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net result is that sequential readahead on ten disks reduces elapsed time by about 20 sec-

onds. The cross-over point is at three disks.

With hints, informed prefetching knows what to prefetch. Thus, TIP can prefetch

aggressively in parallel and exploit the bandwidth of the disk array. On ten disks, the

result is a 93% reduction in I/O stall time which leads to an 82% reduction in elapsed time.

Because informed prefetching does not waste I/Os, the TIP system does not have to pay

the CPU overhead,Tdriver, of performing Digital UNIX’s useless readaheads. Thus,

informed prefetching reduces CPU time as well as I/O stall time.

Figure 6.6b shows the effect of informed prefetching on stall time as a function of

prefetch depth. The curves reveal a number of interesting peculiarities in XDataSlice’s

performance. First, at a prefetch depth of 0, stall is greater on two or more disks than on

Figure 6.6. XDataSlice performance. Graph (a) shows the elapsed time for rendering 25 random slices
through a 512 MByte dataset. InTIP, no prefetching, TIP is not prefetching or using DU’s heuristic
readahead for the hinted data. Without TIP’s informed prefetching, the system makes poor use of the disk
array because it doesn’t know what to prefetch. In fact, DU’s heuristic readahead prefetches so many unused
blocks that it hurts performance on one disk. But, informed by hints, TIP is able to prefetch in parallel, mask
the latency of the many seeks, and reduce overall elapsed time by 82%. There is very little data reuse, so
informed caching does not further decrease elapsed time. Graph (b) shows stall as a function of prefetch
depth for theTIP, no caching case. For this application which performs many seeks and has little
computation between reads, there is benefit in prefetching out to the prefetch horizon, but little beyond that.
An unbalanced load (see Figure 6.7) on four disk causes the stall on four disks to exceed the stall on three
disks at prefetching depths less than about 32.
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one. This is because the typical sequential run is four or five blocks. On one disk, XDS

seeks once to the start of the run and then does efficient sequential accesses for the rest of

the run. On two or more disks, however, a single sequential run often spills over into the

next stripe unit so that the application incurs the latency of two seeks instead of one. As

the prefetching depth increases, this second seek is overlapped with one or more other

seeks and its impact is eventually offset by the larger array’s higher transfer bandwidth

and ability to fetch multiple sequential runs simultaneously.

Table 6.3. XDataSlice elapsed time. This table presents the raw numbers graphically portrayed in Figure
6.6. Units are seconds and the numbers in parentheses are the 95% confidence intervals.

Table 6.4. XDataSlice prefetching and caching performance. Aggressive sequential readahead in Digital
UNIX and TIP without hints works poorly for this workload of many short sequential runs. Of over 60,000
prefetches, only about 25,000 ever become prefetch hits. Informed prefetching knows what not to prefetch
as well as what to prefetch and so can prefetch aggressively and accurately. There is very little reuse in this
workload, so informed caching does not significantly increase reuse hits.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
38.66 289.71 38.96 281.16 38.65 263.43 38.91 269.07 38.87 249.61

(0.11) (1.05) (0.36) (0.77) (0.07) (2.08) (0.29) (1.18) (0.05) (1.07)

TIP, no hints
39.95 285.61 39.94 275.53 40.27 256.52 39.87 263.46 40.01 244.57

(0.21) (0.57) (0.14) (0.69) (0.32) (1.47) (0.08) (0.44) (0.28) (0.82)

TIP, no prefetch
39.68 234.62 39.77 262.18 39.46 266.63 39.50 263.01 39.90 263.09

(0.29) (0.42) (0.59) (1.28) (0.23) (2.43) (0.27) (0.76) (0.57) (1.44)

TIP, no caching
32.39 207.26 32.01 116.70 32.04 72.07 32.31 59.25 33.44 18.27

(0.12) (0.20) (0.08) (1.51) (0.09) (0.19) (0.20) (0.17) (0.15) (0.41)

TIP
32.93 206.13 32.44 115.07 32.59 71.22 32.63 58.57 33.82 17.33

(0.18) (0.13) (0.11) (0.44) (0.17) (0.33) (0.33) (0.62) (0.13) (0.12)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
55194 8829 62011 23171 7808 26480 20905 20593

(41) (31) (4) (2) (31) (2) (10) (9)

TIP, no hints
48166 1799 60710 22681 2641 25381 20144 20101

(14) (0) (3) (2) (4) (1) (9) (9)

TIP, no prefetch
48160 1799 179 65 2669 169 45321 45279

(0) (0) (1) (1) (0) (1) (1) (1)

TIP, no caching
48160 1799 45328 14871 2662 45318 179 137

(0) (0) (1) (1) (0) (1) (1) (1)

TIP
48160 1799 45307 14863 2688 45297 174 132

(0) (0) (1) (0) (1) (1) (0) (0)
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Another interesting result is that the I/O stall time on 4 disks is greater than on 3 disks

up to a prefetch depth of about 32. Because the dataset dimensions, the block size, and the

stripe unit are all powers of 2, some slices have a pathologically unbalanced workload on

a 4-disk array as shown in Figure 6.7. The situation is analogous to the contention one can

find in the interleaved memory of a supercomputer. Using a prime number of disks in the

array, or randomizing the assignment of stripe units to disks could probably help alleviate

the problem. The effect of the unbalanced load is that the full parallelism of the array is

not always available and performance suffers. Prefetching deeply can smooth over these

transient load imbalances which is why the performance of the four-disk array eventually

caches up to and surpasses that of the three-disk array. Ideally, prefetching would be sen-

sitive to load imbalances and be deeper when beneficial. This observation has led to work

developing such adaptability [Kimbrel95, Kimbrel96a, Kimbrel96, Tomkins97]. I will

discuss the relationship of that work to the approach described here in Chapter 7. But,

such adaptability is beyond the scope of this dissertation which is limited to an investiga-

tion of prefetching and caching algorithms that do not rely on specific information about

data layout.

Even with the unbalanced load, the prefetch horizon of =73 captures most of the

potential stall reduction, as shown in Figure 6.6b, and stall decreases very little beyond

for any array size. At the same time, the prefetch horizon successfully captures the knee in

Figure 6.7. XDataSlice disk load distribution for a range of accesses on a four-disk array. This figure
shows how activity is distributed across the disks in a four-disk array for a range of 3000 of XDS’ total of
about 50,000 accesses. Some slices and therefore sequences of accesses are reasonably well-balanced, but
some, such as this one, are highly unbalanced. For example, all of the accesses from about 11,600 to 12,700
go to only two disks and most only go one disk. For this period of over 1000 accesses, disks 0 and 1 sit idle.

10000 11000 12000 13000
access number

0

1

2

3
di

sk
 n

um
be

r

||||||
||||||||
||
||

||||||||
||||||||
|||
||

||||||||
||||||||
|||
|

||||||||
||||||||
|||
|

||||||||
||||||||
||||

||||||||
||||||||
||||

||||||||
||||||||
||||

||||||||
||||||||
|||||

|||||||
||||||||
|||||

|||||||
||||||||
|||||

|||||||
||||||||
||||||

||||||
||||||||
||||||

||||||
||||||||
|||||||

||||||
||||||||
|||||||

|||||
||||||||
|||||||

|||||
||||||||
||||||||

|||||
||||||||
||||||||

||||
||||||||
||||||||

||||
||||||||
||||||||
|

||||
||||||||
||||||||
|

|||
||||||||
||||||||
|

|||
||||||||
||||||||
||

||
||||||||
||||||||
||

||
||||||||
||||||||
||

||||||||
||||||||
||||

||||||||
||||||||
||||

||||||||
||||||||
|||||

|||||||
||||||||
|||||

|||||||
||||||||
||||||

|||||||
||||||||
||||||

||||||
||||||||
||||||

||||||
||||||||
|||||||

||||||
||||||||
|||||||

|||||
||||||||
|||||||

|||||
||||||||
||||||||

|||||
||||||||
||||||||

||||
||||||||
||||||||

||||
||||||||
||||||||

|
|||
||||||||
||||||||

|
|||
||||||||
||||||||

|
|||
||||||||
||||||||

||
||
||||||||
||||||||

||
||
||||||||
||||||||

||
||
||||||||
||||||||

|||
|
||||||||
||||||||

|||
|
||||||||
||||||||

|||
|
||||||||
||||||||

||||

||||||||
||||||||

||||

||||||||
||||||||

|||||

||||||||
||||||||

|||||

|||||||
||||||||

|||||

|||||||
||||||||

||||||

|||||||
||||||||

||||||

||||||
||||||||

||||||

||||||
||||||||

|||||||

|||||
||||||||

|||||||||||||||
|
||||||||
|
||||||||
|
||||||||
||
||||||||
||
||||||||
||
||||||||
|||
||||||||
|||
||||||||
||||
||||||||
||||
||||||||
||||
||||||||
|||||
||||||||
|||||
||||||||
|||||
||||||||
||||||
||||||||
||||||
||||||||
||||||
||||||||
|||||||
||||||||
|||||||
||||||||
|||||||
||||||||
||||||||
||||||||
||||||||
||||||||
||||||||
||||||||
||||||||
|

||||||||
||||||||
|

||||||||
||||||||
||

||||||||
||||||||
||

||||||||
||||||||
||

||||||||
||||||||
|||

||||||||
||||||||
|||

||||||||
||||||||
|||

||||||||
||||||||
||||
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||
||
|||||||||||
||
|||||||||||
|||
||||||||||
|||
||||||||||
||||
||||||||||||
||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
||||||||||||||||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||

||||||||
||||||||||||||||
||||||||||||||

|

|

|||||||||||||
|||||||||||||||
|||||||||||||||
|||||||||||||||

|||||||||
|
|
||||||||||||||
||||||||||||||||

||||||||||||||||
|||||||||||||||
|
|
|||||||||||||
|||||||||||||||

|||||||||||
||||||||||||||||
||||||||||

P̂

P̂



TIP PERFORMANCE EVALUATION 139

the curve for 4 and 10 disks; there is benefit in prefetching out to the prefetch horizon.

Davidson performs a significant amount of computation between sequential reads and

therefore, in the absence of caching, does not benefit from increasing the prefetch depth

beyond 16. But, XDS does little computation between reads (Tapp is small), and its reads

often require seeks to new locations (Tdisk is large), so its application-specific prefetch

horizon is close to the system-wide upper bound, .

Because XDataSlice is reading thin slices from a very large dataset, there is very little

reuse in its workload. Consequently, there is little opportunity for informed caching to

avoid I/O accesses. For similar reasons informed clustering does not play a substantial

role. Standard clustering of sequential reads is important, but because hints are given for

one slice at a time, and because accesses within a slice are in ascending order, there is little

opportunity for informed clustering to combine multiple, widely-separated accesses into a

single larger one.

XDataSlice originally required all data to be memory-resident to render slices interac-

tively. These results show that with informed prefetching and a disk array, this application

can run out-of-core and still render a slice from a very large dataset in about two seconds.

Informed prefetching doesn’t just improve performance; for XDataSlice, it is an enabling

technology that provides important new out-of-core capability.

6.3.3 Sphinx

Sphinx is a high-quality, speaker-independent, continuous-voice, speech-recognition

system. In our experiments, Sphinx is recognizing an 18-second recording commonly

used in Sphinx regression testing. Figure 6.8 shows its access pattern which includes an

initialization scan of its language models followed by a recognition phase during which it

dynamically loads needed language data. Roughly 65,000 of Sphinx’s 78,000 block reads

occur during the initialization phase. Figure 6.9 shows the elapsed time for the bench-

mark, Table 6.5 gives the corresponding elapsed-time numbers, and Table 6.6 shows

caching and prefetching performance.

Digital UNIX’s sequential readahead and a two-disk array help Sphinx during its ini-

tialization scan even though the skips lead to some false readahead. But, with informed

prefetching, it takes advantage of the array even for the many small accesses during the

P̂
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Figure 6.8. Sphinx access pattern. During the first 53 seconds, Sphinx initializes itself by scanning its
language models and dictionaries to build internal tables. One language-model file accounts for all the
blocks from 493–23,016 in the graph. The scans are in ascending order, but there are skips which decrease in
size until, from global offset 13768, the skips are smaller than a block so all blocks are accessed. After this
initialization phase, Sphinx dynamically hints and loads pieces of the language model as needed during the
recognition phase. The file holding the digitized speech being recognized only occupies 8 blocks and so is
not visible on the graph.
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recognition phase that dynamically load the needed parts of the language model. These

small reads also lead to some false readahead, although to a much smaller extent than for

XDataSlice. On just three disks, informed prefetching reduces I/O stall time by 69%

which translates into a 21% reduction in elapsed time for this compute-intensive applica-

tion.

Referring to Figure 6.9b, we see the familiar curve of stall time vs. prefetch depth. In

this case, however, the results on one disk point to an interesting new phenomenon. Nor-

mally, when the stall time drops off on one disk, the expectation is that it is due to disk

scheduling advantages of queuing multiple requests. In this case, however, virtually all of

the hints during the initialization phase and over 85% of the hints during the recognition

phase are given in ascending order of block address so there is little opportunity for disk

scheduling to reduce access time. Instead, the greater prefetch depth is providing resil-

iency to Sphinx’s bursty I/O workload. Sphinx often pauses to compute for ten or more

milliseconds in the middle of a hinted burst of reads. By prefetching more deeply, TIP can

take advantage of the computation-induced lulls in I/O activity, to get ahead of Sphinx’s

Figure 6.9. Sphinx performance. As (a) shows, without hints Sphinx derives only a small benefit from the
disk array. With hints, TIP’s informed prefetch takes advantage of the array for the random loads of pieces of
the language model. Informed caching does not help because Sphinx gives mostly small bursts of hints and
has poor access locality. Figure (b) shows the familiar relationship between stall time and prefetch depth. In
this case, however, the advantage of deeper prefetching on a single disk is not better disk scheduling, but
increased resilience to Sphinx’s bursty I/O accesses.
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data requests. Because these lulls are short, a prefetch depth of only 16 is sufficient to take

full advantage of them.

For a number of reasons, informed caching does not help Sphinx. Although there are a

good number of reuse hits, as shown in Table 6.6, most of these are a result of multiple

partial-block reads that hit in the first segment of the LRU queue. Sphinx’s internal cache

and large datasets lead to little locality in its file accesses beyond this. Furthermore,

Sphinx’s small bursts of hints do not give TIP sufficient advance knowledge to signifi-

cantly improve cache performance. In general, informed caching requires hints much fur-

ther in advance than does informed prefetching.

Table 6.5. Sphinx elapsed time. These are the data graphed in Figure 6.9a. The numbers in parentheses are
the 95% confidence intervals for the averages of the five runs.

Table 6.6. Sphinx prefetching and caching performance.These data show that informed prefetching
achieves almost 50% more prefetch hits with only 26% more prefetches than sequential readahead because it
can prefetch accurately. Although there is substantial buffer reuse by Sphinx, LRU queue profiling reveals
that virtually all of these reuse hits occur in the most recently used segment of the LRU queue and that there
is little opportunity for informed caching to improve performance.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
145.88 99.29 146.31 72.73 146.16 68.55 145.94 67.17 146.29 64.98

(0.67) (0.37) (0.85) (0.32) (0.80) (0.42) (0.15) (0.38) (0.81) (0.37)

TIP, no hints
148.89 98.15 149.34 72.49 149.02 68.34 149.18 67.37 149.49 65.08

(0.65) (0.25) (0.51) (1.10) (0.62) (0.46) (0.49) (0.44) (0.80) (0.42)

TIP, no caching
152.87 76.15 153.10 32.01 150.77 21.31 153.19 18.55 150.81 14.93

(0.53) (0.26) (0.80) (0.48) (0.92) (0.36) (0.81) (0.45) (0.34) (0.85)

TIP
152.26 76.36 152.13 31.55 153.02 20.94 152.09 18.14 152.56 14.20

(0.52) (0.65) (0.85) (0.40) (0.50) (0.30) (0.67) (0.24) (1.28) (0.15)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
78879 1142 21135 4356 51125 17822 9930 4570

(111) (113) (38) (12) (40) (22) (80) (24)

TIP, no hints
78665 929 21103 4343 50909 17808 9947 4554

(4) (0) (19) (7) (49) (10) (47) (14)

TIP, no caching
78393 890 26849 7731 51307 26730 355 288

(0) (0) (14) (4) (14) (14) (3) (3)

TIP
78363 860 26764 6487 51368 26648 346 279

(9) (9) (92) (21) (97) (93) (0) (0)
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6.3.4 Agrep

In this benchmark, Agrep searches 1349 kernel source files occupying 2922 disk

blocks for a simple string that does not occur in any of the files. Figure 6.10 shows the

misleadingly simple global access pattern; misleading because the single large sequential

access is actually a concatenation of sequential accesses to the many files. Over 80% of

these files have only one or two blocks and are therefore too small for any sequential

readahead. Over 94% consist of five blocks or less. Only four of the 1349 files are larger

than 20 blocks and the largest has 38. The average number is 2.17 blocks.

Figure 6.11 shows the elapsed and stall times for this search and Table 6.7 gives the

numbers for part (a) of the figure. As was the case for both XDataSlice and Sphinx, with-

out informed prefetching there is little parallelism in Agrep’s I/O workload. Even though

the files are searched sequentially, because most are small, even aggressive sequential

readahead successfully prefetches only about a third of the blocks (see Table 6.8) and does

not achieve parallel transfer. However, Agrep’s disclosure of future accesses exposes

potential I/O concurrency not within individual files, but across multiple files. Arrays of

as few as four disks reduce elapsed time by 72% and of ten disks reduced elapsed time by

84%.

Figure 6.10. Agrep access pattern. In the benchmark, Agrep searches 1349 files sequentially. This results
in the trivial access pattern shown here. But, because the single linear global block addresses used for they-
axis map to so many separate files, the file system does not observe the accesses as one single sequential
read, but as many short, disjoint sequential reads for which sequential readahead is not too useful. Agrep’s
hints disclose the larger pattern and enable TIP to prefetch across files and not just within individual files.
During the delay in starting the search, Agrep is checking each of its arguments to make sure they are valid
file names. As it does so, it discloses the eventual sequential read of the file in a hint.
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In this benchmark, all the files are read only once, so there is no data reuse and there-

for no opportunity for informed caching benefits.

6.3.5 Gnuld

The Gnuld benchmark links the 562 object files of a TIP kernel. These object files

comprise approximately 64 MBytes, and produce an 8.8-MByte kernel. Figure 6.12 shows

the access pattern for the benchmark. Figure 6.13 presents the elapsed and I/O stall times

for this test and Table 6.9 gives the numerical data for the elapsed time.

Gnuld is another example of a serial I/O workload that is unable to take advantage of

disk-array parallelism as is seen from the flat performance across array sizes for both the

Digital UNIX andTIP, no hints runs. For most of its accesses, Gnuld is looping over the

object files reading small segments from each. As was the case for XDataSlice, sequential

readahead actually hurts performance for this workload. As Table 6.10 shows, false reada-

head leads to the wasted prefetching of over 1100 blocks. But, here, there is an additional

penalty of false readahead: more cache misses. Comparing the reuse hits forTip, no hints

Figure 6.11. Agrep performance. This figure shows the elapsed time (a) and stall time (b) for searches
through 1349 files in three directories. Most of the files are not large enough for sequential readahead to
expose concurrency and take advantage of the disk array. Disclosure exposes concurrency across files that
informed prefetching uses to reduce elapsed time by up to 84%. Because there is no data reuse by this
application, there is no opportunity for informed caching.

(a) total elapsed time (b) I/O stall time vs. prefetch depth

0 100 200
prefetch depth

0

10

20

30

st
al

l t
im

e 
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

10

20

30

el
ap

se
d 

tim
e 

(s
ec

)

CPU

I/O stallDigital UNIX
TIP, no hints
TIP, no caching
TIP



TIP PERFORMANCE EVALUATION 145

andTIP, no prefetch, we see that the false readahead inno hints reduces the number of

reuse hits by 330. Whereas false prefetches delay useful prefetches less on larger arrays,

these cache misses incur the full latency of a disk access no matter what the array size is.

Informed prefetching inTIP, no caching suffers from neither false prefetching nor a

decrease in reuse hits. It takes advantage of a ten-disk array to eliminate 84% of the I/O

stall time and reduce overall elapsed time by 74%.

Informed caching in theTIP runs increases reuse hits by 600 compared to prefetching

alone inTIP, no caching. Most of the avoided misses are for hinted data which inTIP, no

caching are prefetched back. On a single disk there is insufficient bandwidth to prefetch

all of the misses without stall and informed caching reduces elapsed time by 6%.

Table 6.7. Agrep elapsed time. These are the data graphed in Figure 6.11a. The numbers in parentheses are
the 95% confidence intervals for the averages of the five runs.

Table 6.8. Agrep prefetching and caching performance. Although Agrep searches the file sequentially,
most of the files are short, so sequential readahead only prefetches about a third of the blocks. None of the
blocks from the searched files are reused, so there is no opportunity for informed caching.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
2.27 24.72 2.30 23.37 2.22 23.35 2.22 23.19 2.23 24.08

(0.03) (0.30) (0.11) (0.73) (0.03) (0.96) (0.03) (0.70) (0.04) (0.88)

TIP, no hints
2.36 24.40 2.30 23.10 2.34 23.01 2.37 22.87 2.38 23.41

(0.02) (0.34) (0.05) (0.84) (0.03) (0.68) (0.15) (0.59) (0.04) (0.66)

TIP, no caching
2.34 19.86 2.28 9.87 2.31 7.02 2.29 4.72 2.44 1.80

(0.03) (0.32) (0.02) (0.19) (0.05) (0.20) (0.03) (0.13) (0.18) (0.13)

TIP
2.40 19.81 2.30 10.07 2.35 6.92 2.33 4.66 2.43 1.69

(0.03) (0.45) (0.02) (0.20) (0.02) (0.25) (0.05) (0.12) (0.01) (0.02)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
3425 497 1077 613 407 1065 1953 1933

(25) (25) (367) (261) (19) (366) (358) (357)

TIP, no hints
3305 377 1050 598 335 1044 1925 1920

(13) (13) (358) (256) (14) (358) (357) (358)

TIP, no caching
3309 381 2949 1771 341 2945 23 13

(7) (7) (1) (1) (6) (1) (3) (1)

TIP
3307 379 2951 1771 337 2949 21 12

(11) (11) (1) (0) (11) (3) (4) (1)
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Figure 6.12. Gnuld access pattern.Gnuld makes many passes over the 562 object files it is linking to build
a new kernel. It is only after it has read the headers and symbols from each file that it starts writing the new
kernel, symbols at the end first and code at the beginning next. The blip at offsets 5620–5772 is the 152-
block AFS file system library being loaded. The next largest object file is only 50 blocks in size.
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6.3.6 Postgres

The Postgres benchmarks are joins of two relations. The outer relation contains 20,000

unindexed tuples (3.2 MBytes) whereas the inner relation has 200,000 tuples (32 MBytes)

and is indexed (5 MBytes). In the first benchmark, 20% of the outer-relation tuples find a

match in the inner relation. In the second, 80% find a match. One output tuple is written

sequentially for every tuple match. Recall from Section 3.4.3, that in the original code,

Postgres loops over the outer-relation tuples, interleaving sequential accesses to the outer

relation with random accesses to the index and the inner relation. To generate hints, the

loop is split and Postgres passes over the outer-relation tuples twice. During the first pass,

Postgres performs all the index lookups. It then issues hints for the reads of the matching

inner-relation tuples which it performs during the second pass over the outer-relation

tuples. Figures 6.14 and 6.15 show the access pattern for the two benchmarks after the

loop is split. Figure 6.16 and Tables 6.11 and 6.12 give the results for the 20%-match case

and Figure 6.17 and Tables 6.13 and 6.14 give the results for the 80%-match case.

Splitting the loop substantially reduces Postgres elapsed time even without giving

hints. On a single disk, it reduces elapsed time by 25% and 35% for the 20%- and 80%-

Figure 6.13. Gnuld performance. This figure shows the elapsed time (a) and stall time (b) for Gnuld to link
a Digital UNIX kernel. Informed prefetching again takes advantage of the disk array where readahead
heuristics fail. TIP reduces elapsed time by up to 74%.
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Restructuring the code increases the locality of the index accesses which are no longer

interleaved with inner-relation tuple accesses. The increased locality increases cache

effectiveness and therefore the number of reuse hits as a percentage of total requests from

52% to 65% in the 20%-match case and from 47% to 63% in the 80%-match case. These

caching gains dwarf the CPU penalty.

Table 6.9. Gnuld elapsed time. These are the data graphed in Figure 6.13a. The numbers in parentheses are
the 95% confidence intervals for the averages of the five runs.

Table 6.10. Gnuld prefetching and caching performance. Gnuld loops over the object files several times
reading short segments from the files. This access pattern defeats sequential readahead and, in fact, leads to
some false prefetching which displaces some useful blocks and decreases the number of reuse hits inTIP, no
hints compared toTIP, no prefetch. Informed prefetching accurately prefetches more than twice as many
blocks which exposes concurrency for the disk array and does not decrease reuse hits. Informed caching
increases reuse hits by 600 which helps reduce stalls when bandwidth is limited by a small array.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
11.10 86.77 11.04 87.19 11.05 82.77 10.99 83.52 10.92 81.61

(0.31) (0.87) (0.10) (1.29) (0.14) (1.63) (0.10) (1.00) (0.09) (0.77)

TIP, no hints
11.35 87.04 11.41 87.79 11.46 83.00 11.43 84.19 11.39 82.29

(0.14) (0.71) (0.11) (1.86) (0.22) (2.91) (0.12) (1.77) (0.08) (1.18)

TIP, no prefetch
12.49 82.95 12.70 82.34 12.67 77.65 12.51 78.63 12.54 76.89

(0.03) (0.20) (0.18) (0.20) (0.16) (0.95) (0.03) (0.16) (0.05) (0.22)

TIP, no caching
11.08 68.56 11.03 38.60 11.04 27.37 11.09 22.77 11.32 13.32

(0.08) (0.28) (0.06) (0.22) (0.05) (0.41) (0.06) (0.31) (0.05) (0.23)

TIP
11.11 63.65 11.00 35.11 11.16 25.08 11.23 21.24 11.36 12.70

(0.11) (3.46) (0.06) (1.25) (0.09) (0.12) (0.14) (0.85) (0.17) (0.43)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
23734 1303 5816 2710 12056 4662 7016 5191

(48) (48) (621) (321) (45) (111) (97) (89)

TIP, no hints
23525 1094 5784 2689 11924 4631 6970 5174

(34) (34) (615) (319) (32) (109) (106) (101)

TIP, no prefetch
23538 1106 103 47 12252 82 11203 11164

(44) (44) (3) (1) (43) (4) (5) (4)

TIP, no caching
23541 1109 11027 4880 12247 11006 287 247

(44) (44) (3) (1) (43) (4) (5) (4)

TIP
23536 1104 10477 4431 12856 10402 277 239

(32) (32) (384) (304) (312) (321) (8) (3)
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Postgres benefits little from Digital UNIX’s sequential readahead. There are few

sequential accesses apart from the 818 accesses to the outer relation. Thus, even though

the 80%-match case has three times as many accesses as the 20%-match case, there are

about the same number of prefetches in the two cases when Postgres does not give hints.
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Figure 6.14. Postgres, 20% match, access pattern.On its first pass through the outer relation, Postgres
tries to find a match for each record in the inner-relation index. It then discloses the blocks it will read in a
hint. On the second pass, it performs 3976 hinted reads of matching records from the 4082-block inner
relation. Before the loop-splitting, the accesses to the inner-relation index and data files were interleaved and
the access locality was much lower.

Figure 6.15. Postgres, 80% match, access pattern. The general access pattern for the 80% match case is
identical to that of the 20% match case, except that because more outer-relation records have matches in the
inner relation, it performs 15,674 hinted reads of matching records from the inner relation.
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outer relation
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Figure 6.16. Postgres, 20% match, performance. In (a), theoriginal runs show the performance before
Postgres’ loop is split to give hints. Thesplit loop runs show the performance of the restructured Postgres
running on the usual four configurations. The restructuring improves access locality and therefore cache
performance, allowing it to run faster than the original Postgres even without hints. Informed prefetching
further reduces I/O stall time. Graph (b) shows stall as a function of prefetch depth. On one disk, deep
prefetching improves disk scheduling and reduces stall, but on ten disks, prefetching too deeply reduces
cache effectiveness and increases stall. See text for details.
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Figure 6.17. Postgres, 80% match, performance. Overall performance is very similar to the 20%-match
case except that the larger number of matches leads to more random hinted reads of the matching inner
relation tuples which lead to greater gains from informed prefetching. They also provide more opportunities
for informed caching to reduce the number of blocks fetched from disk and for informed clustering to fetch
adjacent blocks for widely separated accesses which improves access efficiency and reduces elapsed time by
31%.
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Because sequential readahead does not work for Postgres, there is little concurrency in

Postgres’ I/O workload and, without hints, Postgres is unable to take full advantage of the

disk array. Indeed, what little advantage Postgres does find in the larger arrays is a result

not of the disks working in parallel, but of the data being spread over less of an individual

disk’s surface which lowers the per-block access time from 16 msec on one disk to 13

msec on ten disk for the 80%-match case. We see again that disk arrays need parallel

workloads to take advantage of the hardware parallelism they offer.

Table 6.11. Postgres, 20% match, elapsed time. These are the data graphed in Figure 6.16a. The numbers
in parentheses are the 95% confidence intervals for the averages of the five runs.

Table 6.12. Postgres, 20% match, prefetching and caching performance. Splitting the loop adds 1000
reuse hits and decreases elapsed time even without hints. Informed caching and clustering reduce the
number of prefetch I/Os by 250 which reduces stall by 7% on a single disk.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

original:
Digital UNIX

24.50 101.45 26.24 96.78 24.41 89.55 24.30 86.57 24.13 77.45

(0.16) (0.48) (3.13) (2.40) (0.24) (1.24) (0.36) (0.56) (0.38) (0.24)

split loop:
Digital UNIX

28.08 65.77 28.06 64.18 27.72 60.04 27.71 57.09 28.29 51.93

(0.28) (0.37) (0.18) (0.42) (0.28) (0.23) (0.10) (0.18) (0.59) (0.48)

split loop:
TIP, no hints

28.35 69.00 28.70 65.37 28.50 61.69 28.45 58.56 28.03 53.84

(0.41) (0.53) (0.72) (0.64) (0.37) (0.44) (0.14) (0.96) (0.36) (0.41)

split loop:
TIP, no caching

28.65 50.01 28.42 28.78 28.75 21.50 28.66 18.05 28.78 14.44

(0.40) (0.36) (0.23) (0.43) (0.34) (0.30) (0.39) (0.20) (0.36) (0.20)

split loop:
TIP

28.60 46.72 28.40 27.08 28.60 20.38 28.58 17.06 28.34 13.37

(0.50) (0.46) (0.26) (0.53) (0.68) (0.49) (0.36) (0.34) (0.22) (0.28)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

original:
Digital UNIX

11125 2395 724 174 5201 523 5401 5313

(47) (46) (5) (6) (49) (6) (12) (13)

split loop:
Digital UNIX

11254 2555 1121 233 6174 1039 4041 3961

(34) (35) (13) (2) (31) (5) (11) (10)

split loop:
TIP, no hints

10851 2151 1070 224 5744 901 4204 4139

(24) (28) (16) (4) (37) (8) (13) (8)

split loop:
TIP, no caching

10926 2096 4240 3340 5743 4074 1108 1042

(31) (31) (20) (12) (20) (12) (6) (5)

split loop:
TIP

10787 2082 4107 3086 5787 3934 1065 1002

(20) (19) (17) (21) (17) (8) (4) (2)
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With informed prefetching, Postgres has I/O workload concurrency and takes advan-

tage of the parallelism of the disk array to reduce elapsed time by up to 47% for the 20%-

match case and up to 67% for the 80%-match case. Some stall remains because Postgres

doesn’t give hints for the index lookups. Nevertheless, because most of these lookups hit

in the cache, informed prefetching eliminates up to 73% and 87% of the stall for the 20%-

and 80%-match benchmarks of this I/O-bound application.

The results for stall as a function of prefetch depth shown in Figures 6.16b and 6.17b

reveal an interesting effect on the ten-disk array: prefetching too deeply increases stall.

Table 6.13. Postgres, 80% match, elapsed time. These are the data graphed in Figure 6.17a. The numbers
in parentheses are the 95% confidence intervals for the averages of the five runs.

Table 6.14. Postgres, 80% match, prefetching and caching performance. Splitting the loop again
increases reuse hits substantially. The impact of informed clustering is, again, to reduce reuse hits even while
reducing elapsed time.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

original:
Digital UNIX

46.49 345.32 46.59 334.89 46.47 309.63 46.25 294.57 47.39 269.09

(0.49) (2.27) (0.60) (1.63) (0.49) (1.56) (1.06) (1.01) (4.68) (3.81)

split loop:
Digital UNIX

47.01 207.55 47.69 205.35 47.07 192.50 46.98 180.00 47.13 162.59

(0.35) (0.21) (1.44) (0.38) (0.31) (1.06) (0.30) (0.71) (0.82) (0.67)

split loop:
TIP, no hints

48.35 210.40 48.45 203.94 48.50 192.81 48.32 181.94 48.09 166.01

(0.72) (0.91) (0.45) (1.62) (0.68) (2.15) (0.57) (2.66) (0.68) (0.67)

split loop:
TIP, no caching

47.98 138.31 48.29 67.58 48.74 43.79 48.62 32.47 48.71 21.62

(0.40) (0.42) (0.37) (0.48) (0.32) (0.21) (0.32) (0.15) (0.69) (0.31)

split loop:
TIP

46.85 81.67 47.13 40.75 46.83 29.35 47.03 23.78 47.16 18.18

(0.25) (1.88) (0.42) (1.19) (0.42) (1.18) (0.40) (0.30) (0.88) (0.27)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

original:
Digital UNIX

35081 2422 792 196 16157 354 18570 18477

(59) (58) (24) (12) (86) (14) (109) (108)

split loop:
Digital UNIX

33820 2553 1174 248 20316 787 12715 12632

(70) (71) (6) (2) (64) (3) (17) (17)

split loop:
TIP, no hints

33788 2522 1188 256 20296 795 12696 12618

(31) (26) (14) (4) (97) (8) (78) (78)

split loop:
TIP, no caching

33921 2524 12593 11552 20263 12190 1467 1386

(26) (26) (8) (9) (23) (9) (4) (4)

split loop:
TIP

33787 2515 10300 5655 23377 9106 1303 1221

(25) (25) (314) (304) (110) (112) (7) (6)
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Using too many buffers for prefetching can reduce cache effectiveness and increase the

number of cache misses. For example, for these experiments without informed caching,

the number of cache misses for the 80%-match case increases from about 1280 at a

prefetch depth of one to about 1880 at a prefetch depth of 256 (not shown). Although

these are small numbers compared to the nearly 34,000 total requests, they each add about

12 msec of stall to the elapsed time of the benchmark on ten disks or a total of about 7 sec-

onds.

On a single disk, more effective disk scheduling at the deeper prefetch depths reduces

disk service time from almost 15 msec to under 12 msec per block for the 80%-match

case. This reduction more than offsets the increase in stall from the larger number of

misses. With a single disk, bandwidth is at premium, and the disk is the bottleneck on

overall performance. Thus, the greatest gains come from maximizing disk performance.

With ten disks, there is ample bandwidth and maximizing the performance of individual

disks is less important; stall has already been masked, at least for hinted accesses. How-

ever, the unhinted misses cannot take advantage of array parallelism and therefore stall for

the full latency of a disk access. The stall for these unhinted accesses determines the over-

all stall for the benchmark.

The upper-bound prefetch horizon, , strikes a good compromise in performance

across array sizes. It obtains most of the benefit from improved disk scheduling on a sin-

gle disk where it reduces total disk service time by 19% and 24% for the 20%- and 80%-

match cases as will be seen in Table 6.15. On the other hand, stall time on ten disks is

within, respectively, 4% and 6% of the minimum which occurs at a prefetch depth of 32 in

both cases. The elapsed time when prefetching to a depth of =73 is, on one disk, within

1% of the elapsed time when prefetching to a depth of 256, and is, on ten disks, within 1%

of the elapsed time when prefetching to a depth of 32.

Using the hints for informed caching and informed clustering inTIP reduces the

elapsed time of the 20%- and 80%-match cases by 4% and 31% compared toTIP, no

cachingon a single disk. TIP is able to take advantage of the hints for the many random

inner-relation reads to increase cache effectiveness and cluster together many widely sep-

arated accesses into a much smaller number of more sequential accesses. For the 80%-

match case, informed caching inTIP increases the number of reuse hits by over 3000 or

P̂

P̂
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more than 15% compared toTIP, no cachingas seen in Table 6.14. And, for the 80%-

match case, informed clustering inTIP increases the average blocks per prefetch cluster

from 1.09 in theTIP, no caching case to 1.82. Consequently,TIP needs 5900 fewer I/Os

to prefetch only 2300 fewer blocks. These effects are more dramatic in the 80%- than the

20%- match case because the larger number of inner-relation accesses provides more

opportunities for informed caching and clustering.

The impact on elapsed time is greatest on a single disk where bandwidth is most lim-

ited. As was the case for disk scheduling when prefetching without caching, optimizing

disk performance is most important when the disk is the bottleneck. On ten disks,

informed prefetching alone masks most of the stall for hinted accesses and there is little

room for additional improvement. Nevertheless, the large reduction in the number of I/O

accesses, especially in the 80%-match case, reduces disk-driver CPU overhead and there-

fore reduces CPU time in that case by about 1.5 seconds or a little over 3% on ten disks.

Unfortunately, informed clustering increases the number of prefetched blocks that are

never accessed by about 800 to nearly 8% of the total prefetched in the 80%-match bench-

mark. There are two reasons why so many are ejected before they can be used. First,

because TIP’s local value estimates do not generate a full clustering and caching schedule,

but instead build clusters opportunistically around prefetches that are about to occur, some

blocks may be clustered that cannot be cached until they are accessed. For example, a

prefetch may present the opportunity to cluster a prefetch for access number 2000 in the

hinted access sequence. At a later time, an opportunity to cluster-prefetch for access num-

ber 1000 may arise. If the block for access 2000 is the least valuable, it will be ejected to

cluster-prefetch the block for access 1000. A full schedule could have anticipated this and

avoided cluster-prefetching block 2000 in the first place. Fortunately, cluster-prefetches

are cheap, so the cost of ejecting some cluster-prefetched blocks is small compared to the

benefit of the many successful cluster-prefetches.

The second reason clustered blocks are ejected is a result of a complex interaction

between the hinted cache and the LRU cache. When the loop is split, Postgres must read

the outer relation twice. The first time it reads the relation, it also performs index lookups

which push the outer-relation blocks to the tail of the LRU queue. During this phase of the

computation, there are few hits at the tail of the queue because the outer relation is being
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scanned sequentially, and so the tail of the LRU does not appear to be very valuable.

Then, Postgres delivers thousands of hints for the reads of the inner-relation data blocks.

TIP takes a few buffers from the tail of the LRU queue to begin prefetching these blocks,

and more for clustered reads. As Postgres performs the join, it begins reaccessing the

outer-relation tuples with unhinted reads while consuming some of the hinted inner-rela-

tion data blocks. This hint consumption leads to more prefetching and more informed

clustering. Eventually, prefetched and clustered blocks completely displace the outer-rela-

tion blocks from the tail of the LRU queue. However, as Postgres continues to reaccess the

outer-relation blocks, it scores hits on the ghost buffers at the tail of the LRU. Eventually,

the tail of the LRU queue starts to look valuable and buffers for further prefetching and

clustering come not from the LRU queue, but from the hinted cache which holds blocks

for reuse and blocks that were prefetched as part of a cluster and are waiting to be

accessed for the first time. But, because hinted blocks get put on the LRU queue after the

hinted access occurs, the now-growing LRU queue saves some of these blocks from ejec-

tion. The LRU estimator does not save clustered blocks, however, and many of them are

ejected, even if they will be accessed before a recently consumed hinted block will be

reaccessed. Of course, growing the queue does not restore the data that the ghosts once

held and the larger queue does not gain any additional cache hits. Fortunately, the outer

relation is read sequentially, so heuristic readahead brings its blocks back into the cache

without adding much stall.

This sequence of events highlights a weakness of using the LRU queue as a predictor

of future behavior, especially at the boundary between phases in a computation when the

characteristics of the workload are changing. It suggests that a workload that accesses its

data exactly twice may be the worst-case scenario for the LRU estimator. Initially, there

are no hits and the queue looks useless. Then there are ghost hits, and the queue grows.

But, the data is never re-accessed a third time, so that larger queue does not actually

increase the number of hits.

Despite these difficulties with the LRU estimator, informed caching and clustering

delivers substantial gains for this application, including up to a 31% reduction in elapsed

time. The primary goal of informed caching is to reduce the number of blocks requested

from disk, and the primary goal of informed clustering is to reduce the disk service time
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per block by increasing disk workload sequentiality. Even with the ejection of some clus-

tered prefetch blocks, informed caching inTIP reduces the number of blocks fetched from

disk by 17% compared toTip, no caching for the 80%-match case as shown in Table 6.15.

And, informed clustering reduces the service time per block by 22%. So, not only does

TIP perform fewer accesses, it services each more quickly. Clearly, these performance

benefits far outweigh the cost of ejecting some of the clustered blocks before they are

accessed.

6.3.7 The impact on disk service time

As just discussed in the context of the Postgres benchmark, TIP can improve disk per-

formance through two mechanisms: more effective disk scheduling, and clustering

prefetches. Table 6.15 summarizes the impact of these mechanisms on disk performance

for all of the benchmarks on a single disk. I focus on single-disk performance because, as

noted above, that is where the impact of improvements in disk performance on elapsed

time is greatest.

To help clarify the individual impact of the two mechanisms, I consider the perfor-

mance of three system configurations.TIP, no caching (prefetch depth=0), or simplyTIP,

no caching(0), receives hints but does not use them for prefetching, although it does use

them for clustering sequential accesses and avoiding false readahead. It shows perfor-

mance when disk queues are short. I use it as the base case for comparison instead ofDig-

ital UNIX because it does not suffer from false readahead which can make accesses appear

to be highly sequential, yet it does cluster sequential accesses which Digital UNIX’s

readahead does fairly well. Thus, it represents a sort of idealized base case.TIP, no cach-

ing shows the performance when hints are used to generate deep queues which can pro-

vide disk-scheduling opportunities, but hints are not used for caching or clustering except

within the prefetch horizon. Thus, by comparing its disk performance with theno cach-

ing(0) case, it is possible to see the benefit of more effective disk scheduling that results

from informed prefetching. Finally,TIP uses hints for prefetching, clustering and caching.

Informed caching may reduce the number of blocks requested, but clustering is responsi-

ble for assembling these requests into larger clusters than sequential clustering alone can
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Table 6.15. Summary of disk performance for the benchmarks running on a single disk. This table reports the impact of disk scheduling and request
clustering on disk performance. The statistics were collected in the disk driver while running the benchmarks on three system configurations.TIP, no caching
(prefetch depth = 0) or simplyTIP, no caching(0)is the same configuration used to measure stall as a function of prefetch depth in the performance graphs for each
benchmark with the prefetch depth set to 0. It shows disk performance when there are no deep request queues which can be used for disk scheduling.TIP, no
caching is the familiar configuration that uses hints to prefetching out to the prefetch horizon. Comparison with theno caching(0)case, shows the impact of using
long queues of prefetch requests for disk scheduling. Finally,TIP uses hints for prefetching, clustering and caching. Comparison withTIP, no cachingis an
indication of the impact of using large numbers of hints to cluster widely separated accesses. For each configuration, this table shows: the total time for the disk to
service all accesses (in seconds); the number of distinct disk accesses; the number of 8-KByte blocks requested by those accesses; and the total service time
divided by the number of blocks (in milliseconds).

benchmark

TIP, no caching (prefetch depth = 0) TIP, no caching TIP

total
service

time (sec)
I/Os blocks

service
time per

block (ms)

total
service

time (sec)
I/Os blocks

service
time per

block (ms)

total
service

time (sec)
I/Os blocks

service
time per

block (ms)

Davidson
181.32 15980 125741 1.44 275.18 15993 125822 2.19 137.15 9053 50988 2.69

(0.85) (0) (0) (0.01) (0.27) (3) (3) (0.00) (2.93) (328) (1073) (0.10)

XDataSlice
228.89 14889 45229 5.06 225.78 14893 45236 4.99 225.19 14880 45210 4.98

(0.20) (2) (5) (0.00) (0.11) (0) (0) (0.00) (0.15) (0) (1) (0.00)

Sphinx
103.69 8406 27238 3.81 113.21 8069 27258 4.15 111.09 6815 27164 4.09

(0.36) (13) (37) (0.01) (0.08) (6) (15) (0.00) (0.39) (22) (93) (0.01)

Agrep
27.97 1992 3155 8.87 25.00 1972 3135 7.97 25.02 1980 3143 7.96

(0.13) (6) (6) (0.03) (0.31) (20) (20) (0.05) (0.44) (28) (28) (0.07)

Gnuld
80.70 5621 12669 6.37 78.56 5620 12673 6.20 73.38 5160 12111 6.06

(0.07) (4) (4) (0.00) (0.05) (6) (7) (0.00) (3.55) (310) (387) (0.14)

Postgres,

20% match

69.91 4410 5375 13.01 57.03 4443 5441 10.48 53.88 4146 5261 10.24

(0.30) (17) (17) (0.01) (0.45) (21) (21) (0.05) (0.52) (29) (10) (0.08)

Postgres,

80% match

213.17 13024 14445 14.76 162.43 13052 14516 11.19 104.62 6981 12050 8.69

(2.19) (143) (143) (0.02) (0.44) (15) (15) (0.02) (2.04) (294) (324) (0.32)
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achieve. By comparingTIP’s performance toTIP, no caching, one can see the benefit of

using large numbers of hints to cluster widely separated accesses1.

The first unexpected result is that service time for Davidson is higher when prefetch-

ing in TIP, no caching than it is inTIP, no caching(0). Normally, I would expect the

deeper queues inTIP, no caching to lead to a reduction in service time. Even though this is

not the case here, the elapsed time does go down slightly (not shown). The service time is

misleading in this case because of the disk’s internal readahead. The wallclock time at

which the sequential data requested by Davidson will be available is determined by the

rotation of the disk under the read head. The service time in this case is just a measure of

how far in advance of that time the request for the data is queued at the disk. A similar

effect can be seen to a lesser degree for Sphinx.

The total service time for Davidson goes down substantially inTIP as informed cach-

ing reduces the number of blocks fetched from disk. However, the service time per block

rises. This is because, through a dynamic of the implementation that I do not fully under-

stand, Davidson does not end up with the single range of cached blocks suggested by Fig-

ure 4.7 for repeated sequential access, but instead ends up with one large range and many

small sequential groups caching random blocks in the file2. Filling the gaps between these

groups leads to disk requests that are non-sequential and may be smaller than a full cluster

of 8 blocks. This experience suggests that informed caching might be improved if it were

mindful of clusters when it estimates the cost of ejecting a block. It is cheaper, both in

terms of disk driver overhead and disk access latency, to eject a block that could be

prefetched as part of a cluster than to eject one that would require a separate access. Incor-

porating such cost estimates into the informed caching estimates could be an interesting

area for future research.

1 It must be noted that there is ambiguity in this comparison because informed caching may change
the set of blocks fetched from disk and therefore the sequentiality of the disk workload before clustering.
But, reducing the number of blocks read from disk most likely reduces, not increases the opportunities for
sequential clustering. Thus, any increase in cluster size and reduction in service time per block forTIP com-
pared toTIP, no caching is almost certainly the result of informed clustering. Thus, if this comparison does
not provide definitive evidence, it does provide highly suggestive evidence of the impact of informed cluster-
ing.

2 My hunch is that, periodically, when a batch of buffers is moved from the annex to the LRU
queue, some buffers suddenly become available to cache whatever blocks were last accessed by Davidson.
As the wave of prefetching and MRU replacement moves on, these blocks remain cached.
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XDataSlice takes care to issue its requests in ascending order in the file, so there is lit-

tle opportunity either for disk scheduling or informed clustering for this application.

Sphinx, during its long initialization phase which includes more than 80% of its

accesses, issues requests in ascending order. Many of these requests benefit from sequen-

tial readahead and so, like Davidson, the service time inTIP, no caching is higher than in

TIP, no caching(0). Clustering, even just within the prefetch horizon inTIP, no caching,

reduces the number of disk accesses by 340. Informed clustering inTIP eliminates more

than 1100 more accesses, and, compared toTIP, no caching, reduces service time per

block from 4.15 msec to 4.09 msec. One might expect a larger reduction given the many

random accesses seen in Figure 6.8, but there are two reasons why this is not the case.

First, the large number of nearly sequential accesses during the initialization phase do not

provide much opportunity for substantial improvement and this brings the average down.

Second, during the recognition phase when accesses are more random, hints are given in

small bursts (see Figure 3.6). There is no opportunity to cluster across these bursts so the

clustering opportunity is not as great as it appears. Informed clustering needs hints about

many future accesses to be most effective.

Agrep obtains a 10% reduction in disk service time for disk scheduling because

informed prefetching can sort requests across multiple files. But, because clustering only

happens within files as explained in Section 5.2.2, and because Agrep reads files sequen-

tially, evenTIP, no caching(0), which only clusters for sequential accesses, builds all the

clusters possible and there is no additional benefit from using more hints for informed

clustering.

Gnuld derives a few percent benefit from better request sorting inTIP, no caching

compared toTIP, no caching(0). Gnuld also derives a small additional benefit from clus-

tering a few access from one pass over its input files with accesses to contiguous blocks in

subsequent passes.

Finally, as discussed at length in the previous section, Postgres’ many random reads

benefit most of all the applications from both disk scheduling and informed clustering. In

the 20%-match case, disk scheduling inTIP, no caching reduces the service time per

block by 19% and informed clustering inTIP further reduces it by another couple of per-
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cent. In the 80%-match case, disk scheduling reduces average service time 24% and

informed clustering reduces it by another 22%.

Overall, most of the benchmark applications were able to organize their file requests

into ascending order to start with. Consequently, for most of the benchmarks, gains from

both scheduling and informed clustering are only a few percent. However, when applica-

tions perform reads that are scattered randomly as is the case for Postgres, disk scheduling

can reduce average disk service time by up to 24%. Further, if applications can provide

hints about many accesses, as Postgres can, informed clustering can provide up to a 22%

reduction in service time.

6.4 Multiple-process results

Multiprogramming I/O-intensive applications does not generally lead to efficient use

of resources because these programs eject each other’s blocks from the cache and inter-

pose disk accesses which disturbs each other’s disk access sequentiality. However, it is

inevitable that I/O-intensive programs will be multiprogrammed. In this section, I present

the implications of informed prefetching and caching on multiprogrammed I/O-intensive

applications.

When multiple applications are running concurrently, the informed prefetching and

caching system should exhibit three basic properties. First and foremost, hints should

increase overall throughput. Second, an application that gives hints should improve its

own performance. Third, non-hinting applications should not suffer unfairly when a com-

peting application gives hints. This last is a bit vague; what does it mean not to suffer

unfairly?

In my view, it does not mean that a non-hinter should not suffer at all when another

application hints. All applications suffer when forced to share a machine and the extent to

which they suffer depends on how the other applications use the machine. Without hints,

an I/O-intensive application may be blocked on the disk so often that it interferes little

with a CPU-intensive application. When the I/O-intensive application gives hints, it may

stall less on the disk, use more of the CPU, and slow down the CPU-intensive application.

But, the same thing would have happened if the CPU-intensive application had been

forced to share the machine with another CPU-intensive application in the first place.
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When an application gives hints, it changes the way it uses a machine’s resources, but that

does not mean it uses them unfairly.

The previous argument only asserts slowing down a competing application is not nec-

essarily unfair; it does not define fairness. Fairness is a deep issue, especially when multi-

ple resources are involved and a ‘fair’ allocation of the disk, for example, may lead to an

‘unfair’ allocation of the CPU. I do not attempt here to find answers to these hard ques-

tions. For the purposes of this dissertation, I take it to be fair for an application to suffer so

long as overall throughput increases. That is, it would be unfair for an application to suffer

so much that overall throughput suffers. From this perspective, the third desired property

listed above is really just another facet of the first property: that hints should increase

overall throughput. The cost-benefit model attempts to reduce the sum of the I/O overhead

and stall time for all executing applications, and thus, I expect the resource management

algorithms to benefit multiprogrammed workloads and have the desired properties.

To explore how well TIP meets these performance expectations, I report three pairs of

application executions: Gnuld/Agrep, Sphinx/Davidson, and XDataSlice/Postgres. Here,

Postgres performs the join with 80% matches and precomputes its data accesses even

when it does not give hints. For each pair of applications, I ran all four hinting and non-

hinting combinations on TIP starting the two applications simultaneously with a cold

cache and measuring the elapsed time of each. Figures 6.18 through 6.20 show the results

for Gnuld/Agrep, and Figures 6.21 through 6.23 show the results for Sphinx/Davidson and

XDataSlice/Postgres.

In both sets of figures, the upper graphs (Figures 6.18 and 6.21) show the impact of

hints on throughput for the three pairs of applications. Tables 6.16 through 6.18 present

these same results in tabular format. I report the time until both applications complete,

broken down by total CPU time and simultaneous stall time during which the CPU is idle.

In all cases, the maximum elapsed time decreases when one application gives hints, and

decreases further still when both applications give hints. Simultaneous I/O stall time is

virtually eliminated for two out of the three pairs when both applications give hints and

the parallelism of 10 disks is available.

The middle and lower graphs in the two sets of figures show the elapsed time for indi-

vidual applications when paired with another application (whose name is in parentheses).
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Figure 6.18. Elapsed time for both Gnuld and Agrep
to complete. The pair of workloads are run concurrently
on TIP and the elapsed time of the last to complete is
reported along with the total CPU busy time. For each
number of disks, four bars are shown. These represent
the four hint/nohint combinations. For example, the
second bar from the left in any quartet of bars is Gnuld
hinting and Agrep not hinting.

Figure 6.19. Elapsed time for Gnuld when run with
Agrep. These figures report data taken from the same
runs onTIP as reported in Figure 6.18. However, the
elapsed time shown represents only Gnuld’s execution.
The hint/nohint combinations are identical to Figure
6.18. Compare bars one and two or three and four to see
the impact of giving hints when Agrep is respectively
non-hinting or hinting. Compare bars one and three or
two and four to see the impact of Agrep giving hints.

Figure 6.20. Elapsed time for Agrep when run with
Gnuld. These figures report data from the same set of
runs as reported in Figures 6.18 and 6.19. However, the
inner two bars are swapped relative to the inner two bars
of the other figures. For example, the second bar from
the left in any quartet is Gnuld not hinting and Agrep
hinting. Compare bars one and two or three and four to
see the impact of giving hints when Gnuld is
respectively non-hinting or hinting. Compare bars one
and three or two and four to see the impact of Gnuld
giving hints.
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(a) Sphinx and Davidson

(a) Sphinx (with Davidson)

(a) Davidson (with Sphinx)

Figure 6.21. Elapsed time for both applications to compete.In a format identical to that of Figure 6.18,
this figure shows the elapsed time for both of a pair of applications to complete. Results for Sphinx and
Davidson running together are on the left, results for XDataSlice and Postgres, 80% match are on the right.

Figure 6.22. Elapsed time for one of a pair of applications. These figures report data taken from the same
runs as reported in Figure 6.21. However, in a format identical to that of Figure 6.19, the times shown are for
only one of a pair of applications running. Sphinx is on the left and XDataSlice is on the right.

Figure 6.23. Elapsed time for the other of a pair of applications.These figures report data from the same
runs as Figures 6.21 and 6.22. However, the inner two bars of each quartet are swapped relative to the inner
two bars of the other figures. Thus, in a format identical to Figure 6.20, they report the time for the other of a
pair of applications. Davidson is on the left and Postgres, 80% match is on the right.

(b) XDataSlice and Postgres,80% match

(b) XDataSlice (with Postgres, 80% match)

(b) Postgres, 80% match with XDataSlice
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Table 6.16. Elapsed time for both Gnuld and Agrep to complete. This table gives the complete data for
Figure 6.18.

Table 6.17. Elapsed time for both Sphinx and Davidson to complete.The data in this table corresponds to
the left-hand graph in Figure 6.21.

Table 6.18. Elapsed time for both XDataSlice and Postgres, 80% match, to complete. This is the
complete data for the right-hand graph in Figure 6.21.

Gnuld - Agrep
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
14.72 154.96 14.61 117.86 14.61 106.40 14.52 103.52 14.42 92.27

(0.14) (7.46) (0.03) (2.83) (0.23) (2.56) (0.16) (1.29) (0.09) (0.69)

hint - no hint
13.52 108.99 12.72 58.85 12.75 46.19 12.76 39.35 12.62 27.41

(0.22) (3.75) (0.14) (1.49) (0.14) (0.83) (0.10) (1.11) (0.04) (0.60)

no hint - hint
14.54 125.77 14.37 102.46 14.37 94.47 14.43 92.41 14.39 86.12

(0.16) (0.21) (0.04) (1.70) (0.07) (0.49) (0.22) (1.76) (0.06) (2.58)

hint - hint
14.30 94.22 14.23 49.64 14.19 36.92 14.22 31.79 14.42 20.50

(0.23) (2.54) (0.16) (0.48) (0.07) (0.77) (0.08) (0.15) (0.16) (0.33)

Sphinx -
Davidson

1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
263.11 268.61 265.03 154.08 270.54 88.48 296.91 85.72 272.74 58.27

(1.25) (1.43) (0.52) (1.65) (0.67) (1.40) (22.8) (9.27) (1.54) (0.38)

hint - no hint
267.37 235.56 270.34 93.01 278.48 23.62 278.17 26.42 279.69 10.38

(0.52) (1.34) (1.45) (3.33) (1.46) (1.13) (1.04) (1.43) (1.37) (0.36)

no hint - hint
263.03 172.55 265.32 105.52 267.98 62.25 269.69 66.02 268.56 50.49

(0.94) (6.14) (0.86) (10.4) (2.61) (3.18) (4.98) (1.56) (0.67) (1.08)

hint - hint
268.70 125.76 270.06 44.20 282.23 16.28 272.97 17.21 273.21 8.73

(1.16) (2.66) (0.69) (1.39) (18.3) (2.10) (1.52) (0.27) (1.85) (0.13)

XDataSlice -
Postgres, 80%

1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
97.62 1005.1 95.74 616.98 94.65 466.93 95.18 458.29 95.84 347.98

(0.89) (2.12) (0.39) (4.39) (0.77) (1.99) (0.73) (2.70) (1.36) (5.05)

hint - no hint
86.03 642.12 82.76 356.67 82.37 270.33 83.23 265.44 82.88 182.24

(0.79) (3.32) (1.01) (1.28) (0.37) (1.43) (1.91) (8.15) (0.27) (4.26)

no hint - hint
92.21 587.22 91.14 396.06 92.32 328.67 89.90 316.84 100.19 256.40

(0.95) (12.6) (0.34) (2.93) (0.41) (3.07) (1.31) (14.1) (8.61) (4.65)

hint - hint
84.34 487.52 82.16 195.33 81.10 112.36 81.46 100.81 81.91 36.45

(0.72) (3.98) (1.40) (2.04) (0.68) (1.10) (0.50) (6.70) (0.47) (5.15)
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Although vertical columns of graphs in the figures correspond to the same test runs, the

middle two bars in any quartet of the lower figures (Figures 6.20 and 6.23) are swapped

relative to the middle two bars in the corresponding quartets of the middle and upper

graphs. So, for example, in Figures 6.18 and 6.19, ‘hint-nohint’ means Gnuld hints while

Agrep does not, whereas in Figure 6.20 ‘hint-nohint’ means Agrep hints while Gnuld does

not. Tables 6.19 through 6.24 show the prefetching and caching performance for the indi-

vidual applications in each pair of experiments.

A traditional goal of multiprogramming is to increase CPU utilization. These results

show that multiprogramming I/O-intensive workloads has the opposite effect when appli-

cations must share a single disk. For example, running Gnuld and Agrep together instead

of serially on a single disk reduces CPU utilization by 21% from 11% to 8.7% because the

pair of applications uses the disk much less efficiently than do either of the applications

when running alone. Both applications read multiple files from any one directory. Because

Digital UNIX’s UFS file system tries to store individual files sequentially on the disk and

to store multiple files from the same directory near each other on the disk surface, the disk

workloads of both Gnuld and Agrep utilize the disk read head efficiently or, in the termi-

nology of Chapter 2, have high sequentiality. But, because they read from different direc-

tories, when the applications are run together on a single disk, their accesses are

interleaved and the workload sequentiality is greatly reduced. This increases average disk

service time from 6.9 msec to 9.3 msec. Because the single disk is the bottleneck, this

increase in service time leads to an increase in elapsed time and the reduction in CPU uti-

lization noted above.

Sharing a single disk between XDataSlice and Postgres reduces disk workload sequen-

tiality just as it did for Gnuld and Agrep. The problem is particularly acute for

XDataSlice’s many false readaheads. When running alone, the false readaheads are at

least sequential. But, when interleaved with Postgres’ accesses, these readaheads require a

long expensive seek. Further exacerbating the problem is that when Postgres must share

the cache with XDataSlice, its reuse hits drop from about 20,000 to about 10,000 as seen

in the ‘no hint - no hint,’ single-disk row of Table 6.24. This reduction in cache effective-

ness translates into an increase in disk load. Together these effects reduce CPU utilization

by 41% from 15% to 8.9%.
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Table 6.19. Gnuld prefetching and caching performance when run with Agrep. This table shows results
for the Gnuld runs in Figure 6.19 on arrays of one and ten disks. The shaded rows correspond to the shaded
rows in Table 6.20 below.

Table 6.20. Agrep prefetching and caching performance when run with Gnuld. This table shows results
for the Agrep runs in Figure 6.20 on arrays of one and ten disks. Just as the middle two bars were reversed in
that figure, so the middle pairs of rows are reversed relative to Table 6.19 above.

Gnuld
(with

Agrep)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
23197 766 5747 2673 11563 4593 7040 5246

(13.7) (13.7) (613) (317) (14.6) (106) (104) (96.0)

10
23201 770 5728 2633 11581 4565 7054 5210

(7.55) (7.55) (634) (319) (16.4) (103) (92.3) (89.3)

hint -

no hint

1
23286 854 10427 4302 12709 10296 280 240

(7.55) (7.55) (199) (80.2) (168) (173) (6.57) (1.82)

10
23296 864 10310 4189 12847 10174 274 235

(6.17) (6.17) (151) (116) (84.9) (82.5) (6.87) (3.31)

no hint -

hint

1
23201 770 5512 2549 11608 4557 7036 5240

(12.3) (12.3) (6.96) (3.19) (15.6) (5.14) (6.99) (5.18)

10
23273 842 5496 2515 11667 4538 7068 5216

(18.5) (18.5) (8.92) (4.70) (16.1) (8.00) (9.80) (10.0)

hint -

hint

1
23253 821 10499 4331 12534 10447 271 240

(45.3) (45.3) (276) (197) (201) (206) (5.55) (3.11)

10
23248 816 10451 4145 12587 10399 261 231

(11.5) (11.5) (123) (73.0) (84.1) (83.7) (12.7) (5.86)

Agrep
(with

Gnuld)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
3041 113 1020 573 96 1013 1932 1926

(0.00) (0.00) (367) (268) (0.00) (367) (367) (367)

10
3043 115 1019 513 98 1012 1932 1926

(6.17) (6.17) (367) (257) (5.94) (367) (367) (367)

hint -

no hint

1
3036 108 2932 1764 94 2929 13 6

(12.3) (12.3) (5.29) (1.74) (6.50) (5.14) (7.55) (3.08)

10
3050 122 2931 1600 104 2927 18 8

(6.17) (6.17) (0.00) (0.00) (5.65) (0.00) (0.51) (0.51)

no hint -

hint

1
3037 109 868 465 98 860 2078 2077

(0.00) (0.00) (8.74) (7.71) (0.00) (8.74) (8.74) (8.74)

10
3037 109 863 406 98 855 2084 2083

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

hint -

hint

1
3036 108 2930 1763 93 2927 15 6

(12.3) (12.3) (0.51) (0.51) (6.17) (0.00) (6.17) (3.08)

10
3041 113 2931 1600 96 2928 16 7

(0.00) (0.00) (1.03) (0.00) (1.54) (3.08) (4.63) (2.06)
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Table 6.21. Sphinx prefetching and caching performance when run with Davidson. This table shows
results for the Sphinx runs in Figure 6.22a on arrays of one and ten disks. The shaded rows correspond to the
shaded rows in Table 6.22 below.

Table 6.22. Davidson prefetching and caching performance when run with Sphinx. This table shows
results for the Davidson runs in Figure 6.23a on arrays of one and ten disks. Just as the middle two bars were
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.21 above.

Sphinx
(with

Davidson)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
78745 1010 21260 4384 50800 17702 10243 4765

(16.6) (16.3) (31.4) (8.84) (160) (27.0) (165) (53.6)

10
78874 1142 21315 4359 50417 17704 10752 4982

(15.1) (15.1) (24.9) (10.8) (43.7) (40.8) (21.7) (17.4)

hint -

no hint

1
78630 1127 27256 6936 51175 26476 978 890

(25.5) (25.5) (28.5) (94.9) (37.0) (120) (125) (126)

10
78596 1093 28090 6955 50331 27521 744 666

(22.6) (22.6) (41.8) (73.6) (50.6) (94.6) (89.1) (88.0)

no hint -

hint

1
78874 1142 21294 4413 50603 17692 10578 4909

(89.6) (89.6) (40.0) (11.2) (67.7) (30.3) (56.8) (32.2)

10
78889 1157 21366 4382 50172 17629 11087 5189

(14.8) (14.8) (53.7) (10.2) (58.7) (56.0) (63.4) (50.9)

hint -

hint

1
78562 1059 27898 6931 50481 27386 694 609

(68.9) (68.9) (108) (93.1) (81.8) (162) (124) (122)

10
78595 1092 28321 7025 50165 27671 758 680

(21.2) (21.2) (106) (72.2) (120) (149) (54.6) (58.2)

Davidson
(with

Sphinx)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
147029 1128 124859 15977 21368 124828 832 254

(0.63) (0.00) (5.65) (1.03) (0.63) (4.63) (4.63) (3.08)

10
147563 1663 124859 16083 21796 124797 970 336

(93.1) (93.1) (14.1) (7.55) (74.7) (12.2) (9.06) (6.24)

hint -

no hint

1
147397 1495 64212 10185 83115 64073 208 136

(2.86) (1.99) (537) (232) (526) (532) (28.3) (29.4)

10
147446 1544 61913 10146 85442 61794 209 166

(172) (172) (845) (488) (1010) (852) (115) (115)

no hint -

hint

1
147330 1430 124964 16017 21566 124897 867 277

(72.7) (72.5) (27.4) (10.0) (66.5) (15.7) (8.43) (3.49)

10
147568 1668 124862 16085 21799 124796 972 336

(87.9) (87.9) (16.6) (6.21) (74.1) (12.6) (4.03) (3.00)

hint -

hint

1
147299 1397 61536 9770 85698 61414 187 137

(153. (153) (1990) (90.3) (1890) (1950) (40.8) (30.7)

10
147527 1625 60224 9576 87220 60143 163 118

(142) (142) (571) (362) (627) (586) (6.83) (7.24)
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Table 6.23. XDataSlice prefetching and caching performance when run with Postgres, 80% match.
This table shows results for the XDataSlice runs in Figure 6.22b on arrays of one and ten disks. The shaded
rows correspond to the shaded rows in Table 6.24 below.

Table 6.24. Postgres, 80% match, prefetching and caching performance when run with XDataSlice.
This table shows selected results for the Postgres runs in Figure 6.23b. Just as the middle two bars were
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.23 above.

XDataSlice
(with

Postgres)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
48467 2105 60815 22722 2836 25417 20213 20160

(41.6) (41.6) (10.3) (2.97) (32.9) (8.26) (6.97) (3.15)

10
48322 1961 60873 22691 2705 25412 20205 20155

(326) (326) (53.8) (19.6) (290) (38.2) (25.0) (16.9)

hint -

no hint

1
48253 1892 45287 14862 2794 45272 186 142

(82.3) (82.3) (32.9) (15.7) (50.9) (31.3) (14.2) (11.9)

10
48191 1830 44965 14905 3061 44951 179 136

(48.3) (48.3) (19.8) (14.5) (42.2) (18.9) (2.44) (2.38)

no hint -

hint

1
48770 2409 60860 22738 3068 25460 20241 20178

(204) (204) (46.7) (18.1) (155) (29.9) (20.1) (14.2)

10
48598 2228 60937 22715 2889 25465 20243 20181

(37.3) (38.0) (31.6) (10.5) (65.2) (22.9) (8.85) (7.06)

hint -

hint

1
48251 1890 45323 14878 2758 45309 184 140

(54.3) (54.3) (45.6) (13.2) (48.0) (43.7) (12.3) (10.3)

10
48211 1850 44986 14909 3057 44973 180 137

(40.7) (40.7) (11.4) (21.3) (37.9) (12.2) (4.81) (4.19)

Postgres
(with

XDataSlice)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
33697 2430 1173 253 10440 369 22887 22791

(44.6) (44.2) (14.9) (9.36) (87.6) (9.81) (88.1) (86.4)

10
33702 2435 1308 271 10140 429 23132 23039

(29.0) (30.7) (10.8) (7.68) (385) (26.9) (404) (403)

hint -

no hint

1
33719 2449 10072 6139 17018 9305 7395 7299

(8.11) (6.17) (157) (98.3) (344) (97.7) (247) (246)

10
33654 2384 11019 6206 15082 9772 8800 8721

(105) (106) (751) (573) (738) (560) (470) (468)

no hint -

hint

1
33750 2475 1133 248 12582 421 20747 20647

(7.33) (7.55) (1.74) (1.26) (121) (5.83) (115) (115)

10
33732 2457 1172 244 18168 679 14885 14786

(52.3) (52.8) (6.05) (3.51) (341) (4.22) (360) (367)

hint -

hint

1
33727 2449 10117 6010 15207 9261 9258 9156

(21.3) (22.6) (84.3) (339) (192) (153) (100) (97.7)

10
33764 2486 10619 5616 21298 9040 3425 3334

(39.7) (38.2) (283) (200) (407) (107) (414) (424)
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Sphinx and Davidson are well-behaved when they run together on a single disk and

CPU utilization is unchanged. Neither of them use much cache when not hinting, so shar-

ing the cache does not cause extra misses. And, both of them do a fair number of multi-

block sequential accesses which get clustered into large disk accesses. These large

accesses are fairly efficient so that interleaving them only increases aggregate disk service

time by 7%. The two applications do enough computation for multiprogramming to mask

most of this modest increase in disk service time, and CPU utilization remains roughly

constant at about 50%.

In contrast to the single-disk performance, multiprogramming on disk arrays can not

only increase processor utilization, but also expose I/O concurrency. Qualitative examina-

tion of the ‘no hint - no hint’ bars in the graphs shows that, in contrast to single-applica-

tion performance, larger arrays reduce elapsed time for multiprogrammed, I/O-intensive

applications. Quantitatively, on a three-disk array and for all three pairs of applications,

the CPU utilization when multiprogramming is within 5% of the utilization when execut-

ing the applications serially. A ten-disk array turns Gnuld/Agrep’s 21% reduction in CPU

utilization into a 17% increase and XDataSlice/Postgres’ 41% reduction into a 21%

increase. In an age when processor cost is declining rapidly, the greater CPU utilization

when multiprogramming these applications compared to their serial execution is not a

compelling argument for multiprogramming. However, for a machine that is multipro-

grammed, these results do provide compelling evidence of the benefit of using a disk

array.

The real goal of these experiments, though, is to understand how informed prefetching

and caching behaves in a multiprogrammed environment. To see the impact of giving

hints on an individual application’s elapsed time when a second non-hinting application is

run concurrently, compare bars one and two in Figures 6.19/6.20 and 6.22/6.23. Compare

bars three and four to see the impact when the second application is giving hints.

In most cases, giving hints substantially reduces an application’s elapsed time. In fact,

the reductions on one disk are generally greater than when the applications are running by

themselves. By queuing multiple requests, prefetching allows better request scheduling

which compensates for the loss of disk workload sequentiality that results when the

accesses of two applications are interleaved. An exception is Davidson when running with



170 CHAPTER 6

Sphinx as shown on the left in Figure 6.23. Without hints, Davidson’s aggressive non-

hinting readahead lets it monopolize a single disk and Sphinx spends a lot of time waiting

for Davidson’s accesses to complete. When Davidson gives hints, informed caching

increases reuse hits which reduces the load on the disk and Sphinx’s I/Os complete more

quickly leading Sphinx to demand more of the CPU. This reduces the benefit Davidson

sees from its hints when it is multiprogrammed with Sphinx. Effectively, Davidson ends

up sharing some of the benefit of its hinting with Sphinx.

This brings us to the effect of hints on other applications running in the system. To see

the impact on a non-hinting application of another application giving hints, compare the

first and third bars in Figures 6.22 and 6.23. Comparing the second to fourth bars shows

the impact on a hinting application. As described above, and is clear from Figure 6.22,

Sphinx derives substantial benefit from Davidson’s hints. On the other hand, when Sphinx

hints, it is able to compete more effectively against Davidson’s readaheads. Davidson no

longer dominates resource usage and consequently Davidson slows down when Sphinx

hints. A reverse effect befalls Agrep when Gnuld hints. In that case, when Gnuld hints, it

becomes an aggressive user of disk resources which delays Agrep. But, in most cases, the

non-hinting application benefits from the hinter’s more efficient usage of resources which

leaves more resources for the non-hinter. Non-hinters may also benefit simply because the

hinter completes more quickly and relinquishes resources. Postgres, for example, benefits

when XDataSlice completes and leaves it the cache buffers for its index lookups as is evi-

dent from the large number of reuse hints in the last two 10-disk rows of Table 6.24 which

show performance when XDataSlice is hinting.

Stepping back from the details of the dynamics of these pairs of applications, the over-

all conclusion is that when one application hints, throughput increases. And when the sec-

ond application also hints, throughput increases further. When an application hints, it may

become a more aggressive consumer of system resources at the expense of competing

applications. However, as the analysis of the performance when neither application hints

showed, applications suffer when they must share resources, and how much they suffer

depends on which other application they must share with. But, because the TIP informed

prefetching and caching system allocates resources to reduce overall I/O service time, it

only takes a resource from one application and allocates it to another if the second applica-
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tion will make better use of the resource. The first application may suffer, but overall

throughput increases. As these experiments show, TIP does take advantage of hints to

reduce I/O service time and improve overall performance. Thus, TIP achieves its stated

goals: for a single application, TIP reduces elapsed time; and when multiprogramming

multiple applications, TIP increases throughput.

6.5 Lessons from prefetching and caching experiments

In this section, I distill the experience gained from the experiments into a number of

general lessons about informed prefetching and caching and about the performance of I/O-

intensive applications.

1. Serial workloads need prefetching to take advantage of array parallelism. This

insight was one of the original motivations for this work. It is important enough to

restate here and observe that, without informed prefetching, five of the six bench-

mark applications studied in this dissertation derive little benefit from even a ten-

disk array as shown way back in Figure 2.2. Sequential readahead is able to take

advantage of parallel transfer from an array for Davidson’s large sequential accesses.

But, without some form of effective prefetching, disk arrays do not significantly

reduce elapsed time for applications with serial workloads.

2. Informed prefetching obtains its greatest performance gains from prefetching in par-

allel, not from overlapping I/O and CPU. Prefetching is most commonly thought of

as a technique for overlapping I/O and CPU. But, by far the greatest reduction in

elapsed time comes when TIP takes advantage of an array to prefetch in parallel for a

serial workload. From Table 6.25, prefetching to overlap I/O and computation for

these benchmarks (TIP, no caching on one disk) reduces elapsed time by up to 28%

or an average of 17%. But, prefetching in parallel from a ten-disk array (TIP, no

caching on ten disks) reduces elapsed time by up to 84% or an average of 63%. This

latter performance gain is well in excess of the 50% maximum possible gain for

overlapping I/O and computation which was described in Figure 2.3.

3. Informed caching can increase cache effectiveness. When applications repeatedly

access more unique blocks than fit in the cache, informed caching can increase the
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number of reuse hits and reduce dependence on the disk. When coupled with

informed clustering inTIP, informed caching reduces elapsed time by up to 36% or

an average of 13% compared toTIP, no caching on a single disk where informed

prefetching is least effective.

4. Informed prefetching enables more effective disk scheduling that increases workload

sequentiality when accesses are not already in ascending block-address order.

Informed prefetching uses hints to build larger disk queues which provides more

opportunity for disk scheduling to sort requests and reduce average disk service time

per block by up to 24%. But, sorting requests into ascending block-address order

with the CSCAN algorithm only increases sequentiality if the requests are not

already in ascending order. Many of the benchmarks do not perform sequential

accesses, but do issue requests in ascending order and do not benefit significantly

from more effective disk scheduling. However, when any of the benchmarks are

multiprogrammed, the aggregate workload of the interleaved accesses is not in

ascending order and disk scheduling can increase disk performance.

5. Informed clustering can substantially reduce disk service time for random accesses.

Clustering sequential reads can reduce the CPU overhead servicing disk accesses,

but because most modern disks perform their own sequential readahead, clustering

Table 6.25. Performance summary for all the benchmarks. This table shows, for each benchmark and
each array size, the elapsed time forTIP, no caching andTIP as a fraction of the elapsed time forTIP, no
hints on the same array size. I useTIP, no hints instead ofDigital UNIX as the base case to eliminate factors
such as the LRU annex and focus instead on the impact of prefetching, caching, and clustering. The averages
in the last row are the geometric mean of the numbers in each column.

benchmark
1 disk 2 disks 3 disks 4 disks 10 disks

TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP

Davidson 0.99 0.63 0.98 0.81 0.97 0.88 0.96 0.88 0.90 0.83

XDataSlice 0.74 0.73 0.47 0.47 0.35 0.35 0.30 0.30 0.18 0.18

Sphinx 0.93 0.93 0.83 0.83 0.79 0.80 0.79 0.79 0.77 0.78

Agrep 0.83 0.83 0.48 0.49 0.37 0.37 0.28 0.28 0.16 0.16

Gnuld 0.81 0.76 0.50 0.46 0.41 0.38 0.35 0.34 0.26 0.26

Postgres, 20% 0.81 0.77 0.61 0.59 0.56 0.54 0.54 0.52 0.53 0.51

Postgres, 80% 0.72 0.50 0.46 0.35 0.38 0.32 0.35 0.31 0.33 0.31

geom. mean 0.83 0.72 0.59 0.55 0.51 0.48 0.46 0.44 0.37 0.36
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does not deliver sequential data any sooner. But, when clustering turns many random

requests into fewer, larger ones, clustering increases disk workload sequentiality

which, as seen in the Postgres benchmarks, can reduce disk service time by up to

22%.

6. Informed clustering can increase the number of blocks transferred from disk.

Informed clustering only fetches blocks that are valuable enough to cache at the time

they are fetched. But, value estimates are dynamic and better uses of the buffers

holding cluster-prefetch blocks may arise, including the opportunity to cluster-

prefetch for an access that will occur sooner. Any ejected cluster-prefetch blocks will

have to be fetched from disk a second time, increasing the total blocks transferred

from disk. In none of the experiments did this effect lead to a net increase in elapsed

time because clustering accesses decreases per-block service time more than enough

to offset the cost of refetching some ejected clustered-prefetch blocks.

7. Cache replacement decisions affect disk workload sequentiality. Ejecting a hinted

block implies a subsequent prefetch of the block. If the ejected block is contiguous

to another uncached, hinted block, it may be possible to prefetch both in a single

cluster. On the other hand, if the ejected block is not contiguous to any other hinted

block, prefetching it will require a separate disk access. Clearly, the sequentiality of

these prefetches is greater in the former case. Developing ejection cost estimates that

are sensitive to the difference in cost between clustered prefetch and non-clustered

prefetches would be an interesting area of future research.

8. Optimizing disk performance is most beneficial on a single disk. More effective disk

scheduling and request clustering which both increase workload sequentiality and

therefore disk read-channel utilization only have a significant impact on elapsed time

when the disk is the bottleneck on system performance. The disk bottleneck is most

acute on a one-disk array and so that is where these techniques are most beneficial.

When the disk is not the bottleneck, improvements in disk performance do not help

improve the performance of whatever other system component is the bottleneck and

so have a much smaller impact on overall performance.
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9. Informed prefetching from an array can compensate for poor workload sequential-

ity. This is the dual of the previous rule. The cheapest way to obtain high I/O

throughput is with sequential accesses to a small number of disks. A single modern

disk drive can deliver about 10 MBytes/sec for a purely sequential workload. But,

when forced to perform random 8-KByte accesses, its throughput drops to about 1

MByte/sec. Informed prefetching can take advantage of an array of ten disks to

deliver 10 MBytes/sec despite poor workload sequentiality. It is still cheaper to

obtain needed throughput with sequential accesses, but when sequential accesses are

difficult or impossible to generate, informed prefetching from an array provides an

alternative strategy that can compensate for poor access sequentiality and deliver the

needed storage bandwidth.

10.Multiprogramming I/O-intensive workloads on one disk reduces throughput. When

the limited bandwidth of a single disk is the bottleneck in a system, maximizing uti-

lization of the disk maximizes system throughput. Interleaving accesses from multi-

ple I/O-intensive applications, in general, reduces the sequentiality of the aggregate

disk workload which reduces disk-head utilization and therefore disk throughput.

This loss of disk throughput reduces system throughput by as much as 41% com-

pared to serial execution of the applications. Informed prefetching mitigates this

effect through improved disk scheduling, but system throughput still drops.

11.Multiprogramming increases I/O concurrency and therefore the throughput of a disk

array. I already noted above that individual applications with serial disk workloads

cannot exploit array parallelism. Multiprogramming such applications can generate

I/O concurrency which increases array throughput. But, if the array is too small,

interleaving accesses reduces the throughput of the individual disks which can

negate the increase in throughput from I/O concurrency. In the two-application

experiments, the break-even point was at about three disks; multiprogramming two

applications on four or more disks increases throughput relative to serial execution.

In contrast to informed prefetching which increases I/O concurrency and reduces

elapsed time for individual applications, multiprogramming only increases aggregate
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I/O concurrency which increases system throughput but does not reduce elapsed

time for individual applications.

12.On a single disk, informed prefetching and caching are even more beneficial when

multiprogramming than when executing applications serially.Table 6.26 summa-

rizes the results of the multiprogramming experiments. When both of a pair of

benchmarks give hints,TIP reduces elapsed time by an average of 37% compared to

28% when the benchmarks run alone. Managing the disk and cache well is even

more important when multiprogramming is reducing the effectiveness of their use.

13. Informed prefetching can derive a large benefit from even a small number of out-

standing hints.Because prefetching out to the prefetch horizon effectively eliminates

stall for hinted accesses when an array is available, it follows that informed prefetch-

ing does not require hints beyond the prefetch horizon. In fact, as can be seen from

the graphs showing stall time as a function of prefetch depth, large reductions in stall

are possible at prefetch depths much smaller than the prefetch horizon. It is impor-

tant that applications disclose multiple accesses at once, but it is not necessary to dis-

close thousands at once. Nevertheless, I do not recommend that programmers tune

their hint-giving to the prefetch horizon. Giving as many hints as possible will help

ensure that there are enough hints for future machines with larger prefetch horizons.

Table 6.26. Performance summary for the multiprogramming experiments. This table shows, for each
array size, the elapsed time until both benchmarks complete when one of a pair and when both give hints as
a fraction the elapsed time when neither gives hints. In the1 hinter columns, the hinter is the benchmark that
appears on the same row as the ratio. Theaverage row gives the geometric average of each column.

benchmark
1 disk 2 disks 3 disks 4 disks 10 disks

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

Gnuld with

Agrep

0.72
0.64

0.54
0.48

0.49
0.42

0.44
0.39

0.38
0.33

0.83 0.88 0.90 0.91 0.94

Sphinx with

Davidson

0.95
0.74

0.87
0.75

0.84
0.83

0.80
0.76

0.88
0.85

0.82 0.88 0.92 0.88 0.96

XDataSlice with

Postgres, 80%

0.66
0.52

0.62
0.39

0.63
0.34

0.63
0.33

0.60
0.27

0.62 0.68 0.75 0.73 0.80

geom. mean 0.76 0.63 0.73 0.52 0.74 0.49 0.71 0.46 0.73 0.42
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Furthermore, deep hints are beneficial for informed clustering and caching, as noted

below.

14.To be useful, hints do not need to be given far in advance if they are given in batches

and an array is available.Hints given far in advance are useful for overlapping I/O

with computation. But, achieving the much larger performance gains of parallel

prefetching requires multiple outstanding hints at a time but not much advance

notice. XDataSlice, for example, discloses its hints and immediately starts reading

data, but still derives a huge benefit from I/O parallelism.

15.Deep hints are needed for informed clustering and caching. Informed clustering can

merge widely separated accesses into one. Informed caching can hold onto blocks

for hundreds or thousands of accesses. But, clustering and caching thousands of

accesses in advance requires hints for thousands of accesses. The more accesses dis-

closed, the greater the opportunity for clustering and caching. Because these optimi-

zations are most important on a single disk or small arrays, it follows that deep hints

are most important there as well.

16.Heuristic prefetching needs to be more adaptive than existing readahead strategies.

Digital UNIX has an adaptive sequential readahead strategy that scales its depth of

prefetching in proportion to the number of blocks read sequentially. This strategy

works well for Davidson’s sequential workload, but hurts performance when appli-

cations such as XDataSlice and Gnuld read a few blocks sequentially and then seek

to a new offset. The readahead strategy could possibly reduce the number of these

harmful, false readaheads if it monitored the success of its prefetches and adapted its

aggressiveness accordingly.

17.The LRU queue is an imperfect predictor of future behavior. The LRU algorithm is

the most common heuristic for determining which blocks to cache and which to

eject. Yet, it is an imperfect estimator for the value of caching blocks for unhinted

accesses that is especially vulnerable to phase transitions. Postgres, for example,

grows the LRU queue in fruitless attempt to achieve cache hits on the already ejected
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outer-relation blocks. Its twice-accessed workload is particularly bad for LRU esti-

mation.

18.Pathologically unbalanced disk loads exist. Striping effectively balances the load for

most of the applications, but XDataSlice demonstrates that simple striping is not a

universal solution. Randomized striping could help balance the load within a single

device, but there will inevitably be imbalances among devices. Ideally, prefetching

and caching should be sensitive to such imbalances and adapt accordingly. Recent

work has shown how this can be done [Kimbrel96, Tomkins97].

6.6 System overhead

TIP’s cost-benefit cache management adds both CPU and memory overheads to the

system. In this section, I quantify these overheads.

To measure the CPU overheads of the different components of the system, I added

hand-coded trace points to the entry and exit of selected functions and collected traces of

five runs of each of the benchmark applications. I post-processed the traces to determine

how much time was spent in the different components of the system.

6.6.1 Tracing infrastructure

Each trace record contains 8 bytes. The time stamp, occupying 4 bytes, is the current

value of the Digital Alpha processor cycle counter which has a resolution of 1/175 MHz.

Two bytes are used for a tag that uniquely identifies each trace point. The last two bytes

are available for a parameter which is used only when switching from one task to another

to record the process id of the old and new processes.

When tracing is on, trace records are stuffed into a statically-allocated in-kernel buffer

64 MBytes in size which is large enough for about 8 million trace records. When the

benchmark run is finished, tracing is turned off and the contents of the buffer are read and

stored in a file for later processing. Because the buffer is so large, it disturbs the normal

paging behavior of some of the benchmarks. To compensate, an additional 64 MBytes of

RAM were added to the system during tracing runs.

To minimize tracing overhead, there is no locking on the trace buffer. Instead, con-

flicts for the buffer are detected and compensated for during post-processing by checking
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for backwards-moving time stamps. Also, rather than checking for buffer overflow, the

size of the buffer is restricted to be a power of two, and the high-order bits of the index

into the buffer are masked off, effectively implementing a circular buffer. At the end of a

tracing run, all of the bits of the index into the trace buffer are checked to ensure that there

has been no wrap-around. The number of records collected during a run ranges from a low

of about 130,000 for Agrep running on Digital UNIX to a high of about 8,400,0003 for

Davidson when hinting on TIP. Each trace record adds about 40 cycles of overhead.There

is some variation due to cache effects. This overhead is substantially lower than auto-

mated techniques such as Digital’s ATOM [Eustace95] package which would have added

a few hundred cycles per record.

6.6.2 CPU overhead

Table 6.27 analyzes the CPU activity of the seven benchmarks into six categories.

User is the time spent at user level between system calls. It does not include time spent

servicing disk interrupts, but it does include untraced interrupts, such as the clock.System

total reports the total CPU time spent in system calls by the application plus disk inter-

rupts plus idle-process I/O-completion activity. Because these are I/O-intensive bench-

marks, almost all system time is spent in thefile system. The table reports thetotal time for

the file system and breaks this into four sub-categories,copy, I/O, TIP, andother. It gives

the 95% confidence interval based on the five runs in parentheses and the percentage of

the total file-system time spent in each of these sub-categories.Copy is the time spent

moving data between user space and the kernel cache buffers.I/O is time spent marshal-

ling buffers for disk accesses plus time spent actually performing the accesses including

queuing requests, initiating them at the drive, and servicing interrupts. Idle-process I/O

activity is included here. I/O interrupts serviced by other processes are not included, but

this time is only about 1-3% of the total time for I/O. It is interesting, for example, to note

the large reduction in the time XDataSlice spends on I/O when it gives hints and does not

suffer from false readahead.Other includes all other file-system activity in the unmodified

system, including time spent going through the vnode layer, finding blocks in the cache,

3 This one run requires a little more than 64 MBytes of RAM, so I enlarged the buffer a little, but
lied to the tracing code, telling it there was a 128 MByte buffer, and kept my fingers crossed that the run
completed before the buffer was overrun. Fortunately, it did.
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benchmark system user
system

total
file system

total copy I/O TIP other

Davidson

Digital UNIX
  82.01   26.83   26.65   14.68    5.91    0.00    6.07
(0.63) (0.21) (0.19) (0.12) (0.09) (0.00) (0.08)

 100.0%   55.1%   22.2%    0.0%   22.8%

TIP, no hints
  83.47   31.64   31.45   14.89    5.61    4.39    6.57
(0.93) (0.46) (0.45) (0.26) (0.19) (0.09) (0.08)

 100.0%   47.3%   17.8%   14.0%   20.9%

TIP
  81.19   29.43   29.24   14.27    3.11    7.60    4.26
(1.12) (0.23) (0.23) (0.14) (0.20) (0.04) (0.05)

 100.0%   48.8%   10.6%   26.0%   14.6%

XDataSlice

Digital UNIX
  11.46   26.72   25.83    7.73   12.21    0.00    5.89
(0.01) (0.09) (0.07) (0.01) (0.03) (0.00) (0.05)

 100.0%   29.9%   47.3%    0.0%   22.8%

TIP, no hints
  11.48   29.38   28.38    7.70   11.81    2.72    6.15
(0.06) (0.15) (0.15) (0.01) (0.02) (0.02) (0.12)

 100.0%   27.1%   41.6%    9.6%   21.7%

TIP
  11.43   21.73   20.72    7.74    4.74    3.76    4.48
(0.02) (0.36) (0.35) (0.01) (0.31) (0.02) (0.02)

 100.0%   37.3%   22.9%   18.1%   21.6%

Sphinx

Digital UNIX
 133.67   11.18    9.89    3.08    2.90    0.00    3.92

(0.46) (0.05) (0.06) (0.03) (0.03) (0.00) (0.03)
 100.0%   31.1%   29.3%    0.0%   39.6%

TIP, no hints
 135.15   13.52   12.03    3.10    2.98    1.33    4.62

(1.30) (0.39) (0.34) (0.04) (0.04) (0.01) (0.28)
 100.0%   25.7%   24.8%   11.1%   38.4%

TIP
 136.88   14.84   13.32    3.09    2.27    3.21    4.75

(0.86) (0.07) (0.09) (0.03) (0.02) (0.03) (0.03)
 100.0%   23.2%   17.1%   24.1%   35.7%

Agrep

Digital UNIX
   0.60    1.64    1.24    0.25    0.68    0.00    0.31
(0.01) (0.08) (0.08) (0.03) (0.04) (0.00) (0.03)

 100.0%   20.2%   54.9%    0.0%   24.9%

TIP, no hints
   0.60    1.73    1.31    0.24    0.68    0.09    0.30
(0.02) (0.03) (0.03) (0.01) (0.03) (0.00) (0.01)

 100.0%   18.0%   51.8%    7.1%   23.0%

TIP
   0.59    1.81    1.35    0.23    0.47    0.34    0.31
(0.00) (0.02) (0.02) (0.00) (0.01) (0.00) (0.01)

 100.0%   16.9%   34.7%   25.2%   23.2%

Gnuld

Digital UNIX
   5.23    5.37    4.88    1.14    2.20    0.00    1.55
(0.03) (0.11) (0.10) (0.01) (0.07) (0.00) (0.04)

 100.0%   23.3%   45.0%    0.0%   31.8%

TIP, no hints
   5.21    6.14    5.57    1.14    2.24    0.55    1.64
(0.01) (0.10) (0.10) (0.00) (0.07) (0.01) (0.02)

 100.0%   20.4%   40.2%    9.8%   29.5%

TIP
   5.27    6.01    5.47    1.15    1.39    1.31    1.61
(0.02) (0.11) (0.11) (0.00) (0.05) (0.02) (0.05)

 100.0%   21.1%   25.5%   24.0%   29.5%

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchmark
spends inuser andsystem code and the system time spent in thefile system. File system time is broken into
four categories: copying data between user and system space (copy); initiating and servicing disk requests
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one block to
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Table 6.28
summarizes these numbers.
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reallocating buffers from one block to another, and time spent initiating heuristic reada-

head. To facilitate comparison between the overhead of heuristic readahead and of

informed prefetching, the time TIP spends initiating informed prefetches is also reported

in other. However, the time TIP spends calculating cost and benefit estimates to determine

whether it should prefetch is included in theTIP category which includes all activities that

are unique to the TIP system. Thus,TIP includes all cost and benefit calculations, profil-

ing the LRU cache, running the min-max algorithm to pick pages for replacement, and

tracking blocks in the cache of hinted blocks.

Table 6.28 summarizes the file-system results for all of the benchmarks. The total file-

system time is the geometric mean of the ratios betweenTIP, no hints or TIP and the base

UNIX system. For the four file-system components, I wanted one set of numbers that

would simultaneously give a feel for both the component-by-component relative perfor-

mance of the systems, and the portion of total time that each system spends in each com-

ponent. Thus, for each component, I report the arithmetic average percentage of file-

system time it represents, scaled by the previously computed ratio for the total file-system

Postgres,
20% match

Digital UNIX
  24.43    3.22    3.05    1.02    1.22    0.00    0.81
(0.10) (0.08) (0.06) (0.01) (0.03) (0.00) (0.03)

 100.0%   33.5%   40.1%    0.0%   26.4%

TIP, no hints
  24.82    3.62    3.44    1.07    1.26    0.27    0.84
(0.18) (0.03) (0.03) (0.01) (0.02) (0.01) (0.02)

 100.0%   31.1%   36.6%    7.9%   24.4%

TIP
  24.45    3.69    3.51    1.09    1.03    0.51    0.88
(0.59) (0.04) (0.03) (0.01) (0.02) (0.02) (0.02)

 100.0%   31.0%   29.4%   14.5%   25.0%

Postgres,
80% match

Digital UNIX
  36.01   10.26    9.74    3.64    3.65    0.00    2.45
(0.41) (0.12) (0.10) (0.06) (0.03) (0.00) (0.04)

 100.0%   37.4%   37.5%    0.0%   25.1%

TIP, no hints
  36.95   11.71   11.06    3.58    3.67    1.02    2.79
(0.34) (0.12) (0.12) (0.01) (0.06) (0.04) (0.13)

 100.0%   32.4%   33.2%    9.2%   25.2%

TIP
  35.88   11.27   10.63    3.79    1.96    2.16    2.72
(0.34) (0.14) (0.13) (0.03) (0.04) (0.07) (0.07)

 100.0%   35.6%   18.5%   20.3%   25.6%

benchmark system user
system

total
file system

total copy I/O TIP other

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchmark
spends inuser andsystem code and the system time spent in thefile system. File system time is broken into
four categories: copying data between user and system space (copy); initiating and servicing disk requests
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one block to
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Table 6.28
summarizes these numbers.
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times. For example, to compute the relative timeTIP, no hints spends inI/O, I first com-

pute the arithmetic average of the percentages of timeTIP, no hints spends inI/O in each

of the benchmarks,

,

and then scale this by the total time spent inTIP, no hints,

.4

The summary in Table 6.28 shows that when the applications do not give hints, TIP

adds an average overhead of 13.5% to the file system, most of which is spent in theTIP

category. When the applications do give hints, TIP’s overall overhead drops to 8.9% even

though the time spent in TIP functions doubles. Several factors contribute to this drop.

First, TIP’s I/O optimizations reduce the time spent on I/O by an average of over 35%.

Applications such as Davidson, which benefit from informed caching, spend less time on

I/O because they read fewer blocks from disk when they give hints. Others, such as

XDataSlice, read fewer blocks because informed prefetching reduces false readahead.

4 I like this approach better than two possible alternatives. One would have been to report ratios for
each component just as I do for the total. Unfortunately, the ratio is not defined for theTIP component which
has the value 0.00 for the base Digital UNIX system. Another alternative would have been to compute the
geometric average of the percentages of time spent in each component. But, I prefer the arithmetic averages
because they sum to 100% for each system whereas the geometric averages do not. Using the arithmetic
average is equivalent to implicitly weighting equally each benchmark’s contribution to overall system per-
formance and taking the total time to run all benchmarks as the metric of interest. In this case, the total file-
system time and the total time spent in each component would be meaningful numbers in and of themselves
and then, according to Jain [Jain91, p. 190], the arithmetic average, and not the geometric average, would be
the best estimate of the portion of time spent in each component. So, reporting the arithmetic average is not
unreasonable. Moreover, scaling the arithmetic averages by the ratios for the total file-system time allows
both component-by-component comparison and comparison among the components for each system.

system
file system

total copy I/O TIP other

Digital UNIX  1.000  0.33  0.39  0.00  0.28

TIP, no hints  1.135  0.33  0.40  0.11  0.30

TIP  1.089  0.33  0.25  0.24  0.27

Table 6.28. File system CPU overhead summary. This table shows the geometric average ratio of time
spent in the TIP file system with and without hints relative to the base UNIX system. For the four
components, this ratio is multiplied by the average fraction of filesytem time each represents (see text for
further explanation). Overall, TIP adds a 13.5% CPU overhead to the file system when not given hints.
When hints are available, TIP I/O and caching optimizations partially offset TIP overhead and reduce the net
overhead to 8.9%.

17.8% 41.6% 24.8% 51.8% 40.2% 36.6% 33.2%+ + + + + +
7

----------------------------------------------------------------------------------------------------------------------------------------------------- 0.35=

0.35 1.135× 0.40=
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Finally, other applications, such as Postgres, benefit from informed clustering of multiple

reads into one disk access. An understanding of where time is spent in TIP, and how giv-

ing hints reducesotherfile-system overhead by nearly 10% requires further analysis.

Table 6.29 breaks time in theTIP column of Table 6.27 into five categories and Table

6.30 uses the same approach as Table 6.28 to summarize the results except thatTIP, no

hints is used as the base.Hint bookkeepingincludes the time to give hints, resolve names

of hinted files into a file handle, and build the internal data structures that represent the

hints in the cache manager. It also includes a check on every read for a matching hint. This

is why there is non-zero hint bookkeeping even when applications don’t give hints.LRU

profiling is the time spent recording where in the LRU queue cache hits occur. The LRU

estimator uses this information to generate its estimate of the cost of shrinking the LRU

queue. Because the LRU annex was created to enable efficient profiling of the LRU

queue, time spent moving buffers to and from the annex is included here.LRU profiling

represents by far the largest portion of TIP overhead without hints.Hinted-block tracking

refers to the time spent by hint estimators updating their data structures when they begin

or end ‘tracking’ a block as part of the min-max algorithm described in Section 4.3.5. The

current implementation’s use of a simple insertion sort when it starts tracking a block

appears not to add too much overhead in most cases.Hint cost/benefit estimates is the time

spent simply computing cost and benefit estimates for prefetching or hinted caching

whenever the min-max algorithm needs one to make allocation decisions. The overhead

here is substantial because of the relatively slow divide operations. Reimplementing these

cost calculations as a table lookup, at least within the prefetch horizon, could probably

reduce this time substantially. Finally,pick, query, update is the core of the min-max algo-

rithm. It includes the time spent picking the least valuable buffer, updating the new value

of the estimator that gave up the buffer (except the actual cost estimate), querying other

interested estimators, and updating the cost for an estimator that starts tracking the picked

block. It also includes benefit updates when an application consumes a hinted block or

when the prefetcher issues a new prefetch.

When the system is running without hints, two-thirds of the time is spent profiling the

LRU queue. To reduce this overhead, it would certainly be possible to dynamically size

the LRU-queue segments to use larger ones during periods when the system had few hints
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benchmark system

TIP

total
hint book-
keeping

LRU
profiling

hinted-
block

tracking

hint
cost/benefit
 estimates

pick, query,
update

Davidson

TIP,
no hints

   4.39    0.04    3.16    0.00    0.00    1.20
(0.09) (0.00) (0.09) (0.00) (0.00) (0.03)

 100.0%    0.8%   71.9%    0.0%    0.0%   27.3%

TIP
   7.60    0.76    2.29    0.65    1.16    2.74
(0.04) (0.01) (0.02) (0.01) (0.02) (0.03)

 100.0%   10.0%   30.1%    8.6%   15.2%   36.1%

XDataSlice

TIP,
no hints

   2.72    0.06    1.73    0.00    0.00    0.93
(0.02) (0.01) (0.00) (0.00) (0.00) (0.00)

 100.0%    2.2%   63.6%    0.0%    0.0%   34.1%

TIP
   3.76    0.70    1.05    0.24    0.61    1.15
(0.02) (0.00) (0.01) (0.01) (0.01) (0.02)

 100.0%   18.7%   28.0%    6.4%   16.2%   30.7%

Sphinx

TIP,
no hints

   1.33    0.07    0.91    0.00    0.00    0.35
(0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0%    5.2%   68.2%    0.0%    0.0%   26.6%

TIP
   3.21    0.79    0.76    0.06    0.61    0.99
(0.03) (0.01) (0.01) (0.00) (0.01) (0.03)

 100.0%   24.7%   23.7%    1.8%   19.1%   30.7%

Agrep

TIP,
no hints

   0.09    0.01    0.06    0.00    0.00    0.03
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

 100.0%    6.2%   64.5%    0.0%    0.0%   29.1%

TIP
   0.34    0.17    0.05    0.01    0.04    0.07
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

 100.0%   50.1%   16.1%    2.1%   11.3%   20.5%

Gnuld

TIP,
no hints

   0.55    0.02    0.37    0.00    0.00    0.16
(0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0%    3.1%   67.6%    0.0%    0.0%   29.4%

TIP
   1.31    0.49    0.31    0.06    0.16    0.30
(0.02) (0.01) (0.00) (0.01) (0.00) (0.01)

 100.0%   37.3%   23.4%    4.9%   11.9%   22.6%

Postgres
20% match

TIP,
no hints

   0.27    0.01    0.20    0.00    0.00    0.06
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

 100.0%    4.1%   72.4%    0.0%    0.0%   23.5%

TIP
   0.51    0.07    0.20    0.03    0.07    0.14
(0.02) (0.00) (0.01) (0.00) (0.01) (0.01)

 100.0%   13.6%   39.4%    6.2%   13.9%   26.8%

Postgres
80% match

TIP,
no hints

   1.02    0.09    0.71    0.00    0.00    0.22
(0.04) (0.00) (0.04) (0.00) (0.00) (0.01)

 100.0%    9.0%   69.5%    0.0%    0.0%   21.5%

TIP
   2.16    0.38    0.61    0.42    0.29    0.46
(0.07) (0.06) (0.01) (0.03) (0.01) (0.02)

 100.0%   17.8%   28.2%   19.4%   13.5%   21.1%

Table 6.29. TIP CPU overhead. This table breaks the time spent inTIP in Table 6.27 into five categories.
Hint bookkeeping includes storing hints and checking whether accesses match hints which occurs even when
an application does not hint.LRU profiling is time spent estimating the hit ratio as a function of LRU queue
length and represents by far the largest share of TIP overhead in the absence of hints.Hinted block tracking
is the cost of tracking blocks in the hinted cache.Hint cost/benefit estimates is the cost of computing cost
and benefit estimates.Pick, query, update is the core of the min-max buffer allocation algorithm. The
numbers in parentheses are the 95% confidence intervals. The percentages are of totalTIP time.
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and therefore little need for precise profiling of the queue. Then, when hints did arrive, the

segments could be shrunk to gain a more precise estimation of the value of LRU-queue

buffers. A more radical solution would be to change the way LRU cost estimates are gen-

erated. In Chapter 7, I suggest a possible alternative.

To explore the effect giving hints has on theother parts of the file system (from Table

6.27), Table 6.31 details how time is spent within this category and Table 6.32 summa-

rizes the results in the usual way. The tables show the time spent in the different layers of

code traversed by a read request as it goes through the system. At the highest level,system

call to copyout loop includes the time from the invocation of a read or write system call

down through the VFS layer to the copyout loop in the UFS layer. The copyout loop

includes three main steps: get a buffer, copy its contents to/from user space, and release

the buffer. The time to actually copy the data was separately accounted for in Table 6.27.

The other two steps are accounted for in this table byget data buffer andrelease hold on

buffer.

Get data bufferincludes the time to call the cache manager with a request for a block

and if the requested block is not cached, to allocate a new buffer and initiate a disk access.

Recall that the time to actually perform the I/O was separately accounted for in Table

6.27. The time to do the cache lookup iscache lookup. When the TIP system has hints,

this lookup step is avoided because the block is found directly from the hint (see Section

5.1 for details). This is why the lookup time for the TIP system is so much lower than for

Digital UNIX andTIP, no hints. If the buffer is not cached and a buffer must be allocated,

then the time to allocate a new buffer and reassign it from the old to the new block isallo-

cate buffer. Note thatallocate buffer does not include the time to run the TIP allocation

system

TIP

total
hint book-
keeping

LRU
profiling

hinted-
block

tracking

hint
cost/benefit
 estimates

pick, query,
update

TIP, no hints  1.000  0.04  0.68  0.00  0.00  0.27

TIP  2.130  0.52  0.57  0.15  0.31  0.57

Table 6.30. TIP CPU overhead summary. This table shows the geometric average ratio between the total
times spent inTIP with and without hints. For the fiveTIP components, this ratio is multiplied by the
average fraction of time spent in each component. Without hints, about two-thirds of TIP overhead is
profiling the LRU queue. With hints, LRU profiling overhead drops slightly because, for example, false
readaheads no longer go through the queue, but all other overheads increase which doubles overall TIP CPU
overhead.
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benchmark system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Davidson

Digital
UNIX

   6.07    0.97    1.09    0.73    1.53    0.48    0.61    0.65
(0.08) (0.07) (0.04) (0.01) (0.04) (0.00) (0.01) (0.01)

 100.0%   15.9%   17.9%   12.0%   25.3%    7.9%   10.1%   10.7%

TIP,
no hints

 6.57    1.00    1.21    0.99    1.61    0.63    0.52    0.61
(0.08) (0.04) (0.02) (0.05) (0.01) (0.01) (0.01) (0.02)

 100.0%   15.2%   18.5%   15.1%   24.5%    9.6%    7.9%    9.3%

TIP
   4.26    1.00    1.50    0.01    0.36    0.35    0.37    0.66
(0.05) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.03)

 100.0%   23.5%   35.2%    0.3%    8.5%    8.3%    8.7%   15.4%

XDataSlice

Digital
UNIX

   5.89    1.11    1.35    0.42    1.24    0.39    0.41    0.94
(0.05) (0.01) (0.02) (0.01) (0.01) (0.00) (0.00) (0.01)

 100.0%   18.9%   22.9%    7.2%   21.1%    6.7%    7.0%   15.9%

TIP,
no hints

   6.15    1.33    1.42    0.48    1.24    0.45    0.36    0.87
(0.12) (0.03) (0.04) (0.00) (0.04) (0.01) (0.00) (0.01)

 100.0%   21.6%   23.0%    7.8%   20.1%    7.4%    5.8%   14.2%

TIP
   4.48    1.43    0.99    0.01    0.35    0.33    0.32    1.04
(0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

 100.0%   31.9%   22.2%    0.3%    7.9%    7.4%    7.1%   23.1%

Sphinx

Digital
UNIX

   3.92    1.51    0.94    0.34    0.47    0.13    0.30    0.23
(0.03) (0.02) (0.02) (0.02) (0.01) (0.00) (0.00) (0.00)

 100.0%   38.5%   23.9%    8.8%   11.9%    3.2%    7.7%    6.0%

TIP,
no hints

   4.62    1.84    1.11    0.45    0.44    0.17    0.37    0.23
(0.28) (0.12) (0.01) (0.02) (0.01) (0.00) (0.16) (0.00)

 100.0%   39.9%   24.0%    9.7%    9.4%    3.8%    8.0%    5.1%

TIP
   4.75    1.72    1.52    0.03    0.21    0.19    0.27    0.82
(0.03) (0.02) (0.05) (0.00) (0.00) (0.00) (0.00) (0.01)

 100.0%   36.3%   31.9%    0.5%    4.4%    4.0%    5.6%   17.2%

Agrep

Digital
UNIX

   0.31    0.10    0.06    0.02    0.07    0.01    0.02    0.02
(0.03) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

 100.0%   33.4%   19.9%    7.1%   23.1%    3.8%    6.7%    5.6%

TIP,
no hints

   0.30    0.12    0.07    0.03    0.05    0.01    0.02    0.02
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

 100.0%   38.7%   22.5%    8.4%   15.5%    4.2%    5.8%    5.1%

TIP
   0.31    0.11    0.07    0.00    0.03    0.02    0.02    0.06
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

 100.0%   36.2%   22.8%    0.3%    9.2%    6.4%    5.4%   20.0%

Gnuld

Digital
UNIX

   1.55    0.41    0.52    0.12    0.25    0.05    0.12    0.07
(0.04) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0%   26.5%   33.5%    7.7%   16.1%    3.3%    7.5%    4.8%

TIP,
no hints

   1.64    0.48    0.55    0.15    0.22    0.07    0.10    0.07
(0.02) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0%   29.3%   33.3%    9.3%   13.2%    4.1%    6.0%    4.4%

TIP
   1.61    0.47    0.55    0.04    0.12    0.09    0.09    0.25
(0.05) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.01)

 100.0%   29.0%   34.1%    2.4%    7.3%    5.4%    5.6%   15.8%

Table 6.31. CPU overhead of theother part of the file system. This table shows how time is spent in the
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parentheses are
the 95% confidence intervals and percentages are of totalother time. Table 6.32 summarizes these data.
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algorithm which is accounted for by thepick, query, update component of Table 6.29.

Before an I/O to fill the buffer is initiated, the system attempts to cluster requests for con-

tiguous blocks into one access which takes timecluster I/O requests. Once the hi-level

copyout loop copies the data, the buffer is released back to the cache in timerelease hold

on buffer. After the system services read hits or misses, it executes the readahead heuristic

for unhinted accesses or checks the hint lists for something to prefetch which takes time

build prefetch requests.

Postgres,
20% match

Digital
UNIX

   0.81    0.23    0.28    0.06    0.13    0.02    0.05    0.03
(0.03) (0.01) (0.01) (0.02) (0.01) (0.00) (0.00) (0.00)

 100.0%   29.1%   35.2%    7.3%   15.9%    2.4%    5.8%    3.7%

TIP,
no hints

   0.84    0.28    0.32    0.05    0.09    0.02    0.04    0.03
(0.02) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00)

 100.0%   33.2%   38.5%    6.5%   10.4%    2.4%    5.2%    3.1%

TIP
   0.88    0.27    0.25    0.03    0.06    0.05    0.05    0.16
(0.02) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

 100.0%   30.6%   29.0%    3.9%    6.9%    5.1%    5.2%   18.7%

Postgres,
80% match

Digital
UNIX

   2.45    0.83    0.93    0.15    0.31    0.04    0.14    0.03
(0.04) (0.03) (0.03) (0.00) (0.01) (0.00) (0.00) (0.00)

 100.0%   34.1%   38.1%    6.1%   12.7%    1.7%    5.7%    1.3%

TIP,
no hints

   2.79    1.08    1.08    0.18    0.24    0.04    0.13    0.03
(0.13) (0.06) (0.08) (0.01) (0.01) (0.00) (0.01) (0.00)

 100.0%   38.6%   38.7%    6.5%    8.7%    1.5%    4.6%    1.2%

TIP
   2.72    0.97    0.82    0.11    0.15    0.11    0.16    0.40
(0.07) (0.04) (0.04) (0.01) (0.02) (0.01) (0.04) (0.01)

 100.0%   35.5%   30.2%    4.1%    5.4%    4.1%    5.7%   14.7%

system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Digital UNIX  1.000  0.28  0.27  0.08  0.18  0.04  0.07  0.07

TIP, no hints  1.072  0.33  0.30  0.10  0.16  0.05  0.07  0.06

TIP  0.973  0.31  0.29  0.02  0.07  0.06  0.06  0.17

Table 6.32. Summary of the CPU overhead of theother part of the file system. Performance in this part
of the file system is comparable in the TIP and base UNIX systems when there are no hints. With hints, the
TIP optimizations lead to a net reduction of 10% in the overhead of theother component of the file system.

benchmark system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Table 6.31. CPU overhead of theother part of the file system. This table shows how time is spent in the
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parentheses are
the 95% confidence intervals and percentages are of totalother time. Table 6.32 summarizes these data.
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As the summary data in Table 6.32 show, the TIP and base UNIX system are compara-

ble except that when TIP has hints, it can reduce thecache lookups andallocate buffers

components which more than offsets the increase in thebuild prefetch requests compo-

nent. The net effect is about a 10% reduction in the overhead for theother part of the file

system. Becauseother accounts for 25-30% of total file-system overhead, the overall

reduction in file-system overhead is 2.5-3.0%.

6.6.3 Memory overhead

The TIP system consumes some memory for the data structures that keep track of the

buffers, store hints, and link hints to buffers as hints are resolved.

Even when there are no hints, TIP allocates atipBuf structure (see Figure 5.8) for each

cache page which supports functions such as profiling the LRU queue. The structure con-

sumes 104 bytes per page which amounts to a 1.2% overhead.

When an application issues a hint, TIP allocates one 568-bytetipHnt structure plus

one 24-bytetipSeg for each hinted segment or sequential byte range (see Section 3.2). The

amount of data actually consumed by hint structures is very much application-dependent.

As Table 3.3 showed, there may from one to thousands of segments per hint and from one

to thousands of blocks per segment. The aggregate memory consumed can be substantial.

The Postgres (80% match) benchmark issues a hint with 15916 segments which occupies

a total of almost 47 pages of memory. For the system to support truly vast numbers of

hints, it may become necessary to store distant hints on disk.

Of more concern might be the tipHnt structure if many applications give separate hints

for very small amounts of data. If this becomes a problem, then some simple optimizations

could significantly reduce the size of the tipHnt structure. Of the 568 bytes in the struc-

ture, 456 are devoted to recording permissions data to aid name resolution. This data could

be stored per-process instead of per-hint to eliminate 80% of this overhead. It was not a

problem in our experiments, so this data was stored with the hint for convenience.

The final major memory overhead comes when the hints are resolved. There is one 64-

byte tipNex structure for each resolved block.5 And, if the hinted block is not either

5 It would be possible to dispense with the separate tracking and prefetching links, have one list for
the whole access sequence, and rely on a flag to indicate that the buffer was being tracked. This would save
24 bytes per nexus, but would add CPU overhead for sequentially searching the list for tracked blocks.
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already resident, an LRU ghost buffer, or the target of a resolved hint, the system allocates

a tipBuf structure for the block. In the worst case, where all hints are for unique, uncached

blocks, this amounts to an overhead of 64+104=168 bytes per resolved block. How many

such structures are simultaneously allocated is application dependent. Certainly there are

no more of them than there are outstanding hints, and most of the benchmarks only issue a

portion of their hints at a time. But, Postgres, for example, issues many hints simulta-

neously. In this case, the caching horizon, described in Section 5.3.1, limits how much

memory may be devoted to any single hint stream to at most 10,000 blocks and usually

less. At 10,000 resolved blocks, the tipNex and tipBuf structures could consume as much

as 205 pages which is the largest single potential overhead.

A substantial portion of the TIP data structures are memory pointers which on the Dig-

ital Alpha CPU are 8 bytes in size. A 32-bit architecture would suffer half the overhead for

these pointers which would reduce a tipBuf from 104 to 60 bytes and a tipNex from 64 to

36 bytes. This would reduce the worst-case 205 pages of resolved-hint overhead to 117

pages.

These data structures occupy the space they do because they explicitly and exhaus-

tively enumerate the outstanding, resolved hints. An interesting area of future work would

be to develop more compact representations of hints that yet could support the required

pick, query, and bid functions without adding too much CPU overhead.

6.7 Conclusion

The experimental results presented in this chapter support three primary conclusions:

1. many I/O-intensive applications do not benefit from a disk array;

2. informed prefetching’s greatest gains come from prefetching in parallel; and

3. informed caching and the disk optimizations deliver their greatest gains on small

arrays.

Together, informed prefetching and caching are hugely successful at reducing application

elapsed time on any array size.

On a single disk, TIP reduces elapsed time for the suite of application benchmarks by

7% to 50% or an average of 28%. When multiprogramming two applications on a single
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disk, TIP’s informed resource management is even more beneficial, reducing elapsed time

for the pair of applications by 26% to 48% or an average of 37% when both applications

give hints. When it can exploit the parallelism of a ten-disk array for parallel prefetching,

TIP reduces elapsed time by 17% to 84% or an average of 64%. Because multiprogram-

ming on a ten-disk array increases both CPU and array utilization even without hints,

there is less opportunity for TIP to improve performance. Nevertheless, TIP reduces

elapsed time for a pair of applications running on a ten-disk array by 15% to 73% or an

average of 58% when both applications give hints.

A combination of optimizations is responsible for producing these overall results.

Among these, the experiments showed that informed prefetching, which takes advantage

of hints within the prefetch horizon, reduces elapsed time by up to 28% or an average of

17% on one disk and by up to 84% or an average of 63% on a ten-disk array. The experi-

ments measuring stall time as a function of prefetch depth clearly show that when the

bandwidth of a disk array is available, not even a full prefetch horizon worth of outstand-

ing hints is required to deliver huge performance gains. Programmers and researchers into

techniques for automatic hint generation can be confident that disclosing even a limited

number of accesses at a time can still lead to large performance gains.

When hints disclose many accesses in advance, they can be used for informed caching

and clustering. Compared to prefetching alone, these techniques together reduced elapsed

time for individual applications by up to an additional 36% or an average of 13% on a sin-

gle disk. On large arrays, informed caching and clustering reduced elapsed time by up to

8% or an average of 3%. These gains are less dramatic because, as the bandwidth of the

storage subsystem increases with larger array size, informed prefetching virtually elimi-

nates stalls for hinted accesses. The only opportunity for informed caching to further

improve performance is to reduce the number of accesses and therefore the CPU overhead

of performing I/O. Managing the cache well and maximizing disk performance is most

important when cache and disk resources are in short supply. Thus, TIP’s informed cach-

ing and clustering see their greatest gains on a single disk.

In practice, most of the single-disk informed caching and clustering gains were real-

ized for just two applications, Davidson and Postgres, 80% match, although Gnuld also

benefitted to a lesser degree. All of these applications were able to disclose a significant
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amount of reuse many accesses in advance. Other applications, such as Agrep and

XDataSlice reaccess little data. Still others, such as Sphinx, either reuse blocks immedi-

ately, for which LRU caching is effective, or don’t give enough hints to capture widely-

separated reuse. In particular, applications that access their files in ascending order on any

single pass, even if not fully sequential because of strides, gain little from informed cach-

ing and clustering if they don’t disclose hints about multiple passes over the data.

Informed caching and clustering can only help workloads that provide both caching and

clustering opportunities and hints that span these opportunities.

With regard specifically to optimizing the performance of individual disks, these

experiments showed that informed prefetching’s longer disk queues can reduce disk ser-

vice time by up to 24% and informed clustering can reduce per-block service time by up to

22% on a single disk. On larger arrays, the impact of these gains can be small because, as

noted above in the case of informed caching and clustering, informed prefetching masks

stalls for hinted accesses. But, the impact of disk scheduling is further reduced on larger

arrays because prefetches are spread over a larger number of disks resulting in a shorter

queue at each drive. Shorter queues mean smaller reductions in disk service time from

scheduling.

Informed prefetching, caching, clustering, and disk scheduling all require cache buff-

ers to improve performance. The original goal in developing the framework for resource

management based on cost-benefit analysis was to find a way to balance the use of cache

buffers to take advantage of all of these optimizations. The results presented in this chap-

ter show that cost-benefit analysis is indeed an effective mechanism for allocating cache

buffers. With regard to informed prefetching, the experiments measuring stall as a func-

tion of prefetch depth show that the upper-bound prefetch horizon captures most of the

potential stall reduction from both prefetching and disk scheduling without significantly

cutting into cache performance, at least for a single application. Further, in the single-

application experiments, informed caching and clustering always increase the number of

reuse hits, reduce the number of blocks fetched from disk, and reduce the number of I/Os

needed to fetch the blocks. Significantly, in no experiment, single-application or multipro-

gramming, didTIP’s application of these resource-demanding optimizations reduce per-

formance. Never was prefetching so deep that losses in cache effectiveness offset
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prefetching gains. Never was informed caching so aggressive that reductions in LRU

cache effectiveness for unhinted accesses more than offset its gains. Never did informed

clustering reduce cache effectiveness enough to lead to an increase disk service time. On

the contrary, TIP consistently achieved its stated goal of reducing application elapsed time

in the single-application case and improving throughput in the multiprogramming case.

TIP’s cost-benefit buffer allocation effectively balanced the use of buffers for the several

optimizations.

The cost-benefit estimations do not consider the overhead of the TIP implementation.

But, any serious evaluation must. The overheads measured are noticeable, but the overall

performance of the TIP system without hints is comparable to the standard Digital UNIX

system. And, when TIP has hints, the performance gains in all the experiments presented

here more than offset the losses due to these overheads. Still, there is room for improve-

ment. The single largest CPU overhead in the TIP system is for LRU profiling. Thus,

innovations in the algorithms for estimating the cost of shrinking the LRU queue offer the

greatest opportunity for CPU overhead reduction. Finding more compact representations

for hints that do not add significantly to CPU overhead offer the greatest opportunity for

reducing the memory overhead of the system.

This performance evaluation of TIP shows that a system can take advantage of appli-

cation disclosure of future accesses for prefetching, caching, clustering, and disk schedul-

ing and dramatically reduce the elapsed time required to run a broad range of important

I/O-intensive applications. Further, it shows that a system based on cost-benefit analysis

can effectively manage cache resources to obtain substantial performance gains from all

four of these optimizations.
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Chapter 7

Generalizing the Results and Future
Work

The experiments presented in Chapter 6 clearly demonstrated the utility of application

disclosure of future accesses and the effectiveness resource management based on cost-

benefit analysis. And yet, the experiments raised or left open a number of questions. In

this chapter, I will explore some of these in more depth. Where possible, I will provide

answers, or point to work that provides answers. But, in many cases, answers are unknown

and I raise the questions here only to point to them as areas for future work.

In Section 7.1, I take up the question of why TIP performs well on a single, congested

disk even though the prefetching benefit estimate is based on the assumption of no disk

congestion. To answer this question, I develop a performance model that takes the number

of disks into account. The model assumes a workload that is evenly balanced across the

array and it neglects the effects of disk scheduling. But, through experiments with a syn-

thetic application, I show that the model is useful for understanding TIP’s performance on

smaller arrays.

Next, in Section 7.2, I take up the question of what happens when, over time, proces-

sors get faster and the prefetch horizon grows to hundreds or thousands of accesses? Will

the upper-bound prefetch horizon, , still be useful? I find that some of the simplifications

of the current implementation may no longer be useful, and that finite bandwidth and the

P̂
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effects of disk scheduling may have to be accounted for explicitly to guarantee robustness.

But, I argue that the fundamental framework is sound.

In Section 7.3, I discuss other recent work in this area and describe its relationship to

this work. Specifically, in Section 7.3.1, I describe work that has shown that when

prefetching to a fixed depth, runs of cached blocks or an unbalanced disk load can cause a

disk to go idle. This work has shown that when, in the long term, the bandwidth of the

storage subsystem is the performance bottleneck, these periods of disk idleness should be

exploited for deeper prefetching. The result is a prefetching algorithm,forestall, that

prefetches to a fixed depth when the disks are busy or when they are not the long-term bot-

tleneck, but prefetches more deeply to take advantage of idleness when the disks are the

bottleneck. The considerations in Section 7.2 apply to the near-term, fixed depth prefetch-

ing, but the deep prefetching usefully extends that work.

Then, in Section 7.3.2, I describe the results of a recent collaboration with Andrew

Tomkins that showed how to incorporate the deep prefetching lessons offorestall into

TIP’s cost-benefit framework. The resulting system, TIPTOE, not only performs deep

prefetching when appropriate to take advantage of disk idleness, but also incorporates the

fact that a disk is a bottleneck into its estimate for the cost of ejecting a hinted block from

that disk. A simulation study compares the performance of the cost-benefit approach to

buffer allocation to an alternative based on the LRU algorithm.

Both forestall and TIPTOE rely on detailed knowledge of the layout of data on an

array. In Section 7.3.3, I briefly discuss how to adapt TIPTOE to a world where data lay-

out is unknown. I conclude that TIPTOE could be much more effective if disk array inter-

faces included a few minimum features.

Finally, in Section 7.4, I describe a number of areas of future work. These range from

specific TIP implementation issues to broad areas of systems research that would help

expand the usefulness of the informed prefetching and caching approach.

7.1 The impact of the no-congestion assumption

The performance model which served as the basis for the cost and benefit estimates

developed in Chapter 4 makes certain simplifying assumptions. One of these is that there

is never any disk congestion; that is, that disk requests never suffer any queuing delays
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(see Section 4.2.1). Clearly, this assumption is often violated, even in the experiments pre-

sented in Chapter 6. In this section, I will address the questions of what is the impact of

this assumption, and why does the system perform so well even when the assumption is

grossly violated?

7.1.1 The ideal model

Recall from Section 4.2.3 that the change in I/O service time that results from using

one buffer to prefetchx instead ofx-1 accesses in advance is given by Equation 4.9 which

I repeat here:

(7.1)

Thus, the key problem is finding an expression for stall as a function of prefetch depth. I

used a pipeline model for the servicing of prefetch requests which is first described in Fig-

ure 4.4 and is repeated here in Figure 7.1 to arrive at the following expression for stall

time (Equation 4.12),

∆Tpf x( ) Tstall x( ) Tstall x 1–( ) .–=

Figure 7.1. Average stall time when prefetching in parallel. This figure illustrates informed prefetching as
a pipeline. In this example, three buffers are used to prefetch three blocks concurrently andTapp is assumed
fixed. At time T=0, the application gives hints for all its accesses and then requests the first block. Prefetches
for the first three accesses are initiated immediately. The first access stalls until the prefetch completes at
T=5, at which point the data is consumed and the prefetch of the forth block begins. Accesses two and three
proceed without stalls because the latency of prefetches for those accesses is overlapped with the latency of
the first prefetch. But, the fourth access stalls forTstall = Tdisk - 3(Tapp+Thit+Tdriver). The next two accesses
don’t stall, but the seventh does. The application settles into a pattern of stalling every third access.

access
number

time (1 time-step = Tapp + Thit + Tdriver)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 I
2 I - - - - C
3 I - - - - C
4 I - -
5 I - - - -
6 I - - - -
7 I - -
8 I - - - -
9 I - - - -
10 I - -

- - - - C

- - C
C

C
- - C

C
C

- - C

I : initiate prefetch - : prefetch in progress C : block arrives in cache : consume block : stall
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(7.2)

(7.3)

The key parameter that determines the behavior of the pipeline in Figure 7.1 is the number

of prefetches that are serviced in parallel. Under the no-congestion assumption, allx of the

prefetches are serviced in parallel which leads to the appearance ofx in the denominator of

Equation 7.3. But, if there are fewer thanx disks, then it is impossible for allx prefetches

to proceed in parallel, and the no-congestion assumption no longer holds.

Suppose there ared disks. At very large prefetching depths, , the number of disks

in the array ultimately limits prefetching parallelism. On the other hand, when the

prefetching depth is smaller than the array size, , prefetching depth limits parallel-

ism. It is clear, then, that the prefetching parallelism,p, can never be more than the mini-

mum of the prefetching depth and the array size,d, and we have

. (7.4)

In the ideal case, requests are perfectly balanced over the array and this expression can

be rewritten as an equality. Taking the next step, we can use this ideal expression for the

prefetching parallelism to rewrite Equation 7.3 in terms of prefetching depth and array

size

(7.5)

Note that under the no-congestion assumption, it is always possible to eliminate stall if

prefetching is deep enough, but that, when this assumption is removed, it is no longer

always possible to eliminate stall. Once all the disks are busy, no further increase in paral-

lelism is possible and stall is minimized, at least if we neglect the impact of request sorting

on disk access time as this model does. Under these conditions, the prefetch horizon is not

the point at which stall is eliminated, but the point at which stall is minimized.

Tstall x( )
Tdisk x Tapp Thit Tdriver+ +( )–

x
-------------------------------------------------------------------------------=

Tdisk

x
------------- Tapp Thit Tdriver+ +( ) .–=

x d»

x d<

p min x d,{ }≤

Tstall x d,( )
x 0= Tdisk

x 1≥
Tdisk

min x d,{ }
------------------------- Tapp Thit Tdriver+ +( )–

.







=
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7.1.2 Experiments with a synthetic application

How well does this new, ideal model predict performance? In this section, I present

the results of a number of experiments with the synthetic application used to determine the

system parameters which was first described in Section 6.2. In these experiments, the

application iterates twice over 2000 unique random blocks from a file striped over an

array of from one to ten disks. Because this is more than the 1536 blocks in the cache, and

because informed caching is turned off (theTIP, no caching configuration), this results in

4000 8 KByte disk reads. The file size is scaled with array size to a constant 32 MBytes

per disk to keep the average disk access time roughly constant across array sizes.Tapp, the

application elapsed time between read calls, is either 0, 1, 4 or 16 milliseconds. Disk

queues are sorted with the CSCAN algorithm.

Figure 7.2 compares the measured per-access stall time for this synthetic application to

the stall predicted by Equation 7.5 for a selection of array sizes and values ofTapp. The

model successfully captures the general shape of the curves. However, at small prefetch-

ing depths it tends to underpredict stall and at large prefetching depths it tends to overpre-

dict stall. These two discrepancies result from two different effects.

At small prefetching depths, the key factor in determining performance is the amount

of prefetching parallelism. The ideal model assumes that increasing prefetch depth

increases prefetching parallelism up to the limit imposed by the array size. In practice,

because the accesses are chosen at random from the whole file, multiple accesses may go

to the same disk while another disk stays idle. The effect is much like the memory conten-

tion that may occur in the interleaved memory banks of a supercomputer. This disk con-

tention reduces the effective prefetching parallelism and consequently increases the stall

relative to the predicted value.

At large prefetching depths, multiple prefetches are queued at individual disk drives.

When the queued accesses are sorted according to the CSCAN scheduling algorithm, the

average disk access time drops. The deeper the queue, the smaller the average access time.

Naturally, this reduction in disk access time reduces the stall time experienced by the

application and leads to the model’s overestimation of stall time at large prefetching

depths.
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(e)Tapp = 1 msec, disks = 4

(b) Tapp = 16 msec, disks = 1

(c) Tapp = 4 msec, disks = 2

(a) Tapp = 1 msec, disks = 1

Figure 7.2. Measured per-access stall and stall predicted by the ideal model. This figure shows that for a
broad range of application compute times and disk array sizes, the ideal model is a good overall predictor of
stall time for a synthetic application. Nevertheless, for small prefetch depths, the model tends to
underpredict stall, and for large prefetching depths, the model tends to overpredict stall.
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To confirm that these two factors do indeed account for the discrepancies between the

measured and predicted stall times, I ran some experiments in which these factors are

eliminated. To eliminate disk contention, instead of choosing blocks randomly from the

whole array, I cycled over the disks in the array and chose blocks randomly from within

each disk. To eliminate the reduction in disk access time for deep queues, I used first-

come-first-served (FCFS) instead of CSCAN disk scheduling.

Figure 7.3 shows that excepting these two factors, the ideal model is an extremely

good predictor of actual performance. The only remaining significant discrepancy is the

stall on a single disk. Here we see that having a second I/O queued at the drive itself

allows some of the SCSI and interrupt servicing overheads to be overlapped with the

actual disk access.

The ideal model successfully captures the first-order effects, but its overestimation of

parallelism on larger arrays and of disk access latency at large queue depths leads to sig-

nificant differences between predicted and actual performance. A more accurate model

would require better estimates of both parallelism and access times. To be most accurate,

such estimates would have to take the specific workload into account. For example, the

parallelism of a purely sequential workload is roughly the prefetch depth divided by the

number of blocks in each stripe unit, 8 in these experiments. On the other hand, the access

time for sequential accesses is much less than for random accesses. Developing a work-

load-dependent model is an interesting area for future research; it is beyond the scope of

this dissertation which is limited to generating estimates for prefetching or ejecting blocks

without considering the broader workload.

7.1.3 Analysis

Let us now return to the original question: why does TIP perform well on small num-

bers of disks even though it’s prefetching model assumes that there are enough disks to

avoid any disk congestion?

Intuitively, many people suspect that the lower I/O bandwidth of a smaller array

would necessitate deeper prefetching. But, the results in Figure 7.3 show that, from the

perspective of I/O parallelism, a smaller array requires prefetching less deeply, not more.

For example, in Figure 7.3b, a prefetch depth of only two minimizes stall on a single disk,



200 CHAPTER 7

whereas a prefetch depth of about twelve is required to minimize stall on ten disks. Effec-

tively, once the prefetch depth is great enough to keep all disks active, prefetching more

deeply cannot further increase I/O parallelism; it takes fewer prefetches to keep fewer

disks active. Thus, from the perspective of I/O parallelism, the assumption of no disk con-

Figure 7.3. Stall time when disk contention and disk scheduling are eliminated as factors.With these
factors eliminated from the experiments, the ideal model becomes an excellent predictor of performance for
all prefetching depths, application compute times, and array sizes. The only remaining discrepancy is on one
disk where we see that having a second request queued at the drive allows the overlap of SCSI command
processing with the actual disk access.
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gestion, which is equivalent to assuming a very large array, led to a high estimate of the

benefit of prefetching deeply. Thus, when TIP ran with a small array, its prefetching was

deep enough to keep the array busy in most cases.1

Was TIP’s prefetching therefore too deep? Consider stall on a single disk in Figure

7.2a. There, disk scheduling is not eliminated as a factor (as it is in Figure 7.3) and stall

continues to drop at least to a prefetch depth of 64. On smaller arrays, there is no increase

in I/O parallelism from prefetching more deeply, but there is a reduction in the average

disk access time. When bandwidth is most limited, it is most important to maximize band-

width by reducing the average access time through disk scheduling. Thus, from the per-

spective of disk scheduling, prefetching should be deepest on a single disk.

TIP performs well on all array sizes because its upper-bound prefetch horizon, ,

strikes a reasonable balance across array sizes. On larger arrays, it is sufficient to deliver

the parallelism needed to mask stall. On smaller arrays, the prefetching depth not used for

parallelism serves to reduce access time through disk scheduling.

7.2 Tightening the bound on prefetch depth

The applicability of a fixed, upper-bound prefetch horizon, , to all array sizes is for-

tuitous. But, because the use of  was a simplification to ease implementation (see Sec-

tion 4.3.2), and because its applicability to scheduling on small arrays was not derived

from the performance model, there is some concern that the use of a such a static prefetch

horizon will not be robust in the face of the inevitable changes in system performance

parameters. As CPU performance increases, the time to service a hit,Thit, will shrink rela-

tive to the disk access time,Tdisk. This could push  to hundreds or thousands of accesses.

Alternatively, when prefetching from a remote server, access latencies could be quite high

which could also increase . Will it still make sense to prefetch to that depth for all hint-

ing processes?

On the current TIP testbed, =73. This is a small number compared to the cache size

of 1536.  is an upper bound, and therefore larger than it needs to be in some cases, but

there is little pressure to prefetch less deeply; using fewer buffers for prefetching would

1 It turns out that caching can cause the array to go idle and that deeper prefetching can improve
performance in such cases. I will get to this issue in Section 7.3.1.

P̂

P̂

P̂

P̂

P̂

P̂

P̂
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not significantly increase cache performance in most cases. One could imagine putting

pressure on the prefetch depth by running a large number of hinting applications simulta-

neously, but I have not performed experiments of this sort. However, if  grows faster

than memory sizes and becomes a large portion of the cache, then it will be time to recon-

sider some of the simplifications that were made in the current implementation; the system

will no longer have the luxury of being so generous with prefetch buffers. It will have to

distinguish more accurately between those occasions when prefetching deeply is benefi-

cial and those when it is not. Three factors could be considered to arrive at a more conser-

vative, accurate estimate of the benefit of using buffers for prefetching.

First, instead of assuming that application CPU time,Tapp, is negligible, and using a

single system-wide prefetch horizon, the system could monitor application inter-request

compute time and determine a per-application prefetch horizon from Equation 4.11. As

shown by Figure 7.2b, the prefetch horizon shrinks dramatically when applications per-

form a significant amount of computation. To accommodate high degrees of multipro-

gramming, it may be useful to take the sharing of the processor into account and, instead

of using the single process compute time,Tapp, in the benefit equation, use the inter-access

non-idle time which would include other processes’ compute time. This would scale back

the prefetch horizon for any single process when the processor is shared among many pro-

cesses. The upper-bound prefetch horizon really applies to the system as a whole, not indi-

vidual processes; multiple processes cannot consume data any faster than one.

Second, congestion and finite bandwidth which affect I/O parallelism,p from Equa-

tion 7.4, could be incorporated into the prefetching benefit estimate as suggested by Equa-

tion 7.5. The ideal model tells us that once there are enough outstanding prefetches to keep

all disks busy, queuing additional requests does not increase I/O parallelism, assuming an

evenly distributed workload and that caching does not let disks go idle.2 From this per-

spective of I/O parallelism, the size of the array determines how deeply to prefetch. How-

ever, as mentioned above in Section 7.1.2, the most accurate estimate of parallelism as a

function of queued prefetches would depend on the specific workload. Nevertheless, the

2 When disks go idle either because the load is unbalanced, or because a run of cache hits leads to a
lull in disk activity, recent work, which I discuss in Section 7.3, shows how to take advantage of that idleness
for deep prefetching. In Section 7.3.3, I return to this simple model and suggest ways to apply those lessons
here.

P̂
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key point is that it is not necessary for the prefetching depth to scale with the performance

disparity between processors and disks, it is only necessary for it to scale with the size of

the attached array. A balanced system should have enough buffers to keep all disks busy.

Finally, if finite bandwidth considerations scale back prefetching depth, then a better

estimate of the benefit of disk scheduling should also be included to earn buffers for

deeper prefetching when it would reduce stall. This benefit depends primarily on the

workload and the length of the queue at each disk, and so, as was the case for parallelism,

the optimal prefetching depth does not scale directly with processor performance. How-

ever, a thorough study of disk scheduling in the presence of hints remains an area for

future research. Here are two problems that need to be addressed.

The first is determining the impact on average access time,Tdisk, of queuing additional

requests. There is no point in depriving the cache of buffers to queue requests if doing so

will not reduce average access time, and, ultimately, I/O service time. But, as Lesson 4 in

Section 6.5 pointed out, sorting requests does not reduce access time if the requests are

already in ascending order. On the other hand, sorting can significantly reduce the access

time of random accesses. If it were possible to scan upcoming requests and estimate

access time reduction as a function of queue depth, it would be possible to estimate the

scheduling benefit of queuing additional requests.

The second, more subtle problem is related to the fact that the requests are ordered. If

1000 prefetches are queued at once, the device driver is free to completely reorder them. If

the prefetch for the first read were sorted to the last position in the queue, then the applica-

tion would block until all 1000 disk requests had completed. If the disk is the bottleneck,

and the reordering would reduce the aggregate service time for all the requests by a factor

of ten, then forcing the application to wait for all accesses to complete could be the right

course to take. However, if the disk is not the bottleneck when prefetching, then reorder-

ing the first request to the end would remove the chance to overlap any computation with

I/O; queuing 1000 requests would increase elapsed time, not reduce it.

One approach, known empirically to be effective [Cao96], is to issue prefetches in

batches. A new batch of prefetches could be issued just before the disk completes servic-

ing the previous batch. Batches limit reordering while providing a disk scheduler the

opportunity to sort requests. If batches are used, the key problem becomes estimating the
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benefit of adding a buffer to increase the batch size. Developing such an estimate remains

an area for future work.

7.3 Comparison with other systems

Although the experiments in Chapter 6 clearly demonstrate the effectiveness of the

TIP informed prefetching and caching system, they leave open the possibility that some

other system might make even better use of the application’s disclosure hints. In a recent

collaboration with Andrew Tomkins and other researchers, I endeavored to compare the

cost-benefit approach to another proposed algorithm, and to extend the cost-benefit frame-

work to include the dynamic load on the disk in its cost-benefit estimations. This exten-

sion is beyond the scope of this dissertation and neither it nor the experiments evaluating

the extensions will be described in detail here. However, in this section, I will briefly sum-

marize the results of this work and direct readers to other sources for more information.

The primary alternative to cost-benefit analysis is an approach developed by Pei Cao,

Anna Karlin and other collaborators. Their approach was to decompose the problem into

two sub-problems. The first is how to prefetch and cache for a single process that dis-

closes all of its accesses. The second is how to allocate buffers globally among multiple

processes. This decomposition led to two studies that explored alternative solutions to the

two sub-problems.

7.3.1 Prefetching and caching for a single process

Theaggressive algorithm was designed to prefetch and cache in the presence of com-

plete knowledge of all future accesses [Cao95]. The algorithm is as follows: whenever the

disk is free, eject the block whose next reference is furthest in the future to prefetch the

block whose next reference is soonest, provided that the prefetched block will be refer-

enced before the ejected one. The algorithm was developed with a single disk in mind

which it uses to pace prefetching. Extended to multiple disks, whenever any disk is free,

the algorithm prefetches the next-referenced block from that disk subject to the same ejec-

tion constraint as for the single disk. In an implementation of the algorithm [Cao96],

prefetches are issued in batches of 16 to provide the opportunity for disk scheduling to

reduce average access time.
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In comparing thecost-benefit andaggressive algorithms, it is useful to note that in the

single-process, complete-knowledge case, the two algorithms make very similar replace-

ment decisions. The block with the lowest ejection cost is the one whose next access is

furthest in the future and the block with the greatest prefetching benefit is the next missing

block. Furthermore, the benefit of prefetching a block never exceeds the cost of ejecting a

block that will be referenced before the ejected block. The key differences between the

algorithms are (1) thatcost-benefit only prefetches out to the prefetch horizon whereas

aggressive may fill the cache with prefetches, (2) thatcost-benefit initiates new prefetches

as data are consumed whereasaggressive initiates prefetches when the disk is idle, and (3)

that the hysteresis in the cost-benefit estimates means that a block is only ejected to

prefetch another that is referenced substantially before the ejected block (here, substantial

means many tens to hundreds of blocks) whereasaggressive has no such hysteresis.

A large collaboration, which included the developers of both algorithms, used trace-

driven simulation to compare the performance of theaggressive andcost-benefit algo-

rithms when all accesses are known in advance [Kimbrel96].3 Also studied was a third

algorithm,reverse aggressive, which was designed to take disk load into account when

making ejection/prefetching decisions. The study found: that all three algorithms provided

large benefits compared to a non-prefetching system; thataggressive sometimes out-per-

formedcost-benefit on small arrays; thatcost-benefit out-performed aggressive on large

arrays; and thatreverse aggressive performed about as well as any algorithm in all cases.

Aggressive outperformedcost-benefiton small arrays for benchmarks that had sub-

stantial reuse, such as repeated sequential access, or highly unbalanced disk loads. When

there is high reuse,cost-benefit may cache long subsequences of accesses, for example,

for Davidson’s repeated sequential access of the same file (see Section 4.2.7 for details on

how this occurs). When the application is accessing blocks in such a subsequence,cost-

benefit may let the disk go idle because all blocks within the prefetch horizon are already

3 The study actually used a variant of thecost-benefit algorithm calledfixed-horizon. It prefetches a
fixed distance into the future whereascost-benefit scales back prefetching when prefetching would eject
cached blocks that will be reaccessed soon. For the cache sizes studied, and when there is only one stream of
hints and therefore one set of cached blocks, there are always blocks available that will not be reaccessed
until far in the future, andcost-benefit is equivalent tofixed-horizon with the horizon set to the upper-bound
prefetch horizon, .P̂
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cached as shown in Figure 7.4.Aggressive takes advantage of these lulls in disk activity to

prefetch very far in advance. Similarly, when the disk load is unbalanced,aggressive takes

advantage of lulls in activity on one disk to prefetch more deeply on that disk.Aggressive

therefore maximized utilization of a single disk and I/O parallelism on an array. When the

bandwidth of a single disk or small array is the performance bottleneck, or when an unbal-

anced load reduces the number of active disks and therefore the effective size of an array,

aggressive can eliminate some stall and increase performance.

On larger arrays,aggressive used the high bandwidth available to flush the cache and

fill it with prefetched data as shown in Figure 7.5. In contrast,cost-benefit, which assumes

ample bandwidth, prefetches only deeply enough to eliminate stalls. Consequently, even

though neither algorithm suffers significant stalls on larger arrays,aggressive performs

time 0

time 1

time 2

time 3

time 4

prefetched blocks

blocks cached for reuse

Legend

(a) Aggressive

(b) Cost-benefit

time 0

time 1

time 2

time 3

time 4

stalled!

consumed blocks

Figure 7.4. The lost opportunity of not prefetching during idleness on a small array.When an
application is consuming a long sequence of cached data, the disk is not needed to service the application’s
immediate requests and the disk may go idle. Figure (a) shows howaggressive takes advantage of this
idleness to prefetch as far into the future as possible. In contrast, Figure (b) shows howcost-benefit’s
bounded prefetching lets disks stay idle.Cost-benefit does not resume prefetching until consumption is
within the prefetch horizon, , at time 2. When bandwidth is limited, prefetching can’t keep up with
consumption, and the application stalls sooner than it would have had prefetching continued throughout.
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substantially more disk accesses thancost-benefit. These additional accesses incur the

CPU overhead,Tdriver, of performing an access which adds to the elapsed time for the

aggressive algorithm.

The lesson from these experiments was that prefetching should be sensitive to the

long-term load on the disks. When disk bandwidth is the constraining resource, prefetch-

ing during periods of transient disk idleness can avoid stalls far in the future and reduce

elapsed time. On the other hand, when disk bandwidth is not the constraining resource,

prefetching beyond the prefetch horizon can unnecessarily flush the cache and add CPU

overhead to an application’s elapsed time.

Unfortunately, althoughreverse aggressive was already sensitive to disk load, it had

too much computational overhead to run on-line. However, the collaboration developed a

new algorithm,forestall, which is sensitive to disk load and has reasonable overhead. The
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Figure 7.5. The wasted effort of prefetching too aggressively on a large array.Aggressive always ejects
a cached block if it can take advantage of an idle disk to prefetch a closer block. Figure (a) shows how, when
sufficient parallelism exists so there are often idle disks,aggressive flushes distant, cached blocks and fills
the cache with prefetched blocks. In applications with significant reuse, this will incur unnecessary driver
overhead by performing a disk access for each request which can have a significant impact on the elapsed
time. Figure (b) shows how, in contrast,cost-benefit’s bounded prefetching retains the distant bocks for reuse
but because there is enough bandwidth for prefetching to keep up with consumption, no stall ensues.
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algorithm usesfixed-horizon for near-term prefetching and a disk-load sensitive algorithm

for deep prefetching. The basic idea is to look forward in the hint sequence, estimating for

each access when the disk will be able to perform the hinted read and when the application

will issue the actual read request. If the disk will have no problem servicing the prefetch in

time, then the prefetch may be delayed until the access reaches the prefetch horizon. On

the other hand, if the request is anticipated before the disk will be able to service the

prefetch, then the disk isconstrained and prefetching from that disk should begin immedi-

ately. The simulation results showed thatforestall’s performance for any benchmark on

any array size ranges from only 2% slower to as much as 5.8% faster than the better of

aggressive andcost-benefit on each configuration.

Sensitivity to disk load, such as that found inforestall, is not incorporated into the

prefetching-benefit estimate in Chapter 4 because the scope of this dissertation is limited

to estimates that are independent of both the layout of hinted data on disk and the current

contents of the cache. The slower performance ofcost-benefiton small disks and for

unbalanced loads is the cost of these simplifications. However, as described below, recent

extensions to this work show how to incorporate disk load not only into the prefetching-

benefit estimate, but also into the ejection-cost estimate.

7.3.2 Allocating resources among multiple processes

A second comparative study investigated the second sub-problem: how to prefetch and

cache when there are multiple processes and when not all accesses are hinted

[Tomkins97]. The study compared using the time-tested LRU algorithm to make global

allocation decisions to the cost-benefit approach.

Pei Cao showed how to adapt the LRU algorithm to partition the cache buffers among

competing processes while using an algorithm such asaggressive or forestall to decide

within a partition when to prefetch and what to eject [Cao96]. The idea is to maintain a

global LRU queue with each buffer being owned by the process that last accessed it, and,

instead of simply ejecting the block at the head of the LRU list, to give the owner of the

head block the opportunity to hold onto that block and eject a different one of its blocks

instead. She showed how swapping and placeholders could be used assure fairness and
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robustness in the face of poor replacement decisions. The resulting algorithm is called

LRU-SP.

The cost-benefit approach does not explicitly partition the cache, but instead uses

independent estimators and the common currency to make allocation decisions. Recent

work has shown how to adapt the disk-load-sensitiveforestall algorithm to the cost-bene-

fit approach to build a modified TIP system called TIPTOE (TIP with temporal overload

estimators) [Tomkins97, Tomkins97a]. The adaptation requires generating a benefit esti-

mate in terms of the common currency.

The fundamental modeling insight of Chapter 4 remains the basis of TIPTOE: the ben-

efit of prefetching is the reduction of stall. However, theforestall algorithm showed the

superiority of a stall estimate that takes transient disk load into account. Theforestall tech-

niques can be used to detect constrained disks that will cause stall. A disk isconstrained if

it cannot service all prefetches in time even if prefetching non-stop starting immediately.

Detection of constraint involves estimates of how quickly the application is consuming

data and how quickly the disk can service prefetches. The TIPTOE work determined the

change in stall that results from deep prefetching beyond the prefetch horizon on a con-

strained disk and also the change in buffer usage or bufferage required to obtain that

reduction in stall. Dividing the one by the other produces the following common-currency

benefit of prefetching a blockx accesses in advance from a constrained disk:

(7.6)

Within the prefetch horizon, TIPTOE applies TIP’s benefit estimate which, from Equation

4.24, is,

(7.7)

for . The difference is the roughly factor ofx in the denominator which occurs

because Equation 7.6 estimates stall on a single constrained disk, whereas Equation 7.7

supposes that stall on one ofx other accesses may mask stall for another.

Constrained disks also affect ejection decisions. Recall from Equation 4.16 in Section

4.2.4 that the cost of ejecting a hinted block is the additional CPU overhead of prefetching
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the ejected block back plus any stall that will be incurred on the eventual access. The same

stall estimate used to compute the benefit of deep prefetching can also be used to refine

the cost estimate for ejecting blocks from a constrained disk. Doing so leads TIPTOE to

this equation for the cost of ejecting a block from a constrained disk that will be accessed

beyond the prefetch horizon:

(7.8)

TIPTOE uses TIP’s estimate of the cost of ejection from unconstrained disks which, from

Equation 4.31, is,

(7.9)

for . The essential difference is that TIPTOE anticipates a stall for a full disk access

for a block ejected from a constrained disk whereas TIP assumes that the prefetch will not

stall.

The multiple-process study used traces of the benchmark suite used in Chapter 6 to

drive simulations of four algorithms:LRU-SP coupled with both the originalaggressive

algorithm andforestall, theTIP system described in this dissertation, and theTIPTOE sys-

tem just described. Overall, the study found cost-benefit prefetching and caching to be

somewhat better than LRU, reducing elapsed time from 5% to 8% over a broad range of

combinations of two or three hinting and non-hinting applications. To first order, the LRU

queue allocates buffers to processes in proportion to their rate of data consumption. But,

rate of consumption is not a good indicator of data reuse. The study showed that the cost-

benefit approach can take advantage of disclosure hints to cache the blocks whose reuse at

a global level will be soonest and not waste buffers caching for low-reuse but high data

rate applications. TIP’s comparison of independent estimates in terms of the common cur-

rency allows such a global assessment of value to be made efficiently.

The single-process experiments that led to the invention of theforestall algorithm

showed that it is fruitful to push beyond the cost and benefit estimates presented in this

dissertation to arrive at estimates that are sensitive to transient disk load. However, the
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work that incorporated theforestall lessons into the cost-benefit framework and led to the

TIPTOE system shows the fundamental soundness of the cost-benefit approach. TIPTOE

reconfirms the analysis that uncovered the basic relationships described in Chapter 4,

namely that the benefit of prefetching is reduced stall, and that the cost of ejecting a hinted

block is the CPU overhead of prefetching it back plus any stall that will be incurred. The

fact that the disk-sensitive stall estimates could be incorporated into the framework high-

lights the basic extensibility of the cost-benefit framework. Finally, the performance

results demonstrate the superiority of the cost-benefit resource allocation over the conven-

tional LRU algorithm.

7.3.3 Applying TIPTOE to arrays that hide data layout

Detecting an unbalanced load requires knowledge of the layout of data on the disk.

What approach should be pursued when the interface to the storage subsystem hides these

details from the file system?

The first step is eliminating unbalanced loads as a problem. I believe this is largely

possible if the storage subsystem randomizes the assignment of stripe units to disks and

accepts hints so that it can prefetch internally to smooth out transient load imbalances. I

discuss other support the storage subsystems could provide for informed prefetching and

caching in Section 7.4.7. A remaining issue is determining the number of outstanding

prefetches needed to achieve a desired level of parallelism. If the prefetcher knows how

much raw parallelism is available and that addresses are randomized, it should be possible

to estimate the parallelism achieved by a set of outstanding prefetches. But, this remains

an area for future work.

Assuming that the above techniques successfully eliminate load imbalance, deep

prefetching is still desirable to take advantage of the idleness induced by runs of cache

hits. But, if the system cannot prefetch from individual disks, it must prefetch from the

array as a unit. I suspect that where the current model assumes that a storage device can

perform one access in timeTdisk, an extended model could treat an array ofd disks as

being capable of servicingd requests in timeTdisk. Working out the details remains an

area for future work.
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7.4 Future work

In the previous sections, I highlighted a number of areas for researchers to extend this

work. But, I have not yet had the chance to touch on all such areas. In this section, I sum-

marize areas that could benefit from additional work. These are organized loosely from

the most TIP-specific to the most general.

7.4.1 Implementation optimizations

In Section 6.6, I identified LRU profiling as the biggest CPU overhead in TIP. The

largest part of the overhead of LRU profiling, accounting for about a 3% overhead on the

file system, is overflowing buffers from one segment of the LRU queue to the next (see

Section 5.2.6 for a description of this process). This operation is required to determine the

queue position of buffers that are the target of a cache hit.

It might be possible to avoid this overhead by using a completely different approach to

estimating the cost of ejecting an LRU buffer based on access numbers. Instead of break-

ing the queue into segments, each buffer could be stamped with the number, in a global

count of accesses, of the access that is releasing the buffer to the tail of the queue. When a

cache hit occurs, the difference between the buffer’s stamp and the number of the current

access would indicate how many accesses had passed since the buffer was last referenced.

To assess the value of buffers in the LRU queue, a histogram of hits vs. number of

accesses in the queue could be kept on a running basis. Given the number of accesses that

the buffer at the head of the LRU queue has been in the queue, it may be possible to con-

sult this histogram and arrive at an expected value for the number of accesses until that

buffer will produce a cache hit. From that, it should be possible to arrive at an estimate of

the cost of ejecting the block at the head of the list. Clearly, much work remains to turn

this sketch of an idea into a practical LRU estimator.

7.4.2 Cluster-sensitive caching

Informed clustering builds efficient sequential accesses out of smaller, possibly ran-

dom accesses. As pointed out in Lesson 7 in Section 6.5, replacement decisions affect the

opportunity for clustered prefetches to refetch ejected blocks. A useful area for future

research would be developing an estimator for the cost of ejection that was sensitive to

clustering opportunities for the subsequent prefetch.
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7.4.3 Protecting the unhinted cache from hinted blocks: the post-hint estimator

In TIP, all blocks are placed on the LRU queue after they have been accessed whether

the access was hinted or not. This is the behavior of the unmodified system, and at the

time of the original implementation, I had no good reason to implement a different policy.

However, a consequence of this policy is that the LRU queue is shared between blocks

that were hinted and unhinted. Effectively, hinters get their normal share of the LRU

queue and then, if their hints disclose reuse, they take additional buffers from the LRU

queue to cache their hinted data. Hints only increase an application’s share of the cache,

they do not decrease it. No similar mechanism lets unhinted blocks gain a larger share of

the cache; unhinted blocks must always share the LRU queue with blocks that have been

hinted and read.

In many cases, this policy works well. Some applications perform unhinted accesses to

previously hinted blocks and rely on the LRU queue for cache hits. Also, sometimes hints

for a second hinted access appear long after the first hinted access. For example, Gnuld

issues hints for some of its passes only after the previous pass has completed. If the LRU

cache did not hold on to these blocks, these reaccesses would not be cache hits.

On the other hand, many hinted blocks are never or seldom reaccessed, as in the case

of Agrep or XDataSlice, or are reaccessed only according to hints which the system

already has available, as in the case of Davidson or Postgres’ outer-relation data accesses.

When these applications are running alone, this is not a problem; the LRU estimator cor-

rectly discerns that there are few hits in the LRU queue, and the queue shrinks, leaving all

of the buffers for hinted accesses. However, if a hinting and non-hinting application are

running together, or if a single application interleaves hinted and unhinted accesses, the

many unneeded hinted blocks dilute the effectiveness of the LRU queue for caching

unhinted data.

The LRU caching behavior for hinted and unhinted blocks should be adaptive to per-

form well in both cases. One possible way to achieve this is to maintain a separate LRU

estimator for hinted blocks. If hinted blocks are reaccessed or rehinted later, then the

queue in such a post-hint estimator will grow. However, if unhinted blocks are reaccessed

more often, then the original LRU queue, which is no longer diluted with unhinted blocks,

will grow.
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In my recent collaboration with Andrew Tomkins, we found, in simulation, that such a

post-hint estimator could reduce elapsed time for a pair of applications by as much as

30%, and that the average reduction for a set of seven single-process and 11 multi-process

experiments on a range of array sizes was nearly 5% [Tomkins97].

Implementing a post-hint estimator remains an area for future work. The only stum-

bling block I anticipate is the active region of the LRU queue (see Section 5.3.3 for a

description of the active region). Because the active region in the LRU queue is protected,

its buffers would be unavailable for caching post-hint blocks if these were sent to a sepa-

rate post-hint queue. Consequently, a post-hint queue would have a smaller effective size

than the current single queue. One way around this would be to send all buffers through

the active region and only send buffers to the post-hint queue as they overflowed from the

active to the inactive region of the queue.

7.4.4 Generalized estimators

A post-hint estimator is just one example of new estimators that could be added to the

TIP system. Generalizing, the cost-benefit framework allows the system designer to iden-

tify subclasses of a resource, such as post-hint buffers, and then build an estimator for the

value of allocating resources to that subclass. All that is required is that the estimated val-

ues be accurately expressed in terms of the common currency, and that the estimator sup-

port the required pick, query, update and bid operations described in Section 5.2.4. An

interesting area for future work would be exploring what sorts of different subclasses

might be useful in practice. Here are some possibilities:

• Currently, there is a separate estimator for every hinting process. Should each

non-hinting process have its own LRU queue? Or, should there only be one esti-

mator for each process group? If separating hinted from unhinted blocks is a

good idea, perhaps separating the blocks from all processes would be beneficial.

• Heuristic prefetching has the advantage of not requiring any application modifi-

cations. Perhaps sequential readahead and more sophisticated heuristics could be

embodied in prefetching estimators. If they were successful at predicting future

accesses, they would merit buffers for prefetching.

• Virtual memory shares the same memory resource with the file buffer cache. The
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two could be managed as a single resource with the addition of a virtual memory

estimator.

7.4.5 The hint interface

The disclosure-hint interface described in Chapter 3 is simple and straight-forward.

One could imagine many possible enhancements. In many cases, supporting such

enhancements would require substantial extensions to the TIP system. Here are some

examples.

The current interface only allows a process to give a single linear stream of hints about

its own accesses. There are times when an application may not know the exact interleav-

ing of its requests and so desire to create multiple parallel hint streams. Postgres could

have used such a facility to give a hint for the second sequential read of the inner relation

which occurred in parallel with the outer-relation accesses (see Figure 6.14).

In some cases, it may be desirable for one process to give hints about the accesses of

another. For example, a C compiler can scan source code for ‘#include’ directives, but it

cannot know what files these included header files will themselves include. However, the

make program could know all of the header files if the makefile included a full list of

dependencies. In such a case, themake program could give hints about what files the C

compiler will include. One challenge in supporting hints from multiple sources is recog-

nizing when the system has received duplicate hints for the same accesses.

The current interface requires that all hinted accesses either occur or be cancelled.

Some applications may not be able to deliver such accuracy; they may inadvertently skip

some hinted accesses. The system could be made resilient to minor inaccuracies. How-

ever, as discussed in Section 3.2, such resiliency may complicate the programming model

and be undesirable for that reason. Is there a way to add such resiliency without compli-

cating the programming model?

Inaccurate hints are hints that are wrong. Imprecise hints are correct, but do not dis-

close full information. For example, Postgres was unable to give precise hints about its

accesses to the inner-relation index. However, it would have been easy for Postgres to dis-

close that it was going to perform about 4000 random accesses to the index. Note that, in

contrast to hints that advise the system to cache index blocks with high-priority, such an
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imprecise hint adheres to the disclosure hint model; it discloses what the application is

going to do. An informed prefetching and caching system could use this information to

cache at high priority. But, if enough buffers were available, it could also decide to

prefetch the whole index with efficient, sequential accesses and then service the random

requests from the cache. The disclosure hint gives the system the knowledge it needs to

make such a decision.

A variant of the imprecise hint could be an exclusive-or hint which discloses that one

of several files will be accessed. For example, if users are looking at a menu of files they

could view, the system could hint that with high probability one of the files on the menu

will be read.

Imprecise hints are incompatible with rigorous matching of hints to accesses. To help

the system’s hint matching stay synchronized with the application, it may be desirable for

applications to insert markers in a hint stream. For example, an application could disclose

that it will perform several hundred random accesses and then a 100-block sequential

access. If the application could put a marker between the two hints, it could later inform

the system that the random reads were over and the sequential accesses were about to

begin by indicating that it had consumed all hints before the maker. These markers could

also help the system stay synchronized with an interactive application that may need to

abruptly change course.

7.4.6 Automatic hint generation

In Chapter 3, I showed that many applications can be annotated to give a substantial

number of precise hints without too much difficulty. However, I am sure that many more

programs would give hints if annotations could be added automatically. We have already

seen that compilers can generate hints for scientific applications [Mowry96], but much

remains to be done for irregular programs.

On a more speculative level, it might be possible to combine simple compiler tech-

niques with access profiling. For example, it might be possible to augment Lei and Duch-

amp’s access pattern trees [Lei97] with the disclosure of the arguments passed to a

program to arrive at a more accurate prediction of accesses. Such a simple disclosure

would not be hard to generate automatically. At a finer granularity, it might be possible to
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profile procedures or modules within a program and correlate accesses with the parame-

ters passed when invoking the procedure.

7.4.7 Disk subsystem enhancements

In the course of building TIP and experimenting with its performance, it became clear

that the disk subsystem could do more to support informed prefetching.

First, support for low-priority requests needs to be added to the SCSI command set.

The current interface supports high-priority, head-of-line requests. One could imagine

queuing demand requests at this high-priority, and queuing prefetch requests at normal

priority. But, these high-priority requests are serviced in-order and so don’t benefit from

on-disk scheduling. It would be better to have separate class of low-priority requests that

would benefit from scheduling, would not starve, and could be promoted from a low-pri-

ority to a high-priority request.

Second, storage subsystems, which often hide the details of data layout, should export

an interface that allows file-system and application clients to optimize their workload for

performance. The SCSI interface, for example, makes no guarantees about data place-

ment, but there is a common understanding that blocks stored in sequential linear block

addresses will tend to be stored in sequential locations on the disk surface. Further, blocks

stored at close logical addresses will tend to be stored near each other on the disk surface

so that seeks between them are short. The SCSI interface hides details of rotational posi-

tion, but, through convention, exposes the most important features: sequentiality and prox-

imity. The Logical Disk interface makes these two characteristics explicit [de Jonge93].

Disk arrays have a third important performance parameter, parallelism. Ideally, the

interface to an array would expose all three parameters. File-system and application cli-

ents should know when an access will be sequential within one stripe unit on a single disk.

They should be able to specify in some way that blocks should be near each other. They

should be able to issue multiple requests and be reasonably confident that they are fully

exploiting the parallelism of the array. And, if there are any important parity update opti-

mizations, such as the large write optimization (see Section 2.1), clients should be able to

exploit them. It is probably not possible or even desirable to expose the details of the lay-

out, and consequently truly optimal performance will not be possible. But, the interface
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should expose enough information for clients to take advantage of the key performance

characteristics of the subsystem. It would be optimal if clients could know that they were

exploiting all ten disks in a ten-disk array, but it would be acceptable if they could at least

be confident they were exploiting eight or nine of the ten.

Informed prefetching and caching systems need to know how to issue requests to max-

imize parallelism as discussed in Sections 7.1.2 and 7.3.3. The first step is to make sure

clients know how many requests, on average, need to be queued at the subsystem to keep

all disks utilized. But, workloads can be unbalanced. If the actual data layout is hidden,

there is no way for the prefetching file system to know that its requests are generating an

unbalanced load. Two mechanisms could avoid this problem. First, randomizing the

assignment of stripe units to disks would reduce the likelihood that a workload is patho-

logically unbalanced. Second, the subsystem could itself accept hints about future

accesses. Then the subsystem could prefetch more deeply when necessary to smooth out

transient load imbalances.

7.4.8 A disk array for everyone

This dissertation has clearly demonstrated the utility of disk arrays for serial work-

loads when hints are available for informed prefetching. But, this is not a lesson just for

data centers and expensive workstations; everyone could use a disk array, even desktop

personal computers. Although many PC applications are not particularly I/O-intensive

when running, almost all of them are during launch.

The problem is that current arrays are not cheap. Clearly, it does not make economic

sense to attach a private 10-disk array to a 16 MByte PC. And yet, I believe PCs could use

the bandwidth of such an array. The challenge, then, is to develop architectures for shared

storage that can deliver the array performance at an affordable cost. If such an infrastruc-

ture became available, I suspect application writers would find a way to take advantage of

it, and I/O-intensive PC applications would become commonplace.

7.5 Conclusion

In this chapter, I carried the analysis of the previous chapters one step further. I

explored the impact of removing the assumption of no congestion and used that analysis to

shed light on TIP’s performance on small arrays where the assumption is clearly violated.
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I showed that from the perspective of I/O parallelism, smaller arrays require less deep

prefetching. But, deep prefetching on small arrays produces greater opportunities for

scheduling to reduce the average disk access time. The upper-bound prefetch horizon, ,

works well because it is a reasonable compromise across array sizes.

Through time, the growing performance disparity between disks and processors will

increase  and the time will come to drop some of the simplifications of the current

implementation and include computation time,Tapp, in benefit estimates. Further, by

explicitly modeling the benefit of parallelism and disk scheduling, tighter bounds on the

number of buffers required for prefetching should be obtainable.

I discussed recent related work that showed that the TIP prefetching benefit model

works well when high bandwidth is available. But, that work also shows that when ample

bandwidth is not available, and when unbalanced workloads or runs of cached blocks

result in idle disks, the system should take advantage of that idleness to prefetch beyond

the prefetch horizon. I described joint work with Andrew Tomkins in which we developed

an estimator for the benefit of using buffers for such deep prefetching and incorporated it

into the cost-benefit framework and so built TIPTOE.

I went on to discuss other possible extensions to the cost-benefit framework including

a post-hint estimator to protect the LRU queue for unhinted accesses. Many other exten-

sion are possible.

The resilience of the cost-benefit framework to changing conditions and parameters as

well as the many opportunities for extensions show that the fundamental approach

adopted for TIP is sound. Cost-benefit analysis provides a durable, extensible framework

for resource management.

P̂

P̂
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Chapter 8

Conclusion

In the late eighties and early nineties, researchers argued that storage device parallel-

ism was required for secondary storage performance to balance increasing processor per-

formance and proposed Redundant Arrays of Inexpensive Disks (RAID) to provide that

parallelism [Patterson88, Gibson92a]. Since then, the processor and storage performance

trends they identified have continued. In my analysis of the four principal virtues of stor-

age workloads that maximize performance (ASAP or avoidance, sequentiality, asyn-

chrony, and parallelism), I again found that only parallelism could satisfy the demand for

storage throughput. The other virtues help maximize the throughput of arrays of all sizes.

Unfortunately, many computer applications have serial I/O workloads that access only

one disk at a time and are therefore unable to take advantage of disk-array parallelism.

How can systems deliver the performance of parallel I/O to such applications? The key

performance insight is that aggressive prefetching can do for serial reads what buffering

does for serial writes: mask latency with asynchrony and expose parallelism for through-

put. No longer should prefetching be viewed simply as a technique for overlapping I/O

with computation; I/O parallelism is prefetching’s greatest benefit.

How can such aggressive prefetching be achieved given the difficulty of predicting

future accesses and the performance penalty of prefetching unneeded data? In this disser-

tation, I show that many applications can disclose their future file requests in hints, and

that a system can use these hints to decide when and how much to prefetch, and what to

cache. Formally, the thesis of this dissertation is that many important, I/O-bound applica-
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tions can provide accurate hints about their future accesses, that operating system

prefetching and caching according to these hints can substantially reduce application wall-

clock elapsed time, and that run-time cost-benefit analysis can be the basis of effective

resource management that balances the use of cache buffers for prefetching, clustering

prefetches, caching for hinted accesses, and caching in a traditional LRU queue.

The proof of the thesis is in three steps. First, I develop techniques for annotating

applications to give hints about their future file requests and show they can be used to

annotate a suite of six important, I/O-intensive applications. Second, I develop a frame-

work for resource management based on the run-time application of cost-benefit analysis

and build an informed prefetching and caching system, called TIP, based on this frame-

work. Finally, through measurements of the performance of the annotated applications

running on TIP, I show that the operating system can use application hints to allocate

resources and deliver the promised performance gains.

The vision set forth in this dissertation is that serial applications need only disclose

their future accesses to obtain high-performance, parallel I/O. The implication is that

applications need not be rewritten to be more parallel — often a difficult task. Nor need

they manage a private buffer pool and asynchronous I/O requests. Nor need they be con-

cerned with the number and timing of prefetches and how these might vary on different

machines. Nor need they violate the modularity of the file system by controlling specific

implementation actions. Instead, applications need only disclose in advance the requests

they will make of the file system. Further, they can use the same terms that already define

the file-system interface to disclose this information and thereby respect the modularity of

the system. And, in doing so, they free the operating system to optimize resource usage

globally because they provide the evidence for a policy decision.

The hope is that some day, application disclosures will be generated automatically.

For the purposes of proving my thesis, however, it is sufficient to show that applications

can be annotated by hand. In Chapter 3, I describe three techniques for annotating applica-

tions to give disclosure hints: in-line hints, loop duplication, and loop splitting. I then

apply these techniques to annotate a broad suite of I/O-intensive applications which

includes: Davidson computational physics, XDataSlice 3D scientific visualization, Gnuld

object code linker, Sphinx speech recognition, Agrep text search, and two queries to the
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Postgres relational database. Thus, I have shown that important and diverse applications

can provide hints about their future accesses.

For the vision of high-performance, parallel I/O through application disclosure to

become reality, I have to show how a system can use disclosure hints to deliver the prom-

ised performance. In this dissertation, I described a system that takes advantage of disclo-

sure hints for four primary I/O optimizations:

1. informed caching to hold on to useful blocks and outperform LRU caching indepen-

dent of prefetching;

2. informed clustering of multiple accesses into one larger access;

3. informed disk management that better schedules accesses to increase access effi-

ciency; and,

4. informed prefetching to parallelize the disk workload and mask access latency.

All of these optimizations require use of the cache buffers already employed for tradi-

tional LRU caching. The primary challenge in automatically applying these optimizations

is building a mechanism that can balance the use of cache buffers for all of these optimiza-

tions as well as LRU caching.

The thesis posits that run-time cost-benefit analysis can be the basis of a mechanism

that effectively balances the use of cache buffers. The motivation for using cost-benefit

analysis is two-fold. First, cost-benefit analysis provides a rational basis for allocating

buffers that does not depend on the proper adjustment of a number of tuning knobs. Sec-

ond, cost-benefit analysis is a general technique that should easily accommodate estimates

for new resources, such as virtual memory or remote files, as well as improved estimates

for resources already being managed. The thesis claims neither of these assertions, but

they did guide me in my design.

In Chapter 4, I develop a framework for the run-time application of cost-benefit analy-

sis to resource management. The framework includes three key components. First, inde-

pendent cost and benefit estimates of the impact on I/O service time of ejecting a block or

allocating a buffer for a prefetch avoid the need to consider all possible replacements and

thereby limit the complexity of the system and ease the integration of new estimates into
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the system. Second, a common currency for the expression of cost and benefit estimates

relates consumption of the cache buffer resource to the system goal of reducing I/O ser-

vice time and enables the global comparison of the independently generated estimates.

Finally, an allocation algorithm accepts the many independent estimates, expressed in

terms of the common currency, scales them in proportion to their contribution to overall

performance, and compares them at a global level to identify the replacement that would

produce the greatest net reduction in I/O service time.

The first step in building an informed prefetching and caching system on this frame-

work is developing independent cost and benefit estimates. Chapter 4 shows how to use a

model of I/O performance to estimate the cost of ejecting a hinted block or taking a buffer

from the LRU queue, and to estimate the benefit of using a buffer to service a demand

miss or prefetch a block. It goes on to suggest modifications to the estimates to ease

implementation. And it presents an efficient algorithm that takes advantage of the inde-

pendent estimates to find the globally least-valuable block so that it can be ejected and its

buffer reallocated to prefetch new data when doing so would reduce I/O service time.

Chapter 5 describes the details of TIP, my implementation of informed prefetching and

caching based on this framework.

The evaluation, in Chapter 6, of TIP’s performance when running the suite of anno-

tated applications shows that an operating system can indeed use disclosure hints to

deliver the promised performance benefits. Figure 8.1 summarizes the results. Quantita-

tively, TIP reduced elapsed times for the benchmarks on a single disk by up to 50%, with

an average of 28%. On a ten-disk array, TIP took advantage of parallelism to reduce

elapsed time by up to 84%, with an average of 64%. When multiprogramming on a single

disk, where resource contention is at its worst, TIP reduced elapsed time for pairs of appli-

cations by up to 48%, with an average of 37%. On a ten-disk array, TIP reduced elapsed

time for pairs of applications by up to 73%, with an average of 58%. Further, all experi-

ments with both a single application and when multiprogramming demonstrated a reduc-

tion in elapsed time.

All by themselves, these results argue that TIP must be allocating buffers effectively

to optimize I/O performance. To further strengthen the argument, I measured TIP’s cache

and disk performance when hints were unavailable, when using hints for prefetching and
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clustering within the prefetch horizon, and when also using deep hints for informed clus-

tering and caching. These experiments showed that the use of deep hints for informed

clustering and caching could reduce application elapsed time by as much as 36% com-

pared to prefetching alone. They also showed on a single disk that the longer disk queues

generated by informed prefetching could reduce disk service time by up to 24%, and that

informed clustering could reduce per-block service time by up to 22%. These specific

results together with the elapsed time results demonstrate that TIP balances the use of

buffers for all four I/O optimizations.
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Figure 8.1. Elapsed time vs. array size with and without TIP. These graphs show elapsed time on multi-
disk arrays as a fraction of elapsed time on a single disk without TIP for the suite of I/O-intensive
applications. Graph (a), a reprise of Figure 2.2, shows that without informed prefetching and caching, only
Davidson’s sequential accesses benefit from array parallelism. Graph (b) shows that TIP’s informed
prefetching and caching can take advantage of array parallelism for all of the applications. On a sufficiently
large array, all become compute bound. Further, most perform better on a single disk with TIP than they do
on a ten-disk array without TIP.
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In recent joint work with Andrew Tomkins, we provide additional evidence in support

of the claim that allocation based on cost-benefit analysis is effective by showing that, in

simulation, the cost-benefit approach outperforms a competing approach which uses an

LRU queue to allocate buffers at a global level [Tomkins97].

As described in Chapter 7, the same recent study and another [Kimbrel96], showed

how to improve the specific prefetching-benefit and hinted-block-ejection-cost estimates

proposed in this dissertation in Chapter 4. No claim is made that the estimators proposed

here are optimal. To the contrary, my hope was that a framework for resource manage-

ment based on cost-benefit analysis would be flexible and extensible. The fact that the

improved estimators could be integrated into the existing framework argues that this is

indeed the case. Recent work by David Rochberg extending TIP to prefetch from a distrib-

uted file system further strengthens this argument [Rochberg97].

Collectively, these results show that disclosure hints are a feasible and effective mech-

anism for passing I/O optimization information across the file-system interface that frees

applications from the burden of buffer management and scheduling their own disk

accesses. Further, they show that run-time cost-benefit analysis can be the basis of effec-

tive cache resource management that takes advantage of disclosure hints for informed

prefetching and caching. Together, disclosure hints and cost-benefit based I/O optimiza-

tion provide a powerful solution to the problem of delivering the scalable throughput of

disk arrays to the many important applications with serial storage workloads.
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