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Abstract

The principal trend in the design of computer systems is the expectation of much greater computational
power in future generations of microprocessors. This trend applies to embedded systems as well as host
processors. As a result, devices such as storage controllers have excess capacity and growing computational
capabilities. Storage system designers are exploiting this trend with higher-level interfaces to storage and
increased intelligence inside storage devices. One development in this direction is Network-Attached
Secure Disks (NASD) which attaches storage devices directly to the network and raises the storage interface
above the simple (fixed-size block) memory abstraction of SCSI. This allows devices more freedom to
provide efficient operations; promises more scalable subsystems by offloading file system and storage
management functionality from dedicated servers; and reduces latency by executing common case requests
directly at storage devices. In this paper, we push this increasing computation trend one step further. We
argue that application-specific code can be executed at storage devices to make more effective use of
device, host and interconnect resources and significantly improve application I/O performance. Remote
execution of code directly at storage devices allows filter operations to be performed close to the data;
enables support of timing-sensitive transfers and application-aware scheduling of access and transfer; allows
management functions to be customized without requiring firmware changes; and makes possible more
complex or specialized operations than a general-purpose storage interface would normally support.

This research is sponsored by DARPA/ITO through ARPA Order D306, and issued by Indian Head Division, NSWC
under contract N00174-96-0002. The project team is indebted to generous contributions from the member companies
of the Parallel Data Consortium. At the time of this writing, these companies include Hewlett-Packard Laboratories,
Symbios Logic Inc., Compaq Corporation, Data General, Quantum Corporation, Seagate Technology, and Storage
Technology Corporation. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of any supporting organization or
the U. S. Government.
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1. Introduction
The cost and chip real estate needed for any particular computational need is dropping with
ongoing VLSI trends. At some point, having significant additional computation power becomes a
negligible cost. Disk array controllers today have central processors at most one generation
behind state-of-the-art workstations. Individual disk controllers are further behind, but are
catching up fast. The technology is at a point where it becomes feasible to combine the drive
control microprocessor with the specialized ASIC responsible for the balance of the drive’s
processing into a single chip. As shown
in Figure 1, this makes it possible to
integrate a 200 MHz RISC core in the
same die space as the current ASIC and
still leave room for additional special-
purpose hardware functions [Turley96].
Moreover, the purpose of most of the
hardware in this ASIC is to keep the
microprocessor off the critical path (per
byte, per sector) processing of normal
drive operations. So most of the
additional cycles possible in the
integrated ASIC are spare in normal
operation. While the example in this
figure is hypothetical, the trend is a
reality.

One use for the increasing
computational power on disk
controllers is to enrich their existing
interface. For example, network-
attached storage, as shown in Figure 2,
integrates storage into the client
network, rather than keeping it on a
separate, server-attached peripheral
bus. Eliminating server machines as a
bottleneck for data transfers between
storage and applications provides a
significant opportunity for increased
scalability. By not involving the server
as a third party, common case transfers
involve fewer store-and-forward copies
and the number of requests that can be
serviced at any given time is increased
proportionally with the number of
storage devices. The server remains
responsible for overall file system
functionality, but participates only
infrequently when new access rights
must be tested or cache consistency
policies invoked [Gibson97].

As systems get faster and cheaper,
people compute on larger and larger
sets of data. Table 1 shows two
contemporary systems with large
storage requirements. The balance in

frees 100K gates
- cryptography (?)

0.35 micron technology frees 40 mm2

200 MHz StrongARM RISC core with
8K + 8K caches at 0.35 micron fits in
27 mm2 and provides 230 Dhrystone
MIPS

Figure 2 - Network-Attached Storage Architecture.
NASD provides a fast-path for data transfer operations
directly from clients to disks without requiring every
byte to traverse the server and all the associated layers
of processing. It also allows greater flexibility and
higher levels of integration within the NASD itself.

Figure 1 – On-Drive Processor. The ASIC in a
typical SCSI drive that handles formatting, servo,
ECC, and SCSI functions outlined in 0.68 micron
process. Reducing this to next-generation 0.35 micron
technology retains all the same function and provides
40 mm2 of additional chip space. This is enough to
include an integrated 200 MHz RISC core and an
additional 100,000 gates of specialized processing for
networking or security.
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these systems is typical of many large systems today. A large number of drives is necessary
either to provide sufficient capacity for the target application or to provide sufficient aggregate
throughput. We see that even with SCSI disks today (25 MHz processors and 10 MB/s sustained
transfer rates), the potential combined processing power and transfer bandwidth at the disk drives
is comparable to or exceeds that available on the host processors2. With 200 MHz disk
processors and 30 MB/s disk transfer rates expected this decade, the potentially wasted power of
a large disk farm is significant. Moreover, if storage is network-attached to a large collection of
servers and clients, a cost-effective network is certainly the principle bottleneck in large-object
processing.

This paper proposes Active Disks, next-generation disk drives that provide an environment for
executing application code directly at individual drives. By partitioning processing across
clients/servers and storage devices it may be possible to change the amount of data that crosses
the network and to exploit cycles available at storage. Specifically, applications that apply simple
filters or statistics to stored data or that make disk or network scheduling decisions based on
current information at storage can improve the efficiency of an application’s use of network and
host resources and achieve more scalable and higher performance systems using Active Disks.

Section 2 outlines a range of candidate applications that can benefit from the availability of
Active Disks. Section 3 presents a simple performance model promising significant performance
advantages for two specific applications. Section 4 discusses the three major technology areas to
be addressed to make Active Disks a reality. Section 5 discusses previous and related work and
Section 6 concludes the paper.

2. Candidate Applications
There are several classes of applications that can derive significant benefits in performance,
resource utilization, and functionality from the ability to execute code inside network-attached
drives. The basic characteristics of successful remote functions are that they 1) can leverage the
parallelism available in systems with large numbers of disks, 2) operate with a small amount of
state, processing data as it “streams past” from the disk, 3) execute a relatively small number of
instructions per byte or 4) can make effective use of scheduling and management primitives
inside the drives.

                                                
2 The amount of memory at the host still exceeds that available at the disks, but the primary reason for this is
that drives cannot easily take advantage of larger amounts of memory due to their current, limited APIs.

Microsoft TerraServer Compaq ProLiant TPC-C
4-CPU AlphaServer 4100 Four 200 MHz Pentium Pros

4 x 400 MHz 1,600 MIPS 4 x 200 MHz 800 MIPS
2,048 MB 2,048 MB 4,096 MB 4,096 MB
1,100 MB/s 1,100 MB/s 540 MB/s 540 MB/s

320 SCSI Disks 113 SCSI Disks
320 x 25 MHz 3,125 MIPS 113 x 25 MHz 2,800 MIPS
320 x 1 MB 320 MB 113 x 1 MB 113 MB
320 x 10 MB/s 3,200 MB/s 113 x 10 MB/s 1,130 MB/s

Table 1 - Two example systems with large storage requirements. The TerraServer is a geographic
data server that provides access to satellite imagery of the entire world on the Internet [Barclay97]. The
ProLiant system had the lowest $/tpmC rating for the week of 13 October 1997 [TPC97]. The table
compares total processing power in MIPS, total memory in MB, and total transfer bandwidth in MB/s
of disks vs. their host systems. The processor numbers are slightly unfair because both the Alpha and
Pentium Pro systems are super-scalar, but even doubling the host values still keeps the aggregate drive
power on par with the hosts. Bandwidth values for the hosts are peak advertised memory bandwidths.
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2.1. Filters
In many systems in use today, interconnect bandwidth is at a premium compared to
computational power. If an application is scanning large objects in order to select only specific
records or specific fields within records, a large fraction of the data moved across the network
will simply be discarded. Allowing such filter functions to operate directly at drives, close to the
data, and returning only the relevant fraction of the data to the client, can significantly reduce
network utilization and improve overall throughput. In addition to reducing network traffic,
applications that scan large objects looking for specific properties or gathering statistics (e.g.
counts of matching values) can take advantage of the computational power available at drives by
performing these simple operations directly on the drives, thereby offloading the host and
increasing the aggregate system power. Applications that fall into this category include text
search (e.g. grep), database select, image processing and extraction, association matching for
data mining, and spatial data extraction, i.e. any relatively simple function with the potential to
significantly decrease the amount of network traffic or host processing required.

2.2. Real-Time
Replay of stored multimedia must be coordinated by a system component that sees and controls
all accesses. Individual drives may be the only place capable of accurately estimating the
resources needed to meet a given real-time schedule. Assuming a drive with underlying real-time
computing support, remote functions can implement reservation and application-specific transfer
protocols that combine information about the data stream and the current drive state to provide
optimal service.

2.3. Batching
Another class of applications that benefit from the capability to delay a response rather than
satisfying a request immediately is anything that requires a large amount of work, but in which
the order the work is done in is not important. Providing an aggregate description of a large
amount of work to the drive (or perhaps across a number of drives) and allowing it (them) to
schedule the work of the entire request in the most efficient manner possible can provide
significant performance gain over executing the work as a series of simple requests [Kotz94].
This includes functions such as a drive-to-drive copy controlled at the drive, rather than through
the client, and scatter/gather operations that distribute data across a large number of clients
(collective I/O).

2.4. Self-Management
The existence of a remote execution environment at the drive makes it possible to provide
management functions that are either more complex than drive firmware would normally allow
or that are customized to the environment in which the drive is installed. For example, a backup
function could be specialized to a particular environment or to an application-specific archive
representation and a type-specific transfer protocol, all without interfering with other client work.
Having such functions operate as remote functions also allows them to be extended and
specialized by local management policy, rather than burned into the firmware. Possible functions
include backup; layout optimization based on filesystem- or application-specific knowledge, or
on usage patterns observed at the drive; defragmentation; and reconfiguration.

2.5. High-level Support
Specialized functions that require semantics not normally provided at drives could be provided
by remote execution. This allows functions specialized to a particular environment or usage
pattern to be executed at the lowest level of the system, where the semantics are most efficiently
implemented, rather than requiring additional overhead at higher levels. Examples include a
READ/MODIFY/WRITE operation for use by a RAID subsystem across NASDs; a drive-
embedded web server; or an atomic CREATE that both creates a new file and updates the
corresponding directory object, for optimization of a particular filesystem on NASD
[Gibson97a].
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2.6. Other
Researchers into I/O for large-scale scientific applications have noted a large variety in access
patterns [Smirni96] that are often not good fits for general policies. Remote execution allows
customization of the storage interfaces to meet different application needs. It also allows the
implementation of a variety of storage optimizations that have been proposed in the context of
custom systems, such as: AutoRAID [Wilkes96]; Semantic Caching [Dar96]; Progressive
Browsing of Images [Prabhakar97]; TickerTAIP [Cao94]; optimal data layout; ADStar storage
management [Cabrera95]; and Logical Disk [deJonge95].

3. Potential Benefits
We have taken a closer look at the benefits of Active Disks for two specific applications:
database select and parallel sort. The following outlines a simple analytic model of how these
applications might be partitioned in the presence of Active Disks and the performance benefits
we might expect to see. The results here are intended to be illustrative rather than predictive.

3.1. Database select
In order to evaluate the benefits possible
using remote execution on drives, we
modeled a database SELECT operation
performed at drives rather than
processing everything directly on the
host. The basic modeling parameters are
taken from [Franklin96] which studied
the tradeoffs of performing hybrid query
processing split between clients and
database servers. We simply extended
this notion to include Active Disks and
moved portions of the computation
directly to drives as our “servers”.

Table 2 shows the basic parameters
used. This analysis considers only the
total number of CPU cycles required to
perform a particular computation. It

does not model latency or contention in the network, or the details of request handling and
scheduling inside the drives. This simple model trades off the sending of messages on the
network in favor of processing at the drives. As the table indicates, one less page sent over the
network saves 32,000 instructions while every page selected (hash + compare + copy) requires
1,728 instructions. We varied the percentage match of the relation and the processing power

Parameter Value Description
MIPS 200 Host CPU speed
NumDisks 8 Number of disks
DiskInst 5,000 Instr. to read a page from disk
PageSize 4096 Size of one data page (bytes)
NetBw 12.5 Network bandwidth (MB/s)
MsgInst 20,000 Instr. to send/recv a message
PerSizeMI 12,000 Instr. to send/recv 4096 bytes
Compare 2 Instr. to apply a predicate
HashInst 9 Instr. to hash a tuple
MoveInst 1 Instr. to copy 4 bytes
NumTuples 1,000,000 Number of tuples
TupleSize 64 Size of one tuple (bytes)
KeySize 4 Size of one key (bytes)

Table 2 - Parameters for Database Select. These values
are from [Franklin96] and represent common values for
typical client/server database systems today.
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Figure 3 - Speedup over host-based processing. At low match percentages, significant improvements
are possible even with drives only 1/20th the power of host processors.
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available on the drives to obtain the charts in Figure 3. We see that at low match percentages
(high degrees of selectivity), even drives with only a small fraction of the processing power of
the host can provide significant improvements by eliminating expensive network processing
operations, avoiding network bottlenecks, and taking advantage of the parallelism available
across drives.

3.2. Parallel sort
The second application is a sorting algorithm based on parallel sample sort [Blelloch96] running
across a network of workstations similar to the system described in [Arpaci-Dusseau97]. The
processing in the normal case and in the presence of Active Disks is described in Table 3. The
basic algorithm is a two-step process which first looks at a subset of the total data to be sorted
and determines a rough distribution of key values. This information is then used to move the data
to its final destination (client) where the records in a particular key range are sorted locally and
the entire data set is written back in sorted order.

In the Active Disks system, two remote functions are shipped to the drive, sample() operates
just like a normal read() operation, but returns only a randomly distributed subset (say 5%) of
the data. With an understanding of the record structure of the data being processed, this operation
is simply and efficiently implemented at the drive and may be able to take advantage of the fact
that it doesn’t care which data blocks are read, just that they are relatively randomly distributed,
to optimize seek times. The second function is a scan() which also operates like read() but
uses the results of the sample step to provide only data in a specific key range to the requesting
client. The scan reads data sequentially from the disk surface, but returns only records in the key
range for this client. All other records are stored in on-drive cache buffers until the client
responsible for those records issues a request. If cache buffers must be freed before a client has
made its scan request, the data is simply re-read from disk when that request eventually comes.
Assuming the distribution determined by the sampling is relatively accurate, the load should be
evenly distributed across clients and requests should arrive in a balanced fashion.

The most expensive step in the basic algorithm is Step 4 where data is exchanged among all the
clients. This step is eliminated in the Active Disks algorithm. In the basic algorithm, all the data
must traverse the “network” (either the local peripheral bus or the general interconnect network)
three times, while in the Active Disks case it is moved only the absolute minimum of two times.
Assuming that the entire execution is network-limited (which it will normally be if sorting and
sending/receiving are properly overlapped) and that all “networks” are created equal, then Active
Disks will improve processing time by 1/3. Since individual Active Disks should be significantly
less expensive than general-purpose workstations, such an algorithm should provide a better
cost/performance than one based solely on workstations and traditional SCSI disks. If we were to
be more ambitious and expand the complexity of the drives functions, it would also be possible

Step Parallel Sample Sort Sample Sort for Active Disks
1 Sample data Sample data using sample() function on drives
2 Create distribution histogram Create distribution histogram
3 Read data into clients from local disks Read data into clients using scan() function
4 Distribute data among clients based on hist.
5 Sort locally at each client Sort locally at each client
6 Write back to local disks in sorted order Write back to drives in sorted order

Table 3 – Processing for Sample Sort. The basic algorithm in a network of workstations with directly-
attached disks and in a system with Active Disks. In cases where the sampled distribution is not
completely accurate, a minor “shift” step may be necessary between Steps 5 and 6 to ensure that all
clients write an equal amount of data and keep the sorted data balanced across disks. In order for the
local sort to proceed most efficiently, the set of records to be sorted should fit into the client memory.
This means that if a data set is larger than the aggregate memory of the clients, the entire algorithm will
only sort a subset of the data and will be followed by a series of merge steps until all the data is sorted.
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to perform the entire sort without the clients, drives would simply exchange the data among
themselves and sort locally before writing, completely eliminated the need for the clients.

4. Implementation Issues for Active Disks
Having argued that disk drives have excess processing and transfer capability and that
applications exist which can significantly benefit from being able to execute code directly at
drives, we now discuss the major implementation issues for Active Disks.

4.1. Language Model
Probably the most basic question for a remote execution system is what programming model
should be provided for user-defined functions. The principle issues are the language
expressiveness, the risk and cost of collateral damage caused by faulty code, and the load-time
and runtime costs of protecting against collateral damage. Where application needs do not
require broad expressiveness, a well-defined and limited set of interfaces such as packet filters or
SQL allows powerful control over the safety and efficiency of user-provided functions. While
filter functions may lend themselves to this approach, full support for applications requires a
more expressive language. Moreover, although processing at the drives is abundant enough to
exploit, if it is squandered with safety checks, there will be little value in relocating function to
drives.

Dynamic relocation hardware with protection checking is not out of the question on a drive, but
it must be compared to the use of type-safe programming languages, compile-time, load-time,
and runtime safety checks [Gosling96, McGraw97, Sirer96, Romer96, Wahbe93]. A particularly
low overhead approach, proof-carrying code, moves the cost of demonstrating safety from the
runtime system to the code producer [Necula96]. The runtime publishes a safety policy that all
programs must adhere to and the code producer is responsible for providing a proof that their
program meets the limitations of this policy. The runtime system simply has to verify that the
program provided satisfies the proof provided -- a much less costly check than generating the
proof or verifying the safety policy directly. This approach is promising, but has only been
demonstrated for very small functions and very simple safety policies, while generating proofs
for arbitrary programs is known to be intractable.

The most significant consideration in the tradeoff between the cost of accepting a remote
function (compilation, translation, static checking) and the runtime safety checking costs is the
lifetime of programs executing at the drive. Current drive interfaces provide for requests of very
limited duration – typically a few to a few dozen milliseconds – in part because operations are
limited, contiguous SCSI block transfers. The object interface for network-attached storage
proposed in [Gibson97a] expands these bounds by allowing scatter/gather access to variable-
length objects and by associating drive-managed attributes with objects. Associating translated
programs with object attributes allows reuse and amortization of load-time work, favoring safety
mechanisms with low runtime overhead. Table 4 shows some of the tradeoffs of the possible
technologies based on how safety is ensured and where the protection is performed and verified.

Technology Per Program Per Invocation Per Statement
Cost Where Cost Where Cost Where

Compilation High Drive None None
Pre-Compilation High Producer None None
Sandboxing None High Drive Low Drive
Interpreter None Medium Drive High Drive
PCC High Producer Low Drive None

Table 4 - Costs of language/safety mechanisms. Translation and protection cost may be incurred for
each new remote program that is created, for each invocation of the program at the device, or possibly for
each statement in the program. Some technologies allow the majority of the burden for ensuring safe code
to be moved to the code producer and allow efficient translation/execution at the drive.
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The question of program duration is also tied to what types of state user-provided programs are
allowed to maintain at the drive and how this can be shared among different programs and with
the drive environment itself. As with processor cycles, memory at the drive will be inherently
more limited than it is in host systems. This places a limit on the size of programs that can be
efficiently executed and on the amount of state programs can maintain while running (unless on-
disk storage is used).

4.2. Safety and Manageability
Providing a general-purpose execution environment on a drive challenges the ability of the
external file manager to ensure filesystem integrity and management. Even a bug-free application
program, if given total access to drive internal state, can effect changes important to filesystem
integrity that are invisible to the filesystem outside of the drive. The most direct solution to this
is to limit remote functions to the same or a very limited extension of the drive’s normal storage
interface. For example, the network-attached drive interface proposed in [Gibson97a] uses a
capability system [Gobioff97] to authorize a specific set of operations on data objects on the
drive. Protecting data integrity in the face of remote programs can be achieved by requiring
remote functions to have capabilities and use the existing system to authorize their access to data
objects on the drive.

However, some Active Disk applications want more than the normal storage interface. The
challenge is to find the proper tradeoff between protecting drive integrity and manageability
while providing sufficiently powerful interfaces. In order to provide sufficient power to all
remote functions, the internal interface may need to support 1) the basic object interface
provided to normal requests, 2) mechanisms to affect scheduling of requests and responses, 3)
read access the internal drive state, and 4) mechanisms to modify drive state in controlled ways.

4.3. Resource Management
Once a programming model is established and there is a means for ensuring safety, the biggest
question remaining is how to dynamically control the resources used by remote functions. Unlike
a timesharing system, it is not obvious that a drive should accept any remote function and
eventually execute it. Some functions will only benefit their application in certain circumstances.
Some functions will never benefit their own application and may hurt others’ performance.
Because remote code consumes drive resources, it may be necessary to refuse new requests or
eject ineffectively running functions.

In order to refuse a new remote function, an admission control policy may need some estimate of
the cycle and memory/cache usage, either on a function-wide or a per-byte basis, needed for
execution. The drive could then execute only functions that fit within its current resource
constraints and would be able to eject running functions that exceeded their estimates. For at
least some of the restricted functions that profit from Active Disks, this type of control might be
guaranteed by compilation or proof techniques that try to bound a particular piece of code to only
consume n cycles before yielding or m bytes of memory.

With current drive interfaces, allocation of resources is done in a relatively straightforward
manner. Requests are not of widely varying amounts of work or duration and are selected fairly
and run to completion. Dynamic optimizations such as read-ahead also compete for resources,
but are limited to minimal interference with normal requests. The inclusion of long-running
remote functions, even if they are being effective, impacts the fairness and responsiveness of this
scheme.

One possibility for managing remote programs would be to apply the same technique as currently
used for read-ahead and allow remote programs to execute only when the drive would otherwise
be idle. The use of idle time to perform more expensive optimization work than simple read-
ahead is used in storage systems such as AutoRAID [Wilkes96], which uses idle periods to
reorganize data layout based on information gathered during normal operation. Such a
mechanism requires a means of detecting idle time and requires relatively low start-up and
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shutdown times when new foreground work arrives [Golding95]. However, limiting remote
programs to execute only in idle periods treats the associated applications as low priority, which,
if their remote function reduces overall system work, is counter-productive for global resource
management and throughput. In addition, remote programs that affect future activity, such as the
use of remote execution to provide scheduling and synchronization for a streaming video
application, would, almost by definition, be most effective during times of high foreground load.

5. Related Work
Active Networks provide a mechanism for running application code at network routers and
switches to accelerate innovation and enable novel applications in the movement of data and
network management [Tennenhouse96]. Two possible approaches for managing network
programs are suggested - a discrete approach that allows programs to be explicitly loaded into
the network and affect future packet processing and an integrated approach in which each packet
consists of a program instead of simply “dumb” data. The primary tradeoff, as for Active Disks,
is the amount of state that devices can be expected to maintain between requests and how many
requests can be “active” at any given time. The implementation of the Active IP option
[Wetherall96] describes a prototype language system and an API to access router state and affect
processing. It does not address the resource management issues inherent in allowing more
complex programs.

The Liquid Software project addresses advances in language technology that make it possible to
support mobile code in different parts of a distributed system [Hartman96] with a focus on fast
compilation and interpretation technology. Many results in this space will be applicable to the
more limited domain of remote execution at storage devices.

Remote execution has existed for 15 years in the Postscript language used in printers which
allows formatting to be described more compactly and flexibly as a program for drawing a page,
rather than as a bitmap of the final result [Perry88]. Postscript is specialized for page description,
but provides many features of a higher-level programming language and can even (with a bit of
practice and patience) be written by users directly. Issues of safety and resource management are
not paramount as a specific job has complete control of the device while it is active and there is a
power switch to “preempt” misbehaving programs.

Extension and specialization of operating system functionality via application- or user-defined
extensions is growing in popularity and sophistication. Simple mechanisms such as packet filters
[Mogul87] provide ways to add user-defined functionality in a limited, yet powerful way.
Allowing application code to be added directly into the operating system at specific points can
improve performance over the normally rigid operating system interfaces [Bershad92]. At the
extreme, moving policy decisions completely out of the operating system kernel and placing
them under user control allows even greater flexibility to applications and promises further
improvements in performance [Engler95] at the cost of losing control of some resource
management.

Small and Seltzer [Small95] compare several techniques for safely extending operating system
code and provide a taxonomy of available techniques. Several compiled technologies (Modula-3
and SFI) show promise, while interpreted languages impose too high an overhead for in-kernel
processing. The authors divide extensions into three categories: Streams for applications that
transform data or perform incremental computation (which we call Filters), Prioritization for
applications which simply require choosing from a list of candidates (which come under our
Batching and Real-Time headings), and Black Boxes which are provided with some input,
produce a single output and are allowed to maintain some amount of internal state.

General-purpose database query languages such as SQL operate within a limited set of functions
and semantics and the mechanisms for scheduling and optimizing such queries are well-
established. The use of stored procedures and user-defined functions that execute directly on
database servers is available today, but query optimization for such functions is often primitive.
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Query optimization mechanisms are being extended to work across distributed systems, taking
into account the most appropriate location for a particular bit of computation [Franklin96].
Application-specific extensions to the type system and processing in object-oriented databases
such as DataBlades [Stonebraker96] provide flexibility and promise improved performance for
specialized data types.

Several mechanisms exist to improve the safety of extension code. The use of type-safe
languages and compilers that certify the safety of a piece of code [Bershad92] provides a way to
ensure integrity, but does not protect efficiency. Using a type-safe language and limiting access
to system resources through interface constraints [Gosling96] allows greater control, but does not
address all safety and efficiency concerns [McGraw96]. Proof-Carrying Code [Necula96]
promises a mechanism to prove that a piece of user-provided code meets a specific safety policy
and may also allow the checking of resource constraints, assuming certain restrictions on the
generality of the extension code.

There has been considerable work on optimizing safe languages such as Java through the use of
Just-In-Time compilation [Gosling96] or translation [Proebsting97]. Small-footprint Java
implementations are becoming available for embedded devices. A recent product announcement
goes so far as a smart card that provides a Java Virtual Machine in 4K of ROM and can run
bytecode programs up to 8K in size for a significant subset of the language [Schlumberger97].
This demonstrates that it is possible to implement a workable subset of the JavaVM in a very
limited resource environment. Other systems such as Inferno [Inferno97] are specifically targeted
for embedded, low-resource environments.

6. Conclusions and Future Work
Technology trends are making possible disk drives with significant amounts of available
processing power. With such drives, the balance of the aggregate computing power in systems
may often be in the storage devices, rather than in the host systems. We propose a way to take
advantage of these developments with Active Disks - advanced disk drives that provide an
environment for executing application-specific code directly inside the drive.

Active Disks provide computational power that scales with storage capacity and allow remote
functions at drives to combine knowledge of application details and drive internal state to
improve performance and scalability. Executing remote functions directly on drives can
significantly reduce network traffic and host system processing and can enable novel applications
that are not possible within the simple interface provided by today’s drives. Applications that
could benefit from this technology exhibit critical components that filter, schedule, batch,
manage data, or extend the semantics of the storage interface.

Using an analytic model of database select, we show possible speedups of factors of two or more
for highly selective processing of large relations. Similarly, for sorting of large databases, we
show how a complete network copy step can be eliminated through the use of Active Disks.

Our future work will focus on providing answers to the questions raised here on what language
technology is most appropriate, how the internal interfaces for Active Disks should be designed,
and how to properly partition applications across hosts and drives.
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