
46	 IT Pro May/June 2008	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 1520-9202/08/$25.00 © 2008 IEEE

Services Computing

What’s in a Name?
Distinguishing between
SaaS and SOA
Phillip A. Laplante, Penn State University
Jia Zhang, Northern Illinois University
Jeffrey Voas, SAIC

Considerable confusion arises in distinguishing between software as
a service (SaaS) and service-oriented architecture (SOA). Zachman’s
framework can help to try to make sense of the alphabet soup of
Web services and utilities that form the basis for both SOA and SaaS.

V arious IT professionals have, at one
time or another, erroneously used the
terms software as a service (SaaS) and
service-oriented architecture (SOA) in-

terchangeably. At best, this faulty practice creates
confusion; at its worst, it can lead to poor designs.
Our goal, therefore, is to clarify the meaning of
these two often used and abused terms.

Briefly stated, the difference between SaaS
and SOA is that the former is a software-delivery
model whereas the latter is a software-construc-
tion model. A better way to illuminate the differ-
ences between these two concepts is to use the
well-known Zachman architectural model.1

In this article, we briefly examine the con-
cepts of SaaS and SOA, followed by a brief his-
tory of software architectural models. We use

the Zachman model to differentiate the two
architectural approaches to building software.
Because the Zachman model is so intuitive, the
approach we take to describe the differences
between SaaS and SOA works well even with
non-IT professionals.

Defining the Terms
Sometimes known as subscription software,2 the
SaaS delivery model essentially separates soft-
ware ownership from the user—the owner is
a vendor who hosts the software and lets the
user execute it on-demand through some form
of client-side architecture via the Internet or
an intranet. This new model delivers software
as utility services and charges on a per-use ba-
sis, similar to the way a utility company charges

©
 T

w
w

p
h

ot
o

| D
re

am
st

im
e.

co
m

	 computer.org/ITPro 	 4 7

for electricity. Perhaps the most celebrated SaaS
product is the Salesforce.com tool for customer-
relationship management. Yet, SaaS products are
available for a wide range of business functions,
including customer service, human resource
management, desktop functionality, email, pay-
roll, financial applications, and supply chain and
inventory control.3

In a SOA model, the constituent components
of the software system are reusable services.4 A
collection of services interact with each other
through standard interfaces and communica-
tion protocols. SOA promises to fundamentally
change the way we build internal systems as well
as the way internal and external systems interact.
This architectural strategy goes hand in glove
with software applications that are close to busi-
ness objects that help to create an abstraction
layer (because SOA lets you select custom soft-
ware “parts” that can align closely with their cor-
responding business functionality). SOA is also a
consistent framework for plugging in appropriate
software statically and dynamically.

Some of the major SOA players and their lat-
est products include BEA AquaLogic, Sonic SOA
Suite 6.1, Oracle Web Services Manager, HP Sys-
tinet Registry 6.0, Iona Artix 5.0, Cape Clear 7.5,
Microsoft .NET, Sun Java Composite Applica-
tion Platform Suite, and IBM WebSphere. In this
list, you end up with a technology architecture, a
process architecture, an application architecture,
and so on. SOA helps bring these together, but
it’s not always easy to move in that direction with
so many, diverse applications involved.

Despite their significant differences, SaaS and
SOA are closely related architectural models for
large-scale information systems. Using SaaS, a
vendor can deliver a software system as a service.
Using SOA enables the published service to be
discovered and adopted as a service component
to construct new software systems, which can
also be published and delivered as new services.
In other words, the two models complement each
other: SaaS helps to offer components for SOA
to use, and SOA helps to quickly realize SaaS.

Although both provide promising features
for the modern software industry, they’re just
conceptual-level models and require detailed
technology to support them. At present, the best-
known enabler supporting both SaaS and SOA is
Web services technologies—programmable Web

applications with standard interface descriptions
that provide universal accessibility through stan-
dard communication protocols.5 Web services
provide a holistic set of XML-based, ad hoc,
industry-standard languages and protocols to
support Web services descriptions (using Web
Services Description Language [WSDL]6), publi-
cation and discovery (using UDDI7), transporta-
tion (using SOAP8), and so on.

In other words, Web services technologies,
with an associated stack of standards, enable
and facilitate SaaS and SOA. It’s worth noting
that neither SaaS nor SOA requires Web services
technology, but it’s by far the best current option
for supporting them. Given this fact, we use the
terms services and Web services interchangeably
throughout this article.

Software Architectures
Edsger Dijkstra first stressed that how software
is partitioned and structured is important, and
he introduced the idea of layered structures for
operating systems.9 The potential benefit of such
a structure was to ease development and mainte-
nance, but in a practical sense Dijkstra was laying
the groundwork for modern operating systems
design. David Parnas proposed several principles
of software design10 (which we would now view
as architecture) that became the building blocks
for modern software engineering:

information hiding as the basis of decomposi-
tion for ease of maintenance and reuse;
the separation of interface from component
implementation;
the uses relationship for controlling connec-
tivity among components;
the principles for error-detection and han-
dling, identifying commonalities in “families
of systems”; and
the recognition that structure influences non-
functional qualities of systems.

•

•

•

•

•

Neither SaaS nor SOA requires Web
services technology, but it’s by far the
best current option for supporting
them.

48	 IT Pro May/June 2008

SERVICES COMPUTING

Seminal work by Dewayne Perry and Alexan-
der Wolf11 introduced a model of software archi-
tecture that consisted of three components:

elements included processing, data, and con-
necting elements;
form defined the choice of architectural elements,
their placement, and how they interact; and
rationale defined the motivations for the choice
of elements and form.

Barry Boehm later added the notion of con-
straints to the vision of software design to repre-
sent the conditions under which systems would
produce win–lose or lose–lose outcomes for some
stakeholders.12 David Garlan and Mary Shaw
provided an early introduction to various soft-
ware architectural models and styles and how to
use them together to facilitate software design.13
In contrast with these works, which focused on
single software applications, John Zachman ex-
amined architectures for large-scale information
systems that encompass collections of commu-
nicating software applications1—the setting for
both SOA and SaaS.

Zachman was the first to use a matrix framework
for discussing an architecture in the context of in-
formation systems. As Table 1 (which we adapted
from the original Zachman article1) shows, he be-
lieved that a comprehensive information system
required a set of architectural models that repre-
sent different stakeholders’ perspectives:

An information system’s objective or scope rep-
resents a ballpark view of the system (via user
stories or use cases, for example).

•

•

•

•

The business model is the owner’s representa-
tion—often generated through traditional pro-
cess mapping.
The information system model is the designer’s
representation, which can take one of several
architectural forms.
The technology model is the builder’s representa-
tion of the system.
The detailed representation is an out-of-context
representation of the system (looking at the
software system without regard for its business
purpose).
Finally, there is the functioning system itself.

As Table 1 shows, representations of each of
these views differ according to the dimensions
of data, function, and network, because the
connections between the components are via a
network.

For our purposes, we narrowed the focus to just
those cells in the Zachman model1 that are of
interest in comparing SOA and SaaS. As dis-
cussed earlier, both concentrate on connections
among constituent components at large. They
therefore belong to the network dimension. Us-
ing the corresponding cells (the far-right col-
umn in Table 1) let’s focus on the differences
between SOA and SaaS (see Table 2).

From the objectives/scope perspective, the SOA
network model is a list of potential services to be
used in a software system being built; the SaaS
network model is a list of possible services to be
delivered. From an owner’s perspective, SOA im-
plies a list of found business services to be used
in the system; SaaS implies a list of business
services to be provided. Using existing business

•

•

•

•

•

Table 1. Zachman’s set of architectural models from different stakeholders’ perspectives.

Stakeholder
Perspective	 Data	 Function	 Network

Objective/scope	 List of entities important to 	 List of processes the business performs	 Locations in which the
	 the business 		 business operates
Business model	R epresentation of business 	R epresentation of business resources	 Logistical representation
	 entities and rules	 and processes	 of business units
Information system 	R equirement specification 	R equirements specification of interaction	 Software or system
model 	 of data and objects	 between data and objects 	 architecture
Technology model	 Design specification of data	 Design specification for interaction 	 Hardware and software
	 and objects 	 among data and objects	 components
Detailed representation	 Database descriptions	C ode	N etwork architecture
Functioning system	 Data and objects	 Function or interaction	C ommunications

	 computer.org/ITPro 	 4 9

services could significantly eliminate software
design and development expenses.

Note that SaaS doesn’t mean that a software
system is delivered as only one service. Instead,
a software system could be delivered as multiple
services—that is, parts of the system could be
stand-alone services that work with the big ser-
vice for the entire system.

From a designer’s perspective, SOA depicts an
architectural model describing interaction pat-
terns among constituent service components,
whereas SaaS describes interaction patterns
among constituent components that aren’t nec-
essarily services. From a builder’s perspective,
both SOA and SaaS need to identify a technol-
ogy (such as Web services) to realize the inter-
action models defined in the information system
model.

The list of detailed languages and protocols
must also be identified—for example, WSDL for
description, UDDI for publishing, and SOAP for
communication. Meanwhile, both SOA and SaaS
must consider platform-dependent designs. For
a SOA-based software construction, the devel-
oper must choose a platform to carry the Web
services technology—for example, whether to go
with BEA AquaLogic, IBM WebSphere, or Mi-
crosoft .NET. For SaaS, the developer must also
decide which platform to use in implementing
the services.

Developers will implement invocations to actu-
al services as part of the detailed representation.
Functioning SOA-based systems require moni-
toring and management of all communication,

coordination, and collaboration among service
components. A functioning SaaS requires man-
agement of the communication, coordination, and
collaboration among its internal components.

B y keeping SOA in mind while creating a
SaaS, developers can intentionally pro-
duce multiple services at various granular

levels. In this way, more services at various com-
plexity levels can become available and thus facili-
tate more SOA-based construction.

SaaS and SOA are important emerging tech-
nologies that are gaining wider entry into
business. Nonetheless, both are sometimes
misunderstood. Using the traditional Zachman
model to describe the nature of these two impor-
tant technologies can help enlighten architec-
tural choices and aid designers and developers in
preparing appropriate designs and implementa-
tions. Finally, we hope using the Zachman mod-
el to describe these technologies will be helpful
in educating non-IT professionals.	

References
	 1.	 J.A. Zachman, “A Framework for Information Sys-

tems Architecture,” IBM Systems J., 1987, vol. 26, no.
3, pp. 276–292.

	 2.	 M. Turner, D. Budgen, and P. Brereton, “Turning
Software into a Service,” Computer, vol. 36, no. 10,
2003, pp. 38–44.

	 3.	 M.H. Weier and L. Smith, “Businesses Get Serious
about Software as a Service,” Information Week, 16 Apr.
2007, pp. 46–48.

Table 2. Focused Zachman model for comparing software-oriented architecture (SOA) and software as a
service (SaaS).

Stakeholder Perspective	 Network (SOA)	 Network (SaaS)

Objective/scope	 List of possible services to use	 List of possible services to deliver
Business model	 List of business services to use	 List of business services to provide
Information system model	 Service component interaction model	C omponent interaction model
Technology model	T echnology-dependent and platform- 	T echnology-dependent and platform-
	 dependent service component interaction 	 dependent component interaction model
	 model
Detailed representation	 List of technology-dependent languages and 	P ublish–subscribe architecture and
	 protocols used (such as UDDI, SOAP, XML, 	 notification facilities; list of technology-
	 WSDL) and actual services used	 dependent languages, protocols, and
		 services used (if any)
Functioning system	I nterservice communication, coordination, 	I ntercomponent communication, 		
	 and collaboration 	 coordination, and collaboration

50	 IT Pro May/June 2008

SERVICES COMPUTING

	 4.	 L.-J. Zhang, J. Zhang, and H. Cai, Services Computing,
Springer, 2007.

	 5.	 C. Ferris and J. Farrell, “What Are Web Services?”
Comm. ACM, vol. 46, no. 6, 2003, p. 31.

	 6.	 “Web Services Description Language (WSDL) 1.1,”
W3C note, E. Christensen et al., eds., 15 Mar. 2001;
www.w3.org/TR/wsdl.

	 7.	 Universal Description, Discovery, and Integration (UDDI),
version 3, Organization for the Advancement of Struc-
tured Information Standards (Oasis), 2004; www.
uddi.org/pubs/uddi_v3.htm.

	 8.	 SOAP Version 1.2, Part 1: Messaging Framework (second
edition), W3C recommendation, M. Gudgin et al.,
eds., 27 Apr. 2007; www.w3.org/TR/soap12-part1/.

	 9.	 E. Dijkstra, “The Structure of the ‘t.h.e.’ Multipro-
gramming System,” Comm. ACM, vol. 18, no. 8, 1968,
pp. 453–457.

	10.	 D.L. Parnas, “On the Criteria To Be Used in Decom-
posing Systems into Modules,” Comm. ACM, vol. 15,
no. 12, 1972, pp. 1053–1058.

	11.	 D. Perry and A. Wolf, “Foundations for the Study of
Software Architecture,” ACM Sigsoft Software Eng.
Notes, vol. 17, no. 4, 1992, pp. 40–52.

	12.	 B. Boehm, “Anchoring the Software Process,” IEEE
Software, vol. 13, no. 4, 1996, pp. 73–82.

	13.	 D. Garlan and M. Shaw, “An Introduction to Software
Architecture,” Advances in Software Eng. and Knowledge
Eng., vol. 2, V. Ambriola and G. Tortora, eds., World
Scientific Publishing, 1993, pp. 1–39.

Phillip A. Laplante is a professor of software engineering
at Penn State University and serves as the CTO for the
Eastern Technology Council. He is a fellow of the IEEE and
SPIE—the Optical Society. Contact him at plaplante@psu.
edu.

Jia Zhang is an assistant professor in the Department of
Computer Science at Northern Illinois University. She is a
member of the IEEE.

Jeffrey Voas is the director of systems assurance and a
technical fellow at SAIC. He is a senior member of IEEE.

� Monthly updates highlight the latest additions to the digital library
 from all 23 peer-reviewed Computer Society periodicals.

� New links access recent Computer Society conference publications.

� Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the
IEEE
Computer Society
Digital Library
E-Mail Newsletter

Si
gn

 U
p

To
da

y

