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Context Identification for Efficient Multiple-Model State Estimation

Sarjoun Skaff Alfred A. Rizzi Howie Choset
sarjoun@ri.cmu.edu arizzi@ri.cmu.edu choset@ri.cmu.edu
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract— This paper presents an approach to accurate and
scalable multiple-model state estimation for hybrid systems with
intermittent, multi-modal dynamics. The approach consists of
using discrete-state estimation to identify a system’s behavioral
context and determine which motion models appropriately
represent current dynamics, and which multiple-model filters
are appropriate for state estimation. This improves the accuracy
and scalability of conventional multiple-model state estimation.
This approach is validated experimentally on a mobile robot
that exhibits multi-modal dynamics.

Index Terms— Hidden Markov Models, Timed Automata,
Multiple-Model Filtering

I. INTRODUCTION

Accurate and scalable state estimation for hybrid systems
with intermittent dynamics is a key enabling technology for
reactive control and system health monitoring. Examples of
hybrid systems include legged mobile robots that exhibit
different behaviors such as walking and jogging, and require
robust state estimation for successful control. This paper
presents a novel estimation approach that combines discrete
and continuous state estimation techniques to accurately
estimate the state of hybrid systems.

Conventional approaches consist of representing multi-
modal dynamics with a collection of motion models, and
performing state estimation with multiple-model (MM) filters
[8], [9]. The MM approach associates multiple Kalman
filters to each mode and runs all filters simultaneously.
It averages the individual filters’ output weighted by their
relative likelihood and generates a consolidated state estimate
(Fig. 1). This approach requires the activation of the entire
set of filters, which can become computationally intractable
for robots that require a large number of models to accurately
describe their dynamics.

Multiple-model filters can also produce inaccurate state
estimates in the presence of dynamics that are not appropri-
ately represented by available models. In realistic settings,
unmodeled dynamics such as disturbances and transients
can dominate locomotion dynamics and cause the failure of
multiple-model estimation. The aim of this paper is not to
model such disturbances, but rather to avoid using MM filters
when unmodeled dynamics dominate.

To better understand these accuracy limitations, consider
a generic hybrid system with the force profile of Fig. 2(a),
and assume that available models appropriately represent the
dynamic modes D1 and D2. The state can be estimated with
multiple-model filters based on D1 and D2 models, as long
as the system exhibits these dynamics. This is true only
between the vertical dashed lines, where the system operates
in steady state. Before and after that region, startup and
stopping dynamics dominate and would cause the divergence

Dynamics
Modes

Individual
Kalman  Filters

Consolidated
Estimates

Fig. 1. Multiple-model systems deploy multiple Kalman filters for each
mode of dynamics, weight the individual estimates by each filter’s relative
likelihood, and consolidate the individual estimates into the system’s overall
state estimate.
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Fig. 2. The identification of a system’s behavioral context enables the
deployment of multiple-model filters only when appropriate, which increases
estimation accuracy (a). Behavioral context identification also increases
estimation scalability by replacing large-scale MM systems with a collection
of small-scale systems (b).

of the D1-D2 estimator. It is therefore necessary to verify that
current dynamics are appropriately represented to generate
accurate state estimates.

This papers presents an estimation framework that first
identifies the dynamics and then determines which filters
to use. The approach introduces the notion of behavioral
context as representing the dynamics that are appropriately
described by available models. This definition explicitly ties
dynamics to the models that represent them, so identifying a
robot’s behavioral context determines which models are ap-
propriate for estimation. As a result, the framework prevents
using inappropriate MM filters in the presence of unmodeled
dynamics, as illustrated in Fig. 2(a), thus reducing the risk
of estimation failure and improving accuracy.

With context identification, multiple-model estimators no
longer need to activate all available filters, but only the
filters that correspond to the current behavioral context.
This reduces the computational overhead and increases the
scalability of the estimation system. This concept is illus-
trated in Fig. 2(b), where a conventional large-scale multiple-
model estimator designed for multiple behaviors is replaced
with smaller-scale estimators specific to a single behavioral



context.
The context-based estimation framework uses discrete-

state estimators to robustly identify behavioral contexts. The
approach is based on the observation that hybrid locomotion
dynamics induce spatial and temporal structure in the signal
generated by onboard sensors. Recognizing these structures
leads to the identification of the dynamics and their as-
sociated behavioral contexts. This is a pattern recognition
problem solved in this paper by using hidden Markov models
(HMMs) and timed automata to recognize spatial and tem-
poral structures, thereby identifying the behavioral context.

The following sections provide a brief overview of re-
lated research in continuous- and discrete-state estimation,
describe the context-based estimation framework, provide
empirical examples of the limitations of conventional esti-
mation, and demonstrate in experiment that context-based
estimation improves the accuracy and scalability of multiple-
model estimation systems.

II. RELATED WORK

This section describes the discrete and continuous state
estimation tools used by the context-based estimation frame-
work, including multiple-model estimation, HMMs and
timed automata.

A. Multiple-Model Estimation

An accurate technique for estimating the state of hybrid
systems is the generalized pseudo-Bayesian 2 (GPB2) algo-
rithm [3], [7], a multiple-model estimator expressed in the
Kalman filter framework. The computational complexity of
the GPB2 grows quadratically with the number of models,
as can be seen from a brief description of its estimation
mechanism.

GPB2 estimation starts with evaluating hypotheses about
the system being in one of its N dynamic modes at the
previous sampling step, and transitioning into one of the
same N modes at the current step. An individual Kalman
filter based on the model of the current mode is associated to
each hypothesis, so the total number of active filters (and of
hypotheses) is N2, a permutation among the N modes. The
quadratic relationship compounded with the computational
overhead of Kalman filtering limits the scalability of the
GPB2. This makes the algorithm impractical for systems
with a large number of models, and motivates the devel-
opment of the context-based approach.

A three-model GPB2 cycle is shown schematically at the
top of Fig. 2(b). The three initial hypotheses, represented
with the first column of white, black and gray circles, spawn
nine hypotheses and as many Kalman filters, represented
by the middle column of nine circles. The last step is to
prevent the exponential growth of the number of hypotheses
by collapsing the nine hypotheses back to the original three
(last column of three circles) [6]. At every iteration, a best
state estimate can be extracted from the GPB2 by summing
the output of all individual filters weighted by each filter’s
likelihood [3].

Xk-1 Xk Xk+1

Ok-1 Ok Ok+1

Fig. 3. Generic representation of hidden Markov models that transition
among discrete states and generate discrete observations.

B. Hidden Markov Models

An HMM is a probabilistic graphical model that undergoes
transitions among its N states and generates discrete obser-
vations (Fig. 3). State estimation for an HMM is preformed
by computing a probability distribution αk+1(j) over its
states i with the forward algorithm [10], which expresses
the probability of the HMM process being in each of the
states j (with

∑N
j=1 αk+1(j) = 1) at step k + 1:

αk+1(j) =

[∑N
i=1 αk(i) · aij

]
bj (Ok+1)

∑N
j=1

{[∑N
i=1 αk(i) · aij

]
bj (Ok+1)

} , (1)

where the transition probabilities aij express the probabil-
ity of transitioning from state i at step k to state j at step
k+1, and the observation probabilities bj(Ok+1) express the
probability of generating the observation symbol Ok+1 if the
process is in state j at step k+1. Equation 1 is initialized with
α1(i) = πibi(O1), where πi is the initial probablity of state
i and

∑N
i=1 πi = 1. Transition and observation probabilities

can be tuned manually or learned form labeled data using
algorithms such as Baum-Welch or Expectation Modification
[10].

The probabilistic expression of HMMs provides robustness
to sensor noise, as current probability distributions mix
observation probabilities bj(Ok+1) with model predictions∑N

i=1 αk+1(i) · aij . This property is used for robust recog-
nition of a signal’s spatial structure, as shown in the next
sections, but not of its temporal structure, as HMMs do
not explicitly model dwelling time in a state and cannot
track a history of transitions among states. Capturing time
could be performed by semi-Markov processes (SMPs), but
SMPs have a high computational cost and are impractical for
estimation [2], [14]. An alternative solution is to use timed
automata.

C. Finite State Automata

A finite state automaton (FSA) is a deterministic graphical
model that undergoes input-triggered transitions among its
states and generates discrete observations [4]. The context-
based framework uses automata as a complement to HMMs,
tracking transitions among HMM states and capturing in-
state dwelling time. The automaton’s estimation mechanism
will be made clear in the example provided in the next
section.

The main contribution of context-based estimation is the
novel combination of discrete- and continuous-state estima-
tion techniques for accurate and scalable estimation. Conven-
tionally, classification and HMMs are used for speech recog-
nition [5], visual object identification [12], action recognition



[13], and multiple-model estimation for aircraft fault detec-
tion and radar tracking [1], [9]. The context-based framework
applies these techniques to robotic systems with intermittent
dynamics.

III. BEHAVIORAL CONTEXT IDENTIFICATION

Context-based state estimation applies principally to hy-
brid systems with cyclical dynamics, as the repetitive nature
of the dynamics induce structure in sensor signal which
is exploited to identify the behavioral context. The spatial
and temporal components are defined as follows: spatial
structure is the sequence of transition among salient points,
or symbols, in a data stream; and temporal structure is
the rate of transition among those symbols. The underlying
assumption is that different dynamics induce distinct struc-
tures, so recognizing these structures uniquely identifies the
dynamics and the behavioral context.

The description of the identification approach is carried
step-by-step in the following subsections with the help of
the generic hybrid system introduced earlier.

A. Hidden Markov Models

Consider again the force profile of Fig. 2(a), and recall
that the behavioral context B corresponds to the steady-state
region where D1-D2 filters are appropriate for estimation.
The first step in identifying the context is to discretize the
continuous force measurements into symbols that appear
recurrently when the system is in context B. As shown in the
figure, such sensor symbols can be O1, O2 and O3, roughly
corresponding to the top, middle and bottom regions of the
force profile, respectively.

The second step is to build a Markov chain model of a
process that could generate these sensor symbols. A first
model may contain the states H, M1, L and M2, generating
the symbols O1, O2, O3 and O2, respectively (Fig. 4(a)). H
and L correspond to high and low forces, M1 corresponds
to medium forces resulting from transitioning from high to
low forces, and M2 corresponds to low-to-high transitions.
Obviously, the same symbol O2 is now generated by two
different states M1 and M2, but the two states can be
disambiguated by tracking the sequence of sensor symbols
over time. If O2 appears after O1, then the system is in M1,
and if it appears after O3, then it is in M2.

The third step is to specify HMM parameters as per
Section II-B, with the transition and observation probabilities
aij and bj (Ok+1) designed as to predict observation symbols
in the expected sequence. For example, aM2|L = 1, aM2|j =
0,∀j �= L, bM1(O2) = bM2(O2) = 1/2, and bH(O2) =
bL(O2) = 0. This enables the HMM to run the forward
algorithm (Equation 1), process the symbols o extracted from
data discretization and infer the probability distribution α
over the states.

When the system is operating in steady state, the observed
symbol sequence is expected to match the sequence predicted
by the model. Likewise, the sequence of HMM states1 is
expected to match the state transitions described by the

1In this paper, the sequence of HMM states is defined as the sequence
of most likely states estimates by (1). At each step, the most likely state is
argmax1<j<N (α(j)).

H LM1 M2

O1 O2 O3 O2

(a)

H LM1 M2

E

(b)

Fig. 4. HMM describing discrete process of a simple system.

model. When the dynamics vary from steady state, the
sequence of symbols also varies from the predictions and
leads to out-of-order state sequences. Therefore, verifying
the order of state sequences helps recognize the behavioral
context.

In order to enable the explicit detection of out-of-order
transitions, the HMM model is augmented with an error
state E, as in Fig. 4(b). The error state has low-probability,
two-way transitions to all states and all observations have
a uniform distribution over it; i.e., the error state is equally
likely to generate all sensor symbols. The observation prob-
abilities are designed such that the probability of observing
a symbol conditioned on a state that should not generate it is
lower than the symbol’s probability conditioned on the error
state. This means that the likelihood of generating a specific
symbol by the error state is greater than the probability
of generating that same symbol by a state that should not
generate it. For example, bE (O3) > bH (O3), and more
generally, bE (Ok+1) > bj (Ok+1) if Ok+1 is different from
the symbol generated by state j, where j is an index among
the states.

This property ensures that if the wrong sequence of sensor
symbols are observed, then the HMM would transition to the
error state. For example, assume the model predicted that the
system would transition to state j, but the observed symbol
cannot be generated by j. This is an indication that the state
sequence is out of order, so the observation probabilities
ensure that α(E) > α(j). In other words, the HMM assigns
the highest likelihood to the error state E when the sequence
of states is out of order. Thus, whenever the system is in E,
the system is not expected to be in the behavioral context
that corresponds to the HMM model (context B, in this case).

B. Finite State Automata

Detecting a single out-of-order transition is sufficient to
recognize that the system is not operating in the expected
behavioral context. However, contexts cannot be positively
identified from observing a single in-order transition; a
minimum number of transitions is necessary to avoid false
positives.

Unfortunately, the HMM cannot track a sequence of tran-
sitions for longer than one time step, because of the Markov
assumption. This motivates the use of finite state automata
to perform bookkeeping. Here, the highest-likelihood HMM
state is treated as inputs that trigger transitions among FSA
states (Fig. 5). The FSA state structure is organized in p
layers designed to recognize a correct sequence of inputs
over p steps. Layers are defined as follows: the first layer
contains the starting state; the final layer contains all the
states reached after p numbers of correct transitions; and
intermediate layers contain states reached after a number n
of correct transitions, with n < p.
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Fig. 5. HMM output such as H, M1, L, and M2 serve as input (rectangles)
that trigger transitions between FSA states (circles). The structure of the
FSA is organized in p layers in order track input sequences over p steps.
The output flag ‘B’ indicates that context B is identified. Reset transitions
back to S are omitted for clarity.

To see how this FSA can identify p successful transitions,
assume that the initial input event transitions the automaton
from the starting state S to a target state in the first interme-
diate layer. Consecutive occurrences of the same input cause
self transitions, but new in-order inputs induce transitions
to the next layer. After p correct transitions, the automaton
reaches the final layer and outputs a success flag identifying
the behavioral context (‘B’ in this case), and new in-order
inputs maintain the automaton in the final layer. At any time,
out-of-order inputs reset the automaton, and the context is
no longer identified. In summary, success flags indicate that
the signal’s spatial structure is recognized.

C. Timed Automata

The FSA model designed to recognize the spatial structure
of the signal can also be used to recognize the temporal struc-
ture. The temporal analysis mechanism turns the FSA into a
timed automaton that measures delays separating consecutive
inputs. Delays are measured by a clock reset each time the
automaton enters a new state. Since HMM states correspond
to automaton inputs, the automaton simultaneously measures
its own and the HMM state duration.

Temporal information can be used as a timeout that
triggers a transition out of a state if the duration exceeds a
predefined bound. It also enables time-sensitive transitions,
whereby the target state is selected as a function of both the
input and the duration in the previous state.

IV. EXPERIMENTAL RESULTS

Validation experiments are conducted on RHex [11], a six-
legged dynamic robot able to walk and jog, among other
behaviors. These experiments demonstrate that the HMM-
timed automaton approach is successful at identifying be-
havioral contexts, and that contextual information improves
the accuracy and scalability of MM estimators.

A. Behavioral Context Identification

RHex alternates right and left tripods when it jogs, and
its lateral acceleration while jogging is shown in Fig. 6.
Available jogging motion models are only appropriate over

SteadyStartup Dynamics Stopping Dynamics PP

ZA

NP

PA

NA

Fig. 6. Output of lateral accelerometer. The jogging gait induces positive
and negative amplitudes during left and right tripod stances, and periods of
near-zero accelerations during flight.
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Fig. 7. Markov-chain model of the process generating jogging symbols.
The error state is added to capture out-of-order state transitions.

the steady-state region indicated in the figure, so the task is
to identify the robot’s jogging context in order to use jogging
filters only when appropriate.

To this end, the acceleration data is first discretized as
shown in the figure. The observation symbols are positive
(PA), negative (NA) and zero (ZA) accelerations, and positive
(PP) and negative (NP) peaks. PA corresponds to accelera-
tions larger than 1m/s2, NA to accelerations smaller than
−1m/s2, and ZA spans the range in between.

A Markov chain model of the process generating these
symbols is presented in Fig. 7. To accurately identify the
jogging context, it is important to verify that jogging accel-
erations reach the expected amplitude, so the right and left
tripods are represented by three states: the first state (R1
or L1) corresponds to the ascending acceleration, the second
state (R2 or L2) corresponds to the peak acceleration, and the
third state (R3 or L3) corresponds to descending acceleration.
Thus, R1, R2 and R3 (or L1, L2 and L3) generate the
symbols PA, PP and PA (or NA, NP and NA), respectively.
LF corresponds to the flight phase during transitions from
left to right tripods, and RF corresponds to flight during
transitions from right to left, and E is the error state.

Transition probabilities are determined as follows. Self
transitions aii to state i are computed by counting the number
s of symbols that occur when the system is in each state. The
expected number of observations in a state, conditioned on
starting in that state, is s =

∑∞
s=1 s · p(s), where p is the

probability of undergoing s self-transitions to the same state.
This equation can be re-written as s = d(aii)d−1(1− aii) =

1
1−aii

[10], so aii = 1− 1/s. For example, R2 generates on
average 22 PP symbols, so aR2|R2 = 1 − 1/22 = 0.9432.

The transition probability from one state to the next is
set equal to the transition probability from the same state to
E, to ensure that the HMM detects out-of-order transitions.
The probabilities for E are set as aE|E = 0.999, and
aE|i =

(
1 − aE|E

)
/N , where N = 8, the number of states

excluding E, and i ∈ N . The observations are set following
the example of Section III-A and the probability distribution
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Fig. 8. Behavioral contexts identified along multiple dimensions and over
multiple behaviors.

α is computed recursively with (1).
A timed automaton similar to Fig. 5 tracks the sequence

of most likely HMM states over three layers, measures the
in-state dwelling time, and outputs jogging flags when the
jogging context is identified. The results of Fig. 8(a) show
that the approach successfully recognizes the steady-state
region over which jogging models can be used for estimation.

Identifying contexts along different dimensions is nec-
essary when distinct motion models are used along each
dimension. In this case, the same HMM-automaton technique
successfully identifies behavioral contexts from acceleration
measurements along RHex’s vertical axis, as shown in
Fig. 8(b). The technique is shown in Fig. 8(c) to also enable
accurate context identification for RHex’s walking behavior
as well as for other behaviors that transition between walking
and jogging. The variety of dynamical situations in which the
technique is successfully applied provide empirical evidence
of the approach’s robustness for context identification.

B. Improving MM Scalability and Accuracy

Behavioral context identification is shown in experiment
to improve the accuracy and scalability of multiple-model
filters. Here, the task is to estimate RHex’s height from
acceleration measurements generated while jogging, using
GPB2 filters and jogging motion models.

The jogging behavior alternates flight and stance phases
akin animal running, leading to oscillating accelerations
shown in Fig. 8 (steady dynamics). The motion models used
for the flight and stance phases are the ballistic projectile
and the mass-spring system, respectively.

At the end of the experiment, the motors stop and the robot
bounces on all six legs until it comes to rest. This induces
damped oscillations of the stopping dynamics, referred to as
the stand phase, which are represented with a mass-spring-
damper model. In summary, the jogging behavior can be
modeled with a collection of three models:

z̈ =




−g, flight phase,
−Kz (z − z0) /M − g, stance phase,

−2Kz (z − z0) /M − g − (D/M)ż, stand phase,
where z is the state representing the height of the robot;

Kz the virtual spring constant of the mass-spring system; z0

the robot’s height at rest; M the robot mass; D a viscous
damping parameter; and g gravity.

To estimate the height z of RHex, a conventional three-
model, nine-filter GPB2 system is built, and its state esti-
mates are plotted in Fig. 9(a). The plot shows that height
estimates closely match ground truth measurements2 over
the steady-state region, but they diverge rapidly thereafter.
Efforts to tune GPB2 and model parameters such as D could
not improve the results reported. The cause of the divergence
can be found in Fig. 9(b), which plots the acceleration before
and after the motors stop at second 3. The plot reveals
that the acceleration’s period of oscillation after stopping is
shorter than the period before. The new periods prove too
short for individual Kalman filters to converge, causing the
filters to output incorrect likelihoods and the GPB2 to assign
incorrect weights to individual estimates. Fig. 9(c) shows that
after the motors stop, the GPB2 assigns the highest weight
to the flight mode instead of the stand mode, which explains
the downward slope of the height estimates.

This problem can be addressed by using the flight-stance
models only over steady dynamics, and using the stance
model when the robot is stopping. Information necessary
to implement this strategy is provided by the contextual
information of Fig. 8. This is done by assuming that the
robot is either jogging or coming to rest and that motor state
is unavailable, the strategy is to use a flight-stance GPB2
when the jogging context is identified, and a stance model
when the robot is no longer jogging.

The results are reported in Fig. 10, where height estimates
follow an oscillatory dissipative motion ending at the robot’s
rest height of z0. The ground truth measurement system’s
limited workspace does not allow the quantitative validation
of the estimate’s accuracy, but the fact that the estimates have
the same frequency as the measured acceleration and that
they converge to the rest height as expected is an indication
of validity. Thus, this proof-of-concept example demonstrates
that incorporating behavioral context information into MM
filters improves accuracy by preventing divergence.

Incorporating context information also reduces computa-

2The ground truth measurement system consists of high-speed cameras
that register the position of LEDs placed on the robot body. The cameras
cover a limited surface area, which explains the short experimental runs
(about 4 seconds for jogging). Nevertheless, these results are useful because
the available space is large enough to allow the robot to achieve steady-state
motion before exiting the cameras’ field of view.
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Fig. 9. Conventional GPB2 estimation fails when individual filters do not
have enough time to converge.
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Fig. 10. Context information enables the selective activation of the jogging
GPB2 and the stopping spring-damper model, and leads to accurate and
scalable estimation.

tional requirements, as it enables the deployment of a two-
model instead of the three-model GPB2, thus reducing the
number of filters from nine to four and improving overall
scalability.

V. CONCLUSION

The context-based estimation framework enables accurate
and scalable state estimation for systems with hybrid dy-
namics. This paper develops a novel approach of combining
discrete and continuous estimation techniques to generate
accurate estimates for systems with intermittent dynamics,
in situations where conventional continuous-only approaches

fail. The paper also introduces the concept of explicitly tying
motion models to the dynamics they represent, and demon-
strates in experiment that this concept achieves significant
accuracy and scalability gains for multiple-model filtering
systems.

Behavioral contexts are an abstracted description of a
robot’s behavior, which provides high-level understanding of
the robot’s health (is the robot jogging as commanded?) and
allows for closed-loop behavioral control.

Context-based estimation combines the conventionally
separate fields of filter design and pattern recognition. Im-
plementation examples provided in this paper show that
simple approaches to pattern recognition (using HMMs) and
to filtering (using KFs) lead to accurate estimates, which
suggest that the designer does not need to acquire in-depth
knowledge of each technique to generate satisfactory results.

Extensions will further improve the accuracy of discrete
models by constructing HMMs that span multiple behaviors.
In this configuration, the probability distribution α over
HMM states becomes a measure of confidence in each state,
and by extension in the contexts themselves. As such, α
can be interpreted as a distance metric among behavioral
contexts, measuring “how far” a robot’s operation is from
specific contexts. The distance metric can be used to close
the loop on behavioral controllers, where a controller adjusts
its parameters in ways that reduce distance to a target context,
thereby improving control quality.
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