportation
model will be "refined" to customers whose demand will be
predicted by a forecasting model (c[customerld]
IS_REHNED_TO customerjbrecast), and that for each
customer, demand will be predicted using an exponential
forecast(c[custcmerl(l] J7 ISJIEFINEDJTO expForecast).

This refinement of parts, supported through the
IS JREFINED_TO operator, permits evolutionary modeling
and improves the possibilities of model reuse. An example of
part refinement is shown above where the structure of a
customerforecast is refined to anexponentialforecastPossible
refinements are defined by the structure of the inheritance
hierarchies, and the refinement process is validated by the
language compiler.

3.5.2 Merging

The recursive merging of structured objects is supported
through the ARE_THE_S AME operator. This facility is used
to connect complex models by selecting parts (connectors)
within models through which the connection is realized, and
making these parts equal. Merging several connectors together
results in a single equational structure thatcan be referenced by
all naming schemes defined by the connectors. For example,
the intent of making the statement p[i].f[j], customer(j].f[i]
AREJTHEJS AME is that the numeric value of the flow of
product from plant i to customer j is equal to the value of the
flow that customer j receives from planti. This couldhave been
written p[i].f[j] = customer[j]i[i]; however, this would need-
lessly create an extra equation, and maintain a duplicate copy
of the flowvariable.ByusingARE_THE_SAME, no equation
is created. The reduction in resources achieved by using
AREJTHE_SAME is especially important in engineering
applications where connectors may contain several hundred
equations.

3.5.3 Grouping

Propagation of structural variations is supported through
the ARE_ ALIKE operator. For example, in the trans_f orecast



model one could write the statement c[customerId].F
ARE_ALIKE which expresses the intent that all customers
will use the same type of forecasting model. A structural
change made to any individual forecasting model will auto-
matically propagate to the others.

3.5.4 Strong typing

Strong typing, which requires one to indicate the type of
every part in every model, reduces the debugging effort
(during solving) for complex models. The base type of apart
is declared using the IS_A construct Also, the type system
provides a mechanism by which the user can define legitimate
ways in which parts can be merged together. For example, in
the case of the inheritance hierarchy shown in Figure 2, it
woukl be invalkl to attempt tomergeaninstanceofUquid_stream
with an instance of vapor_stream because the liquid.stream
and vapor.stream models are net conformable. (Two models
are said to be conformable if one is the ancestor of the other.)
Errors that mightarise in an attempt to make such a connection
are detected by the language compiler. It should be noted that
that statements can be incrementally compiled.

3*5.5 Procedures

ASCEND models can optionallycontain procedures. These
are used to compute initial values, and set degrees of freedom
(e.g., the assignment xl.fixed := FALSE states that the value
of the variable can be assigned by a solver). Several alternate
procedures might concurrently exist (e.g., procedure
init_example28a and init_example28b) which can be be in-
voked selectively by the model builder prior to solution. A
complete description of the procedural language is outside the
sc»peofthispq)er.However,asshownbebw,pitx»duiesaieable
to invoke other procedures defined locally or within visible parts.

MODEL example28;
xl, x2 IS_A unscaled.variable;
x l*x2- l = 0;
xl*xl + x2*x2-3 = 0;

INITIALIZATION
PROCEDURE assign.bounds;

xl .lower_bound := 0;
xl.upper_bound := 4.0;
x2.1ower_bound := 0;
x2.upper_bound := 4.0;
xl.fixed:= FALSE;
x2.fixed:= FALSE;

ENDassignJxxinds;

PROCEDURE init_example28a;
RUN assignjxninds;
xl :=2;
x2:=2;

END init_example28a;

PROCEDURE init_example28b;
RUN assign_bounds;
xl:=4;
x2:=2;

END init_example28b;
ENDexample28;

4.0 A discussion of the ASCEND language

In this section we explicitly relate characteristics of the
ASCEND modeling language to thecharacteristicsanddesign
implications outlined by Geoffrion[9]. In some cases we
directly evaluate the ASCEND language by a Geoffrion ideal,
in others we question or modify the premise embodied by his
ideal. We begin by focusing on the notion of "executability"
proposed by Geoffrion as a necessary attribute of a flexible
modeling environment

4.1 What is meant by executable?

Geoffrion writes/'theadjective 'executable' refers to func-
tions that programs in the modeling environment should be
able to perform upon receiving a model written in an execut-
able modeling language." If one reads the previous statement
literally, ASCEND is not an executable language. At present,
the only ASCEND program that reads model descriptions is a
compiler, which takesamodeldescriptionandgeneratesadata
structure which can be interrogated using a set of procedures
that we provide. External programs such as graphers, solvers,
and spreadsheets are integratedintotheenvironmentby writing
software bridges thatallow values in an ASCEND datastructure
to be accessed by the external program in a format that it
requires, and vice versa. This approach has several benefits, (1)
a single bridge can be written that will work with all models
written in the ASCEND language, (2) the model builder
composes and revises models using only the modeling lan-
guage, the solver input is automatically regenerated by the
bridge, (3) the external programs can be used "as is'* without
any internal modifications, and (4) a single bridge can be
constructed for a family cf programs (e.g., an MPS file
generator).

Figure 2. An Inheritance hierarchy for describing
material streams.



42 Can one language support all users?

Geoffrion writes that the modeling language should be
"sufficiently natural that non-modeling professionals can un-
derstand it with only a modest amount of training.'9 Our
experience suggests that this may not be achievable. An
extensive discussion of our views on this topic can be found in
[20].

Our research responds to criticisms of languages such as
GAMS being too low-level and too inflexible for solving real-
world problems[5].However,itshould be noted that the use of
structured modeling languages is currently outside the experi-
ence of many model builders.

For the pasttwo years we have been working with academic
and industrial users in an attempt to understand, evaluate, and
refine the hypotheses underlying ASCEND modeling. In
interviews conducted with off-campus users, the following
two themes were recurrent. First, unfamiliarity with object-
oriented concepts contained in the ASCEND language caused
difficulties, and second, no precedent existed for taking a
structured approach to the formulation of equational models
(as opposed to flat lists cf algebraic specifications).

We suggest that rather than trying to make the modeling
language intuitive for all users, designers should develop
adequate support structires (e.g., help systems, coaching,
worked examples) for different skill levels and requirements.

43 Evolutionary modeling

Geoffrion writes, "Flexibility is important because few
modeling professionals ever get a model or model-based
system 100% right the first time.Evenifby some miracle they
do, the requirements usually change over time and thus will
soon induce the need for revision. In any case, evolution will
be necessary for genuine excellence." We agree, and the
current ASCEND language supports model evolution in two
related ways. First, there is model inheritance which allows the
model builder to define a model that locally inherits the entire
structure (variables/elations, procedures, and default valics)
from a single parent model. He or she can then add statements
to the new model. This type of inheritance organizes models
hierarchically. Second, there is part refinement which allows
amodelbuUdertochangethetypeofapartofamodeLThepart
can only be refined to a member of the set of models which
inherit from the current model or any of its descendents. By
adopting a strictly monotonic view of inheritance we are able
to guarantee that refinement of parts will yield well-formed
model structures.

4,4 Declarative and procedural

Geoffrion writes that for a modeling language to be un-
derstandable and natural it should be "declarative rather than
procedural and highly mnemonic rather than cryptic." While
we agree that a declarative representation is natural for equa-

tional modeling, wehavedecided to include procedural notions
in the definition of models. An ASCEND model is divided into
two sections both of which are optional. The first contains
declarative statements which are used to specify the equational
structure of the model. The second contains a set of procedures
written in a small imperative language, that are used to
compute initial values of variables, to specify which variables
are fixed and which are to be computed. Whereas other
modeling systems only provide mechanisms for importing
externally computed values we believe that the knowledge
encoded in procedures should be an explicit part of a model
formulation.

4.5 A common modeling language

Geoffrion writes "in a true modeling environment, there
should be a lingua franca (common language) for model
formulation that is very broadly applicable and not biased
toward any particular problem domain, or solver technology."
We have adopted this approach in the development of AS-
CEND, and have worked with users to develop model libraries
in several domains. These include, chemical engineering [22],
geometric reasoning in architectural design [30], mathematics,
physics, and operations research.

4.6 Consistency checking

Geoffrion writes that "an executable modeling language
should be able to perform extensive consistency checking.*9

We have dealt with this issue through the use of strong typing.
One of the major rationales for a strongly typed language is the
problem of providing good diagnositic information in the
eventof solver failure[l 8]. Adequate diagnostic information is
difficult to provide because the mathematical decomposition
employed by solvers is usually different from the physical
decomposition favored by model builders.

Given the difficulty in debuggingduringsolving,wedecided
that the ASCEND language should be strongly typed, with the
aim that problem specifications submitted to a solver should
accurately reflect a user's intent both in terms of values and
structure.

ASCEND's type system enables the compiler to detect
errors like trying to connect (merge), group, or refine incom-
patible parts. B y making dimensionality an explicit part of the
declaration of an ATOM (variable) we are able to report
equations which are dimensionally inconsistent, and to vali-
date numeric assignments made to variables. We also use the
type system to define which objects an external program can
operate on. For example, plotting programs will only extract
data from instancesofthe**plot" model or any of its refinements.

5.0 The ASCEND Environment

We now turn our attention to the interactive interface to the
ASCEND system. What follows is an overview of the basic
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Rgure 3. The toolbox Is used to control the visibility of toolkits on the desktop.

tools provided for the user to analyze and solve simulations.
Once a model has been specified with the ASCEND

language, instances of those models arc displayed, solved, and
evolved through an interactive graphic interface. The interface
uses the metaphors of a "toolbox" (figure3) and "desktop"
(figure 4). The toolbox is a permanert area of the screen vhich
contains buttons symbolizing available toolkits, and buttons
which organize the interface. The desktop occupies the re-
mainder of the screen and contains tool kits currently in use.
Underlying the ASCEND system is a database that stores both
model definitions and any instances of model definitions
created through the interface (simulations). Each tool kit
implementsasemantically different view of the problem being
examined (e.g., source code, structural, mathematical, etc.)
and these views arc maintained concurrently with the under-
lying database. That is, a change made in one toolkit is
immediately reflected in the others.

Our experience with ASCEND has shown that multiple
views arc required to support complex problem solving, and
this has been suggested by other workers in the area of
mathematical modeling (e.g.,[ll]). In keeping with a direct
manipulation paradigm, the user is able to share information
generated in one tool by exporting references to objects within
that tool directly into others. It should be noted that, unlike a
conventionali<clipboard,"onlyrcferencestoobjectsarepassed
and not the data within the object There is only onecopy of any
piece of data stored in the database. Following is a brief
descriptionoflhecurrentlyimplemented toolkits—the Library,
Sims, Browser, Solver, Probe, Units, Display, and Script

Tools in the Library Tool Kit arc used to create, view and
manipulate the inheritance hierarchies in which model defini-
tions arc organized These hierarchies arc created by loading
modeldefinitionsftom text files. After loading,the user selects
one of the models in the library to be compiled into a database
of equations and variables called a simulation. A number of
different simulations can co-exist; each is listed in the tool kit
labeled Sims. Once created, a simulation can be "played with"
in many ways by the other tools in the system.

The Browser tools arc used to select objects of interest
within a simulation either by incremental navigation or direct
query. Other tools perform operations on these objects: for
example, displaying attributes in order to verify structure,
creation of new parts within the objects, and refinement of the
objects in an evolutionary modeling process.

Since complex models are created by merging together
parts using the ARE_THE_SAME operator, many parts of a
simulation will have alternate names. One of the tools allows

the user to display all the names for a part and to pick one of
these as the current focus. Another tool in the Browser allows
procedures defined in the INITIALIZE section to beexecuted.

The primary functions of the Solver arc to apply a chosen
algorithm to the solution of the system of relations defined by
the object it is viewing (the current d>ject), and to assist in tte
investigation of failures that occur during solving. The current
object is continually analyzed to see if it forms a well-posed
problem. If it does not, the user can return to the Browser and
reset some of the variable flags to indicate that some of them
arc to be fixed rather than computed If these flags are contained
in the current object, ASCEND will immediately reanalyze
and report the consequences. An effort to solve the system of
equations defined by the current object can be attempted even
if it is not "square." For a system of equations which has more
variables than equations, our solver SLV will arbitrarily select
some of the variables as fixed and solve for the remaining ones.

One tool in the Solver is a debugger where one can display
the incidence matrix fa the equations (rows of the matrix)
versus the variables (columns) in the problem. Solving can be
done by single-stepping or by executing until a maximum
number of iterations or a time limit is exceeded. At present, the
user can select any one of the following solving packages
which is compatible with the current object. Only compatible
selections are actively displayed to the user.

• SLV[28,29] is our own solver for solving n nonlinear
algebraic equations in n unknowns. It is based on a modified

Rgure 4. A typical desktop configuration.



Marquardt method[26]. The variables can have bounds speci-
fied for them, which will cause the solver to restrict its search
for solutions within the bounds. SLV partitions the nonlinear
equations and solves the partitions in a precedence ordering.

• MINOS-Augmented[17] isanonlinearoptimization code
capable of handling several thousand equality and inequality
constraints. It is available from Stanford University.

• SQP is a sequential quadratic programming solver avail-
able from L. T. Bieger (Chemical Engineering, Carnegie
Mellon University). The current implementation is a dense
version and more appropriate for snail problems (on the order
of one hundred constraints).

• LSODE[12], as used in the ASCEND system, is for
solving dynamic models which involve a mixture of ordinary
differential equations and algebraic equations. It integrates the
model over time or space from a known initial condition. It is
available from the Lawrence Livermore National Labs.

The Probe provides the user with the capability of forming
collections of variables, equations, or complex parts that are of
interestfrom disparate locations inasimulation,andtomonitor
their values during solving. The Probe contains tools which
allow the user to detect whether any variables listed in it are
poorly scaled or near one of their bounds.

The Units tool kit allows the user to specify the measure-
ment units in which the values of variables are displayed. The
user can define sets of units which can be saved in text files for
later reuse.

The Script can be used in two ways. First, it can read a set
of instructions fromatextfile specify ingasequenceof actions
to be taken by the system (e.g., read a model definition file,
create a simulation, solve a simulation, plot a graph). The user
can choose which instructions are executed. During execution,
the interface is animated as if the user were actually pressing
the buttons. Second,thescriptcan be used to record commands
invoked through the interface which can be written toatextfile
for later replay. We intend the Script to be both a convenience
for expert users and an aid in teaching new users about the
system.

In addition to the tool kits described above, there are
number of support tools which can be invoked through the
interface. For example, objects can be viewed andmanipulated
using a Unix spreadsheet program, plotted using a number of
x-yandx-y-zplottingprograms,andusedtocreatehighquality
reports (e.g., equipment specification sheets) using Postscript
templates generated by standard drawing programs or word
processors.

6.0 A Discussion of the ASCEND environment

Geoffrion's discussion of system design issues focuses on
choices of representation, language issues, system compo-
nents, and the attributes of an ideal system. Little detail is

provided concerning specific interface design, or issues of
usability. In the following section we explore some of these
questions in the context of our work on ASCEND.

6.1 Designing the ASCEND system: methodology

Before we discuss the implications of the ASCEND inter-
active environment as an artifact, it is important to review the
methodsbywhkhit has comeabout The interface to ASCEND
was developed using a iterative design approach. Our process
is closely aligned with what has become known as Participa-
tory Design[2,6], an approach to system development which
emphasizes close and continuous interaction between devel-
opers and users, and techniques of rapid prototyping. An in-
depth discussion of this design methodology and our inter-
pretation of it is the subjectof another paper [20]. What follows
is a summary of some of this paper's major points.

The ASCEND project's primary focus is to investigate
whether a design system based on a structured, declarative
modeling language, and a supporting en vironment in which to
work with the models thatresult, can improvemodeling speed,
reduce errors, expand the complexity of problems attempted,
and support significant rates of model re-use. While we
believed that the underlying technology had the potential to
achieve these aims, we had no good way of verify ing progress
on these complex issues without directly capturing the expe-
rience of our intended users as they attempted to solve real
problems. Tothisend, the ASCEND environmentwascreated,
not as an embodiment of how its developers expected the
system to be used; but rather as an experimental apparatus to
test the feasibility of the ASCEND paradigm and to provide
input into its further development

Because our primary interests centered on what people
could accomplish with an environment like ASCEND, we felt
that this information could best be assessed through situated
use. By situated we mean problem-solving in the user's
workplace with the user's own problems. This is in contrast to
the more common practice of evaluating a system by examin-
ing its performance on a standard set of example problems in
acontrived experimental setting. Further, because our primary
aim was to extend the boundaries of existing modeling prac-
tice, we consciously designed the system to support advanced
modeling practice.

To study situated use, a method must be established for
determining which aspects of a user's experience actually
verify orcontradictaproject'sbasic hypotheses. Italso implies
that clear criteria for judging the relative success or failure of
an encounter with the technology can be determined. We have
employed three intertwined sources of data to analyze user
performance. The first comes from opinions: our own, and
those volunteeredby users in informal discussions and in taped
interviews. The second source comes from observation of
people as they worked on problems, either in real-time or by
use of videotape. The final source of information comes from



studying the outcomes of modeling efforts—the partial or
complete solutions toawiderangeof modeling tasks. This last
set of data gives us a clear sense of what types of problems
model builders expect the system to handle, what fraction of
the system's features are typically employed, whether there
was anyre-useof code and to what degree, where problems are
typically encountered, etc.

The system has been under continual evaluation and evo-
lution for the last three years. Its users have come from a wide
range of academic dsciplines (chemical engineering, opera-
tions research, physics, architecture) and also include a set of
industrial users. The development team has consisted of a
faculty member oftheChemicalEngineeringDepartment who
is expert in the area of mathematical modeling, a researcher
whose thesis woik was directly tied to the project, two repre-
sentatives ofthe Design DepartmentwithexpCTience in human
factors, graphic design and user-interface issues, an expert in
document design and on-line help systems, and two under-
graduate programmers.

62 Interface Design Issues

Here, we focus on the particular design issues that have
emerged from the development process described above. We
isolate five basic features of the ASCEND environment and
discuss their derivation, their implementation, and when
possible, their effect on actual problem-solving behavior.
These features are listed here, and are dealt with individually
in subsequent sections. They are:

1. Ahighdegreeofintegrationandbehavioralconsistency
among tools;

2. Supportforflexibleinteractionamongmodelingphases;

3. Support for arbitrarily fine access to models, instances,
equations and variables;

4. Support for user-configurability of system organization
and behavior;

5. Domain-independence;

62.1 Tool Design and Integration

ASCEND modeling can be conceptualized as a set of
several distinct activities. These are: model formulation (cod-
ing), loading of models into the system, model instantiation,
browsing and selection of instance structures, solution, and
display of results. Through our analysisof system use, we have
determined that these activities can vary widely in frequency,
sequence, and duration. Further, these variances depend on
both the type of problem being attempted, and on people's
modeling sty le. As we began to evolve interactive mechanisms
to support ASCEND's various modeling phases, it became
quiteclear that each suggested a different view of the data with

its own set of supporting operators. For example, browsing of
instance structures requires some view of that structure and a
series of operators which provide means for navigation through
it The Solver, on the other hand, should display characteristics
of the problem in terms of numbers of equations and variables,
and provide operators to assist in bringing the model to
convergence.

Developingasystem of this complexity isachallenge in its
own right, however in the case of ASCEND, the development
is complicated by the existence of a well established work

. practice which does not necessarily map directly to the new
approach. We relied on our experience, and discussions with
other experienced model builders to arrive at tool definitions
which could clarify the differences between the new and the
old.

In early manifestations of the ASCEND interface, we
attempted to integrate all phases of modeling into a single-
window environment with a static display and a large set of
loosely organized commands. As we observed people using
this environment and attempted to refine it, several problems
kept cropping up. For example, certain operations seemed to
belong to several of the modeling phases, but with a slightly
different semantic—this left us with thechoiceofproducingan
interface with many "modes", or creating operators with
marginally different functionality and artificially different
names. In our observations of users, it was clear that during a
typical modeling session, it was desirable to have access to the
information produced in one modelingphase while working in
another. For example, it is common for a model builder to
engage in browsing the instance structure while attempting to
bring a simulations convergence. (This is only one of many
examples.) The need to see many types of information, coupled
with the large size of these information structures (e.g, hun-
dreds of lines of computer code, deeply nested instance
structures) created a crisis inmanaging screen real estate.

Our solution to these problems was to adopt the toolbox/
toolkit approach as described in section 5. This approach has
allowed us to isolate each modelingphase into its own context
We define an ASCEND toolkit (see figire 5) as consistirg of
three parts: a frame, a set of menus, and a view. Aframe, which
defines a toolkit's size and location, includes the toolkit's
name, mechanisms for repositioning and re-sizing the toolkit,
and access toasetofuser-definableattributeswhich determine
its meta-level behavior. For instance, the Browser can be set to
display sub-items at a depth greater than one, or it can be set to
display objects of a given grain size, such as showing only
instances of models, and ignoring specific equations and
variables. The vi^w is a display that shows objects of a relevant
data-type to die toolkit in a particular format For example, in
the Model Library the view shows those models loaded into the
system in the form of an inheritance hierarchy. Themenus hold
all tools whichoperate drectlyon the data elements) cirrently
in the view. In creating this abstracted tool definition, we can



easily bring a high level of consistency to all modeling phases,
and provide wharGeofiBroncallsa^conceptual unityM[9] to the
systemJndiscussk>ns with oiff users, this toolkitapproachhas
been cited as greatly reducing the time spent on learning to
control the environment

622 Flexible Interaction

Because ASCEND models are declaratively specified and
maintained as a dynamic system of constraints, user interac-
tion with the modelingenviionmentissimilariynon-pfocedural.
Although model builders will eventually encounter each of the
general modeling steps mentioned in section 6.1, the sequence
of different steps is not pre-ordained. For example, once a
simulation has been instantiated, they may decide to solve
individual parts before addressing the whole, or in debugging
a simulation, they may inspect several aspects of the problem
in order to make sense of diagnostic information provided by
the solving algorithm.

Given the breakdown of functionality into independent
toolkits, it is critical that the state of each toolkit be tightly
coupled with that of others. We have frequently witnessed
users employing multiple toollkits to make decisions, and
require that die information within the various views of these
toolkits be up-to-date and present a consistent picture of the
model database. Tools which maintain this degree of commu-
nication are said to bec0ncu/ren/[8].Theyare implemented so
that any change to the database made by one tool is immedi-
ately broadcast to theothers. This feature is important because
often while a particular tool may seem to naturally reside
within one toolkit from a functional standpoint, the results may
be bettter communicated through the view in another toolkit
A common example in ASCEND is fixingavariable within the
Browser, and seeing its effect on the block structure of the
problem within the Solver.

However, projecting a notion of concurrency to our users
has been difficult The notion of a set of multiple tools
"hovering" over a single model representation is contrary to
the more familiar "cut & paste" paradigm presented by many
systems. Users often conceptualize that they are moving
objects from tool to tool, rather than seeing the tool as a
particular lens through which to view a single data structure.

Another aspect of ASCEND modeling that must be ac-
commodated, is support for the user in shifting between the
representations in building and solving models. These repre-
sentations include the model code, the model hierarchies
maintained by the Model Library, and the instance structure
which results from model compilation. Where we have ob-
served the need for quick reference between representations,
we have provided specific functions that optimize this type of
interaction. For example, in browsing an instance structure, it
is typical to want to view the code which defines a specific
object The code description of a model is normally accessed
through the Model Library. In order to see it, one would have

to locate the model in the inheritance hierarchy and select the
"show code" function. To simplify this, we have partially
automated this procedure whore a mouse-click on the current
object's type indicator (in figure 5, this is the area that reads
"IS_A heatjexchanger") will result in focusing the Model
Library view on that type definition.

The inability to predict the exact sequence of ASCEND
modeling activity makes supporting users difficult, because
deviation from some "standard" sequence is not always in-
dicative of trouble. For example, the user might decide to
engage the Solver before specifying which variables are to be
fixed and which are to be computed. The Solverwillreport that
thestateof thesystem of equations is "underspecified," whereas
the desired state is "square.1* This may or may not be interpreted
as a problem, depending on what the user does next If the next
step is to execute a procedure which makes the necessary
assignments, then the decision is mainly a matter of style. On
the other hand, if the subsequent actions can be determined to
constitute floundering, then there may beagenuine problem—
i.e., what is a misstep when many alternative steps can justi-
fiably be taken?

623 Flexible data access

The ASCEND approach is predicated on the belief that
model builders require access to all parts of a model, down to
specific equations and variables. Having decided what is of
interest, the user may need to alter the views presented by the
toolkits to reflect this interest The system provides various
mechanismsforlocatingspecificobjects. These include manual
navigation (browsing), search by name, and search by model
type.

Once located, objects can be incorporated into toolkit views
in a number of ways. For example, the Probe allows the model

Figure 5. The Browser exemplifies the design of a
prototypical ASCEND tool.



builder to create arbitrary lists of objects from disparate
locations in the problem structure. This toolkit has been used
extensively, and has undergone several revisions. Although it
was originally conceived to support the passive observation of
variables and their values, it has proved to be a convenient
place to locate certain tools for analyzing the problem data.
These include tods that check whether variables are properly
scaled, or jammed against their bounds.

6.2.4 User-configurability

A natural outcome of the decision to cast ASCEND into a
multi-tool, multi-window form, was the need to provideahigh
degreeofusercontrol over the environment Given the evidence
that users needed to interact with various combinations of tools
and in various modeling contexts, and the fact that relevant
information to a modeling activity could easily exceed the
available screen space, decisions about tool size and screen
layout were best made by users themselves. The ideal arrange-
ment of tools can only be determined in the context of the
current modeling situation. For example, if a simulation is
being investigated to determine the details of its structure, it
would be reasonable to wantaBrowser that occupies the whole
screen, with a skeletal view of an instance structure showing
only instances of models; in other situations, the Browser
might simply be used to select a variable within a single model
and require relatively little screen space.

Although the ASCEND interface makes no assumptions
about tool size, shape, location or even presence, it has been
designed to prevent catastrophic failures such as 'losing" a
tool, or reshaping it to an unmanageable state (i.e., where
important controls cannot be accessed). In anticipating such
problems however, we have been careful not to introduce
unnecessary constraints on tool management, following
Suchman's advice that an interface should support "the nego-
tiation of trouble rather than trying to preclude trouble." The
overall management of tools is facilitated by the presence of
the Toolbox which allows them to be easily removed from the
screen and restored to their previous size, location and state.
We also provide users with the means to store personally
designed screen configurations for later retrieval. This allows
the usernotonlyto personalize the ASCENDenvironmenUbut
to also develop specific configurations for typically encoun-
tered modeling situations.

In addition to controls on its physical properties, a tool also
provides the means to modify its behavior via a set of meta-
level controls. Two examples of this are the previously men-
tioned "filters" within the browser, and an option within the
Solver which determines whether or not the incidence matrix
should be partitioned into block triangular form.

We have observed a clear relationship between a model
builder'sgrasp of the ASCEND approach and their useofthese
configuration options. Typically, new users will create a tiled
layout in which all tools can be monitored simultaneously. As

they gain experience, their default layouts consist of fewer
tools and usually anticipate a specific modeling task.

The ASCEND environment does not borrow the entire
screen—it coexists freely with other processes and windows.
This gives theuser added flexibility to use the system inalarger
computing context For example, the current implementation
of the Model Library organizes models with respect to an
inheritance hierarchy, but does not reflect the organization of
these models within the files that contain their definitions. It is
not unusual for users to create a file-oriented view of models
by invoking their favorite text editor and setting it along side
of other ASCEND toolkits. This is an example of use that
emerged completely outside of the developer's conception of
the system. In Geoffrion's paper, he proposes a high degree of
integration between tools and utilities for communication. In
the above example, we see that it is important that such
integration does not always rule out unanticipated, but helpful
user innovation.

6.2.5 Domain Independence

Although ASCEND was conceived with the needs of
Chemical Engineering in mind, it was developed to support
expression of mathematical modeling needs in a very general
way. This generality has not only made it applicable to a wide
range of problems in Chemical Engineering, but also to
problems in other disciplines. Because the system was viewed
as an experimental apparatus, we attempted to keep the se-
manticsofitsinteractionclosely tied tothe ASCEND modeling
approach.

The main effect this decision had on the implementation of
the system was a deliberate avoidance of the "real-world"
metaphor approach to interface design. In this sense, the
ASCEND environment is more like a programming/debug-
ging environment than a modeling application. That is, the
only domain-specific semantics which are present in simula-
tions are determined by the model builder in choosing names
for various components of the models.

Despite this lackofsupportfor specific disciplines, we have
seen significant use of ASCEND in several disciplines, as
mentioned in Section4.Wehave,however,encountered some
complain tsabouttheover-genexality of ASCEND. These have
come particularly from industrial users, who cite significant
increases in complexity,especiallyin comparison with existing
domain-specific environments. Weacknowledgethis problem,
especially in the case of relativelyroutine tasks. Toaddress this
issue, we are currently investigating how domain-specific
layersmightbelayeredon topofthe basic ASCEND"engine."

7.0 Conclusion

In this paper we have argued for the need for a structured
approach to mathematical modeling, distilling user require-
ments into three major categories: hierarchicaldecomposition,



evolutionary modeling, and debugging. We described the
syntax and semantics of the language which resulted from our
attempts to support these needs. Our experience so far indi-
cates that it supports the rapid writing of complex models.
However.there is alsoacost involved in learning the language,
because the approach is foreign to most model-builders.

In designing the interactive environment to this language,
it has been important to support the kind of flexible interaction
that is implied by constraint-based models. We have argued
that this meansdecomposingthemcxielingprocess into distinct
subtasks and providing toolkits that are designed to specifi-
cally support them. Although we have reified the modelling
process to this extent, we have avoided prescribing a strict
order in which these tasks must be carried out

Our experience has shown that model-builders need a
dynamic view of large and complex sets of data. By dynamic,
we mean both changing content and changing levels of detail.
By data, we refer to model code, instance values, and the
structures by which they arc organized. We argue that this
means allowing people a high degree of control over their
environment

We have been encouraged by the successof users who have
taken vastly different approaches to formulating and solving
problems with ASCEND, and by the degree to which features
have been utilized in actual practice. We see this as evidence
for the efficacy of the ASCEND technology.

Appendix A: The Transportation Model

IMPORT transportation.atoms;

MODEL plant;
sup IS_A supply_capacity;
customerld IS_A set OF integer;
maxCustomerIS_A integer,

CARD(customerld) <= maxCustomer,

f[customerld], totalFlow IS_A flow;
cost[customerId]IS_AunitCost;
totalFlow = SUM(f[customerId]);
totalFlow <= sup;

shipmentCost IS_A cost;
shipmentCost = SUM(f[i]*cost[i] I i IN customerld);

END plant;

MODEL customer;
dem IS_A demand;
plantld IS_A set OF integer,
f[plantId]IS_Aflow;
SUM(f[plantId]) = dem;

END customer,

MODEL transportation;
plantld, customerld IS_A set OF integer;
p[plantld] IS_A plant;
c[customerld] IS_A customer;
FOR i IN customerld CREATE

c[i].plantld := [j IN plantld I i IN p[j].customerld];
END;

FOR i IN plantld CREATE
FOR j IN p[i].customerld CREATE

p[i].f[j], customer[j].f[i] AREJTHE_SAME;
END;

END;
obj: MINIMIZE

SUM(p[i].shipmentCost I i IN plantld);
END transportation;

Appendix B: Forecasting Models

IMPORT forecast_atoms;

MODEL product;
TfIS_A integer,
dem[l ..Tf] IS_A demand;

END product;

MODEL forecast;
TfIS_A integer,
D[l..Tf]IS_A demand;
E[l..Tf] IS_A expectedValue;
S[2..Tf] IS_A smoothedValue;
F[2..Tf] IS_A forecastedValue;

END forecast;

MODEL expForecast REFINES forecast;
alpha IS_A dimensionlessConstant;

FOR i IN [2..Tf] CREATE
E[i] = alpha*D[i] + (l-alpha)*E[i-l];
F[i] = E[i]+S[i]/alpha;

END;
S[2] = E[2]-E[1];
FOR i IN [3..Tf] CREATE

S[i] = alpha*(E[i]-E[i-l]) + (l-alpha)*S[i-l];
END;

END expForecast;

Appendix C: Transportation Model with Forecasted
Demand

IMPORT trans;

IMPORT forecast;

MODEL forecastedProduct;
pIS_A product;
fIS_A forecast;
p.Tf, f.Tf ARE_THE_SAME;
p.dem, f.D ARE_THE_SAME;

END forecastedProduct;

MODEL customer_forecast REFINES customer;
FIS_A forecast;
dem = F.E[F.tf];

END customer_forecast;

MODEL trans_forecast REFINES transportation;
c[customerld] IS_REFINED_TO customerjbrecast;
c[customerld] .F IS_REFINED_TO expForecast;

END trans_forecast;
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