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Abstract

Automatic facial feature localization has been a long-

standing challenge in the field of computer vision for sev-

eral decades. This can be explained by the large variation

a face in an image can have due to factors such as position,

facial expression, pose, illumination, and background clut-

ter. Support Vector Machines (SVMs) have been a popular

statistical tool for facial feature detection. Traditional SVM

approaches to facial feature detection typically extract fea-

tures from images (e.g. multiband filter, SIFT features) and

learn the SVM parameters. Independently learning features

and SVM parameters might result in a loss of information

related to the classification process. This paper proposes

an energy-based framework to jointly perform relevant fea-

ture weighting and SVM parameter learning. Preliminary

experiments on standard face databases have shown signif-

icant improvement in speed with our approach.

1. Introduction

Detection of facial features (e.g. eyes, nose) is a neces-

sary step in a wide range of applications (e.g. face recog-

nition, face tracking). Most successful approaches to facial

feature detection frame the task as a classification or regres-

sion problem [11,14,17,18,22,31]. Traditional approaches

for classification/regression follow a two step process: (i)

extracting features, (ii) building classifiers/regressors. Per-

forming these two steps independently might result in a loss

of information relevant to the classification/regression task.

Due to its importance, feature selection has been a cen-

tral topic in a variety of fields including signal processing,

computer vision, statistics, neural networks, pattern recog-

nition, and machine learning. Traditionally, feature selec-

tion is performed independently of learning the classifier

parameters [2–6, 12, 15, 20, 23, 24, 28, 30]. This paper ex-

tends previous work on feature selection and image classifi-

cation by jointly learning optimal weighting of features (i.e.

pixels) and SVM parameters.

Figure 1 illustrates the main point of the paper. Figure 1a

displays a 17×29 rectangular patch around an eye. Fig-

Figure 1. a) 17 × 29 rectangular patch used for eye detection.

b)ROC curve of a linear SVM classifier using all pixels as fea-

tures. c) 64 most discriminative pixels used by our SVM classifier

that jointly optimizes pixel weighting and SVM parameters. d)

ROC curve of the learned SVM classifier, using only 64 pixels.

ure 1b plots the ROC curve of a linear SVM using all avail-

able pixels inside the patch as features. Figure 1c displays

a sparse set of 64 pixels chosen by our algorithm. These

pixels and their weights are learned jointly with the SVM

parameters. Using only 64 pixels (13% of the features),

our SVM classifier produces a ROC curve (Fig. 1d) that is

almost identical to the one shown in Figure 1b (using all

pixels). Although the classification performance is not sig-

nificantly better, using only 13% of the features lead to a

dramatic increase in speed. Notably, most selected pixels

are located around the edges of the eye, which is consistent

with our intuition.

The rest of the paper is organized as follows. Sec. 2

reviews previous work on SVMs and feature extraction.

Sec. 3 derives a normalized error function to jointly learn

a parameterized kernel and the SVM parameters. Methods

for learning feature weights in the input space and kernel

space are provided in Sec. 4 and 5 respectively. Sec. 6 de-

scribes experiments on two standard face databases.
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2. Previous work

This section reviews previous work on SVMs and feature

construction for SVMs.

2.1. Support Vector Machines

Given a set of training data x1, . . . ,xn ∈ ℜd×1 (see no-

tation 1) with corresponding labels y1, . . . , yn ∈ {−1, 1},

SVMs seek a separating hyperplane with maximum mar-

gin [26]:

maximize
w,b,M

M (1)

s.t. yi(w
T ϕ(xi) + b) ≥ M ∀i

||w||2 = 1.

Here, M is the margin, w is the normal vector of the hyper-

plane, and ϕ(·) represents the mapping from the input space

to the feature space.

Let w = w/M , b = b/M , then Eq. 1 is equivalent to:

maximize
w,b

1

||w||2
(2)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 ∀i.

The above is equivalent to:

minimize
w,b

1

2
||w||22 (3)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 ∀i.

Using a soft-margin instead of a hard-margin, we obtain the

primal problem for SVMs:

minimize
w,b,ξ

1

2
||w||22 + C

∑

i

ξi (4)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i.

Here, {ξi}
n
1 are slack variables which allow for penalized

constraint violations. C is the parameter controlling the

trade-off between a large normalized margin and less con-

strained violations.

2.2. Feature construction in SVM

This section discusses previous work on selecting fea-

tures for SVMs.

1Bold uppercase letters denote matrices (e.g. X), bold lowercase letters

denote column vectors (e.g. x). xi represents the ith column of the matrix

X. xij denotes the scalar in the row jth and column ith of the matrix X.

xij also denotes the scalar in the row jth of column vector xi. Non-bold

letters represent scalar variables. ||x||2 =
√

xT x designates Euclidean

norm of x. diag(·) is the operator that extracts the diagonal of a square

matrix or constructs a diagonal matrix from a vector.

One popular technique for selecting features is RE-

LIEF [19]. RELIEF assigns the weight to a particular fea-

ture based on the differences between the feature values of

nearest neighbor pairs. Cao et al [5] further develop this

method by learning feature weights in kernel space. This

method is often done as a data processing step, independent

of classifier construction. De la Torre and Vinyals [12] learn

a subpace-parameterized Taylor series kernel expansion that

effectively weights irrelevant pixels for classification with

SVMs. Recently, there have also been several papers that

learn kernel matrices for classification [10, 16, 21]. A pop-

ular approach is to define a parameterized family of kernel

matrices and optimize the parameters to align with an ideal

kernel. Another popular approach is to determine a desired

property and learn a kernel which exhibits that property. In

these approaches, the kernel is learned independently of the

SVMs parameters. This is the key difference between our

proposed method and previous work.

To solve the problem of jointly learning the SVM param-

eters and kernel, Chapelle et al [8] and Weston et al [30]

propose a method for choosing SVM’s parameters includ-

ing the kernel parameters by minimizing the Leave-One-

Out Cross Validation (LOOCV) error. However, since the

LOOCV error cannot be expressed analytically, they in-

stead propose to minimize some differentiable functions

that are upper bounds of the LOOCV error. Mangasarian

& Wild [23] introduce a modification to the objective func-

tion of the SVMs, and performs feature selection by repeat-

edly sweeping through all features to decide weather select

or deselect a feature depending on which will decrease the

value of the objective function.

One way to select a subset of good features is to prune

away unnecessary ones. Hermes and Buhmann [15] start

by constructing a SVM classifier using all available features

and recursively remove the feature that has the least impact

on the decision function if removed. Similarly, Avidan [3]

uses a greedy sequential forward selection method to find a

subset of features and support vectors that approximate the

SVM solution obtained using all available features.

To further constraint the SVMs’ parameters, some au-

thors propose modifying the objective function of SVMs by

including regularization terms or constraints on the param-

eter w of SVMs. For example, Chan et al [6] include two

additional constraints on the L1 and L2 norms of w in the

formulation of SVMs to achieve a sparse weight vector w.

Stoeckel & Fung [27] add a constraint on w to have the

weight for each pixel depend not only on the pixel itself but

also on its neighbors. Dundar et al [13] add a regulariza-

tion term on w in the objective function to encourage the

decision function to produce similar results for neighbor-

ing pixels.



3. SVMs and parameterized kernels

Suppose the mapping from the input space to the fea-

ture space can be parameterized by a parameter p, i.e.

ϕ(xi) = ϕ(xi,p). We would like to find a parameter vec-

tor p and a separating hyperplane that have the largest mar-

gin. However, different values of p correspond to different

feature spaces, and since the margins in two different fea-

ture spaces can not be directly compared, it is necessary to

consider normalized margins. Let us consider the normal-

ized margin as the ratio of the margin over the square root

of sum of squared distances (in the feature space) between

same-class data instances. In other words, the normalized

margin is defined as:

M√∑
i,j

1+yiyj

2
||ϕ(xi,p) − ϕ(xj ,p)||22

(5)

Observe that normalized margin defined above is invariant

to scale and translation in the feature space.

The problem of finding the parameter p for the mapping

and the parameters of the separating hyperplane that pro-

vides the largest normalized margin can be stated as:

maximize
w,b,M,p

M√∑
i,j

1+yiyj

2
||ϕ(xi,p) − ϕ(xj ,p)||22

(6)

s.t. yi(w
T ϕ(xi,p) + b) ≥ M ∀i

||w||2 = 1.

Recall that if p is fixed, finding the hyperplane with maxi-

mum normalized margin is equivalent to finding the hyper-

plane that maximizes the normal margin M .

Let w = w/M , b = b/M , and let φ(p) denote∑
i,j

1+yiyj

2
||ϕ(xi,p)−ϕ(xj ,p)||22, Eq. 6 is equivalent to:

maximize
w,b,M,p

1√
φ(p)||w||2

(7)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 ∀i.

The above is equivalent to:

minimize
w,b,p

1

2
φ(p)||w||22 (8)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 ∀i.

Using soft-margin instead of hard-margin, we get:

minimize
w,b,p,ξ

1

2
φ(p)||w||22 + C

∑

i

ξi (9)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i.

Here, {ξi}
n
1 are slack variables which allow for penalized

constraint violation. C is the parameter controlling the

trade-off between having large normalized margin and hav-

ing less constraint violation.

4. Learning feature weights

Consider a mapping that assigns different weights to

different features ϕ(xi,p) = diag(p)1/2xi, where p =
[p1...pd]

T are the feature weights, and pi ≥ 0 ∀i. We have:

φ(p) =

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 (10)

Since φ(p) is homogeneous in p, we can always scale w

and p appropriately to get φ(p) = 1. Therefore Eq. (9) is

equivalent to:

minimize
w,b,p,ξ

1

2
||w||22 + C

∑

i

ξi (11)

s.t. yi(w
T diag(p)1/2xi + b) ≥ 1 − ξi ∀i

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 = 1

ξi ≥ 0 ∀i, pk ≥ 0 ∀k.

Let v = diag(p)
1

2 w and consider the function g : ℜ ×
ℜ+ → ℜ defined by:

g(x, y) =






x2

y if y > 0

0 if y = 0, x = 0
∞ if y = 0, x 6= 0.

(12)

Eq. 11 is equivalent to:

minimize
v,b,p,ξ

1

2

∑

i

g(vi, pi) + C
∑

i

ξi (13)

s.t. yi(v
T xi + b) ≥ 1 − ξi ∀i

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 = 1

ξi ≥ 0 ∀i, pk ≥ 0 ∀k.

Since g(·, ·) is convex, the above optimization problem is

also convex.

5. Feature weighting in feature space

Let X ∈ ℜd×n be the training data set and X
′

∈ ℜd×m

be the testing data set. Let ϕ(X) denote [ϕ(x1) . . . ϕ(xn)].
The training kernel is Ktrain = ϕ(X)T ϕ(X), and the test-

ing kernel is Ktest = ϕ(X
′

)T ϕ(X). Suppose Ktrain =

USUT is non-singular. Let B = S−
1

2 UT , then BTB =
Ktrain. Consider the mapping ϕ̃ : ℜd → ℜn, ϕ̃(x) =
Bϕ(X)T ϕ(x). Based on these conditions, the correspond-



ing train and test kernels are:

K̃train = ϕ̃(X)T ϕ̃(X) = ϕ(X)T ϕ(X)BT Bϕ(X)T ϕ(X)

= Ktrain. (14)

K̃test = ϕ̃(X′)T ϕ̃(X) = ϕ(X′)T ϕ(X)BT Bϕ(X)T ϕ(X)

= Ktest. (15)

Thus we have defined a feature mapping ϕ̃ that induces the

same training and testing kernels. Now, we can learn the

feature weights as if the training data was BKtrain and the

testing data was BKT
test.

If Ktrain is singular or if we want to reduce the num-

ber of dimensions of the feature space, we can take B as

B = S
−

1

2

k UT
k . Here Uk contains the first k columns of U

(corresponding to the largest eigenvalues of Ktrain) and Sk

is the sub-matrix of S containing the first k columns and k
rows. In this case, K̃train might not exactly match Ktrain,

but it is the best rank-k approximation.

6. Experiments

This section compares the performance of weighted

SVMs and normal SVMs on two standard face databases.

6.1. Pose classification

We performed experiments on the CMU Face Images

Data Set from the UCI machine learning repository [1]. The

database contains 30×32 pixel facial images of 20 people

under different expressions and poses. Some examples of

faces from the database are given in Fig. 2. The classifi-

cation task was to distinguish between two different poses:

looking up and looking to the camera. Because the num-

ber of data instances in this database is small (only 312

faces), the experimental results were taken as the accuracy

of 10-fold cross validation. We constructed four different

SVM classifiers, namely linear SVM, linear weighted SVM,

Gaussian SVM, and Gaussian weighted SVM. For all clas-

sifiers, we repeated the experiments for different values of

the C parameter (and γ for Gaussian SVMs) and reported

the best results. Table 1 shows the best results from all

methods. Notably, weighted SVMs achieve similar clas-

sification accuracy while using a much smaller number of

pixels and support vectors. Fig. 3 displays the pixels se-

lected by applying our weighted SVM method.

6.2. Eye detection

Following the approach of Everingham and Zisser-

man [14], we performed eye detection experiments on the

gray-scale FERET database [25]. This database contains fa-

cial images of various subjects under different expressions

and poses. All images have a 256×384 pixel resolution and

limited lighting variation. Some images are associated with

Figure 2. Examples of faces from the CMU Face Database

Figure 3. Pixels chosen by our weighted SVM. Most chosen pixels

lie around the face region, which is the informative region about

the pose. Several pixels outside the facial region are also chosen.

This is due to noise and insufficient training data.

Figure 4. (a) Example of four landmarks used in the FERET

database. (b) Centers of negative training patches were sampled

randomly inside the cyan region. (c) Region of correct classifica-

tion, positively classified pixels were considered correct if they are

located inside the square.

a set of four hand labeled landmarks (Fig. 4a). Among the

images with labeled landmarks, we extracted all the 2963

available frontal faces for experiments. These images were

further divided into disjointed training and testing sets (60%

and 40% respectively).

For training, we first performed Procrustes analysis [9]

to align the landmarks w.r.t. the mean shape, removing ro-

tation, translation, and scale variations. Positive training

examples were obtained by sub-sampling 17 × 29 patches

inside 27 × 47 rectangular regions around the left iris land-

mark of every training image. Similarly, negative exam-



Table 1. Comparison of weighted SVMs and normal SVMs on the UCI CMU Face Images Data Set. The weighted SVMs (both linear and

Gaussian) achieve similar accuracy rates while using much fewer features and support vectors.

10-fold CV acc #features used #SVs

Linear Gaussian Kernel Linear Gaussian Kernel Linear Gaussian Kernel

Normal Weight Normal Weight Normal Weight Normal Weight Normal Weight Normal Weight

95.5 95.5 97.48 98.06 960 67 312 74 102 85 186 73

ples were created by extracting rectangular patches around

random points in the iris neighborhood. The neighborhood

was defined as in Fig. 4b. Each patch was normalized by

subtracting the mean intensity and dividing by the standard

deviation.

For each training image, the OpenCV Viola-Jones face

detector [29] was used to produce a square centered on the

face. A linear regression predictor was implemented to ap-

proximate the iris landmark from the position and scale of

the face detector’s output [14].

We performed experiments with two different SVM

classifiers, namely normal SVM and weighted SVM. For

weighted SVM, we first applied the method described in

Sec. 4 to learn the optimal pixel weights. Pixels with in-

significant weights (< 10−5) were discarded, and a SVM

classifier was constructed based on the remaining pixels,

taking their weights into account. Fig. 1c shows the loca-

tions of 64 pixels (out of 493) chosen by our weighted SVM

(cyan dots).

For each testing image, we used the previously learned

linear regression to produce the first approximation for the

iris’ position. A searching window was placed around this

initial guess. With a sliding window approach, the pixel

with the highest SVM decision value was chosen as the final

result for the localization of the iris.

The performance of different algorithms was evaluated

in two different ways. Figure 5 plots the localization error

threshold (x-axis) and the proportion of successful localiza-

tions within the threshold (y-axis). The Euclidean distance

from the ground truth landmark to the predicted iris location

was normalized by the inter-ocular distance (distance be-

tween the two iris landmarks) to account for different scales.

Compared with normal SVM, weighted SVM achieves sim-

ilar performance results while using a much smaller number

of pixels.

To analyze the trade-off between true detections and

false alarms, we classified all pixels inside the searching

window and produced ROC curves (Fig. 6) by varying the

threshold of the SVM classifier. The positively classified

pixels were considered correct if they fell inside a square

neighborhood around the true landmark. The size of this

neighborhood was proportional to the inter-ocular distance

of the subject (illustrated in Fig. 4c). As can be observed,

the ROC curve produced by our weighted SVM is similar

to the one produced by standard SVM. However, weighted

Figure 5. Distance threshold versus the proportion of iris localiza-

tion within the threshold. The distance is taken as the Euclidean

distance from the ground truth landmark to the predicted iris loca-

tion normalizing by the inter-ocular distance. Weighted SVM per-

forms as well as the other method while using much less pixels.

The Regression curve is the result of using initial guess produced

by the linear regression predictor.

Figure 6. ROC curves of three different methods. Weighted SVM

performs as well as normal SVM while using a much smaller num-

ber of pixels.

SVM used only 13% of available pixels.

In our experiments, SVM classifiers were built using

LibSVM [7]. The C parameter of SVMs and other parame-

ters were tuned using cross validation.

7. Conclusion

In this paper, we have presented a method for jointly

performing feature extraction and building SVM classifiers.

Learning feature weights and parameters of SVM classi-

fiers is formulated as a convex optimization problem. The

method has been applied to solve two important computer



vision problems: pose classification and facial feature de-

tection. Experiments on standard face databases produce

SVM classifiers that employ sparse sets of features while

retaining classification performance.
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