1979

The modeling of thin film heat exchangers

S. C.(Shi Chune) Yao
Carnegie Mellon University

Arthur W. Westerberg

Nien H. Chao
Carnegie Mellon UniversityDesign Research Center

Follow this and additional works at: http://repository.cmu.edu/cheme
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
THE MODELING OF THIN FILM HEAT EXCHANGERS

by

S. Yao, A.W. Westerberg, and N.H. Chao

DRC-06-9-79

May 1979

* Dept. of Mechanical Engineering
 Carnegie-Mellon University
 Pittsburgh, PA 15213

** Dept. of Chemical Engineering
 Carnegie-Melion University
 Pittsburgh, PA 15213
THE MODELING OF THIN FILM HEAT EXCHANGERS

Shi-chun Yao*, Arthur W. Westerberg+ and Nien H. Chao**
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

The steady and dynamic behavior of thin film evaporators and condensers are simulated with a general thin film heat exchanger model. The dynamics of the gravity-controlled falling laminar film on horizontal or vertical tubes are studied in detail. For a first approach or for a slow transient a single-lumped approach can be used. For a refined simulation or for a severe transient a grouped model is proposed. The grouped model preserves the unique feature of delay-time and wave-distortion of a transient, which was observed in a separate precise analysis.

The thin film heat exchanger models are used in the dynamic simulation computer programs ODS3 and OSCAR which were established at CMU for OTEC systems. Typical results are presented to demonstrate the capability of the model.

Introduction

The design of shell and tube condensers has achieved substantial attention in the past as indicated in the review paper [1]. The thin film evaporators also have been studied extensively in the area of desalination and OTEC applications [2,3]. However, appropriate literature are not available for dynamic modeling of these components.

The evaporator in an OTEC system generates vapor from a flowing liquid film on horizontal or vertical tubes. The vapor, passes the turbine and at a later point, condensates in the condenser on the liquid films at horizontal or vertical tubes again. The common feature of evaporators and condensers is that the major transport process happens on the liquid films. Therefore, it becomes possible to simulate the dynamic behavior of these components by a unified approach which models "Thin Film Heat Exchangers" in general.

In a thin film heat exchanger the motion of a liquid film can be influenced by the motion of the flowing vapor. However, near the central region of the bundle where vapor flow is insignificant the film falls mainly due to gravity. The schematics of the flow regimes in a thin film evaporator is illustrated in Figure 1.

At close to the edge of the bundle the vapor cross flow can be strong enough to break the liquid film by shear stresses. The transition of film flow between the shear-controlled and gravity-controlled regimes on horizontal tube bundles can be well described by a dimensionless gas velocity J_g^*[4]. In addition, the liquid entrainment and the breakdown of films have been analyzed in [5,6], respectively. In spite of this, the general behavior of this shear dominated film flow is still not well known.

On the other hand, the gravity-controlled steady state film flow and heat transfer behavior has been studied extensively in the past [7,8] and the dynamic simulation based upon this flow regime could be more feasible at the present time. In the present unified approach, a column of horizontal tubes or a single piece of vertical tube in an evaporator or a condenser is considered. Liquid film falls vertically due to gravity. The film thickness either increases or decreases depending upon whether the unit is a condenser or an evaporator.

Practically, in the thin film OTEC evaporator the feeding rate of the working fluid onto the bundle is considered as one of the most effective parameters for the control of the system. Generally, slow transients of the liquid film flow occur at the conventional operations of an evaporator; however, severe film transients occur at emergency operations. For example, a sudden drop of the load to the generator causes the turbine to overspeed. The opening of the bypass valve and the shut off of the feeding on evaporator react in the order of 1 second. The liquid film on tubes experiences severe transients.

The classification of the time transients in a thin film heat exchanger can be performed according to the following argument. At steady operation the liquid is fed to the top of the bundle with sufficient over-flow. The time required for the liquid traveling to the bottom of the bundle is, typically, in the order of 5 seconds. For a variation of feeding with a characteristic time longer than 5 seconds, the quasi-steady approach for the film dynamics can be used with reasonable accuracy. For the variation of feeding with a characteristic time less than 5 seconds, the quasi-steady approach does not give a reasonable result. More precise modeling will be necessary.

In the quasi-steady approach the flow transient is slow. At any moment the flow conditions on all the tubes in a bundle are very similar. Therefore, all the tubes in a bundle can be considered as a single representative tube. In other words, the whole bundle in a thin film heat exchanger can be simulated by a single lumped tube with steady state solution applied at each moment.
At severe transients the model should consider the whole horizontal tube column as a series of group-controlled control volumes with each group containing several tubes. The most accurate analysis considers each horizontal tube as a group. If only one group is used for whole column this model becomes a single-lumped approximation. The practical selection of the number of groups is based upon the typical transient of the feeding which we are interested in. With these lumped subsystems arranged in a vertical series the time response of a film is simulated while keeping calculational effort to a minimum.

In each lumped subsystem the film thickness and the heat transfer coefficients are taken from the results of theoretical studies or empirical correlations. The dynamic behavior of the film is studied with quasi-steady analysis, and some typical results of the model will be compared with detailed exact calculations of transients.

In the following sections the quasi-steady approach and the grouped approach of the film transients will be presented in detail. Additionally, the results of a separate detailed analysis on film transients are indicated as a reference to the proposed model. The integration of these models to the heat exchanger model is illustrated in the section of "The Modeling of Heat Exchangers." The heat exchanger model then will be used in some dynamic simulation computer programs established at CMU. Finally, a typical result of the dynamic behavior of the thin film exchanger in an OTEC system is shown.

The Quasi-Steady Approach to Film Dynamics

A. Horizontal Tubes

Generally, the single-lumped approach and steady state results were used in the present case. The initial condition at $x=0$ is that the inlet volume flow rate per unit length equals $2r$. At laminar flow with constant wall heat flux the film thickness s is

$$ s = \left(\frac{3r^2 - \frac{g}{9} \left(\frac{2}{g} \right) \left(\frac{\pi R}{2} \right) \sin \left(\frac{\pi}{2} \right)}{3} \right)^{1/3} $$

where v is the kinematic viscosity, q_u is the wall heat flux leaving the surface, p and h_w is the liquid density and latent heat of vaporization, R is the radius of the horizontal tube, and x is the distance measured from the top of the tube along the surface. We may set $\sin(\pi/2) = 1$ in the equation (1) for vertical tubes. In most cases, the rate of evaporation of the liquid on an horizontal tube is very much less than the liquid flow rate.

In some cases the tubes are coated with heat transfer augmentation material such that boiling occurs in the evaporator. The heat transfer coefficient of the boiling thin film can be put in a general form [9]

$$ h = C(T_w - T) $$

In a condenser or when pure evaporation occurs in the laminar film the heat transfer coefficient is related to the film thickness as [10]

$$ h = k/5 $$

B. Vertical Tubes

Liquid falling on a vertical tube is very likely to be in wavy laminar flow or in turbulent flow. Correlations are presented here for smooth tubes. The film thickness is described as [11]

$$ s = \left(\frac{2}{g} \right)^{0.36(2)} $$

The heat transfer coefficient for wavy laminar flow

$$ h = 0.606 \left(\frac{k}{g} \right)^{1/3} \left(\frac{1}{1/u} \right) $$

and

$$ h = 3.8 \times 10^{-3} (kW) \left(\frac{4r}{u} \right) $$

for turbulent flow with laminar to turbulent transition [7] at

$$ 4r - \frac{u}{V} \phi $$

Grouped Approach to Film Dynamics

In this approach lumped subsystems are assigned to several consecutive horizontal tubes or a section of vertical tubes. Figure 2 shows the schematic of the model. Within that subsystem, a proper delay time is chosen to take into account the free falling of liquid between horizontal tubes as well as the finite liquid flow velocity along the tube. When the number of horizontal tubes in a subsystem equals the total number of tubes in a column or the length of the vertical section equals the total length of the vertical tube, the present model corresponds to the single-lumped model. When there is only one horizontal tube in a subsystem or when the length of vertical section in a subsystem, is very short the present model approaches the exact case.

The mass balance of each lumped subsystem j can be written as

$$ \frac{dm}{dt} = n_j \dot{V}_j - m_{0,j} $$
where \(r_{fj,\text{in}} \) is the inflow to control volume \(j \), \(n_{i0,\text{in}} \) is the outflow from control volume \(j \), \(n_{i}^{+} \) is positive for evaporation and negative for condensation. In order to solve this equation, all the \(m \)'s must be present in terms of \(M \)'s.

In the evaporator, dryout of the liquid film may occur during a transient. This corresponds to the case of \(M_{j}<0 \) in that subsystem.

A. Horizontal Tubes

At initial steady state, the total mass in the subsystem is

\[
M_{j} = N_{j} \int_{0}^{R} 6(x)dx
\]

where \(N_{j} \) is the number of horizontal tubes in the control volume \(j \). Using equation (1) for \(6(x) \), with \(q^{*}=0 \), we get

\[
M_{j} = 2N_{j} \int_{0}^{R} \frac{3\pi r_{j}^2}{2} \int_{\sin \frac{x}{r_{j}}}^{1/3} \cdot dy
\]

The values of the \(A \) is assigned to be the half thickness of the falling film between horizontal tubes.

The flow rate at the inlet of subsystem \(j \) comes from subsystem \(j-1 \).

\[
\dot{V}_{j}(t) = \dot{V}_{j-1}(t)
\]

In this subsystem, \(\dot{n}_{0,j} \) is related to \(\dot{r}_{fj,j} \) by a delay time \(\tau \). That is

\[
\dot{V}_{j}(t) = \frac{1}{\tau} \int_{t-\tau}^{t} \dot{V}_{j}(t)dt
\]

such that equation (8) becomes

\[
\frac{dM_{j}}{dt} = \dot{m}_{0,j-1}(t) - \dot{m}_{0,j}(t-\tau) - \dot{n}_{0,j}(t) + \frac{1}{\tau} \int_{t-\tau}^{t} \dot{m}_{0,j}(t)dt
\]

where the evaluation of delay time \(\tau \) will depend upon the transient film behavior and the falling of the film between tubes.

For a quasi-steady system the delay time is the time for the fluid to travel through this subsystem.

\[
\tau = \int_{0}^{R} \frac{1}{\sigma} dx
\]

Finally, the evaporation rate can be calculated from

\[
\dot{h}_{0,j} = \int_{0}^{R} \frac{h(x)dx}{\sigma}
\]

For a fast transient, the total mass \(M_{j} \) can vary as a function of time and the film thickness in the subsystem can vary as a function of location at a time. The selection of proper \(M_{j} \) for the evaluation of \(t \) will not be straightforward. The exact solution of transient film motion was obtained by the authors

Figure 3. Evaporating Ammonia Film on One-Inch Tubes - Transient Analysis.

Since the flow has a delay time \(\tau \), the value of the total fluid mass for the equation \(\tau(t) \) can be selected at the time \(t \), the time \(t-\tau \), or the time between these two limits. For example, a transient with increasing flow will have the total fluid mass at time \(t \) more than the total fluid mass at time \(t-\tau \). Therefore, \(M_{j}(t-\tau) \) will be used for equation (14). A transient with decreasing flow will have the total fluid mass at time \(t \) less than the total fluid mass at time \(t-\tau \). Therefore, \(M_{j}(t-\tau) \) will be used for equation (14). In a general form we can select appropriate combination for the time delay. That is

\[
\dot{V}_{j} = \dot{V}_{j-1} + \frac{1}{\tau} \int_{t-\tau}^{t} \dot{V}_{j}(t)dt
\]

where the first term at left side is due to the falling of film between tubes, \(t \) is solved by iteration in equation (15). The selection of \(c \) is flexible. A smooth function is constructed for this purpose. Finally, the evaporation rate can be calculated from

\[
\dot{h}_{0,j} = \int_{0}^{R} \frac{h(x)dx}{\sigma}
\]

with \(h(x) \) given from equations (2) or (3) and presented in terms of \(M_{j} \).

A typical result of the variation of flow rates on a subsystem containing 20 consecutive horizontal tubes is shown in Figure 4. The effect of \(\dot{V}_{j} \) time is clearly presented.
B. Vertical Tubes

The same equation (8) can be used for vertical tubes. The total mass in the subsystem is

\[m = \int x \, dx \delta x \] \tag{19}

Using equation (4) for \(m \), we get

\[m = 0.36 \left(\frac{0.45}{9} \right)^{1/3} \left(\frac{x}{9} \right) \] \tag{20}

The evaporation rate is then

\[n_{e v a p} = \frac{\bar{h} \cdot (T_{v} - T_{f})}{h_{f} g} \] \tag{21}

and \(\bar{h} \) is the averaged heat transfer coefficient using \(h(x) \) in equations (5) and (6).

The Modeling of Heat Exchangers

The models for the condensers and evaporators are complicated. Transient heat balances are formulated for the water, the tube, the ammonia liquid on the tube and the vapor in the vessel, and finally for the liquid in hotwell.

The transient heat balance of the water considers the heat transfer to the tube and the incoming and outgoing enthalpies of water. To approximate the dynamic behavior, the transit times for the water are introduced as a time delay. The transient enthalpy balance for the ammonia liquid on tube and the ammonia vapor in the vessel considers the heat transfer from tube to vapor, liquid feed onto the tube and draining to the hotwell, evaporation from the hotwell, and the vapor leaving the vessel.

Mass balances are also formulated separately to describe the holdup for the vapor, the liquid ammonia on the tube, and the liquid in hotwell. Additionally, the state equation for the vapor temperature is written with the assumption that the vapor in the condenser is in the saturated state and also that it follows the ideal gas law.

In general, this model can be applied to both the condenser and the evaporator. Specific consideration that the condenser does not have liquid feed onto the tube and no vapor leaves the vessel. On the other hand, no vapor comes into the evaporator.

Under normal operating conditions the evaporator will have ammonia transport from the liquid film to vapor in vessel; this transport will be a negative quantity for the condenser.

The liquid in the hotwell will flash when the vessel pressure is reduced to a value lower than the saturation pressure of the hotwell liquid. Also at some conditions, the evaporator may operate at a low recirculation rate and the tube may experience partial or complete dry-out during transients. Since the exact relationship between the heat transfer and film flow during partial dry-out is not available in the open literature, only complete dry-out is modeled.

The details of the heat exchanger modeling is presented in the Reference [13].

Figure 5 shows the results of this calculation. The action of by-pass valve and the valve to evaporator was initiated at time 0.55 after the drop of the load. The dynamic response of the evaporator and the condenser perform well as we expected.

Acknowledgement

This material is based upon the work sponsored by the U.S. Energy Research & Development Administration/Department of Energy under contract No. EY-76-S-02-2641-A004. The constructive communication with the Westinghouse Electric Company is greatly appreciated.

References

