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Abstract 
We introduce a new mechanism for planning and 

managing the VLSI design process. This mechanism 
significantly enhances the capabilities of CAD 
frameworks, relieving designers from dealing with low 
level details, thereby allowing them to concentrate on the 
more innovative aspects of design. A model for 
representing design processes is described. A prototype 
design process manager, called Minerva, that uses this 
model is presented. 

1 Introduction 
VLSI design has become a complex undertaking 

that involves a variety of activities and the use of a large, 
diverse set of CAD tools. During the course of design 
many data files are generated and the designer is faced 
with the immense task of keeping track of myriad details. 
In order to make the design process itself more tractable, 
CAD frameworks have been developed. Among other 
things, the purpose of these frameworks, from the user's 
point of view, has been to provide basic mechanisms for 
tool and data management A few frameworks also pro­
vide some higher level facilities to help designers manage 
the design processes. Typical of such facilities are means 
for executing static design flows and capture of design his­
tory. From the point of view of tool developers and frame­
work maintainers, frameworks should provide convenient 
mechanisms for tool and data encapsulation in order to 
facilitate the integration of new CAD resources. These 
issues have also been addressed in several framework 
implementations. Unfortunately, CAD frameworks still 
fall short in the area of true design process management. 
Consequently, designers still expend a significant amount 
of time dealing with cumbersome and error prone manage­
ment details. In this paper we describe an approach to 
enhance CAD frameworks that can significantly aid the 
designer in managing the entire VLSI design process. 

As a means for facilitating the discussion that fol-

* This work is supported in part by the Engineering Design 
Research Center, Carnegie Mellon University, under contract no. 
EDC-8943164. 

lows, it is convenient to view the services that can be pro­
vided by a framework in terms of four basic levels of 
abstraction [1]. In this view, the component level com­
prises the CAD tools and databases available to the frame­
work, exactly as they come from their developers or 
distributors. Designers "working*' at the component level 
must therefore be familiar with all the details associated 
with specific idiosyncrasies of each particular tool. 

At the next higher level of abstraction, called the 
resource level, all component level tools and data are 
encapsulated, thereby providing them will well defined 
and consistent interfaces. Such interfaces allow resources 
to interact with each other through a framework. While 
designers working at this level are still basically manipu­
lating individual CAD tools and data objects, the specifics 
of each resource are hidden by a stable, and consistent 
"front-end", provided by the encapsulation. 

In general, CAD tools are developed as a means for 
performing specific design functions or CAD tasks (e.g. 
synthesis, verification and optimization). CAD tasks con­
stitute therefore the first real "design management 
abstraction" to be implemented in a framework. Accord­
ingly, the next abstraction level is the CAD task level. At 
this level, the semantics of specific design functions are 
actually modelled and represented, independent of spe­
cific CAD resources, and are further dynamically mapped, 
by the CAD Task Manager[2], to these resources. Thus, 
the designer interacting with the framework at the CAD 
task level is allowed to request execution of abstract tasks 
such as "verify circuit performance" rather than direcdy 
requesting tool invocations such as "execute SPICE". 

Although working at the CAD task level relieves 
designers from low level details concerned with CAD tool 
invocation, the design process itself is still not repre­
sented. Thus, while a CAD Task Manager provides a 
CAD framework with the capability to perform design 
functions, the actual reason for the need to perform these 
functions is not explicitly known by the framework. In 
other words, a framework whose highest level of abstrac­
tion is the CAD task level "knows how to do things" but 
does not know "why these things are being done". So, 
designers interacting with the framework directly at the 
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CAD task level are still required to map the "design prob­
lem" being solved onto the specific collection of CAD 
tasks available in the framework. Further, the designer 
must still manually guarantee consistency among deci­
sions made during the course of design; has to sequence 
the execution of CAD tasks; must manage all generated 
data objects; and has to coordinate activities with the 
group of designers working simultaneously on the same 
project 

The highest level of abstraction is the design pro­
cess level (or problem level). At this level the designer 
carries out design directly in terms of design problems, 
such as "design an operational amplifier to meet a set of 
specifications", or "verify the performance of this ALU". 
The Design Process Manager is responsible for automati­
cally and dynamically mapping this "natural" (designer 
oriented) representation of problems to executable CAD 
tasks. In other words, it is responsible for planning the 
design process in the sense that it will derive the set of 
CAD tasks (seen as atomic operators) that have to be exe­
cuted, together with the data objects involved on such exe­
cutions, in order to solve a given design problem. Since 
the Design Process Manager relieves designers from all 
design process planning and data management activities, 
the obvious advantage of interacting with a framework at 
the proposed abstraction level is precisely to allow design­
ers to concentrate their effort on the creative and explor­
atory aspects of design. Exploring alternative 
implementations, choosing appropriate specifications, and 
investigating trade-offs among performances while deriv­
ing those components, are examples of such creative/ 
exploratory activities to which designers working at the 
design process level focus their attention. 

In our view, the planning and managing capabilities 
provided by a Design Process Manager are useful to both 
the novice and experienced designers, so it should not in 
anyway limit the designer's flexibility or autonomy in 
implementing a design. Thus, the Design Process Manager 
must be able to cope with non-routine design problems, 
which are typically loosely defined at the beginning of the 
design process, as well as support any design methodology 
(e.g., bottom-up, top-down). 

In order to demonstrate the suitability of our design 
process model, a prototype design process manager, called 
Minerva, has been developed. While Minerva can be used 
as a stand alone meta-tool, its true benefit is only fully 
realized when it is incorporated into a CAD framework, 
such as the Odyssey framework [1], that supports resource 
and CAD task management. 

Before proceeding it is worthwhile to place our 
work within the context of other related work. Knapp's 
Design Planning Engine (DPE) [3] generates plans for 
invoking CAD tools to realize design functions. Thus, 
DPE employs planning at the design task level, rather than 

at the design problem level. Harjani, e t al., [4] employs 
hardcoded plans for encoding multi-variable numerical 
optimization techniques in an analog circuit synthesis 
framework. These hardcoded plans are conceptually simi­
lar to complex CAD tasks (they statically encode a given 
design function), and therefore [4] also focuses on the 
design task level Dewey's conceptual design [5] work, 
developed to aid the designer in the decision making pro­
cess that occurs during the early stages of the design pro­
cess, is most closely related to the work described here. 
However, Dewey did not attempt to explicitly represent 
design problems or to map the set of design decisions 
developed during conceptual design into an actual execut­
able design plan. 

The remainder of this paper is organized as fol­
lows. We first describe the Minerva Design Process Rep­
resentation, or MDPR, which is our formal model for 
representing VLSI design processes. Then, in Section 3, 
we describe the dynamic modeling of the design process 
implemented by the Design Process Manager. Minerva, 
the prototype design process manager, is described in Sec­
tion 4. Some conclusions are given in Section S. 

2 Minerva Design Process 
Representation (MDPR) 

We begin this section by briefly reviewing the main 
phases of a typical VLSI design process. Of special inter­
est are the strategies employed by designers in order to 
control complexity, since it is these strategies, and how 
they are used, that actually define a "design methodol­
ogy". 

The initial phase of design is problem definition. 
During this phase, the designer develops detailed specifi­
cations of the system or circuit to be designed. Such spec­
ifications may include the desired behavior and the 
functionality of the circuit, the general timing constraints, 
as well as environmental conditions such as the tempera­
ture range over which the circuit is expected to operate. 
As the specifications stabilizes, the next phase, conceptual 
design, begins. 

Conceptual design involves the investigation of 
alternative, often high level, design options in terms of 
their consequences on performance, without actually 
undertaking design and fabrication steps [5]. During this 
phase, designers may need assistance in the form of quali­
tative advice and/or quantitative information that can be 
used to discriminate among the various options. 

Upon completion of conceptual design, designers 
are typically faced with two options. If the size of the 
design problem is such that it can be solved using an 
available CAD tool suite, the designer may choose to 
attack the design problem as formulated. Alternatively the 
designer may employ some type of decomposition strat-
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Figure 1 Example of hierarchical definition of design domains 

egy (either structurally or functionally), in order to create a 
number of smaller design problems. Specifications for 
each of these design sub-problems must then be devel­
oped, reflecting the restrictions imposed on the original 
circuit by the original specifications. Conceptual design is 
then performed for each of these sub-problems taking into 
account decisions made for the original circuit Note that, 
because of the nearly decomposable nature of VLSI design 
problems, different designers may be simultaneously 
working on each of the sub-problems. Depending on the 
complexity of the resultant sub-problems, the designer 
may choose to undertake further decomposition. An 
important observation is that different design domains 
may lend themselves to different design methodologies or 
patterns of design activity. For instance, within the domain 
of analog circuits, parametric yield optimization proce­
dures may be employed, while in the domain of digital cir­
cuits such techniques may not be necessary. 

Let us now introduce a formal means for represent­
ing the VLSI design process.1 We begin by defining the 
VLSI design problem in terms of three components: 
design domains, design objectives and design specifica­
tions. In what follows, we discuss each of these compo­
nents and discuss the role that decomposition plays in 
controlling complexity. 

2.1 Design Domains 
A design domain is a self contained design context 

that may be broad, such as digital signal processing sys­
tems, or more limited, such as operational amplifiers, mul­
tipliers, adders, etc. Design domains can be defined in 
terms of a static hierarchy of design domain knowledge 
templates where each template contains two basic catego­
ries of knowledge: conceptual design knowledge and 
domain constraint knowledge. 

1. While we are specifically focusing on the domain of 
VLSI design processes in this paper, our means of repre­
senting the design process may be generalized to many 
other domains as well. 

Conceptual design knowledge includes: the set of 
specifications relevant for the particular domain; the set of 
design issues and related design options relevant to the 
particular design domain; ordering and consistency con­
straints2, between design issues and related design 
options, respectively; and the set of relevant discriminat­
ing factors that are used to differentiate among the design 
options. Domain constraint knowledge includes: defini­
tion of formal languages for describing behavioral and 
structural constraints on the domain object; and actual 
constraints on behavioral, structural and physical charac­
teristics for the domain of interest 

Figure I illustrates a hierarchy of design domain 
templates. In this hierarchy, descendent templates inherit 
knowledge (e.g. specifications, design issues, etc.) from 
their parent templates. Leaf templates that have pre­
defined constraints describing their behavior are called 
closed design domains while other templates are called 
open design domains. Note that the knowledge contained 
in this representation of design domains3 allows designers 
to specify, during run time, the behavior of circuits, or to 
specify functional or structural decompositions of cir­
cuits. This feature supports the development of new (non-
routine) systems and circuits, treated as open domains. 

In order to facilitate dynamic decomposition of 
design domains during the design process, as is often 
done to control the complexity of the circuit being 
designed, design domain knowledge templates can con­
tain a decomposition design issue whose design options 
correspond to the possible decompositions, expressed in 
terms of sub-domains available to the designer. Thus, for 
example, a digital filter may be designed by designing 
multipliers, adders, registers, etc. When a design domain 
is an option associated with the decomposition design 

2. Ordering constraints guide the designer towards address­
ing the most pervasive design issues first. Consistency 
constraints prevents the designer from choosing a design 
option that is inconsistent with previous design decsions. 

3. Namely, the description languages defined in the design 
domain knowledge templates. 
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issue of an higher level design domain, ordering and con­
sistency constraints can be stated between design issues 
and related design options of both domains. These con­
straints are included in the knowledge template of the par­
ent design domain. 

2.2 Design Objectives 
Design objectives refer to, and characterize, the 

general types of problems that are typically addressed dur­
ing the design process, e.g. "design", "verify", "synthe­
size", "conceptual design" and "optimize." Design 
objectives have varying degrees of complexity. In order to 
control the complexity of the design problem itself, 
designers often decompose design objectives into a set of 
sub-objectives. For example, the objective "design" may 
be decomposed into the sub-objectives "synthesize&opti-
mize" and "verify". Similarly, the objective "synthesizeA-
optimize" may be decomposed into the sub-objectives 
"conceptual design", "synthesize" and "optimize". 

Ignoring for the moment design objective decom­
position, realization of a design objective involves typi­
cally four steps: design plan generation, design plan 
validation, design plan execution and, finally, execution 
validation. 

Design plan generation transforms a design prob­
lem into a partially ordered sequence of CAD tasks that 
reflects the design decisions made during conceptual 
design, the specifications imposed by the designer, and the 
design objective itself. This step is carried out in the plan­
ning space, viz. the space of all possible task sequences 
that can be generated to solve the same basic VLSI design 
problem. 

The design plan validation step determines the 
existence of resources required by the individual tasks in 
the plan. If the plan cannot be validated there are two alter­
natives: backtracking, by reactivating the conceptual 
design objective in order to re-evaluate basic design deci­
sions, or design objective decomposition, as discussed 
below. 

Design plan execution is performed in the design 
space, viz. the space of all possible designs that totally or 
partially satisfy a set of design constraints with each point 
in the space representing a different trade-off between per­
formance characteristics. Successful execution of a design 
plan results in an actual candidate solution to the design 
problem. Validation of the solution must then occur. If per­
formance is unacceptable, again several different strate­
gies may be pursued. Backtracking can be performed or, 
alternatively, the problem currently being addressed (or 
others) can be reactivated. Finally, a design plan may *tfso 
fail because the selected tasks (or the related tools) failed 
during execution. In this case backtracking can be per­
formed, or alternatively, the design objective can be 
decomposed. 

As indicated above, design objective decomposi­
tion, may occur for several reasons. In order to achieve 
decomposition, the objective has to generate an appropri­
ate set of sub-objectives, as well as a possible set of order­
ing restrictions for addressing these sub-objectives. It is 
important to note that there is no unique decomposition 
associated with a VLSI design problem. Therefore our 
model of the design process has to capture and represent 
expressively the nature of such diversity. Thus, when 
objectives are defined and represented, their decomposi­
tion can be made design domain dependent and/or depen­
dent on specifications defined for the objective itself, as 
would be the case for enforcing a particular design meth­
odology. 

As was the case for design domains, each design 
objective can be defined in terms of a knowledge template 
that contain information such as: the set of specifications 
that can be defined for the objective; the steps during 
which the design objective is to be accomplished, and 
what to do in case of success and/or failure; possible 
decompositions for the objective, conditions required to 
activate and sequence the sub-objective, and what to do in 
case of sub-objective failure; 

2.3 Design Specifications 
After a given design objective is selected, within a 

particular design domain, the problem description is com­
pleted by a statement of design specifications (or a priori 
constraints) to be satisfied by the final solution. Design 
specifications can either be design objective dependent or 
design domain dependent. Examples of design objective 
dependent specifications are minimum area and minimum 
dissipated power, which may be associated with an opti­
mization objective, and design methodology, that may be 
associated with a "design" objective. Examples of design 
domain dependent specifications are gain, bandwidth and 
slew rate, which may be associated with the domain of 
operational amplifiers. 

Specifications can be defined in terms of specifica­
tion knowledge templates, that contain the following 
information: indication of whether the specification is 
design domain dependent or design objective dependent; 
references to templates of corresponding design domains 
or design objectives; and restrictions or bounds on design 
specification assignments.1 

Whenever problem decomposition occurs, specifi­
cations related to the original problem have to be propa­
gated to the newly generated sub-problems. In order to 
accommodate this, our problem model contains propaga­
tion constraint knowledge templates that properly trans­
form high level constraints into constraints associated 
with each sub-problem. 

1. Assignments may be values, behavioral descriptions, etc. 



3 The Design Process Manager 
We now describe how a design process can be 

planned and managed given the representation of design 
problems described above. The design process begins with 
the definition of a specific VLSI design problem, called 
the target problem. Towards this end, the designer selects 
an appropriate design domain from among the entire set of 
design domains represented in the knowledge base. This 
choice causes the creation of an instance of the selected 
design domain knowledge template. The designer then 
selects a primary design objective and an instance of the 
associated design objective knowledge template is also 
created. Finally the designer chooses an appropriate set of 
specifications and assigns values to each specification in 
the set 

After the target problem has been defined, the 
design process can commence. The design process is basi­
cally a repetitive (quasi-cyclic) process involving two 
basic steps: sub-problem selection and sub-problem solu­
tion. We use a decision tree to represent the state of the 
design process. Decomposition relations among instances 
of design domain templates are implicitly represented by 
the branches of the tree. Thus, the decision tree represents 
the dynamic hierarchy of instances of design domain 
knowledge templates and associated design objective 
knowledge templates generated during the design process. 

Sub-problem selection involves the choice of a 
design domain instance, i.e., a node in the decision tree, 
the choice of a design objective associated with that 
instance and, possibly, the choice of a set of design specifi­
cations to be satisfied by the solution. The sub-problem so 
selected by the designer is solved during the next sub-
problem solution step. Depending on the design objective 
and the current step of this objective, the problem solving 
process involves one of five basic activities: conceptual 
design; building sub-plans; validating generated sub-
plans; requesting execution of sub-plans or validating the 
prior execution of sub-plans. 

Upon conclusion of a sub-problem solving step, a 
new sub-problem solving cycle is started. Notice that this 
basic "sub-problem selection - sub-problem solution" 
cycle is performed in a consistent and homogeneous fash­
ion throughout the entire design hierarchy, independent of 
the abstraction level at which the design domain instances 
are defined (i.e. system, algorithmic, register-transfer 
level, logic, etc.). Also notice that our model of the design 
process does not enforce any specific patterns for decision 
tree generation and traversal. Thus designers have the 
freedom to determine the critical components or paths of 
the design, and can focus on those elements first. 

1. The decision tree represents at each moment the sub-
problems that can be addressed concurrently. 

Whenever design domain decomposition occurs, 
the top-level objective associated with the parent domain 
must, in general, be propagated to the sub-domains. This 
is the way domain decomposition impacts the design 
objective hierarchy that is simultaneously being devel­
oped. Also, a design objective will typically be generated 
(at the level of the parent domain) whose goal is to rebuild 
the original element from the cells or components into 
which it was decomposed. 

4 Minerva - A Prototype Design 
Process Manager 

A prototype design process manager has been 
implemented, called Minerva. 2In order to illustrate the 
Design Process Manager capabilities we briefly, by exam­
ple, illustrate how a designer interacts with Minerva dur­
ing a "problem solving cycle". When a designer selects a 
sub-problem, a window showing the hierarchy of design 
domain instances for the current decision tree is created, 
as shown in Figure 2. The designer is allowed to browse 
the decision tree, inspecting the status and current design 
decisions for the existing design domain instances. 

Each design domain instance will have an identifi­
able status such as: "non-available selectable objectives", 
meaning that there are no sub-problems currently ready to 
be solved within this design domain instance; "busy", 
meaning that another designer is concurrently working 
within this design domain instance (this allows multiple 
designers to be working on different aspects of the same 
design problem simultaneously); and "ready for selec­
tion", meaning that there is at least one sub-problem 
within the design domain instance that is ready to be 
addressed, and that no other designer is addressing it 
simultaneously. 

In Figure 2, design domain instances that are avail­
able for selection are indicated by having the button 
"Select Domain" active. A designer who wants to know 
why a particular domain is not available for selection can 
click on the button "Show Status". Also, in order to have 
a better insight on the design domain instance, the design 
can click on the button "Inspect Decisions", and the 
design decisions that had been made for the instance will 
be displayed, although they cannot be modified at this 
point 

After selecting a given design domain instance, a 
window showing the associated hierarchy of objective 
instances is created, as shown in Figure 2. The designer is 
also allowed to browse the objectives hierarchy, inspect­
ing the status of the existing objective instances. 

The status of a design objective instance may be: 
"accomplished, meaning that the associated sub-problem 

2. Minerva has been implemented in C++. 
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Figure 2 Minerva sub-problem selection step: selecting a design domain instance and an objective mstance 

was successfully solved; "waiting for sub-objective 
accomplishment", meaning that the associated sub-prob­
lem depends on the results of other sub-problems that have 
not yet been addressed; "waiting for design space event", 
meaning that the results of executin a plan are still not 
available; and "ready for selection99, meaning that the sub-
problem associated with the sub-objective has not yet been 
addressed, and that there is no active sequencing con­
straints for i t 

In Figure 2, design objective instances that are 
available for selection are indicated by having the button 
"Select Objective" active. The designer can determine 
why a particular objective instance is not available for 
selection by clicking on the button "Show Status". 

Upon completion of "sub-problem selection", the 
designer enters one the possible "problem solving" steps, 
conceptual design, building sub-plans, validating gener­
ated sub-plans, requesting execution of sub-plans or vali­
dating the prior execution of sub-plans. For each step an 
appropriate window opens directing the designer towards 
solution of the selected problem (space limitations pre­
clude us from showing these windows here). Once this 
sub-problem has been solved, the sub-problem selection 
process resumes until all sub-problems have been 
addressed and the target problem is solved. 

5 Conclusions 
In this paper we have extended the CAD framework 

paradigm to support Design Process Management allow­
ing designers to concentrate exclusively on those issues 

that concern the creative and exploratory phases of design. 
A prototype Design Process Manager, Minerva, has been 
realized. Currently the Minerva knowledge base supports 
the design of datapaths, and to perform conceptual design 
on DSP Filters. The framework executive component 
interacting with Minerva currently has available the Ber­
keley Synthesis Tools for logic synthesis [6]. Expansion of 
the knowledge base, in order to cover the analog circuit 
domain is underway. 
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