
1

TOWARD COGNITIVE TUTORING IN A COLLABORATIVE,
WEB-BASED ENVIRONMENT

BRUCE M. MCLAREN, KENNETH R. KOEDINGER, MIKE SCHNEIDER

Carnegie Mellon University

Pittsburgh, PA USA

bmclaren@cs.cmu.edu, koedinger@cmu.edu, mike.schneider@cs.cmu.edu

ANDREAS HARRER, LARS BOLLEN

Collide Research Group

University Duisburg-Essen

Duisburg, Germany

harrer@collide.info, bollen@collide.info

While intelligent tutoring has been applied to collaborative learning environments,
it has met with little success so far because of the complexity involved in adding a
tutoring component to a collaborative environment. We propose to tackle this
problem by using Cognitive Tutors as the basis for our approach and by applying a
technique we call Bootstrapping Novice Data (BND). The BND approach involves
feeding student log files from a problem-solving tool into tutor development
software to create the beginnings of a tutor for the tool. We describe an initial
implementation of our approach in which Cool Modes, a collaborative software
tool, is integrated with the Behavior Recorder, tutor-authoring software that
supports development by demonstration. We show how our initial implementation
provides a foundation for an intelligent tutor for collaboration. We also discuss
some of the challenges ahead.

1 Introduction

Intelligent Tutoring Systems (ITS) [13] have typically been developed for one-
on-one (machine-to-student) instruction. We are interested, however, in how we
could integrate tutoring into a collaborative, web-based work environment. While
efforts have been made toward providing tutoring in a collaborative environment
(e.g., [3, 5, 6, 15]), there are many and varied challenges still ahead. Consider, for
instance, the complexities of building tutors for a computer-mediated collaborative
environment in which users in remote locations, communicating over the Internet,
work together to solve a problem. The large space of possible actions and
interactions between the users, in addition to the problem representation itself, make
it more challenging to analyze learner behavior and build tutors for collaborative
tasks than for the single-student case.

Presented at the Workshop on Adaptive Hypermedia and Collaborative Web-Based Systems (AHCW'04),
Munich, Germany, July 2004

2

As an alternative to the traditional approach to tutor development – and as a step
toward addressing the complexities of a collaborative environment – we propose a
tutor-development approach that leverages actual problem-solving data not only to
guide tutor design, as has been done before (e.g., [8]), but also to contribute directly
to tutor implementation. In this approach, called bootstrapping novice data (BND),
we provide groups of collaborating novice users with a computer-based tool, let
them attempt to solve problems with the tool, and record that problem-solving
activity in a tutor-specific representation. This integrated record of user activity has
two important benefits: (1) we learn a great deal about how users engage in
collaborative problem-solving activities, and (2) it provides the initial
representational structure for a tutor that could support collaboration.

Our initial step in this direction has been to develop a prototype integration
between a collaborative software tool, Cool Modes (Collaborative Open Learning
and MODEling System) [12], and a tutor authoring environment, the Cognitive
Tutor Authoring Tools (CTAT) [7]. The Cool Modes software generates computer
log files of user activity that are, in turn, used by CTAT as an initial representation
of the tutor. In this paper, we discuss how we have effected this integration and
how we could use this model as a way of collecting user data to create an initial,
skeletal tutoring system.

An important underpinning of this work is the notion of component-based
development. Our approach relies on taking an existing software application (what
we term a "tool") and integrating it, with little or no modification, with a tutor or
tutor agent. Using off-the-shelf or pre-existing software as the basis for building
tutoring systems could result in substantial time savings, as compared to the
traditional approach of building tutors "from scratch" [10, 14]. This is particularly
important in developing tutors for collaboration, as the underlying interaction model
is much more complex than in the single-student scenario.

A longer-term aim of our work – which will be greatly facilitated by both the
component-based approach and our initial steps in developing BND – is to explore
how we can fully integrate cognitive tutoring techniques in a computer-mediated
collaborative environment. We want to use the integration of Cool Modes and
CTAT not just as a means of leveraging user log files to help in building a skeletal,
initial tutor, but also as a step toward developing a fully integrated, pedagogical
model to provide real-time tutoring in Cool Modes and other collaborative software
environments.

3

2 Bootstrapping Novice Data: Creating the Initial Representation of a Tutor
for Collaboration

The BND process we have developed to create an initial, skeletal model of a tutor
through log data involves the integration of two software components, Cool Modes
and the Behavior Recorder, each with complementary features.

Figure 1. An example Cool Modes client. Here students are collaborating on a nuclear decay problem in a
shared workspace.

Cool Modes, depicted in Figure 1, is a collaborative software tool designed to
support "conversations" and shared graphical modelling facilities between
collaborative learners [12]. It is a domain-independent tool that supports a variety of
modelling and learning tasks and provides users with various plug-in objects, such as
Petri nets, a turtle programming environment, text widgets, and a "chat" area, each of
which has its own semantics and underlying representation. All of the Cool Modes
objects are available on a palette from which students may drag and drop objects into
workspaces to build models. Cool Modes is extensible; new objects adhering to a
well-defined API may be added to the palette as required. Translation between
different object types is achieved through reference frames, a set of entities and rules
that facilitate semantic object mapping. Cool Modes also provides operational
facilities, such as execution of simulations and automated calculations.

Each Cool Modes user runs a client program that contains a private workspace
in which objects can be privately created and updated. In addition, all users have
access to a shared workspace, such as that shown in Figure 1, which is rendered in
all of the collaborating clients and may be updated by any of the participants. The
Cool Modes client program communicates with a server, called MatchMaker [4],

4

which maintains the shared workspace and handles all communication between the
collaborating clients.

Cool Modes does not assess or critique students' solutions apart from helping the
students create syntactically correct models and allowing them to execute and
observe the models. Thus, the tutoring component of the integration is provided by
CTAT [7], an authoring tool for intelligent tutors. It supports authors in building
Cognitive Tutors, a form of "model-tracing" tutor based on cognitive psychology
theory. As of the spring of 2004, Cognitive Tutors have been deployed in over 1700
schools in the United States. A Cognitive Tutor is composed of a problem
representation and a set of production rules that model both desired and buggy
behavior and is able to tutor students on a range of problems within a particular
domain (e.g., geometry, algebra). Model tracing compares actual student behavior
during problem solving with the desired behavior represented in the production rules
and identifies deviations from that behavior. Cognitive Tutors are difficult to
develop, typically requiring AI programming expertise.

On the other hand, a specialized type of Cognitive Tutor also supported within
CTAT is a Pseudo Tutor, a tutor that behaves much like a regular Cognitive Tutor,
except that it provides instruction for only a single problem instance and is much
easier to develop. Pseudo Tutors are developed using a "programming by
demonstration" approach [9] that allows authors with no programming skills to build
tutors.

An example Pseudo Tutor for fraction addition is shown in Figure 2. A Pseudo
Tutor is developed as follows. First, the author builds a graphical user interface
(GUI) with a specialized set of CTAT widgets. The GUI for the fraction addition
tutor is shown on the right side of Figure 2. Second, the author demonstrates
sequences of correct, alternative correct, and incorrect actions on these widgets. A
CTAT tool known as the Behavior Recorder (BR for short) records all of these
actions and builds a structure known as a behavior graph, shown on the left side of
Figure 2. Each edge of the graph represents an action taken by the student on a
particular widget of the GUI. The thicker edges represent the preferred or primary
action taken from a particular node. The student’s action is represented as a triple
(selection, action, input): the selection identifies the GUI widget selected, such as
"TextArea1"; the action is the type of user action taken in the GUI, such as "Update
Text"; and the input is the value provided by the student, such as "20." Each node of
the graph represents a state of the interface after a path of edges from the root to that
node has been traversed1. Third, after the behavior graph has been created by
problem demonstration, the author can annotate the graph by labelling buggy edges
(e.g., the incorrect path represented by "2, F13num" in Figure 2), inserting hints and

1 There can be multiple paths to a node and thus a node can represent multiple states.

5

feedback messages, and associating skills with edges. Finally, the author can test the
model by running the Pseudo Tutor, acting like a student or observing actual student
use. During the testing step the Behavior Recorder no longer builds the graph but
rather traces student actions on it. The whole process typically iterates several times,
as the tutor author refines the graph and accounts for alternative action sequences.

Figure 2. The Behavior Recorder records authors’ actions in any interface which use CTAT's specialized
GUI widgets. The author demonstrates alternative correct and incorrect paths. From the start state (labeled
"prob-1-fourth-1-fifth") there are two correct paths ("20, F21den" and "20, F22den"), in which a common
denominator is entered in either of the converted fractions, and one incorrect path ("2, F13num"), in
which the numerators of the addend fractions are incorrectly summed to a value of "2" and placed in the
numerator of the result. Although not visible in this black and white figure, the incorrect path has a red
edge label and the two correct paths have green labels. One of the edges emanating from each node is
thicker than the others; this indicates that it is the "preferred" path from that node. In the figure state8 is
selected in the Behavior Recorder; this can be seen because it is boldfaced and italicized. The Tutor
Interface displays the currently selected state, as can be seen by "20" appearing in the second converted
fraction of the GUI.

The fundamental idea of Bootstrapping Novice Data, depicted in Figure 3, is to
use a tool, in this case Cool Modes, to generate a log of user actions and have those
actions recorded in the BR, providing the beginnings of a real tutor. Translated user
log files, which contain recorded user actions, are provided as input to the BR.
Because the BR is a component with a well-defined message interface (i.e., it
accepts XML messages we call "Dormin Messages"), this integration was relatively
easy to develop. All that was required was a Translator, developed in XSLT, to take
the Cool Modes XML log files and convert them to XML Dormin messages.

6

Figure 3. Bootstrapping Novice Data through the integration of Cool Modes and the Behavior Recorder.

The BND approach involves having groups of collaborating users, depicted on
the left side of Figure 3, generate (possibly different) correct and faulty solutions to
the same problem. The logs of the different collaborating groups are then translated
into a single behavior graph in the Behavior Recorder. After the behavior graph is
generated, a tutor author manually updates it by adding hints and bug messages,
annotating buggy paths, and adding skills to the edges. Not only does the BND
approach provide the tutor author with examples of actual correct and buggy paths
taken by users, it also presents the author with traversal frequencies of those paths.
The edge traversal counts are good indicators of which of the correct solution paths
might be considered primary, which secondary, as well as which types of error paths
occur frequently enough to merit writing specific bug messages.

After the behavior graph is generated, the tutor author manually updates it by
adding hints and bug messages, annotating buggy paths, and adding skills to edges.
Not only does the BND approach provide the author with examples of actual correct
and buggy paths taken by students, it also presents the author with another important
piece of information: traversal frequencies of those paths. The edge traversal counts
are good indicators of which of the correct solution paths might be considered
primary, which secondary, and the counts along incorrect paths provide real data to
show which errors occur frequently enough to merit writing specific buggy
messages. The traversal counts can also help authors identify slips and careless
errors (e.g., accidental item selections): an edge with a traversal count of 1, as
compared to much higher counts on alternative edges, may indicate that an
accidental action was taken by a student and thus can be deleted from the graph.

7

The power of the BND approach is that instead of authors building Pseudo
Tutors from scratch, tapping only their individual experience or incorporating
student data "by hand" as in traditional ITS development, they can semi-
automatically leverage the empirical data of a wide range of students engaged in
actual problem-solving activity. This approach contrasts markedly with the usual
ITS development method in which a domain expert author first creates "expert"
problem solutions. In our approach, the student novices create initial solutions. The
expert’s judgement as to which novice solutions are correct is, of course, critical to
creating a final version of the tutor. It may also be the case that an expert will have to
augment the model by demonstrating a correct solution or solutions, if the student
novices fail to generate any correct solution paths. But the critical aspect of BND is
how it directly captures and encodes incorrect and inefficient novice solutions,
information that will prove invaluable in building a full ITS for a collaborative
system.

3 An Example: The NASA Exercise for Group Dynamics

We tested our BND approach and integration of Cool Modes and BR using a
scenario called the NASA exercise. In this exercise, a group of students is presented
with the following fictional space travel problem. After their shuttle crashes on the
moon, the students must decide which of a set of 15 items on the shuttle (e.g.,
matches, a bottle of oxygen, a bottle of water) are most important for survival while
journeying to the mother ship 200 miles away on the moon's surface. The task
facing the students is to assign a strict priority ordering to all items (e.g., bottle of
oxygen 1 (highest), matches 15 (lowest)). Using scientific knowledge about light, the
need for oxygen, the atmosphere of the moon, etc., NASA has proposed an optimal
solution to the problem.

The game is typically first played by each individual and then as a collaborative
group. Interestingly, the collaborative solution is typically better than the average
individual solution and even better than the best individual's. Both the individual and
group phases of the exercise can be easily conducted in Cool Modes using a visual
discussion language which employs text cards for the items, numerical indicators for
priorities, and links to connect items to priorities.

The task description of a simplified version of the NASA exercise, with 5 items
instead of 15, is shown in Figure 4.

8

Figure 4. Task description of the simplified NASA exercise within Cool Modes.

We obtained several potential solutions, both optimal according to NASA’s
proposed solution (shown in Figure 5) and deviating from that, by logging Cool
Modes sessions with different groups of students.

Figure 5. Correct solution of the simplified NASA exercise within Cool Modes.

As per Figure 3, the set of Cool Modes XML log files were transformed by
XSLT into XML Dormin messages. The messages were then fed into CTAT's
Behavior Recorder, resulting in a behavior graph with weighted edges, showing the
frequency of steps taken by the users across all solution attempts.

9

The resulting behavior graph is shown in Figure 6. The left branch at the top
represents the fact that 4 of the users correctly chose a bottle of oxygen as the
highest priority item (by connecting priority 1 to the text card labelled "oxygen" in
Cool Modes), while the right branch at the top indicates that 2 users first (and also
correctly) assigned matches as the lowest priority item. The branch emanating from
state11 to state12 is a buggy path, in which oxygen was assigned a low priority (4).
Since some of the users naturally chose different, yet still correct sequences of
priority assignments, the graph has some confluent paths. These are equally valid
paths in solving the problem.

Figure 6. The Behavior Recorder after multiple user solutions of the NASA exercise.

The author has not yet manually updated the behavior graph shown in Figure 6.
For instance, the author would ultimately mark the path on the right below state11 as
"buggy," which would change the selection/action/input of the rightmost edge
emanating from state11 to red (the color we use to indicate a "buggy" action). This,
in turn, would result in the deletion of all states on the path below state12, since the
Behavior Recorder assumes that all buggy states are "dead ends".

10

4. Discussion

The NASA exercise illustrates the value of the BND approach and the Cool Modes /
Behavior Recorder integration. By having students attempt to solve this problem,
we not only record the variety of paths taken, but we actually produce the backbone
representation of an actual tutor. Given this initial representation, an author then
annotates the behavior graph with hints, buggy actions, and bug messages. The
traversal counts guide the author by indicating which paths are anomalous and which
are common solutions/mistakes. An annotated behavior graph can be run as a fully
functioning Pseudo Tutor.

 But there is still much work to be done. The NASA problem, while intended
to be tackled collaboratively, was, for our purposes, attempted only by individual
users in order to test the Cool Modes / Behavior Recorder integration. To make the
BND process work for actual collaboration, there is still research and development
work required. For instance, the behavior graphs in typical mid-range to difficult
problems are likely to be quite bushy, interconnected, and thus difficult to read and
manipulate manually; for highly complex problems it will be difficult to grade all
actions as either correct or buggy. One of our goals, therefore, is to write software to
automatically read and evaluate the graphs and, in turn, provide advice to authors
(for instance, that an infrequently traversed edge may be buggy).

One very basic change to the BR required to support collaboration is a way to
record the user who performed each action, information Cool Modes has readily
available. Since the BR was originally designed to support single-student tutoring,
this data is currently not captured in the behavior graph, so we will extend the
selection-action-input representation to include and reason about an "Actor" field.
Since collaboration environments typically involve dynamic instantiation of objects
(e.g. when creating a model from scratch with a visual modelling language like Petri
Nets or System Dynamics), the Behavior Recorder must also be capable of handling
dynamic object definition and recognition. In other words, the BR must be able to
recognize similar selection-action-inputs across collaborative sessions (which would
result in different paths in the behavior graph) and map these actions and objects to a
single entity. Since Cool Modes uses a consistent, internal naming scheme, we can
leverage this to identify common objects across sessions. Ultimately, for
collaborative systems in general, we will need mapping tables to help the BR
identify similar nodes and paths across sessions.

 We may also need a more powerful representation than behavior graphs for
modelling behavior and delivering tutoring for more complex collaborative
activities. Existing collaborative systems typically employ more complex models,
such as action-based collaboration analysis [11], which derives higher-level activity
descriptions from user actions using plan recognition, or Hidden Markov Models
[16], which have been used to model effective and ineffective student interactions.

11

The production system approach of full Cognitive Tutors appears to be a promising
way to model more complex collaborative behavior. In particular, we could treat
collaboration as a special type of meta-cognitive behavior, by specifying a desirable
model of collaboration, similar to what we've done in the area of help seeking [1, 2].
Given this direction, the collaborative tutor building approach described in this paper
could be viewed as an initial cognitive modelling / cognitive task analysis, initial test
case development, and programming-by-demonstration input for building full
Cognitive Tutors.

A clear, but we believe appropriate, limitation of the direction outlined in this
paper is emphasis on student problem-solving actions, rather than on collaborative
social activities such as dialogue between collaborators [3]. While we acknowledge
that dialogue is important to many, if not most, collaborative activities, we believe
that a significant class of collaborative problems can be dealt with by computer
support at the level of observed problem-solving actions. Our focus is also a matter
of tackling one piece of the complex collaboration puzzle at a time.

5. Conclusion

In summary, we have discussed the use of log files and log analysis as a starting
point in developing a tutoring component for a pre-existing software tool. Our
approach, called Bootstrapping Novice Data, involves the transformation of student
log files generated by a problem-solving software tool into a sequence of student-
action messages useable by tutor authoring software. To implement an initial version
of BND, we used a component-based approach in which we integrated an existing
collaborative software tool, Cool Modes, with tutor-authoring software, realized in
the Behavior Recorder software. The BND approach is potentially quite powerful, as
it obviates the need to (a) build a tutor “from scratch” and (b) rely primarily on a
domain expert to build a tutor.

The ultimate aim of our work is to explore how we can fully integrate cognitive
tutoring techniques in a computer-mediated collaborative environment. In other
words, we want to use the integration of Cool Modes and CTAT as a first step
toward developing a fully integrated, pedagogical model to provide real-time
tutoring in Cool Modes and other collaborative software environments.

Currently, we are working on a real-time integration of Cool Modes and the
Behavior Recorder by using an extended message protocol and a socket connection,
instead of XSLT, between the applications. We plan to conduct a field test and study
with small groups (or dyads) of students collaborating on modelling problems in the
domain of software engineering in the fall of 2004. This study will allow us to
further explore the technical and practical feasibility of the BND approach and to
collect data to guide us in providing a cognitive tutoring approach to a collaborative
environment.

12

In general, to reach the ultimate goal of deploying cognitive tutoring in a
collaborative work environment, we need to better understand the intersection of
collaborative workspaces, such as Cool Modes, and individualized cognitive
tutoring, such as that provided by CTAT. By applying BND techniques and taking a
component-based approach, we have created the foundation for continued
exploration and experimentation with cognitive tutoring in a collaborative
environment.

References

1. Aleven, V., McLaren, B. M., Roll, I., and Koedinger, K. (2004). Toward
Tutoring Help Seeking: Applying Cognitive Modeling to Meta-Cognitive Skills.
In the Proceedings of the Seventh Annual Conference on Intelligent Tutoring
Systems (ITS), Maceio, Brazil, September, 2004.

2. Aleven, V., McLaren, B. M., and Koedinger, K. (forthcoming). Towards
Computer-Based Tutoring of Help-Seeking Skills. In: Help Seeking in
Academic Settings: Goals, Groups and Contexts, Karabenick, S. ,Newman, R.
(eds).

3. Goodman, B., Hitzeman, J., Linton, F., and Ross, H. (2003). Towards
Intelligent Agents for Collaborative Learning: Recognizing the Role of
Dialogue Participants. In the Proceedings of Artificial Intelligence in
Education (AIED-03), IOS Press, Amsterdam.

4. Jansen, M. (2003) Matchmaker - a framework to support collaborative java
applications. In the Proceedings of Artificial Intelligence in Education (AIED-
03), IOS Press, Amsterdam.

5. Jermann, P., Soller, A., and Muehlenbrock, M. (2001). From Mirroring to
Guiding: A Review of State of the Art Technology for Supporting Collaborative
Learning. In the Proceedings of the European Conference on Computer-
Supported Collaborative Learning, Maastricht, The Netherlands.

6. Lesgold, A., Katz, S., Greenberg, L., Hughes, E., Eggan, G. (1992). Extensions
of Intelligent Tutoring Paradigms to Support Collaborative Learning. In S.
Dijkstra, H. Krammer, J. van Merrienboer (Eds.), Instructional Models in
Computer-Based Learning Environments. Berlin: Springer-Verlag, 291-311.

7. Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. M., and
Hockenberry, M. (2004). Opening the Door to Non-Programmers: Authoring
Intelligent Tutor Behavior by Demonstration. In the Proceedings of the Seventh
Annual Conference on Intelligent Tutoring Systems (ITS), Maceio, Brazil,
September, 2004.

8. Koedinger, K. R. and Terao, A. (2002). A cognitive task analysis of using
pictures to support pre-algebraic reasoning. In C. D. Schunn, W. Gray (Eds.),
Proc. of Cognitive Science Society, 542-547.

9. Lieberman, H. (ed) (2001). Your Wish is My Command: Programming by
Example. Morgan Kauffman Publishers.

13

10. McArthur, D., Lewis, M. W., and Bishay, M. (1996). ESSCOTS for learning:
Transforming commercial software into powerful educational tools. Journal of
Artificial Intelligence in Education, 6 (1), 3-33.

11. Muehlenbrock, M. (2001). Action-based Collaboration Analysis for Group
Learning. IOS Press, Amsterdam.

12. Pinkwart, N. (2003). A Plug-In Architecture for Graph Based Collaborative
Modeling Systems. In the Proceedings of Artificial Intelligence in Education
(AIED-03), IOS Press, Amsterdam.

13. Polson, M. C. and Richardson, J. J. (1988). Foundations of Intelligent Tutoring
Systems. Lawrence Erlbaum Associates Publishers.

14. Ritter, S. and Koedinger, K. R. (1996). An Architecture For Plug-In Tutor
Agents. In: Journal of Artificial Intelligence in Education, 7 (3 / 4), 315-347.

15. Suthers, D. D. (2003). Representational Guidance for Collaborative Learning. In
the Proceedings of Artificial Intelligence in Education (AIED-03), IOS Press,
Amsterdam.

16. Soller, A. and Busetta, P. (2003). An Intelligent Agent Architecture for
Facilitating Knowledge Sharing Communication. Proc. of Workshop on
Humans and Multi-Agent Systems at AAMAS-03, Melbourne, Australia, 94-
100.

