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A UNIFIED ALGORITHM FOR FLOWSHEET OPTIMIZATION

YD Laity and L. T. Biefller

CaiiMMjio-Mclloii Univoiiiiy
Puisbseygh, PA 1S213

A flexible ftlgofillmi (or flowsheet optimixaiion is developed on the FLOWTRAN
piocess sinuilaiof. The opiiiniiaiion strategy combines lite feasible and uifeasible
paid appioaches as well as ihe simpler black box approaches. While ihe most
efficient optimization strategy is often problem dependent, this paper presents
guidelines thai show which strategy is more efficient for a given problem. Also
embedded within the algorithm is a new Broyden strategy for efficiently converging
even complex flowsheets, without computing a new Jacobian. This allows for:
strategies "in-between" the infeasible and feasible path procedures. A ratio test
based on the Kuhn-Tucker convergence test automatically and adaptively adjusts the

optimization strategy.

The implementation on FLOWTRAN is discussed in detail and a number of
examples are run to illustrate the flexibility of the implementation as welt as

demonstrate the effectiveness of the adaptive optimization strategy

SCOPE

flowsheet optimization has bten an important area for chemical process design
and has its origins in linear programming work in the early 60s (see Griffith and
Stewart (13)1 With the increasing use of flowsheeting tools, process simulation has
become easier tui more widespread. Currently, on commercial simulators, however,
the optimization strategy is either ad hoc (i.e. often approached as a series of case
studies) or involves a detached optimization algorithm that supplies sets of decision
variables as new parametric cases to the process simulator. This "black box"

approach was used by Giddy and cowoikeis [1.12J and Friedman and Pinder [11)




Verth et s Ch wptomzation steategies, as well as by Challand 18] aned Foehman

At Punder L1H) withe ciane sopiusiicated geadhent-hased  optinnzation shategues o
Ihese stuwhies  any  qrachenis  thal weio 16quined wora uvaluatad by periinng  the

WeCision vanabiles amd cucalculatinig the entue flowshueot.

Recogming 1that a complete flowsheel calculation 1s expensive 106 cvaluating
gradients, Isaacson [15S) ana Parker and Hughes [20) consuucied rcduced quadkanc
muodels by ndividudl modet pertuibation at each base pownt. Mowever, these icquued
converged flowsheets tur cach tssal pont evaluation. Moreover, recent developments
i nonhnear programnung algonithms have cast flowsheet optimuzation n 3 new hight,
Using Successive Quagrauc Programming (SQP) (Han (14). Powell (22]). Berna, Locke
and Westeberg [U) demonsuiated with equation solving sumulators that flowsheet
cun.ergence and Gpt.muzaton can proceed simultaneously. A number of rescarchers
nave applied s conlept 10 sequential modular simulators [5.9.16.17]) with
€NCouraging resulls  Vinie Odterences exist among these studies 10 terms  of
caiculating gragd.ents and rmplementing the optimization algorithm all of them use an
inleasible path approach to optimization; 1.e. tear lor recycle)l sireams are solved

simultaneously with the optimization problem using SQP to handle both tasks.

More recentl,. B.egler and Hughes [(6.7) advanced the concept of feasible
variants. 1e converging the llowsheel between SQP iterations. On a limited number
of test problems this strategy generally required fewer SQP ierations. Reasons for
thys are NOt clear altnocugh 1 1s easy 10 argue that converging the flowsheel at each
ieration may help 1o correct problems with SQP resulting from naccurate gradients
or an inelficient line search strategy (such as the one originally proposed by Han and
Powell). In more recent studies [3.4), simply mproving the Line search algornithm and
allowing  tor  analyuc  gradient nformation where available also improved the

pertormance of the nfeasitle path approach.

Finally risaia [ 1E) ndicated that the feasible varniant approach may not always

he supenor 1o anteasible path. Tlus nay b aspacially tiuo of o

nothe Howshuest s
hificul 10 converge o tha SOP algorilun has  Wittle  dithiculty  w handling  the
micasible path puoblom. Instead. he roposed a8 hylwid  algontiun (IPH) whuie the
flowshwiut s paihially converged using 8 fixed munbies of Wegstein terations between
SAP ciations.  Wivesostingly, this  sppoach sometinios worked well even  when
compared 10 inleasible path. However, no crileria woie given on how 10 choose the
Aumber of Wegstom iturations (or patial convergence o how 10 apply thus slgosithm

on llowsheets where the Wegstein algorithm may be inappcopriate for convergence.

In thus paper we develop criteria for intermediaie flowsheet convergence and
demonsirate this approach on a number of test problems. More importantly, however.
this paper presents a8 uwnfied strategy for flowshest opuimization within 8 fairly
compact and easy L0 implement structure. Intecestingly. this structure incorporates all
approaches discussed $0 far and because of its implementalion provides s great deal
of tlexibiny n developing optimization strategies tailored 10 difficull optimization

problems.
CONCLUSIONS AND SIGNIFICANCE

A filexible and efficient optimization sirategy has been implemented and
evaluaied using the FLOWTRAN simulator. Due 10 the siructure of the algorithms and
in-line FORTRAN capabilities. the optimization implementation allows the following
solution options:

e “black-box” oplimization

® simultaneous convergence of recycle sireams and design consiraints using
either Broyden or Newton methods.

* infeasible path optimization {IP)
e complete feasible variant optimization (CFV)

® parually converged flowsheet optimization with an embedded Broyden
algorithm (EBOPT)




ID tins paiici we outline a swnplu donvaiiOM for an 'miprovod "I>lacfc-»ox"
sirjieijy for recycle stream problems. A detailed iloiivatiou is then piesemcd lor an
cnihcdttetd Broyden method thai parlially * converges flowsheets ai intermediate
uiiiiiii.ijiiun iterations In addition, a heunstic strategy is presented that signals when
pjM.ji c oiivergcnce *s desirable 01 not. The resulting EBOPT (Embedded Oruydun

Optimization) method is lairly general and leads to ihe mfeasible path and feasible

vonam algorithms as limiting cases.

The EBOPT strategy is compared to lhe infeasible path hybrid algorithm (IPH)
developed by K.sala and some theoretical advantages of EBOPT are demonstrated. In
particular. EBOPT can generally converge more complex flowsheeting problems more
efficiently because of its Broydén capabilities. Also. EBOPT is not as prone to line

sea»ch failures as IPH is.

Fmaiiy. the capabilities of the optimization implementation are demonstrated on
five e*ampic problems. The first problem is characteristic of ‘black-box optimization
while trie second illustrates the flowsheet convergence capabilities afforded by the

EBOPT and IP algorithms.

The last three examples give a comparison of four algorithms. IP, EBOPT. CFV
and IPH. on reasonably difficult and realistic flowsheet optimization problems. On all
problems EBOPT performs better than either IP or CFV. IPH performs best on one

problem but suffers premature line search failures on the other twaq.
1. Preliminary Theory and Concepts

The flowsheet optimization problem is given by

(NIP) Mm F(x.y)

SI. h(xy) * y - w(xy) « 0 ’
cL.y) -0
guy) * 0
K S * £ *

frl

Y, Sy % v,

whulk

flowsheet decision vanahios

guossed lea' stream variables

- calculated teai stream vanatjius
- oi>|cciive function
- ie«< equations for converging the flowsheet
- additional equality constraints lor optimisation
- inequality constraints

Qo TTs<

Examples of objective and constraint functions can be found in previous studies as
well as in lhe case studies‘presented later in the paper. To solve this problem, the
Successive Quadratic Programming algorithm essentialy applies a modified quasi-
Newton method to converge lhe optimally or Karush-Kuhn-Tucker (KKT) conditions of
(MLP). To do this and maintain a consistent active set. the following quadratic

program (QP) is solved at each iteration:

(QPI) Min  vT(x, y) 4+ 12 d" Bd
et. b(x".y") em y)Td-0
c(x*, My + vex, y)Td-o0
s<rly)  HeL y)Tas0

L \/ x,

) Ly b

Here B Is a BFGS (see (10]) update matrix to the Hessian of the Lagrange function
with respect to x »nd y.'A detailed statement of this algorithm may be found in any
of the above references end will not be given here. The version of the algorithm
used in this implementation was developed in Biegler and Cuthrell [4] and includes

the following features:




1. All eHicioMi augmented Lag*ang.an-based line search strategy is used lo
guarantee ylobal convergence and allow lull slops in Iha region of tha
opinnum, The latter ptopariy is not guaranteed by li»e implementations of
Hsn (14) 01 Powell (22].

2. An automatic variable and constraint scaling strategy is included that
gives good performance on flowsheeting problems. In addition a condition
number is calculated for lha 8 matrix in QPl to delermine when tha
problem is ill-conditioned or poorly scaled.

3. BecA”c of portability, space and availability constraints, tha Ha*well
subiouiine VEO2AD is used to *odve lha OP at each iteration. In Biegier
and Cuirvell (4) a more reliable and efficient OP coda was used.
However, there f no noticable differences in function evaluations due to

this substitution and. consequently, tha FLOWTRAN implementation is not
affected by this change. :

This SOP algorithm forms lha core of our unified optimization strategy.

To see how the optimization strategies compare from a geometric viawpoint.
consider the sample flowsheet optimization problem in Figure la. Hera only one

decision variable. *. one tear variable, y. and only one taar aquation, h. are required

for the optimization problem. If one considers this problem from a casa study

perspective, one can trace a curve for Fix) vs. x (Fig. 1b) where each point on tha
curve represents a converged flowsheet. Expanding this problem in terms of both x
and y yeids the contour plot in Fig. 1c. Note that tha optimum lias on the solid
ime which representls the tear constraint and a nonlinear projection along this line

gives the curve m Fig. 1b.

Us.ng the case-study or "black box" approach tha optimization algorithm is
merely tied to the outside of the simulator and tha simulator Is responsible for
converging the flowsheet for each evaluation of tha optimization problem. Similarly,
gradient calculations involve perturbation snd convergence of the flowsheet for each
decision variable. Thus, no information about flowsheet convergence is passed
between the optimizer and simulator. In Figure 2 this car’1 be seen in terms of tha
horizontal steps (in x) made by tha optimizer and tha vertical steps (in y) performed

by the simulator. Note that these vertical steps wusually represent flowsheet

cunvOMjunce by slowly converging lecyde alyu*iiitinj mJ ih«iefore iol)iesa<H Hie

most lime consuming pen of Hie opi»»niieuon duOr

Since the mfeasible path approach consiiucit information about tha »y suHace
and does not require flowsheet convergence until the optimum is found, movement
occurs in both x and y as seen in Fig. 3a. This slap in x and y results from
linearizing |ha constraints and approximating the surface contours as wall tha
curvature of tha constraints. As saan above this approximation laads to a
straightforward quadratic program. Gradients for (OP1) im found by perturbing Iha
unconverged flowsheet Also th« expansive vertical staps for flowsheet convergence
are avoided because flowsheet convergence is guaranteed as part of tha solution to
tha optimization problem. In fact, as will be illustrated later, application of tha
infaasibla path approach in tha absence of degrees of fraadom is equivalent to

Newton's method.

To prevent an ovaraxtrapolation of tha infaasiblae path approach it may ba
advantageous to ensure that tha equality constraints ba converged (or at laast
partially converged) at each Iteration. Using tha faasibla variant approach, tha path
for x and y Is given by Figure 3b. Htm vertical staps from flowsheet convergence
are introduced and one seas that lha starting point for converging My) ¢ 0 is given
by tha OP and is considerably belter than in tha "black-box* approach. Interestingly,
the OP that Is created and solved at each Iteration Is axactly tha same, and requires
tha same effort at each lteration, as with infaasibla path. Nota that with this strategy
one assumes that tha flowsheet can ba solved raadily by tha racycla convergence

algorithm.

In lha next sections Wwe develop a new approach for Improving tha performance
of the optimization strategy. This stratagy addresses soma of tha drawbacks with
both infeasible path optimization and tha faasibla variant stratagy and also links both

strategies more closely in terms of a unified framework. Before presenting this



stiategy. however, 1l is useful to discuss futher the differences betweon l(oasible

variants and “black box” (or case-study) optimization.
2. Black Box Optimization vs. Optimization In x and y

Comparning Figure 2 to Figures 3a and 3b one sees thalt the main disadvantage
in the optimization path of the first figwe Is due to lack of Interaction between x
and the dependent varisbles, y. in the optimizstion step. In fact, the main difference
between Figures 2 and 3b is simply that with the feasible varisnt aspproach y is
initialized much closer to the converged f(lowsheet. Generally, this leads to more
etficient recycle convergence. The improved -pnh however requires flowsheet
péuwbuuons in x and y to create 8 larger QP problem st each iteration. Using SQP

with the “"black box™ approach requires the solution of 8 much smaller QP:

. dF T 1.7
(QP2) Hin dx dx * 2 ‘n 'xdx
i
s.C. '(xl) +%§-'¢‘so
i
1, . dc N
C(x') + e ‘x o

vhere y-* y(x‘)lh(x‘. y) =0

with the tear equations and tear variables removed. Note that the derivatives in the
above QP are reduced gradients and require 8 converged flowsheet with each

decision variable pertwbation.

Because of the differences in the size of the optimization problem it is easy to
see that the “black box” approach can be superior to the infessible path or teasible
variant methods when the number of tear varibles grestly outnumbers the number of
design variables #nd the flowsheet is not difficult to converge with conventional

slgorithms. The work per iteration for each approach can be spproximsted by:

Black Bos

NFPI o NRPeNX « NRC

Feasible Varianm

NFPI =« EsNX « NY « NRI

Infeasible Path

NFPI o EoNX « NY « 1

where NFPI number of flowsheet passes per iterstion

NRP number of recycle iterations to converge perturbations in decision
varisbles
NRC number of recycle iterations to converge flowsheet

at each new base point (vertical steps in Fig. 2)

NX numbes of flowsheet decision variables
NY number of flowsheetl tear variables
E fraction of equivslent flowsheet passes required for

decision variable periurbations (partial flowsheet passes)

NRI number of recycle iterations to converge flowsheet
at new base point (vertical steps in Fig. 3b)

As seen from the above relationships, flowsheels with few degrees of freedom and
many recycle components can be optimized more efficiently with the black box
approach. Note also that NRI is expected 10 be less than NRC. This occurs because
the y variables have better initialization with the feasible variant approach and. as
will be seen later, more efficient recycle convergence algorithms can be used with
feasible variants. With the black box approach it is essy. however, to reduce NRC and
allow the optimization path to be similsr to the one followed by the feasible variant
spproach. This simply requires keeping track of how the dependent variables. vy,

change with x

Consider a perturbation in variable x and a completely converged flowsheet for

that perturbation. For the tear constraints, Mx,y) = 0. we have to a first order

approximation:
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dh « 0 - V h\im « V h'dy
. i it

where dx ¢ (0. O...AX. ...\ 0J. Solving this aquation foi dy./A*( give* column | oi Hie
L L
matrix <V Mx\ y)%)"'V Mx* y'l*. Therefore, simply by saving the response of ihu y
L] L]
variables to all perturbations in x. i.a.
X - tdyo/A*.dy/&M:. . . . . <*Y moo/*mw)

- <(V J>UV)VV /KI5 KV

we can use the solution of (QP2). d". and wrila dy as
d, - Yd, )

Note from QPi that this equation solves the linaariiation of the tear constraints and
therefore leads to the step in x and y givan In Figure 3b. Also, it is interesting to
note this approach leads to the same slap thai is generated by the Reduced Feasible

Variant (RFV) algorithm described by Biaglar and Hughes (7).

However, because flowsheet convergence Is the outar loop to saveral levels of
iterative calculations, the convergence error In the tear aquations can ba relatively
large. Therefore, in order to calculate the Y matrix correctly, lha perturbation size
needs to be chosen accurately. If we include second order corrections and the

convergence error. {. in our tear constraints we can write:
dh - i - VA'AIT «(HA®) « ¥ a'ay> olaxfay]) ¢ oilay]

Rearranging this expression gives an ordar of magnitude estlmata for tha errors in

the Y matrix:

™, = V' [¢/ax-(V a7 + olax) « (X|AK]) * oi]ay}'/ax}]

Note that choosing a perturbation alxa too small laada to appreciable error due to

convergence noise while a large perturbation alza leads to an error due to second

order cllucit. To avoid these problems. Wo number of Heranonv NHP and NfIC. may
nood io te large 10 force a amsii mo' Tiwt it stp«ci«H, tiu« boctuit flow*)****
convex (jcrxe elgoriihme have only unmmt cunvetfu+nce p*op«m«i HHJI lequtrtog MPi

io be larger ihan it normally e*peci»<J tw <imulattofv
3. Development of an Embedded Broyden Strategy

To summarize tha previous material and to introduce this section, consider

problem (NLP) again:

(NLP) Min FU.y)

s.t. Mx.y) ¢y - w(xy) « 0
c(xy) » 0
gUy) 1 0
v, Sv %y,

In tha "black box" approach tha y variables ware eliminated and tha constraints.
hU.y) « 0. were always satlsflad. rnvn for parturbatlons of x. Tha infeasible path (IP)
and tha completa faaslbla variant (CFV) atrataglaa daal with iNLP) explicitly In tha
space of x and y and aolva (QPI) at each lteration. In addition. CFV converges tha
equations. h(x.y) < 0. by adjusting tha y variables iftir (QPI) Is solved. As mentioned
above, it may ba more efficient to psri/sHy converge tha constraints. htx.y) « 0. at
each iteration since IP yields a converged flowsheet at the optimum anyway. Also. If
an afficiant and rellabla aquatlon-«olv'€r can ba applied, one can handia both h and c

by convarging tham almuJtaneously.

In this section. we present en émbaddad Broydan approach for partial
convergence within flowshfaet optimization. This strategy Incorporates tha Infeasible
path and faaslbla variant approacf;es as limiting casaa and can be vlawad as a
modification of lha hybrid approach proposed by Kisala (18]. In tha previous

section we observe that slowly convarging recycle algorithms can laad to
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inefficiency wiih the black bo* optimization algorithm. These algorithms log.
WiMjbiom o» direct substitution) ere also used in tlie feasible variant and hybrid
apfwoaches. Thus, for flowsheet thai aie difficult lo lolve. one can e«i>oci

conveigcuce problems ai intermediate points.

When tear variables and constraints ere perl of the oplimizeiion problem, we
have enough gradient information from QP1 to allow also for more efficient
convergence routines. In particular. Broyden routines have been used with good
results (9. 19. 21] m converging complex flowsheets, even those with additional

uesign constraints. This section therefore add/asses two points.

1 HOW can a Broyden algorithm be embedded within the optimization
strategy to (partially) converge the flowsheet at intermediate points?

2 What criterion should be used to decide whether (partial) convergence is
necessary at intermediate points?

3.1 An embedded Broyden algorithm

we now derive a modified Broyden algorithm for partial convergence et
intermediate points. For convenience we will use only the tear variables, y. and leer
equations. nU.y) > 0. in presenting this derivation. Application of this method to
additional design constraints, cU.y) ¢ 0. end additional dependent variables is

straightforward.

To converge or partially converge the equality constraints, consider the étep in
Figure 4. At point C. the gradients end values of the object?ve and constraint
functions ere evaluated and QP1 is constructed end solved. The search direction
from QP1 and a suitable stepsize leads to point D. from which the equality (l.e. tear
and any design) constraints may be converged. If one were to apply a Broyden
method to converge the dependent variables et this point one would want to have
the Jacob.an (V~h)' at point O to initialize the Broyden method. Since this is not
available and it would be expensive to construct this information, we derive en

update strategy based on the gradients evaluated at point C.

13

Lot H" = |‘:‘|I_hJ Vt\'\ at iiouii C and consuloi tlie Broyden formula (10J
) bel 4 k. T T
(Hi) I =0 U4t e)6 /A A
[ 1] [
] 3 1 n
]
wicre A . - -
. ’Iul yh
Y

, - g'"*VS - h<V>
We note thai this update relation can also be epplied to the nonsqumf metrix without
violating any assumptions (see Dennis & More [ 10]) es to its derivation. Also from
QP1 we see thel the slep from C to D is genereted by Hd « -t»(x°. y°). We cen now

apply the updete formula to get H' at point O;

U-H°G) A_* T (GH%) eT -
.T-

5 iV AT ]

-[“nl é 'yl ] '

Starting from point O we keep x constant and only change y to converge the

<B2) e - [e'..T -

flowsheet; thus i,-0 for the following Iterations. Applying (B1) to H' gives the

following relations:

k T
' (q-H_"4.) §
Wl [, 1)k
(B3) o [u’ Ly +—-!'—~Y—-¥—6 7 ]
Y Y
and
1) % 0 bk
<B4) oo “-hix, ¥
UL )

Note that since J_ is determined by QP1 for the first step t\d H, does not affect g
r

in the later steps, we write the updete formulae (B2). (83) es:
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He M e ige 31 3730 dar k20

This expression can be simplified mvmn further by noting that

M - - la® ')

and

M . [Mx“.r"'l - hh“.y‘l] + Ma®yM

if /u/l Broyden steps are taken. Also for the first step:
A = Mgl e - a5

Therefore, the Broyden steps can ba given by:

(8b)  H' e H* « 100) *pedlate P l:/l'l

136) H"" = ma®ytH J:/a:l_. bz

Note that when the line search in SOP allows a full step U-1). (B5) and (B6)
differ only in the denominator of the second term. Also, note that In Iha absanca
of degrees of freedom (no x variables), thasa aquations reduce to the conventional

Broyden approach.

Testing of this approach on the problems given below shows that no more than

S ‘iterations are required to converge the flowsheet at intermediate points. As shown

IS

with the conventional Broyden approach. Hits method also handiei t)e»ign conairamit

easily.
3.2 Criteria for using en exix<Sded B#oyd«n method

As noted in previous studies, the choice of optimization strategy is often
problem dapandant. If Iha gradients are reasonably accurate and iha flowsheet is
only "mildly" nonlinear, than iha infeasible path approach will converge smoothly.
If. on the other hand, iha flowsheet Is highly nonlinear and difficult lo converge (with
complex units thai are failure prone) then a faasibla path approach with Broydan's
method and appropriate safeguards could ba more reliable and efficient. However,
these characteristics mm not always known a priori. Indeed, M shown by Kisala
[18]. partial flowsheet convergence may lead to more efficient performance In

solving the optimization problem.

However, care must ba taken In dealing with partial flowsheet convergence at
each iteration. In particular, partial convergence can ba detrimental to the Una search

algorithm in determining the stepslie for the next point.

In the SOP algorithm, a given stapsiza along the search direction, d. is accepted
if a "sufficient" decrease is observed with some merit function, p. In the algorithms
of Han and Powell, this function is the exact penalty function; in our algorithm an
augmented La grange function is used. In either casa. it is wall known (sea e.g. Han
114)) that tha search direction from QP1. d. is a descent direction for the merit
function. Consequently, finding a nonzero stapsiza Is guaranteed, at least in theory,

for tha infeasible path algorithm.

For tha feaslbla variant algorithms, one can also prove that a nonzero stapsiza
will ba found during tha lina search. This can ba shown because all points In tha
line search hava converged equality constraints and. tha OP solution, from a faasibla

point, is also a descant direction for tha lina "search function f.
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However, lot flowsheets thai ate only partially converged, ont csntwl guarantee
iliat a stepsue with a decreased merit function will > found. A simple illustration
of this is given in Figure S. From the QP base point at A. one sees the mem
function can be viewed as a function of 1 along the search direction found by OP 1
Executing a fi*ed number of convergence iterations for a given siepsiie. point B. say.
m*y decrease or increase the objective function. In fact, for a fixed number of
iterations, it is possible that the equality and inequality constraint infeasibilities may
also increase. Consequently, it is possible that partial convergence may move the
mem function value from point 8 to B* Note that this behavior can occur arbitrarily
close to point A. say. point C. and thus lead to ‘a line search failure - even though

perfectly reasonable stepsizes exist for infeasible path.

For this reason we apply partial convergence only sfter the line search
algorithm finds a stepsize. In this way we can avoid line search failures and also

save some work at intermediate points.

As further justification for this safeguard we note that, by itself, the infeasible
path algorithm converges quickly and takes full steps in the neighborhood of the
optimum. For this case, partial convergence is usually not necessary. On the other
hand, at the beginning of the optimization, the search direction may overextrapolate
and lead to a point that is difficult to converge. Here it would be Inefficient to
partially converge the flowsheet during the line search. Instead, allowing the line

search algorithm to find a more reasonable point first will save some effort.

Even with this safeguard, one is still not guaranteed that partial convergence
leads to better performance for the optimization. One way to measure the success
of partially converged points would be to compare merit functions from iteration to
iteration. However, one still needs to know if. a pric;ri, partial convergence is
desirable or even necessary at a given point. In the next section we develop a

strategy for dealing with this task. We should mention that this strategy is based on
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heuristics and. consequently, will not always guarantee improved fw formeitce
competed to inf«a»ible path No*ivn K, eee h» jhai ~« P<wowxe l«la« *o  *eo

r

encouraging
Heuristic strategy for partial convergence

For SOP a common measure of Kuhn Tucker error (KTE) for problem INLP) is

given by (22):
KTE - |VIV/| 'X K*.l o« X I3%1 « Z 1<)
[] ]

where u; v and I* are multipliers calculated for QP1 for g h' and c respectively.
Also. 9U.y). is defined as max (0. g"xyM. Reducing KTE to within a zero tolerance
is a necessary and sufficient condition for satisfying the KICT conditions for (NLPL
Now. from Figure 4. if SOP finds a step from point C to point 0. one needs to
determine if additional work is required by Broyden's method to move to point
E. Since this method converges only c; and hj a heuristic measure of how much

improvement can be had is given by the ratio:

@A) (Z lep,) + 2 Ine) 7 kre

If this ratio remains small, intermediate convergence is not necessary. If it remains
consistently largo, however, full or partial convergence may help to speed

convergence. To us« this ratio we propose two triggers for intermediate

convergence.

« " (ZTAL e Z v [)/eTE>,

at point C. mov« to point D mnd converge ¢ and * (to point E, say) until the relation

tan) (2 lval + 2 leg 1) 7 #7€, 5 o,

is satisfied.




2 i (Z fvpl e Z Q:.:.I)‘/Klf.sv,

but on moving 1o point D,
(2 1vhl = 20l 1),/ ATE >0,
use Broyden's method to converge (o poim E. say) <, and h‘ so that (BR1) is

satisfied.

Otherwise, both points C and D lie close 10 the constraints and Intermediate

convergence is not required. Note thst by adjusting the 3°s. one can develop a full

spectrum of methods b the infessible psth approach (g *1. g °0) snd the

feasible variant strategy (g ~ 0, g o O).

"~

in choosing these per s. 9, id be set b

zer0 and one to allow
for partial convergence. gy, should be set small in order 1o avold the flrst trigger at
the next iteration. Our experience indicstes thst often very few Broyden iloulions (§]
or 2) sre required to satisfy (BR1) even it 4, Is small, (say 100, ¥, on the other
hand. cen be sufficiently grester than unity without hampering performence. This
results because point C for the second trigger Is sufficiently close to satisfying the
constraints; 8 linearization from that point and a line search usually determine point
D that is reasonably good without partisl convergence. In fact, for the problems we
solved, the second trigger for partisl convergence was not necessary (or good

performance.

In addition to the sbove triggers we have slso Included the following conditions
for Intermediate convergence. First, If the current lteration s In the neighborhood of

the optimum, applying Broyden lierations Is lly ‘not Yy since the

constralnts ere close to being satisfied snyway. Therefore It KTE. S 10¢, say,

where ¢« Is the Kuhn-Tucker tolersnce, we do not apply Intermediate convergence.
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Also, 11 Is possible that the flowsheet may nol converge st all at an inermediaste
noint Consequently. we Impose a8 mamimum number of erations for ntermediate
convergenco iIn ouwr case studies successfully converged nternmediate ponts never

required more than 5 ilerations.

We conclude this section by emphasizing that the asbove strategy s based on
hewistics that, from ow limited experience. work reliably snd efficiently. Since very
little mooc-y governs the concept of partisl convergence, we used these gQuidelines n
our il:\plamalo& n the next section we discuss how the constants ¢  and 4 R

were chosen and give a statement of the slgorithm.
4. Algorithmic Statement and FLOWTRAN implementation

Using the c‘oncopu stated sbove we now pcdlonl asn slgorithmic statement of
the Embedded Broyden Optimizstion (EBOPT) sirastegy and outline the festwes and
options used in the FLOWTRAN implementation. In the algorithmic statement we
assume the reader is somewhst familiar with the SQP slgorithm and will not dwell

on its details. The reader is referred to (4] for the line search sirategy and update

formulae.
4.1 Algorithm

Step 0) Set the SQP iteration counter, I1=0, and Iinitialize the flowsheet with x°
and y°. y® can be found by (partislly) converging the flowsheet. Set ¢ as the Kuhn-

Tucker tolerance.

Step 1) At x°, y*) find the gradients for F, g. h and ¢ with respect to x and

v. This can be done by direct loop perturbstion (8] or chainruling (3].

Step 2) Solve (QP1) given sbove 10 get the search direction d for x and vy.

Evaluate KTE and (BR) st iteration | using the expressions sbove. If KTE, < o, stop.
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Step 3) Porform a Una search with a suitable merit (unction, f. to fiml a

stcpsue. 1. along d. Oef.ne A"e«'«kd;. §ryrXdA.

Step 4) Sol Broyden iioration counter k«0 and evaluate the flowsheet (or

< Pk
It (z |v.n'|."',‘§|1 * z ]t'c'(:"‘.if'ﬂ) FKTE Sy,
1 [

KIE i 10«

nl

set y"' ¢ Y\ ao to step 7. '

Step 5) Set y* « y* and apply the Broyden formulae (B5) and (86) to y* and

(h.c)l until:

> Lv i g + > leete"sM1| / XT€,5 4,

then set y"' * yk

-

If the above relation cannot be satisfied after five iterations

(W>5). set y" ¢ y\
Step 6) Evaluate the gradients at (x™\ y"')as in step 1* ‘Update the

Hessian matrix for QP1.
Step 7) Let i»i*1 and go to step 2.

42 FLOWTRAN Implementation

The optimization capability in FLOWTRAN was Installed by writing a type 2
(convergence) block. The structure and argument list for this block, called SCOPT.
was the same as the exislting recycle convergenc-e block, SCVW. Because we did not
change any code in FLOWTRAN. we Implemented direct loop perturbation as the most
straightforward way for evaluating gradients. Since  FLOWTRAN generates end
compiles a FORTRAN main program at run time, it can éasily accommodate jn-line
FORTRAN and user written subroutines as part of the input data. This, In turn, allows

the optimizer to evaluate partial flowsheet passes if needed for gradient evaluation.
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Aim. ih« user e specification ol the opiunuanon piobiem can be nude umply by

SCOPT handles up to ilwee tear streams (as does SCVW). which it converges
simultaneously, and up to a total of 40 decision and leer variables. Decision
variables can be chosen from equipment parameters or feed streams. These
variables are accessed through PUT statements that ere common features in

FLOWTRAN.

In addition, the user needs to specify a reletive perturbation size (between 10'
and 10°' is recommended) and a reletive Kuhn-Tucker tolerance (usually between 10*
and 10*). It should be noted, however, that choosing a Kuhn-Tucker tolerance too
small can result in line search failures and poor steps near the end of the run.

because the gradients mey not be accurate enough to satisfy the tolerance.

Another option In our implementation deels with the choice of tear variables.
In most optimization studies, stream flow rates, pressure and specific enthalpy are
chosen. Temperature Is not chosen because for multiphase streams, enthalpy is not
realizable from temperature alone. However, for s/ng/t phase streems calculation of
enthalpy from temperature is usually direct Bnd a level of iteration and some
convergence noise ere eliminated in the perturbation step. Since perturbing the
temperature for single phase tear streems can lead to more accurate derivatives, we

have added a T/H option.

Finally the t parameters need to be specified for the embedded Broyden
algorithm. As mentioned above, f, which defines the second trigger, can be fairly
large. In our experience values of. fy > 3 have still led to good performance end

this trigger was always Inactive. Consequently, we have not used this test et ell.

On the other hand ¢ was set. after some testing, to 0.01. As explained above,

it takes surprisingly few Broyden iterations to satisfy this test. The most Important




parameier 101 delermining intermediate convesgence is therefore 4 . Setting ¢ °y,~0
n owr implementation leads 10 » (easible variant approach. Setting ..-u.o yields the
infeasible path approach and intermediate values of 4 sllow partial convergence. In
Our testing. setting 4 10 0.4 yielded good results although this parametesr is pioblem
dependent. However, on many problems, examinstion of the oulput shows that
performance of this stiategy is Not very sensitive to g, In Table 1, the ranges of

¢, and v, under which the sane performsance would be achieved are tabulated for the

'

€mbedded Broyden Optimizstion (EBOPT) stretegy.

5. Example Problems

IYhe following five example problems were solved by a number of approaches.
A number of similar problems were solved in addition 10 these. However, for the
sake Of brevitly, we chose this set because il represents what can be expected from
the implementation in terms of performance and flexibliity. The first problem is
essentially a black-box implementation on a single wunit. The second problem
illustrates how the infeasible pasth and Broyden methods can be used to converge
fiowsheets. The last three problems desl with modonu_ly-siud flowsheets, some
with compiex models. These allowed comparison of the embedded Broyden strategy
{(EBOPT) with a number of recent and efficient optimization sirstegies. Due 10 the
flexibility of the sigorithm and featwes of FLOWTRAN, none of these sirategies was

difficult to implement.
Problem 1 - Black Box Optimization

The first problem deals with s single unit optimization of a 25 tray distillstion
column with sidestreams. As illustrated in Figure 8, the distillation column problem,
which is solved by a Thisle-Geddes model (FRAKB), seeks to maximize the degres of
separstion of its 5 components among its overhead, bottoms and lldnunms.“'l’m

decision variables are the fraction of feed 10 the two sidestreams and the distillate.
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The only constraints sre Lounds on the decision variables as well as bounds on the

fracion of feed 10 the Lotioms suieam.

Tius problem Is typicsl of many simple piocess oplimization problems. Since
there aie no recycles, SQP deals with this model in "black-box™ fashion and solves
it completely each time it requires 8 lunction evaluation Allernately, an entire
flowsheet could easily have been trested lr;und of a single unit. The solution of
this problem Is also given in Figure 6. This problem was solved 10 » relativa Kuhn-

Tucker tolerance of 10°°,

Note trom Table 1 that the performance of the optimization sigorithm is
characteristic of the black-box approach. Becsuse the model needs to be solved
ssversl times It Is not swprising that over 16 Simulstion Time Equivalents (STE's
measwed st the stasting point) were required 10 optimize this thvee varisble problem.
Because of the tight tolerance, seven jterstions sppears to be reasonable for this

case.
Problem 2 - Cavett Problem Simulation

To demonstrate the capability of the infeasible path and EBOPT methods for
Newton and Broyden convergence, respectively, we selected 8 modified form of the

Cavett problem, reported by Rosen end Pesuis (23). Here the number of stream

P s was reduced from 18 to 11. Figwe 7 lllustrates the flowsheet where 21

and Z2 were chosen ss tears and Table 2 lists problem dats and the converged

el This probl was first solved using the Wegsteln converg block in
FLOWTRAN with sll of the defauit options. In this case 1) lerations were required
to converge the flowshest to the defeult relstive tolerance of 0.0005. Using the
same tolerance, this flowsheet was also converged using the infeasible path (IP) snd
EBOPT methods in 4 and & lterations, respectively. However, comparing STE's for
this problem shows thst these methods are not competitive with Wegstein. The
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EBOPT method retinues 26 flowsheet passes lo construct a Jacobian matrix ai ihe

fusi iteration, ihe IP incihod oouils 10 constiucl lhis Jacobian ai every iteration.

Because of ihe effort required for the initial Jacobian. Broyden's method may
not always be competitive for solving simulation problems. Embedded within an
optimization strategy, however, where the Jacobian Is calculated anyway. lhe Broyden

method performs much more efficiently.

For the next three examples we compart the IP and EBOPT strategies with the
CFV (Complete Feasible Variant) [7] and IPH Unféasible Path Hybrid) [18] algorithms.
The last two algorithms were implemented by using FLOWTRAN's Wegstein
convergence block to (partially) coﬁverge the flowsheet between SOP iterations. For
IPH. two wegs-tem iterations were used between every SOP iteration, as suggested
by Kisala ( 18], For CFV. the flowsheet was either converged to FLOWTRAN's default

tolerance or until 30 Wegstem iterations had been exceeded.

On all problems relative tolerances of 10 were used for the Kuhn-Tucker error.
All problems were recycle flowsheets with complex unit operations and nonideal

thermodynamics.
Problem 3 - Ammonia Process A

This problem was adapted from Parker and Hughes (20] »nd has been used in
other studies 19. 18]. The problem statement is given in Figure 8 and in (20).
Because of different thérmodynamic properties and fewer decision variables, values
of the objective function are slightly lower in this study. ' The starting point and
optimal solution for this problem »f given In Table 3. As seen from Table 1. the
double loop flowsheet with »n equilibrium-based reector ls fairly easy to converge
and optimize. Here the EBOPT and CFV approaches are close in performance.
although EBOPT is slightly superior. Beca;Jse no Intermediate convergence was

applied for the IP run. more iterations were required than with EBOPT. Interestingly.
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EBOPT. with the heuristic strategy detcnUed in Section 3. only n«cduf to use Hi«
Bioyden strategy after iterations 1 and 3 After iiicsc. SOP r*d no irouMe

converging tins problem by itself.

Unfortunately for this problem, the IPH algorithm suflered a line search failure
after 5 iterations. Restarting at this point resulted in a second line search failure
after 3 additional iterations. In his study. Kisala (18) also reported a line search
failure for Parker's ammonia broblem. The reason for this, as explained in Section 3.
may be that, because a fixed number of Wegstein iterations Mt9 applied for each
function evaluation in the line search, a descent direction cannot be guaranteed and

this method can be prone to failure.
Problem 4 - Methytchlorobenzene Process

This problem is adapted from an example in the FLOWTRAN manual (24).
Using the default costs and prices In the costing blocks, the optimization problem
illustrated in Figure 9 was formulated. Here six decision variables were chosen for
the optimization. These ere listed along with their initial and optimal values In Table

4.

Because this problem contained a rigorous (and often unreliable) absorber model
and the FORTRAN code for FLOWTRAN was not available to us. we were unable to
provide error returns to lhe optimization algorithm and thus continue in the event of
unit convergence failures. Obviously, error returns are a necessary feature In the
Implementation of any flowsheet optimization strategy, and the lack of this capability

reflected how we could solve this problem.

From the results In Table 1. one sees that the EBOPT strategy required less
effort than either the CFV Of the IP strategies. However, to prevent premature
termination due to failure In the absorber block. Intermediate recycle convergence

was suppressed for EBOPT during the first two SQP iterations. The EBOPT algorithm
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nee.led to apply Broyden's method only afiar iteration 4 in oidar to gal aalitfaciory

performance.

Also, duo 10 difficult!** with |ha abtorbar. lha IP algorithm could not be
converged from the starling point for EBOPT. From a slightly diffarant starting point
(shown m Table 4). 12 iterations were required to satisfy a Kuhn-Tucker tolerance
slightly above 10°* Again, because of the unreliable nature of the process units, a

belter and more consistent comparison could not be) made.

The CFV algorithm required over S times the' computational effort that EBOPT
required. This represents the difficulty that SCVW has to converge this flowsheet at
intermediate points. In fact, for SOP lterations 1, 2. 5 and 0. CFV required the

maximum of 30 iterations without converging the flowsheet at these base points.

Again, as with the previous problem. IPH terminated with a life starch failure
after 12 iterations. This could be due to the descent direction line search problem

explained in Section 3.
Problem 5 - Ammonia Process B

The flowsheet for this problem Is given In Figure 10 along with the problem
statement. The decision variables and their initial and optimal values are given in
Table S. Unlike problem 3. this ammonia process has a single loop design with 3
flash units. The unit operation and cost blocks for the reacto.r are taken from
Chapters 9 and 10. respectively, of the FIOWTRAN manual. To make the problem
more interesting, feed rates were chosen as decision variables and s constraint was
imposed on the flow rate of the ammonia product. This type of constraint can be

treated in a straightforward manner by all four of the algorithms compared.

Because of problems with error termination in FLOWTRAN. we suppressed the

Broyden option for the first iteration in the EBOPT run. Even so, this run. as seen
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from Table 1. required only 47% of Hie effort i»d ihe infaasihle path algorithm
noeUed Broydon iterations were applied «ne> the J<L 4ih, bin A>" *"d 9t* SOP
iteration However, the accelaianon* after t» &d. 4ih and 5ih iioiiioni were not
effective (and also did not lead to closer pomisl because they ted to using more
than 5 Broyden iterations without satisfying the ratio lest. This illustrates the

difficulty of converging this flowsheet from intermediate points.

Similar, but more pronounced results were encountered with the CFV algorithm.
Here ?he convergence algorithm was unable to converge the flowsheet for the first
three SOP lterations. For these points the maximum of 30 Wegstein iterations was
exceeded end. consequently. CFV required a lot of computational effort. On the
other hand, the IPH algorithm did very well for this problem. Because it uses a fixed
number of recycle iterations at intermediate points, the progress of the optimization
was better than IP. but none of the convergence problems encountered with CFV. or.
to a lesser extent, with EBOPT. were observed here. Also for this problem there were

no apparent difficulties with line search failures.

In summary, partial convergence of the flowsheet at Intermediate optimitation
iterations led to better results on all of the recycle optimization problems then with
either the IP or CFV algorithms. However, as shown in section 3. cere must be taken
to implement this strategy properly. Therefore, this study illustrates the potential of
the EBOPT strategy for flowsheet optimization, although further work may be required

to tune the algorithm for specific problems.
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