
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1992

Design process management for CAD frameworks
Margarida F. Jacome
Carnegie Mellon University

Stephen W. Director

Carnegie Mellon University.Engineering Design Research Center.

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been
accepted for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Design Process Management for CAD Frameworks
Margarida Jacome, Stephen Director

EDRC 18-27-92

Design Process Management for CAD Frameworks*
Margarìda E Jacome and Stephen W. Director

Electrical and Computer Engineering Department
Carnegie Mellon University

Pittsburgh, PA 15217

Abstract
We introduce a new mechanism for planning and

managing the VLSI design process. This mechanism
significantly enhances the capabilities of CAD
frameworks, relieving designers from dealing with low
level details, thereby allowing them to concentrate on the
more innovative aspects of design. A model for
representing design processes is described. A prototype
design process manager, called Minerva, that uses this
model is presented.

1 Introduction
VLSI design has become a complex undertaking

that involves a variety of activities and the use of a large,
diverse set of CAD tools. During the course of design
many data files are generated and the designer is faced
with the immense task of keeping track of myriad details.
In order to make the design process itself more tractable,
CAD frameworks have been developed. Among other
things, the purpose of these frameworks, from the user's
point of view, has been to provide basic mechanisms for
tool and data management A few frameworks also pro­
vide some higher level facilities to help designers manage
the design processes. Typical of such facilities are means
for executing static design flows and capture of design his­
tory. From the point of view of tool developers and frame­
work maintainers, frameworks should provide convenient
mechanisms for tool and data encapsulation in order to
facilitate the integration of new CAD resources. These
issues have also been addressed in several framework
implementations. Unfortunately, CAD frameworks still
fall short in the area of true design process management.
Consequently, designers still expend a significant amount
of time dealing with cumbersome and error prone manage­
ment details. In this paper we describe an approach to
enhance CAD frameworks that can significantly aid the
designer in managing the entire VLSI design process.

As a means for facilitating the discussion that fol-

* This work is supported in part by the Engineering Design
Research Center, Carnegie Mellon University, under contract no.
EDC-8943164.

lows, it is convenient to view the services that can be pro­
vided by a framework in terms of four basic levels of
abstraction [1]. In this view, the component level com­
prises the CAD tools and databases available to the frame­
work, exactly as they come from their developers or
distributors. Designers "working*' at the component level
must therefore be familiar with all the details associated
with specific idiosyncrasies of each particular tool.

At the next higher level of abstraction, called the
resource level, all component level tools and data are
encapsulated, thereby providing them will well defined
and consistent interfaces. Such interfaces allow resources
to interact with each other through a framework. While
designers working at this level are still basically manipu­
lating individual CAD tools and data objects, the specifics
of each resource are hidden by a stable, and consistent
"front-end", provided by the encapsulation.

In general, CAD tools are developed as a means for
performing specific design functions or CAD tasks (e.g.
synthesis, verification and optimization). CAD tasks con­
stitute therefore the first real "design management
abstraction" to be implemented in a framework. Accord­
ingly, the next abstraction level is the CAD task level. At
this level, the semantics of specific design functions are
actually modelled and represented, independent of spe­
cific CAD resources, and are further dynamically mapped,
by the CAD Task Manager[2], to these resources. Thus,
the designer interacting with the framework at the CAD
task level is allowed to request execution of abstract tasks
such as "verify circuit performance" rather than direcdy
requesting tool invocations such as "execute SPICE".

Although working at the CAD task level relieves
designers from low level details concerned with CAD tool
invocation, the design process itself is still not repre­
sented. Thus, while a CAD Task Manager provides a
CAD framework with the capability to perform design
functions, the actual reason for the need to perform these
functions is not explicitly known by the framework. In
other words, a framework whose highest level of abstrac­
tion is the CAD task level "knows how to do things" but
does not know "why these things are being done". So,
designers interacting with the framework directly at the

University Libraries

CAD task level are still required to map the "design prob­
lem" being solved onto the specific collection of CAD
tasks available in the framework. Further, the designer
must still manually guarantee consistency among deci­
sions made during the course of design; has to sequence
the execution of CAD tasks; must manage all generated
data objects; and has to coordinate activities with the
group of designers working simultaneously on the same
project

The highest level of abstraction is the design pro­
cess level (or problem level). At this level the designer
carries out design directly in terms of design problems,
such as "design an operational amplifier to meet a set of
specifications", or "verify the performance of this ALU".
The Design Process Manager is responsible for automati­
cally and dynamically mapping this "natural" (designer
oriented) representation of problems to executable CAD
tasks. In other words, it is responsible for planning the
design process in the sense that it will derive the set of
CAD tasks (seen as atomic operators) that have to be exe­
cuted, together with the data objects involved on such exe­
cutions, in order to solve a given design problem. Since
the Design Process Manager relieves designers from all
design process planning and data management activities,
the obvious advantage of interacting with a framework at
the proposed abstraction level is precisely to allow design­
ers to concentrate their effort on the creative and explor­
atory aspects of design. Exploring alternative
implementations, choosing appropriate specifications, and
investigating trade-offs among performances while deriv­
ing those components, are examples of such creative/
exploratory activities to which designers working at the
design process level focus their attention.

In our view, the planning and managing capabilities
provided by a Design Process Manager are useful to both
the novice and experienced designers, so it should not in
anyway limit the designer's flexibility or autonomy in
implementing a design. Thus, the Design Process Manager
must be able to cope with non-routine design problems,
which are typically loosely defined at the beginning of the
design process, as well as support any design methodology
(e.g., bottom-up, top-down).

In order to demonstrate the suitability of our design
process model, a prototype design process manager, called
Minerva, has been developed. While Minerva can be used
as a stand alone meta-tool, its true benefit is only fully
realized when it is incorporated into a CAD framework,
such as the Odyssey framework [1], that supports resource
and CAD task management.

Before proceeding it is worthwhile to place our
work within the context of other related work. Knapp's
Design Planning Engine (DPE) [3] generates plans for
invoking CAD tools to realize design functions. Thus,
DPE employs planning at the design task level, rather than

at the design problem level. Harjani, e t al., [4] employs
hardcoded plans for encoding multi-variable numerical
optimization techniques in an analog circuit synthesis
framework. These hardcoded plans are conceptually simi­
lar to complex CAD tasks (they statically encode a given
design function), and therefore [4] also focuses on the
design task level Dewey's conceptual design [5] work,
developed to aid the designer in the decision making pro­
cess that occurs during the early stages of the design pro­
cess, is most closely related to the work described here.
However, Dewey did not attempt to explicitly represent
design problems or to map the set of design decisions
developed during conceptual design into an actual execut­
able design plan.

The remainder of this paper is organized as fol­
lows. We first describe the Minerva Design Process Rep­
resentation, or MDPR, which is our formal model for
representing VLSI design processes. Then, in Section 3,
we describe the dynamic modeling of the design process
implemented by the Design Process Manager. Minerva,
the prototype design process manager, is described in Sec­
tion 4. Some conclusions are given in Section S.

2 Minerva Design Process
Representation (MDPR)

We begin this section by briefly reviewing the main
phases of a typical VLSI design process. Of special inter­
est are the strategies employed by designers in order to
control complexity, since it is these strategies, and how
they are used, that actually define a "design methodol­
ogy".

The initial phase of design is problem definition.
During this phase, the designer develops detailed specifi­
cations of the system or circuit to be designed. Such spec­
ifications may include the desired behavior and the
functionality of the circuit, the general timing constraints,
as well as environmental conditions such as the tempera­
ture range over which the circuit is expected to operate.
As the specifications stabilizes, the next phase, conceptual
design, begins.

Conceptual design involves the investigation of
alternative, often high level, design options in terms of
their consequences on performance, without actually
undertaking design and fabrication steps [5]. During this
phase, designers may need assistance in the form of quali­
tative advice and/or quantitative information that can be
used to discriminate among the various options.

Upon completion of conceptual design, designers
are typically faced with two options. If the size of the
design problem is such that it can be solved using an
available CAD tool suite, the designer may choose to
attack the design problem as formulated. Alternatively the
designer may employ some type of decomposition strat-

Tiinih»! m ir 1 EST-

\fYocmEing Orwit

1 Aftfcr

fÂÛT

Figure 1 Example of hierarchical definition of design domains

egy (either structurally or functionally), in order to create a
number of smaller design problems. Specifications for
each of these design sub-problems must then be devel­
oped, reflecting the restrictions imposed on the original
circuit by the original specifications. Conceptual design is
then performed for each of these sub-problems taking into
account decisions made for the original circuit Note that,
because of the nearly decomposable nature of VLSI design
problems, different designers may be simultaneously
working on each of the sub-problems. Depending on the
complexity of the resultant sub-problems, the designer
may choose to undertake further decomposition. An
important observation is that different design domains
may lend themselves to different design methodologies or
patterns of design activity. For instance, within the domain
of analog circuits, parametric yield optimization proce­
dures may be employed, while in the domain of digital cir­
cuits such techniques may not be necessary.

Let us now introduce a formal means for represent­
ing the VLSI design process.1 We begin by defining the
VLSI design problem in terms of three components:
design domains, design objectives and design specifica­
tions. In what follows, we discuss each of these compo­
nents and discuss the role that decomposition plays in
controlling complexity.

2.1 Design Domains
A design domain is a self contained design context

that may be broad, such as digital signal processing sys­
tems, or more limited, such as operational amplifiers, mul­
tipliers, adders, etc. Design domains can be defined in
terms of a static hierarchy of design domain knowledge
templates where each template contains two basic catego­
ries of knowledge: conceptual design knowledge and
domain constraint knowledge.

1. While we are specifically focusing on the domain of
VLSI design processes in this paper, our means of repre­
senting the design process may be generalized to many
other domains as well.

Conceptual design knowledge includes: the set of
specifications relevant for the particular domain; the set of
design issues and related design options relevant to the
particular design domain; ordering and consistency con­
straints2, between design issues and related design
options, respectively; and the set of relevant discriminat­
ing factors that are used to differentiate among the design
options. Domain constraint knowledge includes: defini­
tion of formal languages for describing behavioral and
structural constraints on the domain object; and actual
constraints on behavioral, structural and physical charac­
teristics for the domain of interest

Figure I illustrates a hierarchy of design domain
templates. In this hierarchy, descendent templates inherit
knowledge (e.g. specifications, design issues, etc.) from
their parent templates. Leaf templates that have pre­
defined constraints describing their behavior are called
closed design domains while other templates are called
open design domains. Note that the knowledge contained
in this representation of design domains3 allows designers
to specify, during run time, the behavior of circuits, or to
specify functional or structural decompositions of cir­
cuits. This feature supports the development of new (non-
routine) systems and circuits, treated as open domains.

In order to facilitate dynamic decomposition of
design domains during the design process, as is often
done to control the complexity of the circuit being
designed, design domain knowledge templates can con­
tain a decomposition design issue whose design options
correspond to the possible decompositions, expressed in
terms of sub-domains available to the designer. Thus, for
example, a digital filter may be designed by designing
multipliers, adders, registers, etc. When a design domain
is an option associated with the decomposition design

2. Ordering constraints guide the designer towards address­
ing the most pervasive design issues first. Consistency
constraints prevents the designer from choosing a design
option that is inconsistent with previous design decsions.

3. Namely, the description languages defined in the design
domain knowledge templates.

file:///fYocmEing

issue of an higher level design domain, ordering and con­
sistency constraints can be stated between design issues
and related design options of both domains. These con­
straints are included in the knowledge template of the par­
ent design domain.

2.2 Design Objectives
Design objectives refer to, and characterize, the

general types of problems that are typically addressed dur­
ing the design process, e.g. "design", "verify", "synthe­
size", "conceptual design" and "optimize." Design
objectives have varying degrees of complexity. In order to
control the complexity of the design problem itself,
designers often decompose design objectives into a set of
sub-objectives. For example, the objective "design" may
be decomposed into the sub-objectives "synthesize&opti-
mize" and "verify". Similarly, the objective "synthesizeA-
optimize" may be decomposed into the sub-objectives
"conceptual design", "synthesize" and "optimize".

Ignoring for the moment design objective decom­
position, realization of a design objective involves typi­
cally four steps: design plan generation, design plan
validation, design plan execution and, finally, execution
validation.

Design plan generation transforms a design prob­
lem into a partially ordered sequence of CAD tasks that
reflects the design decisions made during conceptual
design, the specifications imposed by the designer, and the
design objective itself. This step is carried out in the plan­
ning space, viz. the space of all possible task sequences
that can be generated to solve the same basic VLSI design
problem.

The design plan validation step determines the
existence of resources required by the individual tasks in
the plan. If the plan cannot be validated there are two alter­
natives: backtracking, by reactivating the conceptual
design objective in order to re-evaluate basic design deci­
sions, or design objective decomposition, as discussed
below.

Design plan execution is performed in the design
space, viz. the space of all possible designs that totally or
partially satisfy a set of design constraints with each point
in the space representing a different trade-off between per­
formance characteristics. Successful execution of a design
plan results in an actual candidate solution to the design
problem. Validation of the solution must then occur. If per­
formance is unacceptable, again several different strate­
gies may be pursued. Backtracking can be performed or,
alternatively, the problem currently being addressed (or
others) can be reactivated. Finally, a design plan may *tfso
fail because the selected tasks (or the related tools) failed
during execution. In this case backtracking can be per­
formed, or alternatively, the design objective can be
decomposed.

As indicated above, design objective decomposi­
tion, may occur for several reasons. In order to achieve
decomposition, the objective has to generate an appropri­
ate set of sub-objectives, as well as a possible set of order­
ing restrictions for addressing these sub-objectives. It is
important to note that there is no unique decomposition
associated with a VLSI design problem. Therefore our
model of the design process has to capture and represent
expressively the nature of such diversity. Thus, when
objectives are defined and represented, their decomposi­
tion can be made design domain dependent and/or depen­
dent on specifications defined for the objective itself, as
would be the case for enforcing a particular design meth­
odology.

As was the case for design domains, each design
objective can be defined in terms of a knowledge template
that contain information such as: the set of specifications
that can be defined for the objective; the steps during
which the design objective is to be accomplished, and
what to do in case of success and/or failure; possible
decompositions for the objective, conditions required to
activate and sequence the sub-objective, and what to do in
case of sub-objective failure;

2.3 Design Specifications
After a given design objective is selected, within a

particular design domain, the problem description is com­
pleted by a statement of design specifications (or a priori
constraints) to be satisfied by the final solution. Design
specifications can either be design objective dependent or
design domain dependent. Examples of design objective
dependent specifications are minimum area and minimum
dissipated power, which may be associated with an opti­
mization objective, and design methodology, that may be
associated with a "design" objective. Examples of design
domain dependent specifications are gain, bandwidth and
slew rate, which may be associated with the domain of
operational amplifiers.

Specifications can be defined in terms of specifica­
tion knowledge templates, that contain the following
information: indication of whether the specification is
design domain dependent or design objective dependent;
references to templates of corresponding design domains
or design objectives; and restrictions or bounds on design
specification assignments.1

Whenever problem decomposition occurs, specifi­
cations related to the original problem have to be propa­
gated to the newly generated sub-problems. In order to
accommodate this, our problem model contains propaga­
tion constraint knowledge templates that properly trans­
form high level constraints into constraints associated
with each sub-problem.

1. Assignments may be values, behavioral descriptions, etc.

3 The Design Process Manager
We now describe how a design process can be

planned and managed given the representation of design
problems described above. The design process begins with
the definition of a specific VLSI design problem, called
the target problem. Towards this end, the designer selects
an appropriate design domain from among the entire set of
design domains represented in the knowledge base. This
choice causes the creation of an instance of the selected
design domain knowledge template. The designer then
selects a primary design objective and an instance of the
associated design objective knowledge template is also
created. Finally the designer chooses an appropriate set of
specifications and assigns values to each specification in
the set

After the target problem has been defined, the
design process can commence. The design process is basi­
cally a repetitive (quasi-cyclic) process involving two
basic steps: sub-problem selection and sub-problem solu­
tion. We use a decision tree to represent the state of the
design process. Decomposition relations among instances
of design domain templates are implicitly represented by
the branches of the tree. Thus, the decision tree represents
the dynamic hierarchy of instances of design domain
knowledge templates and associated design objective
knowledge templates generated during the design process.

Sub-problem selection involves the choice of a
design domain instance, i.e., a node in the decision tree,
the choice of a design objective associated with that
instance and, possibly, the choice of a set of design specifi­
cations to be satisfied by the solution. The sub-problem so
selected by the designer is solved during the next sub-
problem solution step. Depending on the design objective
and the current step of this objective, the problem solving
process involves one of five basic activities: conceptual
design; building sub-plans; validating generated sub-
plans; requesting execution of sub-plans or validating the
prior execution of sub-plans.

Upon conclusion of a sub-problem solving step, a
new sub-problem solving cycle is started. Notice that this
basic "sub-problem selection - sub-problem solution"
cycle is performed in a consistent and homogeneous fash­
ion throughout the entire design hierarchy, independent of
the abstraction level at which the design domain instances
are defined (i.e. system, algorithmic, register-transfer
level, logic, etc.). Also notice that our model of the design
process does not enforce any specific patterns for decision
tree generation and traversal. Thus designers have the
freedom to determine the critical components or paths of
the design, and can focus on those elements first.

1. The decision tree represents at each moment the sub-
problems that can be addressed concurrently.

Whenever design domain decomposition occurs,
the top-level objective associated with the parent domain
must, in general, be propagated to the sub-domains. This
is the way domain decomposition impacts the design
objective hierarchy that is simultaneously being devel­
oped. Also, a design objective will typically be generated
(at the level of the parent domain) whose goal is to rebuild
the original element from the cells or components into
which it was decomposed.

4 Minerva - A Prototype Design
Process Manager

A prototype design process manager has been
implemented, called Minerva. 2In order to illustrate the
Design Process Manager capabilities we briefly, by exam­
ple, illustrate how a designer interacts with Minerva dur­
ing a "problem solving cycle". When a designer selects a
sub-problem, a window showing the hierarchy of design
domain instances for the current decision tree is created,
as shown in Figure 2. The designer is allowed to browse
the decision tree, inspecting the status and current design
decisions for the existing design domain instances.

Each design domain instance will have an identifi­
able status such as: "non-available selectable objectives",
meaning that there are no sub-problems currently ready to
be solved within this design domain instance; "busy",
meaning that another designer is concurrently working
within this design domain instance (this allows multiple
designers to be working on different aspects of the same
design problem simultaneously); and "ready for selec­
tion", meaning that there is at least one sub-problem
within the design domain instance that is ready to be
addressed, and that no other designer is addressing it
simultaneously.

In Figure 2, design domain instances that are avail­
able for selection are indicated by having the button
"Select Domain" active. A designer who wants to know
why a particular domain is not available for selection can
click on the button "Show Status". Also, in order to have
a better insight on the design domain instance, the design
can click on the button "Inspect Decisions", and the
design decisions that had been made for the instance will
be displayed, although they cannot be modified at this
point

After selecting a given design domain instance, a
window showing the associated hierarchy of objective
instances is created, as shown in Figure 2. The designer is
also allowed to browse the objectives hierarchy, inspect­
ing the status of the existing objective instances.

The status of a design objective instance may be:
"accomplished, meaning that the associated sub-problem

2. Minerva has been implemented in C++.

S E

; *«r. AM

j Shov statu*

Figure 2 Minerva sub-problem selection step: selecting a design domain instance and an objective mstance

was successfully solved; "waiting for sub-objective
accomplishment", meaning that the associated sub-prob­
lem depends on the results of other sub-problems that have
not yet been addressed; "waiting for design space event",
meaning that the results of executin a plan are still not
available; and "ready for selection99, meaning that the sub-
problem associated with the sub-objective has not yet been
addressed, and that there is no active sequencing con­
straints for i t

In Figure 2, design objective instances that are
available for selection are indicated by having the button
"Select Objective" active. The designer can determine
why a particular objective instance is not available for
selection by clicking on the button "Show Status".

Upon completion of "sub-problem selection", the
designer enters one the possible "problem solving" steps,
conceptual design, building sub-plans, validating gener­
ated sub-plans, requesting execution of sub-plans or vali­
dating the prior execution of sub-plans. For each step an
appropriate window opens directing the designer towards
solution of the selected problem (space limitations pre­
clude us from showing these windows here). Once this
sub-problem has been solved, the sub-problem selection
process resumes until all sub-problems have been
addressed and the target problem is solved.

5 Conclusions
In this paper we have extended the CAD framework

paradigm to support Design Process Management allow­
ing designers to concentrate exclusively on those issues

that concern the creative and exploratory phases of design.
A prototype Design Process Manager, Minerva, has been
realized. Currently the Minerva knowledge base supports
the design of datapaths, and to perform conceptual design
on DSP Filters. The framework executive component
interacting with Minerva currently has available the Ber­
keley Synthesis Tools for logic synthesis [6]. Expansion of
the knowledge base, in order to cover the analog circuit
domain is underway.

6 Bibliography
[1] J. Brockman, T. Cobourn, M. Jacome and S. Director.

"Odyssey CAD Framework". To appear in IEEE DACT
Newsletter on Design Automation.

[2] J. B. Brockman and S. W. Director, 4The Hercules CAD
Task Management System". In Proceedings cf the IEEE
International Conference on Computer-A ided Design,
IEEE, 1991.

[3] D.W. Knapp and A.C. Parker. A Design Utility Manager:
The ADAM Planning Engine. In Proceedings of the 23th
ACM/IEEE Design Automation Conference, ACM Press,
1989, pages 48-54.

[4] Ramesh Harjani. 4<OASYS-A Framework for Analog Cir­
cuit Synthesis". PhD. thesis, Dept. cfECE, Carnegie Mel­
lon University, CMUCAD-89-24. March 1989.

[5] A. M.Dewey and S.W. Director. "YODA-A Framework for
the Conceptual Design of VLSI Design Systems." In Pro-
ceedingsofthe 26th ACM/IEEE Design Automation Confer­
ence, ACM Press, 1989, pages 380-383.

[6] G. DeMicheli. 'Computer-Aided Synthesis of PLA-Based
Systems". UCBlERL M84/31.1984.

	Carnegie Mellon University
	Research Showcase @ CMU
	1992

	Design process management for CAD frameworks
	Margarida F. Jacome
	Stephen W. Director
	Carnegie Mellon University.Engineering Design Research Center.

	tmp.1335557889.pdf.W13qC

