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Fig. 4: Phase plot of (q1, q̇1) for an extended version (16
steps) of the simulation depicted in the middle plot of Fig. 3a.
The solid dot marks (q1, q̇1) at the beginning of the simulation.

[48], a planar five-link bipedal robot similar to RABBIT,
having a torso, two legs with revolute knees, and four ac-
tuators. (See Fig. 5.) However, unlike RABBIT, MABEL has
large springs in series with two of its actuators for improving
energy efficiency and agility, resulting in a system model that
is compliant and has a higher degree of underactuation. In
the experiments on MABEL, the model used in the estimation
of the derivative of the Lyapunov function, and hence in the
computation of the CLF-based control law, is of course an
approximation of the dynamics of the true system [32]. In
addition, the angular measurements are made with encoders
that have finite precision and the angular rates are estimated
numerically [11]. Finally, the motors have torque limits. It
is shown that the CLF-based controller nevertheless achieves
a stable walking gait with MABEL and that the min-norm
controller in particular reduces undesirable oscillations or
“chatter” of the motor torques.

A. Control laws

As noted, MABEL has compliance and additional degrees
of underactuation. However, we can still employ the same
modeling and control approach based on virtual constraints,
as described in Sect. VII. Thus our system model again takes
the form (69), with q coordinate labeling as described in [48]
and depicted in Fig. 5b, and with output functions of the form
(70). For the experimental implementation, we apply the pre-
control law

u(q, q̇) = −(LgLfy(q, q̇))−1L2
fy(q, q̇) + (LgLfy(q, q̇))−1µ,

(71)

which is a variation of the pre-control given by (25). Then
transforming to the variables η = [y, ẏ]T as in (27), we have
the dynamics for the transverse variables

η̇ = Fη +Gµ := f̄(η, z) + ḡ(η, z)µ, (72)

where F and G are defined as in (29).

(a) MABEL experimental setup

(b) Coordinates

Fig. 5: Experimental setup of the bipedal testbed MABEL and
associated coordinates. (From [48].)

In what follows, we present experimental results for a
CLF controller based on the pointwise min-norm controller
described in Sect. IV, and compare with experimental results
based on an input-output linearizing controller with PD. The
input-output linearizing controller has been employed in pre-
vious experiments with MABEL (see [48]) and takes the form
(71) with µ given by

µε(η, z) = µZD(η, z, ε) := −K(ε)η (73)

which is equivalent to the version given in (32). For the ex-
periment with the input-output linearizing controller presented
here, we set ε = 0.5 and

K(ε) =
[

1
ε2KP

1
εKD

]
,
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KP =




2211 0 0 0
0 947 0 0
0 0 2211 0
0 0 0 947


 ,

KD =




55.29 0 0 0
0 8.29 0 0
0 0 55.29 0
0 0 0 8.29


 .

For the CLF controller, we begin by choosing

P =

[
1.45556I .5I
.5I .555556I

]
, (74)

which is the solution to the Lyapunov equation (13) where Q
is the 8×8 identity matrix and A is given by (9) with KP = I
and KD = 1.8I . (Here I is the 4 × 4 identity matrix.) Then
defining our CLF Vε(η) as in (23), it follows that

Lf̄Vε(η, z) = ηT (FTPε + PεF )η,

LḡVε(η, z) = 2ηTPεG, (75)

and letting γ = λmin(Q)
λmax(P ) = 0.595863, we define

ψ0,ε(η, z) = Lf̄Vε(η, z) +
γ

ε
Vε(η, z)

ψ1,ε(η, z) = LḡVε(η, z)
T . (76)

Then our CLF controller is given by (71) with

µε(η, z) = mε(η, z), (77)

where mε(ηε, z) is the pointwise min-norm control law given
by (45) in terms of (76). In the experiment with the CLF
controller presented here, we set ε = .04545.

B. Description of experiments and results

Two experiments were conducted for the purpose of com-
paring the controllers just described. In Exp. 1, we employed
the input-output linearizing controller (73) with gains set as
described above, and obtained 85 steps of walking. For Exp.
2, we started the robot under the same input-output linearizing
controller but then transitioned to the pointwise min-norm
controller (77) after 28 steps. The robot then walked for an
additional 77 steps under CLF control, as can be seen in the
video in [13].

In Fig. 6 we display the motor torques for the stance and
swing legs for 4 consecutive steps of walking under the input-
output linearizing controller in Exp. 1, and the CLF controller
in Exp. 2 respectively. (Torque saturation constraints were
active in both experiments, as can be observed in Fig. 6. The
torque saturation for the leg shape was inadvertently raised
from 10 to 12 Nm between the experiments, but the affect
on experiment comparison is negligible.) Note the reduced
motor torque oscillations for the controller based on the
CLF approach. Fig. 7 illustrates the desired and achieved
virtual constraints for the stance leg under the two controllers,
displaying very close tracking of the virtual constraints by the
input-output linearizing controller and rather loose tracking
of the virtual constraints by the CLF-based controller. In
fact, this should be expected, since the CLF-based controller

0
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0

500

 

 

V
ε

V̇
ε

Time (s)

V̇ε-offline
V̇ε-online

CLF Vε

Fig. 8: Plots of the Lyapunov function and its time derivative
for 4 consecutive steps of walking. (Vertical dotted lines
delineate data for individual steps.) Note that the increase in
Vε during the initial part of the gait is most likely due to torque
saturation (see Fig. 6b) and model uncertainty. In the plot for
V̇ε, the thin black line depicts the derivative calculated in terms
of the partially linearized dynamics (72) (without accounting
for control saturation), which always satisfies the desired RES-
CLF bound V̇ε ≤ −γεVε. The thick red line illustrates an
offline calculation of V̇ε along trajectories of the full dynamics,
which incorporates torque saturation.

always uses the minimum torque required to meet the RES-
CLF convergence bound (42), essentially trading off tracking
performance for control efficiency as long as the required
convergence bound is satisfied.

In Fig. 8, we display plots of the Lyapunov function Vε and
its calculated derivative V̇ε for 4 consecutive steps of walking
under CLF control in Exp. 2. The thin black line on the bottom
plot (denoted V̇ε-online) depicts the online calculation of V̇ε
along trajectories of the partially linearized system (72) (in
terms of (75)), and does not factor in the torque saturations
which are later applied to the full control (71)3. The thick
red line on the same plot (denoted V̇ε-offline) was calculated
offline along trajectories of the full system dynamics (69) with
the saturated versions of the control (71) with (77). The effects
of these saturation constraints, along with model uncertainty,
are the most likely reason that Vε does not exactly follow the
theoretical bound (42).

IX. CONCLUSION

This paper presented a method for enlarging the class of
controllers that exponentially stabilize periodic orbits in hybrid
systems. Beginning with (hybrid) zero dynamics that contain
an exponentially stable periodic orbit, we presented a control
Lyapunov function approach to designing controllers that
stabilize the orbit in the full order dynamics. This was achieved
by introducing a notion of control Lyapunov functions that
allows for direct control of the rate of convergence to the
(hybrid) zero dynamics surface: RES-CLF. Explicit motivation
for this formulation was given, and an explicit means of
constructing control Lyapunov functions of this form was

3The authors have also achieved experimental results [14] with a CLF-based
control approach that does appropriately incorporate saturation constraints into
the control calculation, making use of an online convex optimization routine.
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Fig. 6: Motor torques for the stance and swing legs for 4 consecutive steps of walking for (a) input-output linearizing controller
in Exp. 1, and (b) CLF-based controller in Exp. 2. Note the reduced oscillations for the CLF-based controller.
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Fig. 7: Tracking for the stance-leg virtual constraints for (a) input-output linearizing controller in Exp. 1, and (b) CLF-based
controller in Exp. 2. The tracking for the input-output linearizing controller is quite good, whereas the CLF-based controller
always uses the minimum torque required to meet the RES-CLF convergence bound (42) and therefore does not track the
virtual constraints as closely.

presented. The culmination of the ideas presented in the paper
was given in the main result which states that given an
exponentially stable periodic orbit in a hybrid zero dynamics,
the existence of a RES-CLF implies that this periodic orbit
is exponentially stabilizable in the full-order dynamics. Since
the theoretical results presented were originally motivated by
bipedal robotic walking, they were applied in simulation to
a model of the robot RABBIT. To provide further evidence
of the practicality of the theoretical results, they were also
applied experimentally to MABEL. The end result is that CLFs
provide an interesting alternative to previous control methods,
and that the CLF methodology presents a systematic approach
for constructing stabilizing control laws for systems of this
type. In a separate publication [14], it will be shown how
the results of the paper allow control bounds to be explicitly
incorporated into an online implementation of a RES-CLF
controller.

APPENDIX A
PROOF OF THEOREM 1

Theorem 2, part (iv), of [19] is equivalent to Theorem 1,
but the provided proof is incomplete. As given, the proof
establishes asymptotic stability of the periodic orbit in the

full-order system instead of exponential stability. The proof
of exponential stability is completed here in the notation of
[19]. Then, an alternative proof is given using the notation of
the current paper.

A. Minor addition to result in [19]

On page 93 of [19], suppose that V1(z) satisfies

c1‖z‖2γ ≤ V1(z) ≤ c1‖z‖2γ ,

for some c1 > 0 and c2 > 0. Then there exist α > 0 and
β > 0, such that

α‖z‖2γ + α‖ξ‖ ≤ V (z, ξ) ≤ β‖z‖2γ + β‖ξ‖.

From the last line of the proof in [19],

V̇ (z, ξ) ≤ −k1‖z‖2γ − k2‖ξ‖,

for k1 > 0 and k2 > 0. Hence,

V̇ (z, ξ) ≤ −k1

c2
V1(z)− k2√

m2

√
V2(ξ)

≤ −µV (z, ξ),
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for µ = k2√
m2

1
2k and

k > max{Mm1

m3
,

1

2

k2

k1

c2√
m2
}.

Therefore,
V (z(t), ξ(t)) ≤ e−µtV (z0, ξ0),

and thus

α‖z(t)‖2γ + α‖ξ(t)‖ ≤ e−µtV (z0, ξ0).

It follows that

‖z(t)‖γ ≤
√

1

α
e−µtV (z0, ξ0),

and

‖ξ(t)‖ ≤ 1

α
e−µtV (z0, ξ0).

Exponential stability is established.

B. Alternative proof

Proof: It was shown in [21] that, since OZ is an expo-
nentially stable periodic orbit in Z, there exists a Lyapunov
function VZ : Z → R≥0 such that in a neighborhood Bδ(OZ)
of OZ

k1‖z‖2OZ ≤ VZ(z) ≤ k2‖z‖2OZ
V̇Z(z) ≤ −k3‖z‖2OZ∥∥∂VZ

∂z

∥∥ ≤ k4‖z‖OZ .

Denote the ES-CLF V by VX and (motivated by the construc-
tion from [26] for singularly perturbed systems) define the
following Lyapunov function candidate

V (x, z) = VZ(z) +
1

ε
VX(x) (78)

in a neighborhood Bδ(O) of O (where we pick δ > 0 to be
the same δ for which VZ was defined). It will be shown that
this function is a Lyapunov function for the orbit O for all ε
sufficiently small, i.e., that there exists an ε̄ > 0 such that for
all 0 < ε < ε̄, V is a Lyapunov function for O . We begin by
noting that

V (x, z) ≤ k2‖z‖2OZ +
c2
ε
‖x‖2

≤ max{k2,
c2
ε
}(‖z‖2OZ + ‖x‖2)

≤ max{k2,
c2
ε
}‖(x, z)‖2O ,

where the last inequality follows from the fact that O =
ι0(OZ) ⊂ Z. That is, ‖(x, z)‖2O = ‖x‖2 + ‖z‖2OZ . Similarly,

V (x, z) ≥ min{k1,
c1
ε
}‖(x, z)‖2O .

Therefore, we need only establish that V̇ (x, z) ≤
−κ3‖(x, z)‖2O for some κ3 > 0. Using the fact that q(x, z) =

q(0, z) + (q(x, z)− q(0, z)) we have

V̇ (x, z) = V̇Z

∣∣∣
Z

(z) +
∂VZ

∂z
(q(x, z)− q(0, z)) +

1

ε
V̇X(x)

≤ −k3‖z‖2OZ +

∥∥∥∥∂VZ

∂z

∥∥∥∥ ‖q(x, z)− q(0, z)‖ − c3

ε
VX(x)

≤ −k3‖z‖2OZ + k4Lq‖z‖OZ‖x‖ −
c3

ε
c1‖x‖2

= −
[
‖z‖OZ ‖x‖

]
Λ

[
‖z‖OZ
‖x‖

]
,

with Lq the Lipschitz constant for q and

Λ =

[
k3 − 1

2k4Lq
− 1

2k4Lq
c3
ε c1

]
.

Therefore, it is necessary to pick ε > 0 such that Λ is
symmetric positive definite. In particular, Λ > 0 if det(Λ) > 0,
that is,

c1c3k3

ε
>

1

4
L2
qk

2
4,

which is satisfied if

ε <
4c1c3k3

L2
qk

2
4

=: ε,

wherein it follows that κ3 = λmin(Λ) and we have established
that V is a Lyapunov function for the periodic orbit O .

APPENDIX B
RELATIONSHIP BETWEEN THEOREM 1 AND THEOREM 2

A natural consequence of Theorem 2 is a variant of Theorem
1. That is, we can conceptually consider the control system
(1) as a hybrid control system with a trivial reset map4.

Corollary 1: For the system (1), let OZ be an exponentially
stable periodic orbit for the zero dynamics ż = q(0, z) and
assume there exists a RES-CLF Vε : X → R. Then there
exists an ε > 0 such that for all 0 < ε < ε and for all
Lipschitz continuous uε(x, z) ∈ Kε(x, z), O = ι0(OZ) is an
exponentially stable hybrid periodic orbit of (41).

Remark 2: It is important to note that Corollary 1 uti-
lizes RES-CLF rather than ES-CLF. However, the Lyapunov
function (78) utilized in the proof of Theorem 1 includes a
1/ε scale factor to weight the ES-CLF, and therefore both
approaches rely on ε to “control” the convergence to the zero
dynamics surface, i.e., ensure that it is fast enough to guarantee
stability of the entire system.

We finally note that the techniques used to prove Theorem
1 and Theorem 2, while similar in many respects, are actually
quite different. This difference lies in the fact that for Theorem
2 a Lyapunov function on the Poincaré section is used,
while for Theorem 1 a Lyapunov function for the continuous
dynamics (and the periodic orbit) is utilized. Extending the
proof considered in the continuous case to the hybrid case
is an interesting problem for future research since it would
allow for a better estimate of the domain of attraction over

4The rough idea is the following: in the proof of Theorem 2, let S be a
local Poincaré section for the periodic orbit of the non-hybrid system and
take the reset map, ∆, to be the identity. That is, the non-hybrid system is
conceptually viewed as a “trivial” hybrid system. With this setup, the proof
of Theorem 2 establishes Corollary 1.
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the entire continuous dynamics rather than just the Poincaré
section. Doing so would require an extension of the results in
[21] to hybrid systems.
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Birkhäuser, 1996.

[13] K. Galloway, K. Sreenath, A. Ames, and J. Grizzle. Walking with Con-
trol Lyapunov Functions (2012). Youtube Video. [Online]. Available:
http://youtu.be/onOd7xWbGAk.

[14] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle. Torque
saturation in bipedal robotic walking through control Lyapunov function
based quadratic programs. arXiv:1302.7314 [cs.SY], 2013.

[15] R. Goebel, R. Sanfelice, and A. Teel. Hybrid dynamical systems. IEEE
Control Systems Magazine, 29(2):28–93, April 2009.

[16] J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects. IEEE
Transactions on Automatic Control, 46(1):51–64, 2001.

[17] J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet. 3D
bipedal robotic walking: models, feedback control, and open problems.
In 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy,
2010.

[18] J. W. Grizzle, C. H. Moog, and C. Chevallereau. Nonlinear control
of mechanical systems with an unactuated cyclic variable. IEEE
Transactions on Automatic Control, 30(5):559–576, May 2005.

[19] F. Grognard and C. Canudas de Wit. Design of orbitally stable zero
dynamics for a class of nonlinear systems. Systems & Control Letters,
51:89–103, 2004.

[20] W. M. Haddad, V. S. Chellaboina, and S. G. Nersesov. Impulsive
and Hybrid Dynamical Systems: Stability, Dissipativity, and Control.
Princeton University Press, Princeton, NJ, 2006.

[21] J. Hauser and C. C. Chung. Converse Lyapunov functions for expo-
nentially stable periodic orbits. Systems & Control Letters, 23:27–34,
1994.

[22] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag,
Berlin, Germany, 3rd edition, 1995.

[23] A. Isidori and C. Moog. On the nonlinear equivalent of the notion of
transmission zeros. In Byrnes C. and A. Kurzhanski, editors, Proc. of
the IIASA Conference: Modeling and Adaptive Control, pages 146–157,
Berlin, 1988. Springer-Verlag.

[24] A. Jadbabaie, J. Yu, and J. Hauser. Stabilizing receding horizon
control of nonlinear systems: a control Lyapunov function approach.
In Proceedings of the 1999 American Control Conference., volume 3,
pages 1535–1539. IEEE, 1999.

[25] Z. Jiang and Y. Wang. A converse Lyapunov theorem for discrete-time
systems with disturbances. Systems & Control Letters, 45(1):49–58,
2002.

[26] H.K. Khalil. Nonlinear Systems - 3rd Edition. Prentice Hall, Upper
Saddle River, NJ, 2002.

[27] M. Kristic, I. Kanellakopoulos, and P. Kokotovic. Nonlinear and
Adaptive Control Design. Adaptive and Learning Systems for Signal
Processing, Communications and Control. Wiley, New York, 1995.

[28] B. Morris and J. W. Grizzle. Hybrid invariant manifolds in systems
with impulse effects with application to periodic locomotion in bipedal
robots. IEEE Transactions on Automatic Control, 54(8):1751–1764,
August 2009.

[29] B. Morris and J.W. Grizzle. A restricted Poincaré map for determining
exponentially stable periodic orbits in systems with impulse effects:
Application to bipedal robots. In 44th IEEE Conference on Decision
and Control, Seville, Spain, 2005.

[30] B. Morris, E. R. Westervelt, C. Chevallereau, G. Buche, and J. W.
Grizzle. Fast Motions Symposium on Biomechanics and Robotics,
chapter Achieving Bipedal Running with RABBIT: Six Steps toward
Infinity, pages 277–297. Lecture Notes in Control and Information
Sciences. Springer-Verlag, Heidelberg, Germany, 2006.

[31] A. Papachristodoulou and S. Prajna. On the construction of Lyapunov
functions using the sum of squares decomposition. In Proceedings of
the 41st IEEE Conference on Decision and Control, volume 3, pages
3482–3487. IEEE, 2002.

[32] Hae-Won Park, Koushil Sreenath, Jonathan W. Hurst, and Jessy W.
Grizzle. Identification of a bipedal robot with a compliant drivetrain:
Parameter estimation for control design. Control Systems Magazine,
31(2):63–88, April 2011.

[33] Ian R. Petersen and B. Ross Barmish. Control effort considerations in
the stabilization of uncertain dynamical systems. Systems & Control
Letters, 9:417–422, 1987.

[34] M. Reyhanoglu, A. van der Schaft, N.H. McClamroch, and I. Kol-
manovsky. Dynamics and control of a class of underactuated mechanical
systems. IEEE Transactions on Automatic Control, 44(9):1663–1671,
1999.

[35] W. Rugh. Linear System Theory. Prentice Hall, 1996.
[36] R. G. Sanfelice. Control Lyapunov Functions and stabilizability of

compact sets for hybrid systems. Proc. 50th IEEE Conf. Decision and
Control, pages 7404–7409, 2011.

[37] S. Sastry. Nonlinear Systems: Analysis, Stability and Control. Springer-
Verlag, 1999.

[38] R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear
Control. Communications and Control Engineering. Springer Verlag,
London, 1997.

[39] A. Shiriaev, J.W. Perram, and C. Canudas-de Wit. Constructive tool
for orbital stabilization of underactuated nonlinear systems: Virtual con-
straints approach. IEEE Transactions on Automatic Control, 50(8):1164
– 1176, Aug. 2005.

[40] A.S. Shiriaev, L.B. Freidovich, and S.V. Gusev. Transverse linearization
for controlled mechanical systems with several passive degrees of
freedom. IEEE Transactions on Automatic Control, 55(4):893 –906,
April 2010.

[41] G. Song and M. Zefran. Underactuated dynamic three-dimensional
bipedal walking. In IEEE International Conference on Robotics and
Automation, pages 854–859, Orlando, Florida, May 2006. IEEE Press.

[42] E. Sontag. A Lyapunov-like stabilization of asymptotic controllability.
SIAM Journal of Control and Optimization, 21(3):462–471, 1983.

[43] E. Sontag. A ’universal’ contruction of Artstein’s theorem on nonlinear
stabilization. Systems & Control Letters, 13:117–123, 1989.

[44] E.D. Sontag. Mathematical control theory: deterministic finite dimen-
sional systems, volume 6. Springer, 1998.

[45] E.D. Sontag and Y. Wang. On characterizations of the input-to-state
stability property. Systems & Control Letters, 24(5):351–359, 1995.

[46] E.D. Sontag and Y. Wang. New characterizations of input-to-state
stability. IEEE Transactions on Automatic Control, 41(9):1283–1294,
1996.

[47] M.W. Spong. Energy based control of a class of underactuated mechan-
ical systems. In Proc. of IFAC World Congress, San Francisco, CA,
pages 431–435, 1996.

[48] K. Sreenath, H.W. Park, I. Poulakakis, and J. W. Grizzle. A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal
walking on MABEL. IJRR, 30, 2011.



16

[49] D. Sun. A further result on an implicit function theorem for locally
Lipschitz functions. Operations Research Letters, 28(4):193–198, 2001.

[50] W. Tan and A. Packard. Stability region analysis using polynomial
and composite polynomial Lyapunov functions and sum-of-squares
programming. IEEE Transactions on Automatic Control, 53(2):565–571,
2008.

[51] E. Wendel and A. D. Ames. Rank deficiency and superstability of hybrid
systems. Nonlinear Analysis: Hybrid Systems, 6:787–805, 2012.

[52] E. Westervelt, J.W. Grizzle, and D.E. Koditschek. Hybrid zero dynamics
of planar biped walkers. IEEE Transactions on Automatic Control,
48(1):42–56, January 2003.

[53] E. R. Westervelt, G. Buche, and J. W. Grizzle. Experimental validation
of a framework for the design of controllers that induce stable walking
in planar bipeds. International Journal of Robotics Research, 24(6):559–
582, June 2004.

[54] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris. Feedback Control of Dynamic Bipedal Robot Locomotion.
CRC Press, Boca Raton, 2007.

[55] H. Ye, A. N. Michel, and L. Hou. Stability theory for hybrid dynamical
systems. IEEE Transactions on Automatic Control, 43(4):461–474, April
1998.

[56] W. Zhang, A. Abate, J. Hu, and M. Vitus. Exponential stabilization of
discrete-time switched linear systems. Automatica, 45(11):2526–2536,
2009.

Aaron D. Ames is an Assistant Professor in Me-
chanical Engineering at Texas A&M University with
a joint appointment in Electrical & Computer Engi-
neering. His research interests center on robotics,
nonlinear control, hybrid and cyber-physical sys-
tems, with special emphasis on foundational theory
and experimental realization on bipedal robots. Dr.
Ames received a BS in Mechanical Engineering
and a BA in Mathematics from the University of
St. Thomas in 2001, and he received a MA in
Mathematics and a PhD in Electrical Engineering

and Computer Sciences from UC Berkeley in 2006. At UC Berkeley, he
was the recipient of the 2005 Leon O. Chua Award for achievement in
nonlinear science and the 2006 Bernard Friedman Memorial Prize in Applied
Mathematics. Dr. Ames served as a Postdoctoral Scholar in the Control and
Dynamical System Department at the California Institute of Technology from
2006 to 2008. In 2010 he received the NSF CAREER award for his research
on bipedal robotic walking and its applications to prosthetic devices.

Kevin Galloway is an Assistant Professor in the
Electrical and Computer Engineering Department
at the United States Naval Academy in Annapolis,
Maryland. His research interests focus on coor-
dinated control of nonlinear systems, and include
collective control of autonomous mobile agents as
well as robotic legged locomotion. Dr. Galloway
received a B.S. in Systems Engineering from the
United States Naval Academy in 1997 and a Ph.D.
in Electrical Engineering from The University of
Maryland, College Park, in 2011, where he was a

recipient of the L-3 Graduate Research Fellowship. From 2011 to 2013, he
served as a Postdoctoral Research Fellow in the Department of Electrical
Engineering & Computer Science at the University of Michigan, Ann Arbor,
where he developed control methodology for robotic bipeds.

Jessy W. Grizzle received the Ph.D. in electrical
engineering from The University of Texas at Austin
in 1983 and in 1984 held an NSF-NATO Postdoc-
toral Fellowship in Science in Paris, France. Since
September 1987, he has been with The University
of Michigan, Ann Arbor, where he is the Jerry and
Carol Levin Professor of Engineering. He jointly
holds sixteen patents dealing with emissions reduc-
tion in passenger vehicles through improved control
system design. Professor Grizzle is a Fellow of the
IEEE and of IFAC. He received the Paper of the Year

Award from the IEEE Vehicular Technology Society in 1993, the George S.
Axelby Award in 2002, the Control Systems Technology Award in 2003, and
the Bode Lecture in 2012. His work on bipedal locomotion has been the object
of numerous plenary lectures and has been featured in The Economist, Wired
Magazine, Discover Magazine, Scientific American, Popular Mechanics and
several television programs.

Koushil Sreenath Koushil Sreenath is an Assistant
Professor of Mechanical Engineering and a courtesy
Assistant Professor of Robotics Institute at Carnegie
Mellon University. His research interest lies at the
intersection of highly dynamic robotics and applied
nonlinear control. His work on dynamic legged lo-
comotion on the bipedal robot MABEL was featured
on The Discovery Channel, CNN, ESPN, FOX and
CBS. His work on dynamic aerial manipulation
was featured on IEEE Spectrum, New Scientist,
Huffington Post, and also won the best paper award

at Robotics: Science and Systems. His work on adaptive sampling with mobile
sensor networks was published as a book titled "Adaptive Sampling with
Mobile WSN" by IET.


