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A UNIFIED ALGORITHM FOR FLOWSHEET OPTIMIZATION

YD Laity and L T Biefller

Clu:iuical Eiifjiiiuunng Department
CaiiMMjio-Mclloii Univoiiiiy

h. PA 1S213

A flexible ftlgofillmi (or flowsheet optimixaiion is developed on the FLOWTRAN

piocess sinuilaiof. The opiiiniiaiion strategy combines lite feasible and uifeasible

paid appioaches as well as ihe simpler black box approaches. While ihe most

efficient optimization strategy is often problem dependent, this paper presents

guidelines thai show which strategy is more efficient for a given problem. Also

embedded within the algorithm is a new Broyden strategy for efficiently converging

even complex flowsheets, without computing a new Jacobian. This allows for

strategies "in-between" the infeasible and feasible path procedures. A ratio test

based on the Kuhn-Tucker convergence test automatically and adaptively adjusts the

optimization strategy.

The implementation on FLOWTRAN is discussed in detail and a number of

examples are run to illustrate the flexibility of the implementation as welt as

demonstrate the effectiveness of the adaptive optimization strategy

SCOPE

flowsheet optimization has bten an important area for chemical process design

and has its origins in linear programming work in the early 60s (see Griffith and

Stewart (13)1 With the increasing use of flowsheeting tools, process simulation has

become easier tui more widespread. Currently, on commercial simulators, however,

the optimization strategy is either ad hoc (i.e. often approached as a series of case

studies) or involves a detached optimization algorithm that supplies sets of decision

variables as new parametric cases to the process simulator. This "black box"

approach was used by Giddy and c o w o i k e i s [1.12J and Fr iedman and Pinder [ 11 )
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a.i.i F..1.1. i | l l ) wiiii IM..M- MI|*IUMICJICMI ^ailiem I»J:»IMI ti|iiiiiu/alH»ii :.tt«iitM|i«.N In

Hirst: smiins any «|i.xliciiifc thai worn foquifttd woio uvaltiaiuil l»y |IUIIIMIUII«J lli«:

ticci&uiii vjnaiilc* ami iucalcuiaiui»j the entire- flowsluiui.

RecoQMKHig not a compleie flowsheet calculation is e*|»cnsivo lot evaluating

•jiailienis. Isaacson ( IS) and Parker end Hughes (20) constructed reduced quatlraiic

nuuicis Ly inciiviUiiji inuJci perturbation at each base pouu Howvevci. these iet|uiied

converged flowsheets fur each trial point evaluation. Moreover, 'eccni developments

m nonlinear programming algorithms have cast flowsheet optimisation in a new light. j

L'i.'ig Successive Q.JJJ«JUC Programming (SOP) itif% (14). Povwcll (22J). Bema. Locke

j-.a tVesteiberg [J] iiuinuMMHied w.ih equation solving simulators thai liowslicei

convergence a(*a opt .ni./ii.on can proceed simultaneously. A number of researchers

na*e «pphea nns concept 10 sequential modular simulators (5.9.16.17) with

tneoufiyog results Wfi.ie deferences exist among these studies in terms of

calculating giao>ems J'»d implementing the optimnaiion algorithm all of them use *n

mfeasibie pain approach to optimisation; i.e. tea/ (or recycle) streams are solved

Simultaneously w*(h the optimisation problem using SOP to handle both tasks.

More recemi, Begier and Hughes (6.7) advanced the concept of feasible

variants. ie converging ihe flowsheet between SOP iterations. On a limned number

of test problems tft.s strategy generally required fewer SOP iterations. Reasons for

th.s are not c\e»f although it is easy to argue thai converging the flowsheet at each

iteration may help to correct problems with SOP resulting from inaccurate gradients

or »n inefficient line search strategy (such as the one originally proposed by Han and

Powell). In more recent studies (3.4). simply improving the line search algorithm and

allowing (or analytic gradient information where available also improved the

pe'formance of the mfeasiLle path approach.

Finally * <sjia ( 16) •nj.caied that the feasible variant approach may noi always

In; i»u|M!, io. in iiil«;.i*il»l«; itaili Tins may lui .!^|HM ially iiuu if I-IIIHM IIU: IIOWSIMSMI IS

iliMiculi !«• ciMivi;i<|tt «N 11 MI SOP alijoiiiluii das little ililficuity m haiulltiig the

uileasil.li! path |MC»IIIUIII. lu&iuad. I M |MO|>O*«I<J a liylMid alijtiniluii UPH) wtiuie th<*

llowsluiui is paiiially convuujod using a fiAeil IMMIII>OI of Wuijsicm iiuiations between

SOP ilciaiimis. InlefusliiMjIy. tins ap|NOacli soiiHtlinios woikutl well evou when

compaiciJ tu uifoasible path. However, no cm«wia woie tjivun on how to choose the

number of Weysiom it mat ions for partial convergence or tiow to apply this algorithm

on flowsheets where the Wegstein algorithm may be inappropriate for convergence.

In this paper we develop criteria for intermediate flowsheet convergence and

demonstrate this approach on a number of test problems. More importantly, however,

this paper presents a unified strategy for flowsheet optimisation within a fairly

compact and easy to implement structure. Interestingly, this structure incorporates all

approaches discussed so far and because of its implementation provides a great deal

of flexibility in developing optimization strategies tailored to difficult optimisation

problems

CONCLUSIONS AND SIGNIFICANCE

A flexible and efficient optimization strategy has been implemented and

evaluated using the FLOWTRAN simulator. Due to the structure of the algorithms and

in-line FORTRAN capabilities, the optimization implementation allows the following

solution options:

• "black-box" optimisation

• simultaneous convergence of recycle streams and design constraints using
either Broyden or Newton methods.

• mfeasibie path optimisation (IP)

• complete feasible variant optimization (CFV)

• partially converged flowsheet optimisation with in embedded Broyden
algorithm (EBOPT)



ID tins paiici we outline a swnplu donvaiiOM for an miprovod "l>lacfc-l»ox"

sirjieijy for recycle stream problems. A detailed iloiivatiou is then piesemcd lor an

cnihcdttetJ Broyden method thai parlially converges flowsheets ai intermediate

uiiiiiii.ijiiun iterations In addition, a heunstic strategy is presented that signals when

pjM.j i c oiiver gcnce *s desirable 01 not. The resulting EBOPT (Embedded Oruydun

Optimization) method is lairly general and leads to ihe mfeasible path and feasible

vonam algorithms as limiting cases.

The EBOPT strategy is compared to Ihe infeasible path hybrid algorithm (IPH)

developed by K.sala and some theoretical advantages of EBOPT are demonstrated. In

particular. EBOPT can generally converge more complex flowsheeting problems more

efficiently because of its Broyden capabilities. Also. EBOPT is not as prone to line

sea»ch failures as IPH is.

Fmaiiy. the capabilities of the optimization implementation are demonstrated on

five e*ampic problems. The first problem is characteristic of black-box optimization

while trie second illustrates the flowsheet convergence capabilities afforded by the

EBOPT and IP algorithms.

The last three examples give a comparison of four algorithms. IP, EBOPT. CFV

and IPH. on reasonably difficult and realistic flowsheet optimization problems. On all

problems EBOPT performs better than either IP or CFV. IPH performs best on one

problem but suffers premature line search failures on the other two.

1. Preliminary Theory and Concepts

The flowsheet optimization problem is given by

(NIP) Mm F(x.y)

SI h(x.y) • y - w(x.y) • 0
cL.y) • 0
gU.y) * 0
K S" * £ *

• flowsheet decision vanahios
y guossed lea' stream variables
w - calculated teai stream vanatjius
F - oi>|cciive function
h - ie«< equations for converging the flowsheet
c - additional equality constraints lor optimisation
g - inequality constraints

Examples of objective and constraint functions can be found in previous studies as

well as in Ihe case studies presented later in the paper. To solve this problem, the

Successive Quadratic Programming algorithm essentialy applies a modified quasi-

Newton method to converge Ihe optimally or Karush-Kuhn-Tucker (KKT) conditions of

(MLP). To do this and maintain a consistent active set. the following quadratic

program (QP) is solved at each iteration:

(QPl) Mln vT(xl, y l ) T

e . t . b(x l . y l ) •

c ( x 1 , /

• 1/2 dT Bd

1 , y l ) T d - 0

Vc(x l, y l ) T d - 0

•<*1. y l) • H(*1. y l ) T

V

Here B Is a BFGS (see (10]) update matrix to the Hessian of the Lagrange function

with respect to x »nd y.'A detailed statement of this algorithm may be found in any

of the above references end will not be given here. The version of the algorithm

used in this implementation was developed in Biegler and Cuthrell [4] and includes

the following features:



1. A I I eHicioMi augmented Lag* ang.an-based line search strategy is used lo
guarantee ylobal convergence and allow lull slops in lha region of tha
opinnum The latter ptopariy is not guaranteed by ll»e implementations of
Hsn (14) 01 Powell (22].

2. An automatic variable and constraint scaling strategy is included that
gives good performance on flowsheet ing problems In addition a condition
number is calculated for lha 8 matrix in QP1 to del ermine when tha
problem is ill-conditioned or poorly scaled.

3. BecA^c of portability, space and availability constraints, tha Ha* we 11
subiouiine VE02AD is used to *o4ve lha OP at each iteration. In Biegier
and Cuirvell (4) a more reliable and efficient OP coda was used.
However, there f no noticable differences in function evaluations due to
this substitution and. consequently, tha FLOWTRAN implementation is not
affected by this change.

This SOP algorithm forms lha core of our unified optimization strategy.

To see how the optimization strategies compare from a geometric viawpoint.

consider the sample flowsheet optimization problem in Figure la. Hera only one

decision variable. *. one tear variable, y. and only one taar aquation, h. are required

for the optimization problem. If one considers this problem from a casa study

perspective, one can trace a curve for Fix) vs. x (Fig. 1b) where each point on tha

curve represents a converged flowsheet. Expanding this problem in terms of both x

and y yeids the contour plot in Fig. 1c. Note that tha optimum lias on the solid

ime which represents the tear constraint and a nonlinear projection along this line

gives the curve m Fig. 1b.

Us.ng the case-study or "black box" approach tha optimization algorithm is

merely tied to the outside of the simulator and tha simulator Is responsible for

converging the flowsheet for each evaluation of tha optimization problem. Similarly,

gradient calculations involve perturbation snd convergence of the flowsheet for each

decision variable. Thus, no information about flowsheet convergence is passed

between the optimizer and simulator. In Figure 2 this can be seen in terms of tha

horizontal steps (in x) made by tha optimizer and tha vertical steps (in y) performed

by the simulator. Note that these vertical steps usually represent flowsheet

cunvOMjunce by slowly converging lecyde alyu* iiitinj mJ ih«iefore io|)iesa<H Hie

most lime consuming pen of Hie opi»»niieuon duOr

Since the mfeasible path approach consiiucit information about tha »-y suHace

and does not require flowsheet convergence until the optimum is found, movement

occurs in both x and y as seen in Fig. 3a. This slap in x and y results from

linearizing lha constraints and approximating the surface contours as wall tha

curvature of tha constraints. As saan above this approximation laads to a

straightforward quadratic program. Gradients for (OP1) im found by perturbing lha

unc on verged flowsheet Also th« expansive vertical staps for flowsheet convergence

are avoided because flowsheet convergence is guaranteed as part of tha solution to

tha optimization problem. In fact, as will be illustrated later, application of tha

infaasibla path approach in tha absence of degrees of fraadom is equivalent to

Newton's method.

To prevent an ovaraxtrapolation of tha infaasibla • path approach it may ba

advantageous to ensure that tha equality constraints ba converged (or at laast

partially converged) at each Iteration. Using tha faasibla variant approach, tha path

for x and y Is given by Figure 3b. Htm vertical staps from flowsheet convergence

are introduced and one seas that lha starting point for converging My) • 0 is given

by tha OP and is considerably belter than in tha "black-box* approach. Interestingly,

the OP that Is created and solved at each Iteration Is axactly tha same, and requires

tha same effort at each Iteration, as with infaasibla path. Nota that with this strategy

one assumes that tha flowsheet can ba solved raadily by tha racycla convergence

algorithm.

In lha next sections we develop a new approach for Improving tha performance

of the optimization strategy. This stratagy addresses soma of tha drawbacks with

both infeasible path optimization and tha faasibla variant stratagy and also links both

strategies more closely in terms of a unified framework. Before presenting this



strategy, however, u is useful to discuss further the diffaiences betweon foasihle

variants and black bo*" (or case-study) optimization.

2. Black BOM Optimization vs. Optimization In • and y

Comparing Figure 2 to Figures 3a and 3b one sees that the main disadvantage

m the optimization path of the first figure Is due lo lack of Interaction between K

and the dependent variables, y. in the optimization step. In fact, the main difference

between Figures 2 and 3b is simply thai with the feasible variant approach y is

initialized much closer to the converged flowsheet. Generally, this leads lo more

efficient recycle convergence. The improved path however requires flowsheet

perturbations m x and y to create a larger QP problem at each iteration. Using SOP

with the black box" approach requires the solution of a much smaller QP:

M l n
f
dx 2 x "x x

1 „

where y - y ( x l ) | h ( x l . y) - 0

with the tear equations and tear variables removed. Note that the derivatives in the

above QP »re reduced gradients and require a converged flowsheet with each

decision variable perturbation.

Because of the differences in the size of the optimization problem It is easy to

see that the "black box" approach can be superior to the infessible path or feasible

variant methods when the number of tear varibles greatly outnumbers the number of

design variables snd the flowsheet is not difficult to converge with conventional

algorithms. The work per iteration for each approach can be approximated by:

Black Bo-

NFPl • NRP-NX

Feasible Vaiiant

NFPl • E-NX • NY • NRI

Infeasible Path

NFPl • E-NX • NY • 1

where. NFPl number of flowsheet passes pmr iteration

NRP number of recycle iterations to converge perturbations in decision
variables

NRC number of recycle iterations to converge flowsheet

at each new base point (vertical steps in Fig. 2)

NX number of flowsheet decision variables

NY number of flowsheet tear variables

E fraction of equivalent flowsheet passes required for
decision variable perturbations (partial flowsheet passes)

NRI number of recycle Iterations to converge flowsheet
at new base point (vertical steps in Fig. 3b)

As seen from the above relationships, flowsheets with few degrees of freedom and

many recycle components can be optimized more efficiently with the black box

approach. Note also that NRI is expected to be less than NRC This occurs because

the y variables have better initialization with the feasible variant approach and. as

will be seen later, more efficient recycle convergence algorithms can be used with

feasible variants. With the black box approach it is easy, however, to reduce NRC and

allow the optimization path to be similar to the one followed by the feasible variant

approach. This simply requires keeping track of how the dependent variables, y.

change with x.

Consider a perturbation in variable x and a completely converged flowsheet for

that perturbation. For the tear constraints. Mx.y) • 0. we have to a first order

approximation:
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dh • 0 - V h\im • V h'dy
• i i t

where dx • (0. 0 Ax 0J. Solving this aquation foi dy/A*( give* column | oi Hie

matrix -<V Mx\ y')1) 'V Mx*. y'l*. Therefore, simply by saving the response of ihu y

variables to all perturbations in x. i.a.

X - tdy%/A*t.dyj/&Mt <*Ym%/**mw)

- -(V />UV)VV /KJ»'.KV •

we can use the solution of (QP2). d .̂ and wrila dy as
d • Y d .

Note from QPi that this equation solves the linaariiation of the tear constraints and

therefore leads to the step in x and y givan In Figure 3b. Also, it is interesting to

note this approach leads to the same slap thai is generated by the Reduced Feasible

Variant (RFV) algorithm described by Biaglar and Hughes (7) .

However, because flowsheet convergence Is the outar loop to saveral levels of

iterative calculations, the convergence error In the tear aquations can ba relatively

large. Therefore, in order to calculate the Y matrix correctly, lha perturbation size

needs to be chosen accurately. If we include second order corrections and the

convergence error. {. in our tear constraints we can write:

dh - i - V A ' A J T •(HA**) •

Rearranging this expression gives an ordar of magnitude estlmata for tha errors in

the Y matrix:

) • (X|AK|)

Note that choosing a perturbation alxa too small laada to appreciable error due to

convergence noise while a large perturbation alza leads to an error due to second

it

order cllucit. To avoid these problems. U»o number of Heranonv NHP and NflC. may

nood io t<e large IO force a amsii m o ' Tiwt it •tp«ci«Hy tiu« boctuit flow*)****

convex (jcrxe elgoriihme have only unmmt c unve^u+nce p*op«m«i HHJI lequtrtog MPi

io be larger ihan it normally e*peci»<J tw •imulattofv

3. Development of an Embedded Broyden Strategy

To summarize tha previous material and to introduce this section, consider

problem (NLP) again:

(NLP) Min FU.y)

s.t. Mx.y) • y - w(x.y) • 0
c(x.y) • 0
gU.y) 1 0

In tha "black box" approach tha y variables ware eliminated and tha constraints.

hU.y) • 0. were always sat Is f lad. rnvn for parturbatlons of x. Tha infeasible path (IP)

and tha completa faaslbla variant (CFV) atrataglaa daal with iNLP) explicitly In tha

space of x and y and aolva (QPI) at each Iteration. In addition. CFV converges tha

equations. h(x.y) • 0. by adjusting tha y variables iftir (QPI) Is solved. As mentioned

above, it may ba more efficient to psri/sHy converge tha constraints. htx.y) • 0. at

each iteration since IP yields a converged flowsheet at the optimum anyway. Also. If

an afficiant and rellabla aquatlon-«olv'€r can ba applied, one can handia both h and c

by convarging tham almuJtaneously.

In this section we present en ambaddad Broydan approach for partial

convergence within flowsheet optimization. This strategy Incorporates tha Infeasible

path and faaslbla variant approaches as limiting casaa and can be vlawad as a

modification of lha hybrid approach proposed by Kisala (18]. In tha previous

section we observe that slowly convarging recycle algorithms can laad to
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inefficiency wiih the black bo* optimization algorithm. These algorithms log.

WiMjbiom o» direct substitution) ere also used in tlie feasible variant and hybrid

apfwoaches. Thus, for flowsheet thai aie difficult lo lolve. one can e«i>oci

conveigcuce problems ai intermediate points.

When tear variables and constraints ere perl of the oplimizeiion problem, we

have enough gradient information from QP1 to allow also for more efficient

convergence routines. In particular. Broyden routines have been used with good

results (9. 19. 21] m converging complex flowsheets, even those with additional

uesign constraints This section therefore add/asses two points.

1 HOW can a Broyden algorithm be embedded within the optimization
strategy to (partially) converge the flowsheet at intermediate points?

2 What criterion should be used to decide whether (partial) convergence is
necessary at intermediate points?

3 1 An embedded Broyden algorithm

we now derive a modified Broyden algorithm for partial convergence et

intermediate points. For convenience we will use only the tear variables, y. and leer

equations. nU.y) > 0. in presenting this derivation. Application of this method to

additional design constraints, cU.y) • 0. end additional dependent variables is

straightforward.

To converge or partially converge the equality constraints, consider the step in
v

Figure 4. At point C. the gradients end values of the objective and constraint

functions ere evaluated and QP1 is constructed end solved. The search direction

from QP1 and a suitable stepsize leads to point D. from which the equality (I.e. tear

and any design) constraints may be converged. If one were to apply a Broyden

method to converge the dependent variables et this point one would want to have

the Jacob.an (V^h)' at point O to initialize the Broyden method. Since this is not

available and it would be expensive to construct this information, we derive en

update strategy based on the gradients evaluated at point C.
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L o t H "

( H i )

h 1 V h ' l a t i i o u i i C a n d c o n s u l o i t l i e B r o y d e n f o r m u l a ( 1 0 J

A •

k T T
l l e ) 6 / A A

, - he,"* VS - h<.V>
We note thai this update relation can also be epplied to the nonsqumf metrix without

violating any assumptions (see Dennis & More [ 10]) es to its derivation. Also from

QP1 we see thel the slep from C to D is genereted by H*d • -t»(xc. yc). We cen now

apply the updete formula to get H1 at point 0;

<B2)
T U-H°o) A *

•To

T (q-H°«) e T

V + T~~^ J

Starting from point O we keep x constant and only change y to converge the

flowsheet; thus ia -0 for the following Iterations. Applying (B1) to H' gives the

following relations:

(B3)
6 6

and

<B4)

Note that since J_ is determined by QP1 for the first step t\d Ha does not affect

in the later steps, we write the updete formulae (B2). (83) es:



H* • [q-H^\ i'/l'i

This expression can be simplified mvmn further by noting that

and

if /u / / Broyden steps are taken. Also for the first step:

Therefore, the Broyden steps can ba given by:

(8b) H l • H * • I**0.*0) * < V C

Note that when the line search in SOP allows a full step U- l ) . (B5) and (B6)

differ only in the denominator of the second term. Also, note that In Iha absanca

of degrees of freedom (no x variables), thasa aquations reduce to the conventional

Broyden approach.

Testing of this approach on the problems given below shows that no more than

S iterations are required to converge the flowsheet at intermediate points. As shown

IS

with the conventional Broyden approach. Hits method also handiei t)e»ign conairamit

easily

3.2 Criteria for using en e«nb«<Sde>d B#oyd«n method

As noted in previous studies, the choice of optimization strategy is often

problem dapandant. If Iha gradients are reasonably accurate and iha flowsheet is

only "mildly" nonlinear, than iha infeasible path approach will converge smoothly.

If. on the other hand, iha flowsheet Is highly nonlinear and difficult lo converge (with

complex units thai are failure prone) then a faasibla path approach with Broydan's

method and appropriate safeguards could ba more reliable and efficient. However,

these characteristics mm not always known a priori. Indeed, M shown by Kisala

[18]. partial flowsheet convergence may lead to more efficient performance In

solving the optimization problem.

However, care must ba taken In dealing with partial flowsheet convergence at

each iteration. In particular, partial convergence can ba detrimental to the Una search

algorithm in determining the stepslie for the next point.

In the SOP algorithm, a given stapsiza along the search direction, d. is accepted

if a "sufficient" decrease is observed with some merit function, p. In the algorithms

of Han and Powell, this function is the exact penalty function; in our algorithm an

augmented La grange function is used. In either casa. it is wall known (sea e.g. Han

114)) that tha search direction from QP1. d. is a descent direction for the merit

function. Consequently, finding a nonzero stapsiza Is guaranteed, at least in theory,

for tha infeasible path algorithm.

For tha feaslbla variant algorithms, one can also prove that a nonzero stapsiza

will ba found during tha lina search. This can ba shown because all points In tha

line search hava converged equality constraints and tha OP solution, from a faasibla

point, is also a descant direction for tha lina search function f.
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However, lot flowsheets thai ate only partially converged, ont csntwl guarantee

iliat a stepsue with a decreased merit function will l>e found. A simple illustration

of this is given in Figure S. From the QP base point at A. one sees the mem

function can be viewed as a function of 1 along the search direction found by OP 1

Executing a fi*ed number of convergence iterations for a given siepsiie. point B. say.

m*y decrease or increase the objective function. In fact, for a fixed number of

iterations, it is possible that the equality and inequality constraint infeasibilities may

also increase. Consequently, it is possible that partial convergence may move the

mem function value from point 8 to B*. Note that this behavior can occur arbitrarily

close to point A. say. point C. and thus lead to a line search failure - even though

perfectly reasonable stepsizes exist for infeasible path.

For this reason we apply partial convergence only sfter the line search

algorithm finds a stepsize. In this way we can avoid line search failures and also

save some work at intermediate points.

As further justification for this safeguard we note that, by itself, the infeasible

path algorithm converges quickly and takes full steps in the neighborhood of the

optimum. For this case, partial convergence is usually not necessary. On the other

hand, at the beginning of the optimization, the search direction may overextrapolate

and lead to a point that is difficult to converge. Here it would be Inefficient to

partially converge the flowsheet during the line search. Instead, allowing the line

search algorithm to find a more reasonable point first will save some effort.

Even with this safeguard, one is still not guaranteed that partial convergence

leads to better performance for the optimization. One way to measure the success

of partially converged points would be to compare merit functions from iteration to

iteration. However, one still needs to know if. a priori, partial convergence is

desirable or even necessary at a given point. In the next section we develop a

strategy for dealing with this task. We should mention that this strategy is based on
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heuristics and. consequently, will not always guarantee improved fw formeitce

competed to inf«a»ible path No* ivn K,« •••uh» ihai ~« f><«»»«-« I«I«« *• *•• r

encouraging

Heuristic strategy for partial convergence

For SOP a common measure of Kuhn Tucker error (KTE) for problem INLP) is

given by (22):

KTE - |Vf\/| X K*,.l • X I** I • Z l'<,l

where u. v( and l^ are multipliers calculated for QP1 for g. h and c. respectively.

Also. 9(U.y). is defined as max (0. g^x.yM. Reducing KTE to within a zero tolerance

is a necessary and sufficient condition for satisfying the KJCT conditions for (NLPL

Now. from Figure 4. if SOP finds a step from point C to point 0. one needs to

determine if additional work is required by Broyden's method to move to point

E. Since this method converges only cf and hj( a heuristic measure of how much

improvement can be had is given by the ratio:

If this ratio remains small, intermediate convergence is not necessary. If it remains

consistently largo, however, full or partial convergence may help to speed

convergence. To us« this ratio we propose two triggers for intermediate

convergence.

« " (Z I"AI • Z lv,l)

at point C. mov« to point D mnd converge c( and ^ (to point E, say) until the relation

is satisfied.
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bul on moving lo point 0.

V>i • Z I ' , '

use Broyden's method lo convarga (to point E. say) cf Bnd hf so thai (BRl) is

satisfied

Otherwise, both poims C and 0 He close to the constraints and Intermediate

convergence is not required. Note that by adjusting tha • ' • . one can davalop a full

spectrum of methods between tha In feasible path approach ( f ( * 1 . ?>
aoo) and tha

feasible variant strategy ( f ^ O . f ( « O L

in choosing these parameters. i% should be sat between zero and one to allow

for partial convergence. «s should be sat small in order to avoid tha first trigger at

the next Iteration. Our experience Indicates that often vary few Broyden Iterations (1

or 2) are required to satisfy (BRl) even If «, Is small, (say 10*1. ^^ on tha other

hand, can be sufficiently greater than unity without hampering performance. This

results because point C for the second trigger Is sufficiently close to satisfying the

constraints: a linearization from that point and a line search usually determine point

D that is reasonably good without partial convergence. In fact, for tha problems we

solved, the second trigger for partial convergence was not necessary for good

performance.

In addition to tha above triggers we have also Included the following conditions

for Intermediate convergence. First. If tha currant Iteration Is In the nalghborhood of

the optimum, applying Broyden Iterations la usually not necessary since tha

constraints are close to being satisfied anyway. Therefore If KTE( S 10«. say.

where « Is the Kuhn-Tucker tolerance, we do not apply Intermediate convergence.
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Also, ii Is possible lhat th« flowsheet may

point Consequently, we Impose • m»«.m«im

toiivcMjcnco In oui case studies successful

an ime>meriieie

loi mie» me<1" •' t

required more than 5 iterations.

We conclude this section by emphasising that the above strategy is based on

heuristics thet. from our limited experience, work reliably and efficiently. Since very

little theory governs the concept of partial convergence, we used these guidelines in

our implementation. In tha next section we discuss how the constants #% and « }

were chosen and give a statement of tha algorithm.

4. Algorithmic Statement and FLOWTRAN Impte ntatlo

Using tha concepts stated above we now present an algorithmic statement of

tha Embedded Broyden Optimization (EBOPT) strategy and outline the features and

options used In tha FLOWTRAN Implementation. In the algorithmic statement we

assume the reader It somewhat familiar with tha SOP algorithm and will not dwell

on its details. Tha reader Is referred to (4] for tha line search strategy and update

formulae.

4.1 Algorithm

Step 0) Sat U M SOP Iteration counter. 1-0. and initialize the flowsheet with x*

and y*. y* can be found by (partially) converging the flowsheet. Set » as the Kuhn-

Tucker tolerance.

Step 1) At U*. y") find tha gradients for F. g. h and c with respect to x and

y. This can be dona by direct loop perturbation [6] or chainruling [3] .

Step 2) Solve (QP1) given above to gat tha search direction d for x and y.

Evaluate KTE IHI (BR) at Iteration I using the expressions above. If KTE S , . stop.



20

Step 3) Porform a Una search with a suitable merit (unction, f. to fiml a

stcpsue. 1. along d. Oef.ne ^"•«'«kd i . y^y^Xd^.

Step 4) Sol Broyden iioration counter k«0 and evaluate the flowsheet (or

< * ' " .

KJE i 1O«

set y"1 • y\ ao to step 7.

Step 5) Set y* • y* and apply the Broyden formulae (B5) and (86) to yk and

(h.c) unti l :

I i

then set y"' * yk. If the above relation cannot be satisfied after five iterations

(w>5). set y" • y\

Step 6) Evaluate the gradients at (x l#\ y"1) as in step 1*. Update the

Hessian matrix for QP1.

Step 7) Let i»i*1 and go to step 2.

4.2 FLOWTRAN Implementation

The optimization capability in FLOWTRAN was Installed by writing a type 2

(convergence) block. The structure and argument list for this block, called SCOPT.

was the same as the existing recycle convergence block, SCVW. Because we did not

change any code in FLOWTRAN. we Implemented direct loop perturbation as the most

straightforward way for evaluating gradients. Since FLOWTRAN generates end

compiles a FORTRAN main program at run time, it can easily accommodate jn-line

FORTRAN and user written subroutines as part of the input data. This, In turn, allows

the optimizer to evaluate partial flowsheet passes if needed for gradient evaluation.
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Aim. ih« user • specification ol the opiunuanon piobiem can be nude umply by

aOUiiMj a few lm«t ol «n line FORTRAN to the input daia lor the iiiiiniiiiun problem

SCOPT handles up to ilwee tear streams (as does SCVW). which it converges

simultaneously, and up to a total of 40 decision and leer variables. Decision

variables can be chosen from equipment parameters or feed streams. These

variables are accessed through PUT statements that ere common features in

FLOWTRAN.

In addition, the user needs to specify a reletive perturbation size (between 10 '

and 10 ' is recommended) and a reletive Kuhn-Tucker tolerance (usually between 10*'

and 10 *). It should be noted, however, that choosing a Kuhn-Tucker tolerance too

small can result in line search failures and poor steps near the end of the run.

because the gradients mey not be accurate enough to satisfy the tolerance.

Another option In our implementation deels with the choice of tear variables.

In most optimization studies, stream flow rates, pressure and specific enthalpy are

chosen. Temperature Is not chosen because for multiphase streams, enthalpy is not

realizable from temperature alone. However, for s/ng/t phase streems calculation of

enthalpy from temperature is usually direct Bnd a level of iteration and some

convergence noise ere eliminated in the perturbation step. Since perturbing the

temperature for single phase tear streems can lead to more accurate derivatives, we

have added a T/H option.

Finally the t parameters need to be specified for the embedded Broyden

algorithm. As mentioned above, fy which defines the second trigger, can be fairly

large. In our experience values of f) > 3 have still led to good performance end

this trigger was always Inactive. Consequently, we have not used this test et ell.

On the other hand • f was set. after some testing, to 0.01. As explained above,

it takes surprisingly few Broyden iterations to satisfy this test. The most Important
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parameter lor determining intermediate convergence Is therefore »,. Sailing f | > f | * 0

•fi our impiomom«hon leads to • feasible variant approach. Sailing f |«1.0 yields Ihe

•nfeasible paih approach and ml at medial a values of t , allow partial convergence. In

our testing, setting , ( to 0.4 yielded good results although this parameter is problem

dependent. However, on many problems, examination of the output shows that

performance of this strategy is not very sensitive to §§. In Table 1. the ranges of

^% and f j under which the »/n* performance would be achieved are tabulated for the

Embedded Broyden Optimiiation (EBOPT) Strategy.

5. EM ample Problems

The following five example problems were solved by a number of approaches.

A number of similar problems were solved in addition to these. However, for the

sake of brevity, we chose this set because it represents what can be expected from

the implementation in terms of performance and flexibility. The first problem is

essentially a black-box implementation on e single unit. The second problem

illustrates how the mfeasible path and Broyden methods can be used to converge

flowsheets. The last three problems deal with moderately-sized flowsheets, some

with complex models. These allowed comparison of the embedded Broyden strategy

(EBOPT) with a number of recent and efficient optimization strategies. Due to the

flexibility of the algorithm and features of FLOWTRAN. none of these strategies was

difficult to implement.

Problem 1 - Black Bo* Optimisation

The first problem deals with a single unit optimization of a 25 tray distillation

column with sidestreams. As illustrated in Figure 6. the distillation column problem,

which is solved by a Thiele-Geddes model (FRAKB). seeks .to maximize the degree of

separation of its 5 components among Its overhead, bottoms and sidestreams. The

decision variables are the fraction of feed to the two sidestreams and the distillate.
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The only constraints are bounds on th« decision variables as well as bound* on the

fraction of feed to ihe bottoms meant.

This problem is typical of many simple process optimization problems. Since

there are no recycles. SOP deals with this model in "black-box" fashion arid solves

it completely each lime it requires a function evaluation. Alternately, mn entire

flowsheet could easily have been treated instead of a single unit. The solution of

this problem Is also given in Figure 6. This problem wes solved to a relative Kuhn-

Tucker tolerance of 10 \

Nole from Table 1 that the performance of the optimization algorithm is

characteristic of the black-box approach. Because the model needs to be solved

several limes It is not surprising that over 16 Simulation Time Equivalents (STE's

measured at the starling point) were required to optimize this three variable problem.

Because of the tight tolerance, seven iterations appears to be reasonable for this

casa.

Problem 2 - Cevett Problem Simulation

To demonstrete the capability of the infeaslble path and EBOPT methods for

Newton and Broyden convergence, respectively, we selected a modified form of the

Cavatt problem, reported by Rosen m%6 Pauls (23). Hare the number of stream

components waa reduced from 16 to 11. Figure 7 Illustrates the flowsheet where Z1

and 22 ware chosen as tears and Table 2 lists problem data and the converged

solution. This problem was first solved using the Wegsteln convergence block In

FLOWTRAN with all of the) default options. In this cass 13 Iterations wars required

to converge tho flowsheet to the default relative tolerance of 0.0005. Using the

same tolerance, this flowsheet was also converged using the infeesible path (IP) and

EBOPT methods in 4 and 6 iterations, respectively. However, comparing STE's for

this problem shows that these methods are not competitive with Wegstein. The
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EBOPT method retinues 26 flowsheet passes lo construct a Jacobian matrix ai ihe

fusi iteration, ihe IP incihod oouils 10 constiucl Ihis Jacobian ai every iteration.

Because of ihe effort required for the initial Jacobian. Broyden's method may

not always be competitive for solving simulation problems. Embedded within an

optimization strategy, however, where the Jacobian Is calculated anyway. Ihe Broyden

method performs much more efficiently.

For the next three examples we compart the IP and EBOPT strategies with the

CFV (Complete Feasible Variant) [7] and IPH Unfeasible Path Hybrid) [18] algorithms.

The last two algorithms were implemented by using FLOWTRAN's Wegstein

convergence block to (partially) converge the flowsheet between SOP iterations. For

IPH. two wegstem iterations were used between every SOP iteration, as suggested

by Kisala ( 18], For CFV. the flowsheet was either converged to FLOWTRAN's default

tolerance or until 30 Wegstem iterations had been exceeded.

On all problems relative tolerances of 10 4 were used for the Kuhn-Tucker error.

All problems were recycle flowsheets with complex unit operations and nonideal

thermodynamics.

Problem 3 - Ammonia Process A

This problem was adapted from Parker and Hughes (20] »nd has been used in

other studies 19. 18]. The problem statement is given in Figure 8 and in (20).

Because of different thermodynamic properties and fewer decision variables, values

of the objective function are slightly lower in this study. The starting point and

optimal solution for this problem »f given In Table 3. As seen from Table 1. the

double loop flowsheet with »n equilibrium-based reector Is fairly easy to converge

and optimize. Here the EBOPT and CFV approaches are close in performance.

although EBOPT is slightly superior. Because no Intermediate convergence was

applied for the IP run. more iterations were required than with EBOPT. Interestingly.
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EBOPT. with the heuristic strategy detcnUed in Section 3. only n« c«iu<f to use Hi«

Bioyden strategy after iterations 1 and 3 After iiicsc. SOP r**d no irouMe

converging tins problem by itself.

Unfortunately for this problem, the IPH algorithm suflered a line search failure

after 5 iterations. Restarting at this point resulted in a second line search failure

after 3 additional iterations. In his study. Kisala (18) also reported a line search

failure for Parker's ammonia problem. The reason for this, as explained in Section 3.

may be that, because a fixed number of Wegstein iterations Mt9 applied for each

function evaluation in the line search, a descent direction cannot be guaranteed and

this method can be prone to failure.

Problem 4 - Methytchlorobenzene Process

This problem is adapted from an example in the FLOWTRAN manual (24).

Using the default costs and prices In the costing blocks, the optimization problem

illustrated in Figure 9 was formulated. Here six decision variables were chosen for

the optimization. These ere listed along with their initial and optimal values In Table

4.

Because this problem contained a rigorous (and often unreliable) absorber model

and the FORTRAN code for FLOWTRAN was not available to us. we were unable to

provide error returns to Ihe optimization algorithm and thus continue in the event of

unit convergence failures. Obviously, error returns are a necessary feature In the

Implementation of any flowsheet optimization strategy, and the lack of this capability

reflected how we could solve this problem.

From the results In Table 1. one sees that the EBOPT strategy required less

effort than either the CFV Of the IP strategies. However, to prevent premature

termination due to failure In the absorber block. Intermediate recycle convergence

was suppressed for EBOPT during the first two SQP iterations. The EBOPT algorithm
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nee.led to apply Broyden's method only afiar iteration 4 in oidar to gal aalitfaciory

performance.

Also, duo 10 difficult!** with lha abtorbar. lha IP algorithm could not be

converged from the starling point for EBOPT. From a slightly diffarant starting point

(shown m Table 4). 12 iterations were required to satisfy a Kuhn-Tucker tolerance

slightly above 10 *. Again, because of the unreliable nature of the process units, a

belter and more consistent comparison could not be) made.

The CFV algorithm required over S times the computational effort that EBOPT

required. This represents the difficulty that SCVW has to converge this flowsheet at

intermediate points. In fact, for SOP Iterations 1, 2. 5 and 0. CFV required the

maximum of 30 iterations without converging the flowsheet at these base points.

Again, as with the previous problem. IPH terminated with a line starch failure

after 12 iterations. This could be due to the descent direction line search problem

explained in Section 3.

Problem 5 - Ammonia Process B

The flowsheet for this problem Is given In Figure 10 along with the problem

statement. The decision variables and their initial and optimal values are given in

Table S. Unlike problem 3. this ammonia process has a single loop design with 3

flash units. The unit operation and cost blocks for the reactor are taken from

Chapters 9 and 10. respectively, of the FlOWTRAN manual. To make the problem

more interesting, feed rates were chosen as decision variables and s constraint was

imposed on the flow rate of the ammonia product. This type of constraint can be

treated in a straightforward manner by all four of the algorithms compared.

Because of problems with error termination in FLOWTRAN. we suppressed the

Broyden option for the first iteration in the EBOPT run. Even so, this run. as seen
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from Table 1. required only 47% of Hie effort i»»«i ihe infaasihle path algorithm

noeUed Broydon iterations were applied «n•> the J<<1 4ih bin A>n *nd 9t* SOP

iteration However, the accelaianon* after t»>« 3«d 4ih and 5ih i ioi i ioni were not

effective (and also did not lead to closer pomisl because they ted to using more

than 5 Broyden iterations without satisfying the ratio lest. This illustrates the

difficulty of converging this flowsheet from intermediate points.

Similar, but more pronounced results were encountered with the CFV algorithm.

Here the convergence algorithm was unable to converge the flowsheet for the first

three SOP Iterations. For these points the maximum of 30 Wegstein iterations was

exceeded end. consequently. CFV required a lot of computational effort. On the

other hand, the IPH algorithm did very well for this problem. Because it uses a fixed

number of recycle iterations at intermediate points, the progress of the optimization

was better than IP. but none of the convergence problems encountered with CFV. or.

to a lesser extent, with EBOPT. were observed here. Also for this problem there were

no apparent difficulties with line search failures.

In summary, partial convergence of the flowsheet at Intermediate optimitation

iterations led to better results on all of the recycle optimization problems then with

either the IP or CFV algorithms. However, as shown in section 3. cere must be taken

to implement this strategy properly. Therefore, this study illustrates the potential of

the EBOPT strategy for flowsheet optimization, although further work may be required

to tune the algorithm for specific problems.
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