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Abstract. We show how binary decision diagrams (BDDs) can be used
to solve and obtain postoptimality analysis for linear and nonlinear inte-
ger programming problems with binary or general integer variables. The
constraint set corresponds to a unique reduced BDD that represents all
feasible or near-optimal solutions, and in which optimal solutions corre-
spond to certain shortest paths. The BDD can be queried in real time for
in-depth postoptimality reasoning. The approach is equally effective for
linear and nonlinear problems. There are currently no other methods for
obtaining such an analysis, short of repeatedly re-solving the problem.
We illustrate the analysis on capital budgeting and network reliability
problems.

1 Introduction

Much effort has been invested in the solution of integer programming prob-
lems, while postoptimality analysis has received relatively little attention. Yet
postoptimality analysis can yield much greater insight into a problem than a
single optimal solution. It takes full advantage of the information encoded in an
optimization model.

For example, it may be important in a practical setting to characterize the
set of optimal or near-optimal solutions, or measure the sensitivity of the optimal
value to the problem data. Even more useful would be a tool that responds to
what-if queries in real time: what would happen to the optimal value, or the
set of near-optimal solutions, if I were to fix certain variables to certain values?
Such queries are common in design and configuration problems.

The primary obstacle to postoptimality analysis is its computational in-
tractability. It is difficult to generate or characterize the set of optimal or near-
optimal solutions, since this usually requires re-solving the problem many times.
Some sensitivity analysis can be obtained from various types of integer program-
ming duality, but these methods yield limited information and may be computa-
tionally impractical. What-if queries are not easily supported, again due to the
necessity of re-solving the problem repeatedly.

The ideal would be to obtain somehow a compact representation of the set of
feasible, optimal, or near-optimal solutions that could be efficiently analyzed and



queried. In this paper we explore the possibility that binary decision diagrams
(BDDs) can provide such a tool. BDDs (or more properly, reduced ordered BDDs)
provide a canonical network-based representation of a boolean function (i.e., a
two-valued function of two-valued variables). A constraint set in binary variables
can be encoded by generating the BDD for the boolean function that is true when
the constraints are satisfied and false otherwise. Although the BDD can grow
exponentially with the number of variables, in many important cases it provides
a surprisingly compact representation of a boolean function. In addition, our
recent research [15] shows that if the optimal value (or an approximation of it)
is known, the size of the BDD can be substantially reduced by representing only
near-optimal solutions, which are the ones of greatest interest.

BDDs have been intensively studied but they have not, to our knowledge,
been applied to postoptimality analysis. A key property is that the objective
function value of a given solution is the length of a path in the BDD, provided
the objective function is separable. Postoptimality analysis can be conducted by
analyzing the BDD and its near-shortest paths in various ways.

A particularly attractive feature for integer programming is that BDD-based
methods are indifferent to whether the constraints are linear or nonlinear, con-
vex or nonconvex. They need not contain polynomials or any other particular
functional form. The objective function can likewise be nonlinear and nonconvex,
again provided that it is separable.

BDDs are most readily applied to 0-1 programming because the variables are
binary. To accommodate general integer programming, we actually apply the
method described here to multivalued decision diagrams (MDDs), a straightfor-
ward generalization of BDDs. The required MDD can be (a) generated directly,
or (b) obtained by encoding the nonbinary variables with binary ones, generating
the appropriate BDD, and converting the BDD to an MDD. We take approach
(b) due to the availability of BDD software.

In this paper we develop BDD-based algorithms for two types of postopti-
mality analysis. To illustrate the potential value of the analysis to practitioners,
we apply the algorithms to capital budgeting and reliability problems. Both of
these problems contain general integer variables, and the reliability problem is
highly nonlinear and nonconvex.

One type of postoptimality analysis is cost-based domain analysis, which
examines the domains of variables in optimal and near-optimal solutions. The
domain of a variable is the set of values it can take. The analysis calculates
how the domain of a variable grows as one permits the cost to deviate further
from optimality. Thus a given variable may take only one value in any optimal
solution, but as one considers solutions whose cost is within 1%, 2% or 3% of
optimality, additional values become possible. This type of analysis can tell the
practitioner that there is little choice as to the value of certain variables if one
wants a good solution, but there is a good deal of freedom to change the values
of other variables.

A related type of analysis is conditional domain analysis, which examines
domains after restricting a given variable to any value or range of values. One can



also compute sensitivity to right-hand sides, a more traditional type of analysis,
if the right-hand side is treated as a variable.

All of these analyses are adaptable to real-time queries, because the necessary
information is readily available in the BDD. The user can specify, for example,
that certain variables are to be set to certain variables simultaneously, whereupon
cost-based and conditional domain analysis is quickly recalculated to reveal the
implications of these settings.

Although we use BDDs to solve the problems well as for their postoptimality
analysis, we do not take a position here on whether BDDs are appropriate as
a general-purpose solution method for integer programming. It may be more
effective to solve a problem, or at least estimate its optimal value, by other
means. Nonetheless, BDDs should not be ruled out as a solution method for
nonlinear problems and situations in which all globally optimal solutions are
required.

The paper begins with a brief introduction to BDDs and their application to
integer programming problems. It then presents the postoptimality algorithms
and applies them to the two problem classes. It concludes with a discussion of
computational issues and future research.

2 Previous Work

BDDs have been studied for decades [2,18]. Bryant [10] showed how to reduce
a BDD to canonical form, for a given variable ordering. Readable introductions
to BDDs include [3, 11].

Sensitivity analysis for linear integer programming has been examined from
several points of view. One is based on integer programming duality, defined
in terms of the value function (the optimal value as a function of the right-
hand sides) [6–9,12, 21]. A related method constructs a value function from
dual multipliers obtained during a branch-and-bound search [20]. A third, which
analyzes sensitivity to constraint coefficients as well as right-hand sides, is based
on inference duality and a logical analysis of the constraints [13, 16]. A survey
of these methods is presented in [17].

Application of BDDs to optimization has received very limited attention.
Becker at al. [5] used BDDs to identify separating cuts for 0-1 linear program-
ming problems in a branch-and-cut context. In [15] we use BDDs to solve integer
programming problems by directly representing the space of near-optimal solu-
tions.

3 Binary Decision Diagrams

A BDD is a directed graph that represents a boolean function. A given boolean
function corresponds to a unique reduced BDD when the variable ordering is
fixed. A constraint set in 0-1 variables can be viewed as a boolean function that
is true when the constraints are satisfied and false otherwise.
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Fig. 1. Branching tree for 2x0 + 3x1 + 5x2 + 5x3 ≥ 7

The reduced BDD is essentially a compact representation of the branching
tree for the constraint set. The leaf nodes of the tree are labeled by 1 or 0 to
indicate that the constraint set is satisfied or violated. For example, the tree of
Fig. 1 represents the 0-1 linear inequality

2x0 + 3x1 + 5x2 + 5x3 ≥ 7 (1)

The solid branches (high edges) correspond to setting xj = 1 and the dashed
branches (low edges) to setting xj = 0.

The tree can be transformed to a reduced BDD by repeated application of
two operations: (a) if both branches from a node lead to the same subtree, delete
the node; (b) if two subtrees are identical, superimpose them. The reduced BDD
for (1) appears in Fig. 2(a).

Each path from the root to 1 in a BDD represents one or more solutions,
namely all solutions in which xj is set to 0 when the path contains a low edge
from a node labeled xj, and is set to 1 when the path contains a high edge from
such a node. A BDD represents the set of all solutions that are represented by
a path from the root to 1.

A reduced BDD can in principle be built by constructing the search tree
and using intelligent caching to eliminate nodes and superimpose isomorphic
subtrees. It is more efficient in practice, however, to combine the BDDs for
elementary components of the boolean function. For example, if there are several
constraints, one can build a BDD for each constraint and then conjoin the BDDs.
Algorithms for building reduced BDDs in this fashion are presented in [3, 15].

The BDD for a linear 0-1 inequality can be surprisingly compact. For in-
stance, the 0-1 inequality

300x0 + 300x1 + 285x2 + 285x3 + 265x4 + 265x5 + 230x6+
23x7 + 190x8 + 200x9 + 400x10 + 200x11 + 400x12+
200x13 + 400x14 + 200x15 + 400x16 + 200x17 + 400x18 ≥ 2701

(2)
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Fig. 2. (a) Reduced BDD for 2x0 + 3x1 + 5x2 + 5x3 ≥ 7 using the variable ordering
x0, x1, x2, x3. (b) Same BDD with edge lengths corresponding to the objective function
2x0 − 3x1 + 4x2 + 6x3

has a complex feasible set that contains 117,520 minimally feasible solutions
(each of which becomes infeasible if any variable is flipped from 1 to 0), as
reported in [4]. (Equivalently, if the right-hand side is ≤ 2700, the inequality has
117,520 minimal covers.) The BDD for (2) contains only 152 nodes.

A separable objective function
∑

j cj(xj) can be minimized subject to a con-
straint set by finding a shortest path from the root to 1 in the corresponding
BDD. Let var [u] = i when variable xi labels node u. Then if var [u] = k and
var [u′] = `, a high edge from u to u′ has length c[u, u′] = ck(1)+c∗k+1,`−1, where
c∗k+1,`−1 is the cost of setting every skipped variable xk+1, . . . , xl−1 to a value
that gives the lowest cost. To make this more precise, let vuu′ be 1 if (u, u′) is a
high edge and 0 if it is a low edge. Then

c[u, u′] = ck(vuu′) + c∗k+1,`−1

and

c∗pq =
q∑

j=p

min{cj(1), cj(0)}

For example, if we minimize

2x0 − 3x1 + 4x2 + 6x3 (3)

subject to (1), the associated BDD has the edge lengths shown in Fig. 2(b). Note
that the length of the high edge from the root node is c0(1) + c∗11 = 2− 3 = −1.
The shortest path from the root node to 1 has length 1 and passes through the
x1 node and the x2 node on the left. Its three edges indicate that (x0, x1, x2) =



(0, 1, 1). This corresponds to optimal solution (x0, x1, x2, x3) = (0, 1, 1, 0), where
x3 is set to zero to minimize the x3 term in the objective function.

4 Multivalued Decision Diagrams

If some variables can take more than two values, as in general integer program-
ming, a multivalued decision diagram (MDD) represents the solution space in
a manner that is precisely analogous to BDD representation. An MDD differs
from a BDD only in that a node can have more than two outgoing edges, repre-
senting possible values of the corresponding variable. Thus if node u is labeled
by variable xi, each edge (u, u′) corresponds to a value vuu′ ∈ Di, where Di is
the domain of xi. An optimal solution is again found by computing a shortest
path to 1 in the MDD. Edge costs c[u, u′] are computed as before except that

c∗pq =
q∑

j=p

min
v′∈Dj

{cj(v′)}

An MDD can in principle be constructed directly from the problem instance,
but we found it convenient to build a BDD first, using available software, and
then convert the BDD to an MDD. The BDD, which we call B, is constructed by
first encoding each variable having k possible values as a tuple of dlog2 ke binary
variables and then building B for the binary variables in the usual fashion.

Conversion of B to an MDD proceeds as follows. Let Li be the set of the
nodes in B that are labeled with one of the variables used to encode xi. Let
Ini be the set of nodes in Li directly reachable from outside Li. That is, Ini is
the set of nodes u′ ∈ Li such that [u, u′] is an edge of B for some u 6∈ Li. We
initialize the process by letting In1 consist of the root node. The nodes in In i

become the nodes on level i of the MDD (i.e., the nodes u with var[u] = i). The
MDD contains an edge [u, u′] if and only if u ∈ In i for some i and there is a
path P from u to u′ in B that encodes a binary representation of xi. That is, all
the nodes on P except u′ are labeled with variables that encode xi.

5 Projection and Postoptimality Analysis

Consider a 0-1 programming problem with a separable objective function:

min
n∑

j=1

cj(xj)

gi(x) ≥ bi, i = 1, . . . , m

xj ∈ {0, 1}, j = 1, . . . , n

(4)

We refer to any 0-1 n-tuple as a solution of (4), any solution that satisfies the
constraints as a feasible solution. If Sol is the set of feasible solutions, and c∗ is



the optimal value, then for a given tolerance ∆ the set of near-optimal feasible
solutions of (4) is

Sol∆ =
{
x ∈ Sol

∣∣∣
∑

cj(xj) ≤ c∗ + ∆
}

In general, cost-based domain analysis derives the projection Sol∆i of Sol∆
onto any xi for any ∆ between 0 and some maximum tolerance ∆max. It may also
incorporate conditional domain analysis subject to a partial assignment xJ = vJ

specified by the user, where J ⊂ {1, . . . , n}. This projection is

Sol∆i(xJ = vJ ) = {xi | x ∈ Sol∆, xJ = vJ}

Conditional domain analysis computes the projection of the feasible set onto
each xi, given that xJ = vJ . Thus it computes

Soli(xJ = vJ ) = {xi | x ∈ Sol, xJ = vJ}

6 MDD-Based Postoptimality Analysis

Cost-based domain analysis requires computing Sol∆i. This can be accomplished
by computing, for each v ∈ Di, the minimal feasible cost c∗(i, v) given that
xi = v. This is the minimum value of (4) with the additional constraint that
xi = v. Then v ∈ Sol∆i if and only if c∗(v, i) ≤ c∗ + ∆.

To compute c∗(i, v), let SP[u, u′] be the length of a shortest path in the MDD
from the root to 1 through [u, u′]. Then

SP[u, u′] = U [u] + c[u, u′] + D[u′]

where U [u] and D[u′] denote the length of a shortest path from u up to the root,
and from u′ down to 1, respectively. Now the length of a shortest path on which
xi is fixed to v is

SP(i, v) = min
(u,u′)

{SP[u, u′] | var[u] = i}

Also the length of a shortest path that skips all xi nodes is

SP(i) = min
(u,u′)

{SP[u, u′] | var[u] < i < var [u′]}

Finally,

c∗(i, v) = min
{

SP(i, v), SP(i) + ci(v) − min
v′∈Di

{ci(v′)}
}

(5)

An algorithm appears in Fig. 3. The subroutine shortestPaths[u] calculates the
length of a shortest path from each node to u.

Conditional postoptimality analysis requires computing Soli(xJ = vJ ). But
vi ∈ Soli(xJ = vJ ) if and only if there is a path from the root to 1 such that for
each k ∈ J ∪ {i}, (a) some edge (u, u′) with var[u] = k and vuu′ = vk lies on the
path, or (b) the path contains no node u with var[u] = k.



1: for i = 1, . . . , n, SP(i)←∞
2: for all v ∈ Di, SP(i, v)←∞
3: U ← shortestPaths[root]
4: D← shortestPaths[1]
5: for all edges (u, u′)
6: SP[u, u′]← min{SP[u,u′], c[u, u′]}
7: for i = var[u] + 1 to var[u′] − 1
8: SP(i)← min{SP(i), c[u,u′]}

Fig. 3. Algorithm for computing the minimum feasible cost c∗(i, v) using (5). The
worst-case execution time is O(mn +

∑n
i=1 |Di|), where n is the number of variables

and m the number of edges in the MDD.

7 Example: Capital Budgeting

We now apply cost-based and conditional domain analysis to two problem classes.
The aim is to illustrate the potential value of such analysis to practitioners. We
begin with a simple capital budgeting problem.

We are given a set of n investment opportunities, perhaps types of manufac-
turing plants. A plant of type i costs ai and yields a present value return of ci.
We can potentially build several plants of a given type. Given the total budget
b, the capital budgeting problem asks how we can maximize return subject to
the budget limitation:

max
n∑

i=1

cixi

n∑

i=1

aixi ≤ b

xi ∈ Di, i = 1, . . . , n

Since the objective is to maximize, we seek a longest path rather than a shortest
path in the MDD.

Consider an example with n = 10 variables in which

c = (503, 493, 450, 410,395,389, 360,331,304, 299)
a = (249, 241, 219, 211,194,196, 177,162,150, 149), b = 1800
Di = {0, . . . , 3}, all i

This instance compiles into a BDD of 1080 nodes. The corresponding MDD has
542 vertices and 1933 edges. A cost-based domain analysis appears in Table 1. In
a column corresponding to variable xi, the table displays values that are added
to Sol∆i as ∆ increases. Thus x1 must take the value 0 if the maximum return
of 3678 is to be achieved. If we permit a return that is within ∆ = 5 of the
maximum, then x1 can take any of the values in Sol∆1 = {0, 1, 2}. Similarly, x3

can take any of the values in Sol∆3 = {1, 2, 3}.
Note that there may not be a solution within ∆ = 5 of the maximum in which

x1 = 2 and x3 = 3. Since the table displays projections onto each variable, it



Table 1. Cost-based domain analysis for the capital budgeting example.

∆ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 3 2 0 0 0 1 1 2 0

1 1 1 3 0

2 0 1

5 1,2 0,1,2 3 3 2,3 2 3 1

6 2 0

9 2

10 0

12 1

14 3

20 1

21 3 2

32 3

45 2

62 3

tells us only that there is a solution within 5 of the maximum in which x1 = 2,
and one in which x3 = 3. It is straightforward to query the MDD, however, to
determine whether there is a solution in which (x1, x3) = (2, 3) by computing
Sol∆1(x3 = 3).

Even in this simple example we can deduce some useful facts. There is exactly
one optimal solution, since each Sol∆i is a singleton for ∆ = 0. Relaxing the
tolerance to ∆ = 5 results in a great deal of freedom in choosing investment
strategies. Investments 4 and 6 are highly undesirable, since building one or
more of them requires substantial revenue loss. Yet the return from building
copies of a given plant need not be monotonic. Building two copies of plant 3,
for example, is better than building one copy, which is better than building three
copies.

8 Network Reliability

The reliability of a complex system composed of n subsystems can be improved
by increasing the redundancy of each subsystem; that is, by increasing the num-
ber of components that implement the same functionality. Suppose that each
component of a subsystem i has reliability ri ∈ [0, 1]. If xi denotes the number
of parallel components, the reliability of the subsystem is

Ri(xi) = 1 − (1 − ri)xi

The reliability of the entire system can be expressed as an algebraic expres-
sion R(R1, . . . , Rn) over reliabilities of each of its subsystems. The methods for
deriving such expressions are well described [1, 14].

Each additional component of subsystem i incurs a unit cost ci. We suppose
that the system can be represented as a network in which each edge ei represents



a subsystem i that consists of xi redundant components. The reliability of the
entire system is the probability that at least one component is working on each
edge along some path from vertex s (source) to vertex t (terminal).

The network reliability problem can be formulated

min
n∑

i=1

cixi

R(R1(x1), . . . , Rn(xn)) ≥ Rel

Rel ∈ [0, 1]
xi ∈ Di, i = 1, . . . , n

where the minimal acceptable reliability Rel is treated as a variable. Coefficients
in the reliability constraint are converted to integers by multiplying the con-
straint by 100 or 1000 and truncating any roundoff error. The domain of Rel is
similarly converted to integers. Thus Rel ∈ {0, . . . , 100} or Rel ∈ {0, . . . , 1000},
although in the tables to follow, Rel is given as a percentage. Thus if we scale
with a factor of 1000 and Rel = 955, the minimal reliability level is given as
99.5%.

We analyze network reliability instances from the literature [1, 19] that have
five, seven, and twelve edges (Rel5, Rel7, and Rel12, respectively). The networks
appear in Figs. 4–5, where the designated vertices s and t are always the leftmost
and rightmost vertices, respectively. The compilation statistics are reported in
Table 2. Computation times are as observed on a Pentium-III 1 GHz machine
with 2GB of memory, running Linux.

Figure 4 shows the Rel5 network. The component reliabilities are r = (0.9,
0.85, 0.8, 0.9, 0.95), and the corresponding costs are c = (25, 35, 40, 10,60). The
reliability expression for the entire system is

R(R1, . . . , R5) = R1R2 + (1 − R2)R3R4 + (1 − R1)R2R3R4

+R1(1 − R2)(1 − R3)R4R5 + (1 − R1)R2R3(1 − R4)R5

The expression is highly nonconvex due to the products of variables. The com-
plexity of the expression grows rapidly for larger networks.

Table 3(a) shows cost-based domain analysis with the minimal reliability
level Rel set at 60%. The unique minimum cost solution uses only edges 3 and
4. It actually achieves reliability of 72%, at a cost of 50. Higher reliabilities cost
more, up to 170 for 99% reliability. The main value of this analysis is to show
the tradeoff between cost and reliability.

Table 2. Compilation statistics for network reliability instances.

BDD MDD Time
Instance Nodes Edges Nodes Edges (sec)

Rel5 308 616 89 766 1.2
Rel7 7,779 15,558 3,126 89,770 9.0
Rel12 69,457 138,914 36,301 139,744 1980
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Fig. 4. Reliability instances Rel5 (left) and Rel7 (right).

Table 3. Cost-based domain analysis (a) and conditional domain analysis (b) for Rel5,
with c∗ = 50.

(a)

c∗ + ∆ x1 x2 x3 x4 x5 Rel

50 0 0 1 1 0 72
60 1 1 0 0,2 79
85 2 84
90 2 3 86
95 2 1 88
100 95
120 97
125 3
155 3 2
160 98
170 99
180 3
230 3

(b)

Rel x1 x2 x3 x4 x5

99 1,2 1,2 1,2 1,2 0,1,2,3
98 0,3 0,3
97 0,3
95 0,3

A conditional domain analysis for variable Rel appears in Table 3(b). Note
that there is a solution that achieves 99% reliability without using edge 5. Edge
x2 need not appear in a solution with 98% reliability, and similarly for edges 3
and 4. Edge 1 becomes dispensable only when reliability is reduced to 95%.

The reliabilities for Rel 7 (Figure 4) are r = (0.7, 0.9, 0.8, 0.65, 0.7,0.85, 0.85)
and the costs are c = (4, 5, 4, 3, 3, 4, 5). The minimal reliability level Rel is set
to 80%. Cost-based and conditional domain analyses appear in Table 4. Edges
6 and 7 are more important for high reliability, which reflects the fact that they
form the shortest s-t path. Edge 6 is most critical, since its omission reduces
reliability to 97.2%. Edge 2 is the least critical because 99.9% reliability can be
achieved without it, even though its components have the highest reliability level
of 90%.

Network Rel12 appears in Figure 5. The reliabilities are r = (0.95, 0.90,
0.70, 0.75, 0.85, 0.85, 0.85, 0.85, 0.90, 0.95, 0.90, 0.80) and the costs are c =
(50, 60, 25, 20, 45,50,30,10,45,20,50,80).Minimum reliability is again 80%. Cost-
based domain analysis appears in Table 5(a). There is a unique minimum-cost
path 3-1-4-8, and none of these edges can be deleted without substantial increase
in cost if 80% reliability is to be maintained. Edge 3 or 1, for example, cannot



Table 4. Cost-based domain analysis (a) and conditional domain analysis (b) for Rel7,
with c∗ = 9.

(a)

c∗ + ∆ x1 x2 x3 x4 x5 x6 x7 Rel

9 0 0 0 0 0 1 1 72.2
11 1 1 0
12 1 1 0
13 1 2 82.9
14 2 2
15 2 2
16 2
17 3 3 84.6
18 2 3 95.2
19 3 3
20 3
22 97.2
23 3
27 99.2
34 99.4
40 99.6
43 99.7
47 99.8
54 99.9

(b)

Rel x1 x2 x3 x4 x5 x6 x7

99.9 2,3 0..3 1,2,3 0..3 0..3 2,3 2,3
99.8 1 1
99.5 0 0 1
99.1 0
97.2 0

be deleted without raising the cost from 180 to 230. A good deal more design
freedom is possible when cost is 230 or greater.

A conditional domain analysis appears in Table 5(b). Note that edges 3, 11, 8
and 12 are most critical for high reliability. This is intuitively plausible, because
they are the edges that are incident to s and t.

Although the MDD for Rel12 is modest in size, the compilation time (over
30 minutes) is much greater than for Rel5 and Rel7 (a few seconds). Yet once
the MDD is constructed, the time required to query it is very small. The total
query time for constructing Table 5 was only 1.8 seconds. Also, one can reduce
the compilation time substantially by representing only near-optimal solutions,
as discussed in the next section.

6
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Fig. 5. Reliability instance Rel12.



Table 5. Cost-based domain analysis (a) and conditional domain analysis (b) for Rel12,
with c∗ = 180.

(a)

c∗ + ∆ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Rel

180 1 0 2 3 0 0 0 2 0 0 0 0 80
185 3 2 82
190 3
195 83
200 1
205 86
210 2 1
215 88
220 2
225 1 1
230 0 0 1,2 1
235 1
240 1 1 2 3 2 1
250 0 0,1 2
255 91
260 3 2
265 93
270 2 3 3
290 3
300 2
305 3
310 3
315 3 94
340 95
360 3
365 96
380 97
430 98
485 99

(b)

Rel x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

99 0..3 0..3 1..3 0..3 0..3 0..3 0..3 1..3 0..3 0..3 1..3 1..3
98 0 0 0
96 0

9 Computational Issues and Future Work

We have shown how binary decision diagrams can provide real-time and in-depth
postoptimality analysis for linear and nonlinear integer programming problems.
To our knowledge, no other technique provides postoptimality analysis at this
level of detail, aside from repeatedly re-solving the problem.

Once the BDD is generated, it can be queried for postoptimality analysis
in negligible time. An important research issue is whether the size of the BDD,
and the computational cost of generating it, remain reasonable as the problem
scales up. For the purposes of this paper we used BDDs that represent the
entire feasible set. The BDD sizes were well within practical size limits for the
problems problems studied here, but a full BDD can explode for larger problems.
The compilation time can also grow rapidly even if the BDD is rather small, as
we saw with problem Rel12.



Fortunately, for most purposes it suffices to use a cost bounded BDD that
represents only near-optimal solutions. This is, the BDD encodes all feasible
solutions with value less than or equal to an upper bound c̄, which is set to be
within some tolerance ∆max of what is known or estimated to be the optimal
value c∗. Although the cost bounded BDD can be as large as, or even larger than,
the original BDD, we show in [15] how to generate quickly a much smaller sound
BDD that approximates the cost bounded BDD and is valid for postoptimality
analysis. Computational testing on linear 0-1 problems having up to 60 variables
and 10 constraints shows that the sound BDD is much smaller than the original
BDD for rather large tolerances ∆max. It is quite small even when the full BDD
is too large to compute. BDDs also easily found all optimal solutions for a
sampling of MIPLIB problems (lseu, p0033, p0201, stein27, stein45) when the
optimal values were given.

These results suggest that BDD-based postoptimality analysis can be com-
putationally practical at least for medium-sized integer programming problems,
provided the optimal value c∗ can be estimated, or perhaps obtained by com-
puting an initial optimal solution with another method. The BDD approach can
solve the problem from scratch if the estimated value c̄ is at least as great as c∗

and is close enough to c∗ to result in a sound BDD of reasonable size.
Future research should include computational testing of BDDs for a variety

of problem classes, for purposes of both solution and postoptimality analysis.
A particularly interesting issue is how information-rich BDDs can be better
exploited to yield new types of postoptimality analysis.
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