
Carnegie Mellon University
Research Showcase

Parallel Data Laboratory Research Centers and Institutes

3-1-1995

The Scotch Parallel Storage Systems (CMU-
CS-95-107)
Garth A. Gibson
Carnegie Mellon University

Daniel Stodolsky
Carnegie Mellon University

Fay W. Chang
Carnegie Mellon University

William V. Courtright II
Carnegie Mellon University

Chris G. Demetriou
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/pdl

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase. It has been accepted for
inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Gibson, Garth A.; Stodolsky, Daniel; Chang, Fay W.; Courtright II, William V.; Demetriou, Chris G.; Ginting, Eka; Holland, Mark;
Ma, Qingming; Neal, LeAnn; Patterson, R. Hugo; Su, Jiawen; Youssef, Rachad; and Zelenka, Jim, "The Scotch Parallel Storage Systems
(CMU-CS-95-107)" (1995). Parallel Data Laboratory. Paper 153.
http://repository.cmu.edu/pdl/153

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl/153?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

Authors
Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright II, Chris G. Demetriou, Eka Ginting,
Mark Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen Su, Rachad Youssef, and Jim Zelenka

This technical report is available at Research Showcase: http://repository.cmu.edu/pdl/153

http://repository.cmu.edu/pdl/153?utm_source=repository.cmu.edu%2Fpdl%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract

To meet the bandwidth needs of modern computer systems,
parallel storage systems are evolving beyond RAID levels
1 through 5. The Parallel Data Lab at Carnegie Mellon
University has constructed three Scotch parallel storage
testbeds to explore and evaluate five directions in RAID
evolution: first, the development of new RAID architec-
tures to reduce the cost/performance penalty of maintain-
ing redundant data; second, an extensible software
framework for rapid prototyping of new architectures;
third, mechanisms to reduce the complexity of and auto-
mate error-handling in RAID subsystems; fourth, a file
system extension that allows serial programs to exploit
parallel storage; and lastly, a parallel file system that
extends the RAID advantages to distributed, parallel com-
puting environments. This paper describes these five RAID
evolutions and the testbeds in which they are being imple-
mented and evaluated.

1 Introduction

As information systems become increasingly critical,
the demand for high-capacity, high-performance, highly
available, storage systems increases. The introduction of
parallel processing, coupled with the unrelenting pace of
microprocessor performance improvements, has converted
many traditionally compute-constrained tasks to ones
dominated by I/O. Redundant Arrays of Inexpensive Disks
(RAID), as defined by Patterson, Gibson, and Katz [1], has
emerged as the most promising technology for meeting
these needs. Consequently, the market for RAID systems
is undergoing rapid growth, exceeding three billion dollars
in 1994 and expected to surpass 13 billion dollars by 1997
[2].

However, RAID storage is not without limitations.
First, there are cost and performance penalties for main-
taining a redundant encoding of stored data. Overcoming
these penalties continues to spur the development of new
variations of RAID architectures. Second, while the rapid

invention of clever new architectures is important, it exac-
erbates the need for a high-fidelity framework for rapid
development and evaluation of new designs. Third, the
complexity of fault-tolerance is becoming more unman-
ageable with each new optimization incorporated. Fourth,
even ignoring the implications of failures, many work-
loads generate I/O accesses with inadequate concurrency
or sequentially to efficiently exploit parallel storage.
Finally, RAID architectures directly attached to a host sys-
tem bus are inherently not scalable.

In this paper we present research projects addressing
each of these five challenges for parallel storage systems.
We begin, in Section 2, with an overview of the experi-
mental testbeds used to demonstrate and evaluate our
research. Section 3 focuses on the first three limitations, all
of which arise and can be addressed within directly
attached RAID subsystems. It presents a variant of RAID
level 5 that improves on-line failure recovery perfor-
mance, an extensible framework for evaluating RAID
architectures, and a methodology for structuring RAID
control software that automates error handling. Section 4
presents informed prefetching and scalable, parallel file
systems research that address the latter two limitations
through application disclosure of future accesses and
application coordination of parallel file system synchroni-
zation.

2 Scotch Experimental Testbeds

The Parallel Data Lab at Carnegie Mellon University
contains three experimental “Scotch” testbeds for parallel
storage research. In the sections that follow we describe
the research that is being evaluated in each testbed.

The first Scotch testbed, Scotch-1, no longer in use, was
primarily used for the prefetching file systems research
described in Section 4. As shown in Figure 1, Scotch-1 is
composed of a 25 MHz Decstation 5000/200 with a turbo-
channel system bus (100 MB/s) running the Mach 3.0
operating system. It is equipped with two SCSI buses and
four 300 MB IBM 0661 “Lightning” drives.

The Scotch Parallel Storage Systems

Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright II, Chris G. Demetriou,
Eka Ginting, Mark Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen Su,

Rachad Youssef, Jim Zelenka

Parallel Data Lab, School of Computer Science, Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

URL: http://www.cs.cmu.edu:8001/Web/Groups/PDL

Copyright IEEE, 1995. IEEE and the authors authorize limited
redistribution and duplication as long as copies are not sold.
Duplication for any other purpose requires the written consent of
IEEE. All other rights reserved.

Appears in the Proceedings of the IEEE CompCon conference, March 5-8, 1995, San Francisco.

Page 2 of 8

The second Scotch testbed, Scotch-2, is a larger and
faster version of Scotch-1 used for the RAID architecture
and implementation research described in Section 3 and
for second generation prefetching file system experiments.
As Figure 1 shows, Scotch-2 is composed of a 150-Mhz
DEC 3000/500 (Alpha) workstation running the OSF/1
operating system and equipped with six fast SCSI bus con-
trollers. Each bus has five HP 2247 drives, giving the total
system a capacity of 30 GB.

The third testbed, Scotch-3, is the storage component in
a heterogenous multicomputer composed of 38 worksta-
tions, 30 DEC 3000 (Alpha) and 8 IBM RS6000 (Pow-
erPC), distributed over switched-HIPPI and OC3 ATM
networks. This multicomputer is used for parallel applica-
tion, parallel programming tool, and multicomputer oper-
ating system experiments in addition to the parallel file
system research described in Section 4. As shown in Fig-
ure 2, Scotch-3 is composed of ten DEC 3000 (Alpha)
workstations with turbochannel system buses. Each work-
station contains one fast, wide, differential SCSI adapter
connected to both controllers of an AT&T (NCR) 6299
disk array. All workstations are interconnected by OC3
(155 Mbit/s) links to a FORE ASX-200 ATM switch com-
plex and five of the workstations are also connected by
HIPPI (800 Mbit/s) links to a NSC PS-32 HIPPI switch
complex. All storage is available to any node through the
Scotch parallel file system and the appropriate routing.

Tu
rb

oc
ha

nn
el

Fast
SCSI

Fast
SCSI

Fast
SCSI

Fast
SCSI

Fast
SCSI

3000/500
Alpha

HP 2247

Fast
SCSI

Figure 1: The Scotch direct-attach testbeds.

Decstation
5000/200

IBM 0661

8-bit SCSI

Scotch-1 direct-attach testbed

Scotch-2 direct-attach testbed

3 Storage Subsystem Research

A crucial factor in the acceptance of RAID has been the
ability of storage subsystem providers to provide the
RAID advantages of performance, capacity and reliability
through existing storage subsystem interfaces such as the
SCSI bus and the IBM channel interface. In this section
we present research that can be applied without nullifying
this advantage. For the sake of brevity, we describe only
parity declustering, our most mature RAID architecture.
Additional architectures and the work of others is
described in a broad survey of RAID research by Chen,
Lee, Gibson, Katz, and Patterson [3].

3.1 Architecture Example: Parity Declustering

Fault tolerance and high concurrency make RAID level
5 an attractive storage architecture for transaction process-
ing environments. However, RAID level 5 disk arrays typ-
ically experience a 60-80% load increase in the presence
of a failed drive. This severe performance degradation
limits the applicability of RAID level 5 disk arrays to sys-
tems that must be highly available. Further, this failure-
mode performance degradation may lead implementors to
restrict the fault-free user workload to 50% of the satu-

RS6000
RS6000

RS6000
RS6000

HIPPI
Node ATM

Node

RS6000
RS6000

RS6000
RS6000

HIPPI
NodeHIPPI

NodeHIPPI
NodeHIPPI

Node

ATM
NodeATM

NodeATM
NodeATM

Node

Scotch-3

HIPPI Node Detail

DEC Alpha
3000/400

Nectar WCAB
HIPPI interface

NCR 6299
Disk Array

DEC Alpha
3000/400

NCR 6299
Disk Array

OC-3

ATM

OC-3

ATM

ATM Node Detail

Figure 2: Scotch-3 network-storage testbed.

HIPPI Switch

ATM Switch

HIPPI
Client

20 clients
HIPPI
ClientHIPPI

Client

16-bit fast SCSI

Page 3 of 8

rated load, to avoid overload during on-line
failure recovery.

Parity declustering is a variant of RAID level 5 that
reduces the performance degradation of on-line failure
recovery [4]. The key idea behind parity declustering is
that a parity unit protects fewer than N-1 data units, where
N is the number of disks in the array. To achieve this, par-
ity declustering introduces a second layer of mapping
between the RAID address spaces and the physical disks
(Figure 3) .

We have implemented parity declustering in the Scotch-
2 parallel storage testbed. Figure 4 shows the time mea-
sured for the reconstruction of the first 200 MB of a disk in
a 15-disk declustered array under three workload intensi-
ties [5]. As the width of the logical array decreases, both
the amount of I/O and computation required for recon-
struction drops, allowing reconstruction time to approach
the minimum possible – the time to sequentially write 200
MB to the replacement drive.

3.2 Rapid Prototyping with RAIDframe

Design and evaluation of novel RAID architectures
such as parity declustering is typically done by custom,
design-specific simulation. To achieve more compelling
evaluation of competitive or interacting storage architec-
tures, more designs need to be given concrete implementa-

0
1
2
3
4
5
6

10 P0,1 P2,3
32 5 P4,5
64 7 P6,7

P8,98 9 11
P10,1110 P12,13 13

n

Disk 0 Disk 1 Disk 2 Disk 3

Pn-1,nP... n-1 n

linear address space
exported to host

layout of data and parity
on C=4 (C>G) physical disks

10 P0,1
32 P2,3
54 P4,5
76 P6,7
98 P8,9

nn-1 Pn-1,n

parity stripes containing
G = 3 units each

0
1
2
3
4

n/(G-1)

Offset
0
1
2
3
4

Stripe

nG/C(G-1)

Figure 3: Parity declustered mapping.

tion. However, concrete implementations are often
prohibitively expensive and time-consuming to develop.
To level the playing field and enrich the design environ-
ment, we are developing a portable, extensible framework,
RAIDframe, applicable to both simulation and implemen-
tation of novel RAID designs. RAIDframe is currently
operational as both a simulator and a user-level software
array controller that accesses disks via the UNIX raw-
device interface. We use its implementation in the Scotch-
2 parallel storage testbed where the measurements of par-
ity declustering reported in Figure 4 were collected.

RAIDframe’s key feature is the separation of mapping,
operation semantics, concurrency control, and error han-
dling, illustrated in Figure 5. Central to the design of
RAIDframe is the use of directed acyclic graphs (DAGs)
as a flexible, extensible representation of the semantics of
an architecture’s operations. Figure 6 exemplifies the
DAGs RAIDframe uses to specify its operations. Based on
our experience with RAID architectures, these DAGs cap-
ture the dependencies, primitives, and optimizations that
are the essential differences between RAID architectures.

0 2 4 6 8 10 12 14 16 Stripe Width (G)
0

200

400

600

800

R
ec

on
st

ru
ct

io
n

tim
e

(s
ec

)

Heavy
Medium
Light

Figure 4: Declustering vs. reconstruction time.

Figure 5: The structure of RAIDframe.

Map Addresses

Defer/Cache

Range Lock

Select DAG

Execute DAG

Range Unlock

Error Recovery

Quiesce Array

Change State

Success Failure

Page 4 of 8

Our first extension of RAID functionality in RAID-
frame was the addition of double-failure correction (a P+Q
encoding) [5],[6]. Further extensions are underway.

3.3 Automated Error Recovery

Error handling is one of the major sources of complex-
ity in the implementation of a RAID controller [7]. In a
non-fault-tolerant system, many errors are handled by dis-
carding all operations in progress and reporting the error
for host software to handle. The increasingly complex
algorithms which optimize error-free performance in
RAIDs have led to an explosion in the size of the state
space that must be navigated by error-handling code. Fur-
ther compounding the problem, RAID implementations
often add state-specific performance optimizations to the
error-recovery code in a misguided attempt to build a
faster RAID. Our approach, consistent with the automated
DAG execution in RAIDframe, is to emphasize a sepa-
rated, mechanized, simple, and robust error-handling sys-
tem that does not degrade the performance of error-free
operation.

In a manner similar to transaction systems, our
approach simplifies recovery by eliminating the need for
interpretation of incomplete state transitions exposed
when an operation fails. However, unlike transaction sys-

Rp

fault-free small write

H

RMWd

T

RMWd

RXWp

H

Rud Rud

T

Rd Rd

XOR

degraded-mode read

Figure 6: RAIDframe I/O templates.

Nodes labelled “H” and “T” are the header and
terminator nodes of the DAG. “R” and “W” nodes
invoke disk reads and writes. “XOR” nodes imple-
ment an XOR computation over a set of input buff-
ers. An “RMW” node causes the contents of a disk
unit to be read into a buffer, and then immediately
overwritten with the contents of a second buffer. An
“RXW” node causes a disk unit to be read and then
immediately overwritten with the XOR of the unit’s
contents and other buffers. The subscript “d” identi-
fies a read or write of data that is specifically
addressed by the user operation, “ud” identifies
data in the stripe that is not being directly addressed
by the operation, and “p” identifies parity.

tems, we do not journal state changes to a log, thereby
avoiding the error-free performance penalty associated
with logging.

When a DAG fails, we discard it from the system,
returning any resources which it may have acquired. After
the state of the array has been updated to reflect the fault
which caused the error, we initiate a compensating DAG
which completes the requested operation.This compensat-
ing DAG uses neither data read or computed by the initial
method.

The approach is mechanized in RAIDframe by defining
a cleanup node for each node of a DAG. A cleanup node
releases the resources acquired by its associated node.
When an error is detected during forward execution of the
graph, we begin working backward through the graph,
executing cleanup nodes. When the header node is
reached, all resources for the graph have been returned and
a compensating method may be initiated. This process is
illustrated in Figure 7.

W

R

H: MA

W

R T: MD

XOR

NOP

H: MD NOP

NOP

Figure 7: Backward Execution on Error.

In this example, a RAID level 5 small write fails
because its data write encounters an error. The
XOR of the old data and parity, occurring simulta-
neously with the failure, is allowed to complete, but
the consequential write of new parity is blocked
(dashed bubble). When the XOR completes, the
DAG is aborted by walking backward through the
executed nodes, releasing allocated resources (MA
is memory allocate and MD is memory deallocate).

After backout of the failed DAG, the system deter-
mines that the data write failed because a data drive
has failed. A compensating DAG, in this case, a
reconstruct-write, is then used to complete the write.

R
H: MA

W

R

T: MDXOR

R

R

Compensating DAG

Backout of Initial DAG

Initial DAG

Page 5 of 8

The goal of this approach is to define a minimal set of
constraints on the design of error-free DAGs that while
allowing a compensating method to not depend on the
state of the original DAG at which failure occurred.

4 File Systems Research

In contrast to the RAID subsystem research reported in
the previous section, this section reports research embed-
ded in file systems controlling parallel storage.

4.1 Transparent Informed Prefetching

When a workload has many concurrent accesses or con-
sists of huge transfers, parallel storage systems can be
immediately employed to achieve increased I/O perfor-
mance. Unfortunately, many workloads serially issue
small or medium-sized I/O requests, presenting little I/O
parallelism. For write-intensive workloads, write-behind
can be used to batch and parallelize this sequential request
stream. However, for read-intensive workloads, the com-
parable technique, sequential read-ahead, becomes more
expensive and less efficient as more parallelism is sought.

Fortunately, many read-intensive applications know in
advance the sequence of I/O requests they will make. If
applications disclose this advance knowledge, the file sys-
tem can convert the application’s serial request stream into
a set of parallel data prefetch accesses.

The performance benefits of exploiting advance knowl-
edge are threefold. First, by exposing parallelism not
found in the demand request stream, I/O throughput is
increased and application response time decreased. Sec-
ond, resource decisions, notably buffer-cache manage-
ment, can be improved by foreknowledge. Third, deep
prefetching yields deep disk queues that allow disk sched-
uling to improve access throughput.

Transparent Informed Prefetching (TIP) is a system we
have developed to exploit access-pattern information for
read-intensive workloads [8]. Applications are annotated
to generate hints that disclose future accesses. The appli-
cation passes these hints to the buffer cache manager
through the file system interface, which then issues
prefetch accesses that efficiently utilize the parallel storage
system and available system memory.

The TIP system provides applications with portable I/O
optimizations. Applications express hints in terms of the
existing demand-access interface and thus obtain cross-
layer optimizations in a manner consistent with the soft-
ware engineering principle of modularity. Furthermore,
because applications can provide hints without knowing
the details of the underlying system configuration, they

obtain performance optimizations portable to any machine
incorporating a TIP system.

TIP has been implemented in the Scotch-1 direct-attach
storage testbed and measured for compilation, text search,
and visualization applications [8]. Figure 8 shows the our
experience with the 3-D scientific data visualization pack-
age, XDataSlice. Originally an in-core rendering tool, we
modified XDataSlice to handle datasets too large for mem-
ory, in this case 112 MB, by staging data directly from
blocked disk files. This blocking is asymmetric, so the X-
Y plane contains half as many disk blocks as the other
two, to balance approximately the single-disk, non-TIP
response time for rendering a slice in each of the Y-Z, X-
Z, and X-Y planes. Measurements were taken for each
plane both with and without TIP when the dataset was
striped over 1, 2, 3, and 4 disks. Speedup is the ratio of the
time to fetch a slice’s data without TIP to the comparable
time with TIP.

Figure 8 shows that XDataSlice cannot exploit a disk
array without TIP and that with only one disk, XDataSlice
is so I/O-bound that TIP is unable to overlap much compu-
tation with I/O. With as little as two disks, however, TIP
provides speedups of 1.2 to 2.4, saturating Scotch-1’s CPU
for the Y-Z and X-Z planes. The X-Y plane continues to
benefit from increased disk parallelism, saturating the
CPU at four disks with a speedup of 3.7.

While the results of applying TIP in Scotch-1 are prom-
ising, this testbed is too slow and small to evaluate many
I/O-bound applications. We are in the process of construct-
ing a second implementation of TIP in the Scotch-2 direct-
attach storage testbed with emphasis on exploiting appli-
cation disclosure to make informed cache-management
decisions.

Figure 8: Visualizing 3-D dataset slices with TIP.

Slice Rendered Time (Seconds)

Y-Z
722
blks

X-Z
722
blks

X-Y
361
blks

no TIP
with TIP
speedup

no TIP

with TIP
speedup

no TIP
with TIP
speedup

1 disk 2 disks 3 disks 4 disks

5.21 5.25 5.17 5.18
5.12 4.27 4.32 4.36

1.02 1.23 1.20 1.19

5.86 6.07 6.17 6.36
5.84 4.36 4.43 4.43

1.00 1.39 1.39 1.43

8.16 8.40 8.16 8.23
7.86 3.49 2.56 2.23

1.04 2.41 3.19 3.69

Page 6 of 8

4.2 Parallel File Systems

The data sharing needs of network-interconnected
workstations are usually provided by a distributed file sys-
tem, in which an individual file is stored on a single server,
and the access bandwidth of a single file is limited to that
of a single server. Multiple clients simultaneously writing
a single file is rare, and is either unsupported or supported
with relatively poor performance ([9],[10]). While there
may be multiple storage devices in this environment, they
are not managed as a parallel storage system.

As the speed of individual client workstations
increases, their bandwidth needs cannot be satisfied by a
distributed file system. However, their data sharing needs
may be met by a distributed file system with parallel stor-
age, in which individual files are striped over many stor-
age nodes. This allows a file to be read or written at high
bandwidth by a single client ([11],[12]). While simulta-
neous write access by several clients in these environ-
ments remains an unanticipated occurrence, their storage
is managed as a unit and may be endowed with RAID
functionality.

In many environments, these fast client machines are
used for time-consuming computations such as VLSI sim-
ulation, weather simulation, and rational drug design [13],
whose datasets are often massive (10 MB - 100 GB). With
the wide availability of high-level parallel programming
tools, such as PVM, high performance FORTRAN, and
distributed shared memory (DSM), there is a growing
trend to implement each of these applications as a parallel
task running on many workstations ([14],[15],[16],[17]).
We call a network of workstations used in parallel a multi-
computer [18].

The multicomputer environment provides new chal-
lenges for a distributed file system. The bandwidth and
storage capacity requirements are similar to that of a
supercomputing environment, but multiple clients concur-
rently writing a single file are now commonplace. The
sharing, fault-tolerance, and scaling challenges of a multi-
computer environment are being by the development of
parallel file systems [19].

We are developing the Scotch Parallel File System
(SPFS) for the multicomputer environment shown in Fig-
ure 2. It supports concurrent-read and -write sharing
within a parallel application and provides scalable band-
width and customizable availability by striping over inde-
pendent servers on a file-by-file basis.

SPFS client processes interface directly with SPFS
servers through a portable library and the environment’s
high-performance reliable packet protocol. The SPFS cli-
ent library includes protocols that coordinate SPFS servers
and to provide a single file system image.

SPFS servers are stateless with respect to each other.
The pieces of a parallel file that are managed by one server
are exported by that server as a single file with the same
name as the parallel file. For efficiency, SPFS servers
access their file in large blocks through the UNIX raw-
device interface. SPFS servers each export a flat
namespace, and file access and allocation controls.

SPFS exploits application disclosure of access patterns
by integrating informed prefetching. Both SPFS clients
and servers use this access pattern knowledge to aggres-
sively prefetch data and defer writes, leading to efficient
utilization of servers, network links, and storage devices,
and masking the high latencies of networks and disks.
SPFS servers additionally utilize informed cache manage-
ment on manage server memory resources.

SPFS provides redundancy on a per-file basis. This
allows applications to choose the level of fault-protection,
and the associated overhead cost, on a per-file basis.
Because miscomputation of the redundant data encoding
only corrupts data the application could already destroy,
the per-file redundancy may be computed by SPFS clients
on behalf of the application without compromising SPFS
integrity. Also, at the application’s discretion, redundancy
computations can be selectively disabled and enabled to
minimize the performance cost of short bursts of rapid
changes. This idea, the deferred computation of parity, is
called a paritypoint by Cormen and Kotz in their require-
ments for out-of-core algorithms [20].

SPFS is intended to complement rather than replace
parallel programming tools such as PVM or DSM by pro-
viding high-bandwidth file storage. We expect the generic
synchronization needs of applications to be meet by mech-
anisms provided by these tools. Therefore, SPFS does not
provide synchronization primitives such as barriers or
locks. However, because SPFS does anticipate file sharing
within a parallel application and because it aggressively
defers and prefetches, SPFS implements a form of weakly
consistent shared memory [21].

SPFS exports two primitives, propagate and expunge,
to provide weakly-consistent sharing. Sometime after
writing a portion of a shared file, an SPFS client must
explicitly propagate that portion to make sure it is visible
to other SPFS clients. A sequence of writes without an
intervening propagate allows the SPFS client library to
coalesce and delay writes. Similarly, an application must
explicitly expunge a portion of a shared file to guarantee
that its subsequent reads will return the data that has been
more recently propagated (exposed) by other clients. A
sequence of reads without an intervening expunge allows
the SPFS client library to return locally cached data,
improving performance.

Page 7 of 8

Figure 9 shows an example of a sequentially consistent
single-program multiple-data application modified to
allow SPFS to optimize aggressively. After a phase in
which all processes read arbitrary sections of the file, each
process writes a private section of the file. A barrier natu-
rally occurs between each phase to avoid read/write data
hazards. To achieve the proper synchronization in SPFS,
the barrier after the write phase is preceded by a propagate
(to make the written data visible) and succeeded by an
expunge (to discard stale data before entering the read
phase).

SPFS’s sharing model is close to a DSM model called
entry consistency [15], illustrated in Figure 10. Expunge

/* Sequentially consistent file system*/

file_handle fh;
int my_start = 2000 * process_number();

loop forever
fs_read(fh,...);
computation
fs_read(fh,...)
computation
...
BARRIER;
/* write a disjoint section */
fs_write(fh,...);
computation
fs_write(fh,...);
computation
....
BARRIER;

endloop

Figure 9: Data parallelism using SPFS.

reads may span
entire file and overlap

writes restricted to
my_start ... my_start+2000

/* Weak consistency for SPFS */

spfs_file_handle sfh;
int my_start = 2000 * process_number();

loop forever
spfs_read(sfh,...);
computation
spfs_read(sfh,...);
computation
...
BARRIER;
/* write a disjoint section */
spfs_write(sfh,...);
computation
spfs_write(sfh,...);
computation
....
spfs_propagate(sfh,my_start,2000);
BARRIER;
spfs_expunge(sfh,entire_file);

endloop

reads may span
entire file and overlap

writes restricted to
my_start ... my_start+2000

and propagate in SPFS are analogous to acquire and
release in entry consistency, respectively, but lack the syn-
chronization semantics.

While the largest part of SPFS’s implementation is in
progress, an early and incomplete version is operational on
the Scotch-3 testbed to facilitate application development.

5 Conclusions

The demand for high performance and highly reliable
secondary storage systems continues to grow unabated.
The Parallel Data Lab at CMU has constructed the Scotch

lock L
integer a=0;

float b = 5.0;

....
Acquire L;
a = 3;
b += 5;
Release L;
....

Process 1

...

Acquire L;

a = a+2;
if (b/a > 1.0)

a = 1;
Release L
....
Process 2

request lock

hand-off lock,
send current
values of a & b.

Figure 10: Entry-consistent shared memory.

Entry-consistent programs associate every
shared data with a multiple-reader/single-writer lock.
Only during a critical section does an entry-consis-
tent system guarantee that a process will obtain
valid data. Consequently, entry-consistent pro-
grams must communicate shared data only when a
lock is acquired, allowing the data transfer to be pig-
gybacked on lock acquisition. This figure shows a
fragment of an entry-consistent program. Variables a
and b are guarded by lock L. When Process 2 wants
to acquire L, it determines that Process 1 was the
last holder of L and requests the lock. Since Process
1 has already released the lock, it immediately
responds, sending both the lock and the new values
of a and b. In particular, changing (writing) a and b
does not require the writing process to either broad-
cast the new value or invalidate other processor’s
copies of the variable.

Although SPFS does not participate in an applica-
tion’s locking of ranges of a shared file, it offers
expunge and propagate primitives to achieve the
consistency provided by acquire and release,
respectively.

Page 8 of 8

parallel storage systems as testbeds for the development of
advanced parallel storage subsystems and file systems for
parallel storage.

To advance parallel storage subsystems, we are devel-
oping new RAID architectures, an extensible framework
for rapidly prototyping RAID architectures, and coding
methodologies for simplifying error handling in RAID
controllers. RAIDframe, our extensible framework, is
operational in Scotch-2 testbed, has demonstrated fast, on-
line reconstruction for RAID levels 5 and 6, and is struc-
tured for automatic error handling.

Towards file systems for parallel storage, we are devel-
oping prefetching and cache management strategies based
on application disclosure and a fault-tolerant network-
based parallel file system to support I/O-intensive parallel
applications. TIP, our informed prefetching system, has
demonstrated a factor of up to 3.7 reduction in execution
time for out-of-core visualization on a four-disk array, and
is being extended to perform informed cache management.
SPFS, our Scotch parallel file system, exploits client-side
file management to provide scalability, weak consistency,
and per-file configurable availability.

We encourage interested parties to poll our web page,
URL http:://www.cs.cmu.edu:8001/Web/Groups/PDL,
for further information including the status of these
projects and the availability of code. The PDL can also be
contacted by electronic mail as pdl@cs.cmu.edu.

6 Acknowledgments

The work of the Parallel Data Lab has been supported
by many organizations. Equipment has been directly
donated by Hewlett-Packard, Digital Equipment Corpora-
tion, International Business Machines, NCR (AT&T/GIS)
Microelectronics, and Seagate Technology. Scholarship
and other support has been provided by Data General,
IBM, and NCR. PDL research is also supported by the
National Science Foundation through the Data Storage
Systems Center, a NSF engineering research center, under
grant number ECD-8907068 and the Advanced Research
Projects Agency under contract number DABT63-93-C-
0054.

7 References

[1] Patterson, D., Gibson, G., Katz, R. “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM Conf. on
Management of Data, 1988, pp. 109-116.

[2] DISK/TREND, Inc. 1994. 1994 DISK/TREND Report:
Disk Drive Arrays. 1925 Landings Drive, Mountain View, Calif.,
SUM-3.

[3] Chen, P. M., Lee, E. K, Gibson, G. A., Katz, R. H., Patter-
son, D. A.“RAID: High-Performance, Reliable Secondary Stor-
age,” ACM Computing Surveys, 26(2):145-185, 1994.

[4] Holland, M., Gibson, G. “Parity Declustering for Continu-
ous Operation in Redundant Disk Arrays,” Proc. Int. Conf. on
Architectural Support for Programming Languages and Operat-
ing Systems, pp. 23-25, 1992.

[5] Holland, M.C, Stodolsky, D., Gibson, G. “Parity Declus-
tering and Declustered P+Q in RAIDframe,” School of Com-
puter Science, Carnegie Mellon University, Tech Report. Under
preparation.

[6] Storage Technology Corporation. Iceberg 9200 Storage
System: Introduction, STK Part Number 307406101, Storage
Technology Corporation, Corporate Technical Publications, 2270
South 88th Street, Louisville, CO 80028

[7] Courtright, W. V. II, Gibson, G. “Backward Error Recov-
ery in Redundant Disk Arrays,” Proc. 1994 Computer Measure-
ment Group Conf., pp. 63-74, 1994

[8] Patterson, R. H., Gibson, G. “Exposing I/O Concurrency
with Informed Prefetching,” Proc. 3rd Int. Conf. on Parallel &
Distributed Information Systems, pp. 7-16, 1994.

[9] Howard, J. H., Kazar, M. L, et. al. “Scale and Performance
in a Distributed File System,” ACM Trans. on Computer Systems,
6(1):51-81, 1988.

[10] Satyanarayanan, M, Kistler, J. J., Kumar, et. al., “Coda: a
Highly available File System for a Distributed Workstation Envi-
ronment,” IEEE Trans. on Computers, 39(4): 447-459, 1990.

[11] Hartman, J.H, Ousterhout, J.K. “The Zebra Striped Net-
work File,” Proc. 14th ACM Symp. on Operating Systems Princi-
ples, pp. 29-43, 1994.

[12] Cabrera, L., Long, D. D. E. “Swift: Using Distributed
Disk Striping to Provide High I/O Data Rates,” Computing Sys-
tems, 4(4):405-436, 1991

[13] del Rosario, J.M. Choudhary, A.N. “High-performance
I/O for Massively Parallel Computers: Problems and Prospects,”
Computer, 27(3):59-68, 1994.

[14] Geist, A., Beguelin, A., Dongarra, J., et. al., PVM: Paral-
lel Virtual Machine, A Users’ Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994, ISBN 0-262-57108-0

[15] Bershad, B. N., Zekauskas, M. J., Sawdon, W. A. “The
Midway Distributed Shared Memory System,” Proc. 1993 IEEE
Compcon Conf., pp. 528-537, 1993.

[16] Zosel, M. E. “High Performance FORTRAN: An Over-
view,” Proc. 1993 IEEE Compcon Conf., pp. 132-6, 1993.

[17] Carter, J. B., Bennett, J., K., Zwaenepoel, W. “Implemen-
tation and Performance of Munin,” Proc. 13th ACM Symp. on
Operating Systems Principles, pp. 152-164, 1991.

[18] Kung, H.T., Sansom, R., Schlick, S., et. al., “Network-
based Multicomputers: an Emerging Parallel Architecture,”
Supercomputing’91, pp. 664-673, 1991.

[19] Corbett, P.F, Feitelson, D.G. “Design and Implementa-
tion of the VESTA Parallel File System,” Proc. Scalable High-
Performance Computing Conf., pp. 63-70, 1994.

[20] Cormen, T. H., Kotz, D., “Integrating Theory and Prac-
tice in Parallel File Systems,” Proc. DAGS/PC Symp., pp. 64-74,
1993.

[21] Adve, S. V. Hill, M. D. “A Unified Formalization of Four
Shared-Memory Models,” IEEE Trans. on Parallel and Distrib-
uted Systems, 4(6):613-624, 1993.

	Carnegie Mellon University
	Research Showcase
	3-1-1995

	The Scotch Parallel Storage Systems (CMU-CS-95-107)
	Garth A. Gibson
	Daniel Stodolsky
	Fay W. Chang
	William V. Courtright II
	Chris G. Demetriou
	See next page for additional authors
	Recommended Citation
	Authors

