BUZZ: Testing Context-Dependent Policies in Stateful Data Planes

Seyed K Fayaz, Yoshiaki Tobioka, Sagar Chaki, Vyas Sekar

September 25, 2014

CMU-CyLab-14-013

CyLab
Carnegie Mellon University
Pittsburgh, PA 15213
BUZZ: Testing Context-Dependent Policies in Stateful Data Planes
Seyed K. Fayaz†, Yoshiaki Tobioka†, Sagar Chaki†, Vyas Sekar†
† CMU, † SEI

Abstract
Network operators spend significant effort in ensuring that the network meets their intended policies. While recent work on checking reachability and isolation policies have taken giant strides in this regard, they do not handle context-dependent policies that operators implement via stateful data plane elements. To address this challenge, we present the design and implementation of BUZZ, a testing framework to ensure that a network with stateful data plane elements meets complex context-dependent policies. In designing BUZZ, we address significant challenges in: (1) modeling stateful data plane elements, and (2) tackling the state-space explosion problem in generating test scenarios. We also implement practical heuristics to resolve interference from background traffic and to localize sources of policy violations. We demonstrate the scalability of BUZZ in localizing policy violations on networks with more than 100 nodes.

1 Introduction
Many studies highlight the difficulty network administrators face in correctly implementing policies. For instance, one recent survey found that 35% of networks generate more than 100 problem tickets per month and nearly one-fourth of these problem tickets take multiple engineer-hours to resolve [14]. Anecdotal evidence suggests that operators go to great lengths to debug networks; e.g., creating “shadow” configurations of entire infrastructures for testing [25].

This challenge has inspired several projects, including work on statically checking networks [34,35,36], formal foundations of networks [17,31,41], creating correctness-by-construction controllers [19], verifying software data planes [26], automatic test packet generation [55], and debugging control plane software [24,49]. However, these efforts largely focus on forwarding-centric properties (e.g., loops, black holes) and layer 2/3 data plane functions (i.e., simple switches, routers, ACLs).

While checking reachability properties involving switch configurations is clearly useful, real networks are more complex on two dimensions:

- **Stateful and higher-layer network functions**: Networks rely on a variety of data plane middleboxes and switches [50]. We use the term DPFs to collectively refer to such data plane functions, including: (i) stateless L2/L3 elements; and (ii) stateful middleboxes (henceforth called stateful DPFs) that operate at a higher-layer beyond L2/L3 and whose actions depend on the history of traffic; e.g., a proxy operates over HTTP requests and may send cached responses.

- **Context-dependent policies**: Operators use stateful DPFs to implement advanced policies beyond simple forwarding and access control rules. A simple policy is *service chaining*, i.e., HTTP traffic going through a sequence of a firewall, IPS, and proxy before exiting the network. Complex policies involve context-dependent information; e.g., a host generating too many failed connections may be flagged as anomalous and rerouted for detailed analysis [10,18].

Unfortunately, such stateful operations and their attendant context-dependent policies fall outside the scope of the aforementioned network verification and testing tools. Our goal is to address this key missing piece to take us closer to the “CAD-for-networks” vision [39].

In this paper, we present the design and implementation of BUZZ,† a framework for testing if a network with stateful DPFs meets specified context-dependent policies. At a high level, BUZZ is a model-based tester [52]. Specifically, given an intended behavioral specification of the network (i.e., all stateful and stateless DPFs and their interconnections) BUZZ generates test traces that exercise specific policies, and then injects them into the real network to see if the observed behavior matches the intended policy. We make key contributions in addressing two related challenges to make this vision practical:

- **Data plane modeling**: While, conceptually, a stateful DPF is a “giant” finite state machine operating on raw IP packets, it is intractable to enumerate all possible states for all possible input packet sequences. To make DPF models tractable, BUZZ uses two key ideas. First, instead of modeling a DPF’s operations as a “giant FSM”, we model each DPF as a *FSM ensemble* that mirrors the conceptual separation across functions inside the actual DPF’s implementation; e.g., a proxy keeps a separate TCP state machine for each client and server. Second, rather than viewing DPFs as operating on low-level packets, we model their input-output behaviors in terms of a new notion of BDUs (BUZZ Data Units), which are abstract data units that succinctly capture higher-layer semantics spanning multiple low-level IP packets and also explicitly model the impact of stateful/context-dependent DPF actions. For instance, a full HTTP response can be represented by a single BDU “packet”, instead of many low-level packets. Similarly, BDUs allow our DPF models to expose hidden behaviors [29].

†BUZZ “explores space”; e.g., “Buzz” Aldrin and Buzz Lightyear.
• Test traffic generation (%6): For reasonably interactive testing, new test cases must be generated in seconds. Unfortunately, even if we address the above modeling challenge, we run into scalability issues while trying to exercise a policy-specific sequence of effects due to the well-known state-space explosion problem [21]. To this end, we use a combination of three key ideas. First, we replace exhaustive state-space search with a more efficient symbolic execution based approach. Second, we leverage our BDU abstraction to first generate a high-level plan in terms of BDUs and then translate it into raw test traces. Finally, we engineer domain-specific optimizations (e.g., restricting number of symbolic variables) that allow symbolic execution to scale to large networks.

We implement models for various DPFs as FSM ensembles written in C. Our choice of C over a domain-specific language [19, 31, 41] immediately lends BUZZ to a body of tools optimized for symbolic execution of C such as KLEE [22]. We implement our domain-specific optimizations on top of KLEE. We developed a custom translation from BDU sequences generated by KLEE to “raw” request traces used to test the real network. We prototype the overall test orchestration capabilities atop OpenDaylight [8]. Finally, given that we are performing tests on the actual network, we engineer heuristics leveraging SDN-based monitoring capabilities to rule out side effects from background traffic. We also implement practical heuristics to help localize diagnostic efforts when policy violations are detected (%7).

Our evaluations on a real testbed, shows that BUZZ:
• can test hundreds of policy scenarios on networks with ≥100 nodes in tens of seconds;
• dramatically improves scalability, providing nearly three orders of magnitude reduction in time for test case generation;
• effectively localizes intentional data/control plane bugs within tens of seconds; and
• imposes less than 1% overhead in terms of additional traffic even with adversarially interfering traffic.

2 Motivating Scenarios

In this section, we use small but realistic network scenarios to: (i) highlight stateful data plane functions used by administrators; (ii) motivate challenges in implementing these policies correctly; and (iii) present limitations of existing work (on L2/3 reachability) in addressing these challenges.

Stateful firewalls: Today’s firewalls go beyond the traditional match-then-drop paradigm. A common policy is reflexive firewalls; i.e., the firewall tracks outgoing connections from internal hosts and allows incoming packets for previously established connections. Unfortunately, even this basic stateful processing cannot be handled by existing “memoryless” static checkers. For instance, ATPG [55] and HSA [35] can only check for single packet effects and cannot model connection establishment logic and reflexive rules.

Dynamic policy violations: In Figure 1, we want to monitor outgoing web traffic. The problem here is subtle, as the proxy may send cached responses bypassing the monitor, defeating our goal. Potential fixes to this problem include placing the monitor before the proxy or using FlowTags to explicitly steer cached responses [29]. The key challenge is in identifying such potential policy violations and ensuring that the solution (e.g., using FlowTags) is implemented correctly. Specifically, to identify this policy violation, we need to model the stateful behavior of the proxy across connections.

Firewalling with Cascaded NATs: Figure 2 shows a scenario where hosts are doubly NAT-ed — at the department and the enterprise border. Prior work shows cascaded NATs are notoriously error-prone [20, 42]. Suppose the remote web server’s firewall needs to block host H1 but allow H2. Even this seemingly easy access control policy is difficult to check with existing L2/L3 reachability tools because the hosts are hidden behind NATs; e.g., HSA/ATPG models them as “black-boxes.”

Multi-stage triggers: Figure 3 shows two intrusion prevention systems (IPS) used in sequence. The intended policy is to use the light-weight IPS (L-IPS) in the common case and only subject suspicious hosts flagged by the L-IPS (e.g., when a host generates scans) to the

2BUZZ was partly motivated by the failure of existing tools to validate that our FlowTags implementation fixes the problem.
more expensive H-IPS. Such multi-stage detection is useful; e.g., to minimize latency and/or reduce H-IPS load. Again, it is difficult to check that this multi-stage operation works correctly using existing static checkers and reachability verifiers [35,55], because they ignore hidden state inside the IPSes and triggered sequence of intended actions (i.e., the context).

<table>
<thead>
<tr>
<th>Stateful data planes (e.g., [55])</th>
<th>Contextual policies (e.g., LIPS-HIPS)</th>
<th>Active testing (e.g., [34,35,36,38])</th>
<th>Verifying data plane software (e.g., [26])</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Strawman solutions (rows) vs. requirements from the motivating scenarios (columns).

Strawman solutions: The above scenarios imply three key requirements: (1) capturing stateful data plane behaviors (e.g., stateful firewalls); (2) capturing contextual policies (e.g., LIPS-HIPS); and (3) active testing to reveal subtle traffic-dependent bugs that may not be directly visible from just looking at the network configuration (e.g., dynamic cache actions or cascaded NATs).

Table 1 summarizes if/how some existing solutions address the scenarios described earlier. Across all motivating scenarios, we find that existing tools for checking network policies are inadequate. At a high level, the problem is that many existing tools for network reachability testing explicitly acknowledge these challenges and treat them as being out-of-scope to make their work tractable. While there is some recent work on testing software data planes, the focus is on different types of errors (e.g., crash or CPU cycles/packet) rather than the network-wide policy violations we consider here. Our overarching goal is to bring the benefits that these aforementioned efforts have provided for reachability correctness to the types of stateful network processing and contextual policies introduced by the above scenarios.

3 Problem Formulation

Our high-level goal is to help network administrators test that the data plane implements the intended policies. In this section, we begin by formally defining our intended data plane semantics, and what we mean by a policy. In addition to helping us precisely define our goals, the formalism sheds light on the key technical components and challenges underlying any solution for testing stateful data planes for the given context-dependent policies.

3.1 Preliminaries

First, we define the semantics of a DPF and the network.

DPF: Let \mathcal{P} denote the set of packets. Formally, a DPF is a 4-tuple (S, I, E, δ) where: (i) S is a finite set of states; (ii) $I \in S$ is the initial state; (iii) E is the set of network edges; and (iv) $\delta : S \times \mathcal{P} \mapsto S \times \mathcal{P} \times E \times \Sigma$ is the transition relation.

Here, Σ is a set of effects that capture the response of a DPF to a packet. Each $\alpha \in \Sigma$ provides contextual information that the administrator cares about. Each α is annotated with the specific DPF generating the effect and its relevant states; e.g., in Figure 3 we can have $\alpha_1 = \langle LIPS : H_1, Alarm, SendToHIPS \rangle$ when the LIPS raises an alarm and redirects traffic from H_1 to the H-IPS, and $\alpha_2 = \langle LIPS : H_1, OK, SendToInternet \rangle$ when the LIPS decides that the traffic from H_1 was OK to send to the Internet. Using effects, administrators can define high level policy intents rather than worry about low-level DPF actions.

Network: Formally, a network data plane net is a pair (N, τ) where $N = \{DPF_1, \ldots, DPF_n\}$ is a set of DPFs and τ is the topology map. Informally, if $\tau(e) = DPF_i$, then packets sent out on edge e are received by DPF_i. We assume that the graph has well-defined sources (with no incoming edges), and one more sinks (with no outgoing edges). The data plane state of net is a tuple $\sigma = (s_1, \ldots, s_N)$, where s_i is a state of DPF_i.

3.2 Processing semantics

To simplify the semantics of packet processing, we assume packets are processed in a lock-step (i.e., one-packet-per-DPF-at-time) fashion and do not model (a) batching or queuing effects inside the network (hence no re-ordering and packet loss); (b) parallel processing effects inside DPFs; and (c) the simultaneous processing of different packets across DPFs.

Let $\sigma = (s_1, \ldots, s_i, \ldots, s_N)$ and $\sigma' = (s'_1, \ldots, s'_i, \ldots, s'_N)$ be two states of net. First, we define a single-hop network state transition from (σ, i, π) to (σ', i', π') labeled by effect α, denoted $(\sigma, i, \pi) \xrightarrow{\alpha} (\sigma', i', \pi')$ if $\delta(s_i, \pi) = (s'_i, \pi', e, \alpha)$, with $DPF_i = \tau(e)$. A single-hop network state transition represents processing of one packet by DPF_i, while the state of all DPFs other than DPF_i remains unchanged. For example, when the L-IPS rejects a connection from a user, it increments a variable tracking the number of failed connections. Similarly, when the stateful firewall sees a new three-way handshake completed, it updates the state for this session to connected.

Next, we define the end-to-end state transitions that a packet π^m entering the network induces. Suppose π^m traverses a path of length n through the sequence of DPFs $DPF_{i_1}, \ldots, DPF_{i_n}$ and ends up in $DPF_{i_{n+1}}$ (note the incoming network interface information in its processing logic.

3 We assume each edge is mapped to unique incoming/outgoing physical network ports on two different DPFs.
that the sequence of traversed DPFs may be different for
different packets). Then the end-to-end transition is a
4-tuple \((\sigma_1, \pi^m, (\alpha_1, \ldots, \alpha_n), \sigma_{n+1})\) such that there ex-
ists a sequence of packets \(\pi_1, \ldots, \pi_{n+1}\) with \(\pi_1 = \pi^m\),
and a sequence of network states \(\sigma_2, \ldots, \sigma_{n-1}\) such that
\[
1 \leq k \leq n: (\sigma_k, i_k, \pi_k) \xrightarrow{\alpha_k} (\sigma_{k+1}, i_{k+1}, \pi_{k+1}).
\]
That is, the injection of packet \(\pi^m\) into DPF\(_i\) when
the network is in state \(\sigma_1\) causes the sequence of ef-
ects \((\alpha_1, \ldots, \alpha_n)\) and the network to move to state \(\sigma_{n+1}\),
through the above intermediate states, while the packet
ends up in DPF\(_{n+1}\). For instance, when the L-IPS
is already in the toomanyconn-1 state for a particular
user and the user sends another connection attempt, then
the L-IPS will transition to the toomanyconn state and
then the packet will be redirected to the H-IPS.

Let \(E2ESem(\pi)\) denote the end-to-end “network se-
manitics” of the set of feasible transitions on the network
\(\pi\) for a single input packet.

Trace semantics: Next, we define the semantics of
processing of an input packet trace \(\Pi = \pi_1^m, \ldots, \pi_m^m\). We use \(\alpha\)
to denote the vector of DPF effects associated with this trace; i.e., the set of effects across all
DPFs in the network. The network semantics on a
trace \(\Pi\) is a sequence of effect vectors: \(\text{TraceSem}(\Pi) = \langle \alpha_1, \ldots, \alpha_m \rangle\) where \(\forall 1 \leq k \leq m: \pi_k^m \in \mathcal{P} \land \alpha_k \in \Sigma^+\).
This is an acceptable sequence of events iff there ex-
ists a sequence \(\sigma_1, \ldots, \sigma_{m+1}\) of states of \(\pi\) such that:
\[
1 \leq k \leq m: (\sigma_k, \pi_k^m, \alpha_k, \sigma_{k+1}) \in E2ESem(\pi).
\]

3.3 Problem Definition

Given the notion of trace semantics defined above, we
can now formally specify our goal in developing BUZZ.
At a high-level, we want to test a policy. Formally, a
policy is a pair \((\text{TraceSpec}; \text{TraceSem})\), where \(\text{TraceSpec}\)
captures a class of traffic of interest, and \(\text{TraceSem}\) is the
vector of effects of the form \(\langle \alpha_1, \ldots, \alpha_m \rangle\) that we want to
observe from a correct network when injected with traffic
from that class. Concretely, consider two policies:
1. In Figure 1, we want: “Cached web responses to
 Dept1 should go to the mon”. Then, \(\text{TraceSpec}\)
captures web traffic to/from Dept1 and \(\text{TraceSem} = \langle \alpha_1, \alpha_2 \rangle\),
with \(\alpha_1 = \text{Proxy}: \text{Dept1}, \text{CachedObject}\) and
\(\alpha_2 = \text{Proxy}: \text{Dept1}, \text{SendToMon}\).
2. In Figure 3 we want: “If host H1 contacts more
 than 10 distinct destinations, then its traffic is
 sent to H-IPS”. Then, \(\text{TraceSpec}\) captures traffic
from H1, and \(\text{TraceSem} = \langle \alpha_1, \alpha_2 \rangle\) where \(\alpha_1 = \text{L-IPS}: \text{H1}, \text{MoreThan10Scan}\),
and \(\alpha_2 = \text{L-IPS}: \text{H1}, \text{SendToHIPS}\).

Our goal is to check that such a policy is satisfied by
the actual network. More specifically, if we have a con-
crete test trace \(\Pi\) that satisfies \(\text{TraceSpec}_{\Pi}\) and should
ideally induce the effects \(\text{TraceSem}_{\Pi}\), then the network
should exhibit \(\text{TraceSem}_{\Pi}\) when \(\Pi\) is injected into it.

In practice, generating these concrete test traces is te-
dious as it requires understanding and dealing with the
complex low-level behaviors of DPFs. The goal of BUZZ
is to automate this test trace generation. That is, the
administrator gives a high-level specification of \(\text{TraceSpec}\)
(e.g., Web traffic from/to Dept1) and \(\text{TraceSem}\), and
BUZZ generates a concrete test trace, injects it into the
network, and checks if it satisfies the policy. Next, we
discuss how BUZZ achieves this goal.

4 BUZZ System Overview

Figure 4 shows the main components of BUZZ. The input
to BUZZ is the administrator’s policies (S1). In practice,
we envision that administrators will define these policies
in a higher-layer language that can then be translated to
more formal \((\text{TraceSpec}; \text{TraceSem})\) entries. As such, the
design of this policy language is outside the scope of
this paper. These input policies refer to physical DPFs
(e.g., a NAT followed by a firewall), which can be ob-
tained from policies in terms of corresponding logical
DPFs [45]. We envision operators populating a set of
such policies.5 Given these, BUZZ processes these one
policy a time as we describe next.

As we saw in the previous section, the effects depend
on the processing semantics of the individual DPFs and
the data plane as a whole. Thus, BUZZ needs a model
of the entire data plane (i.e., DPFs and the interconnec-
tions). Writing the DPF models is a one-time task for
each type of DPF and we envision this can be provided
by DPF vendors and other domain experts working to-
gether. Note that our simplifying assumption on packet
processing semantics (§3.2) only apply to the data plane
model not the physical data plane.

Given the data plane model and one policy, BUZZ gen-
erates a test plan (S2). In essence, the test plan satisfies
the \(\text{TraceSpec}\) and causes the model data plane to exer-
cise the specific \(\text{TraceSem}\). In practice, we decouple this
into two stages: (i) generating a high-level plan in terms
of abstract entities called BDUs; and (ii) generating

5BUZZ cannot discover violations of behaviors that cannot be ex-
pressed as policies. Thus, BUZZ is not a tool to discover new bugs;
rather it tests if the behavior of the real data plane matches the policies.
concrete test manifest (i.e., scripts that create test traffic) to feed into the injectors. The injectors are regular hosts or servers running test traffic generators or other trace injection software that execute the test manifest (S3).

Then, BUZZ monitors the network and determines whether this test passed/failed (S4). That is, while we know that the generated test trace will cause the effect TraceSem on the model data plane, this phase determines if the physical data plane also shows TraceSem. Finally, we also envision additional test cases for further diagnostics to localize the causes for the policy violation (e.g., broken link, middlebox misbehavior) (S5).

Given this high-level view, in the following sections we highlight the key challenges in making this vision practical and our solutions to address these challenges.

5 Data Plane Modeling

We begin by highlighting the challenges in balancing fidelity vs. tractability and composability of DPF models. Then, we describe the two key modeling ideas we introduce in BUZZ– BDU and FSM ensembles– that achieve a good balance across these requirements.

5.1 Strawman solutions

Modeling a DPF requires us to fix the granularity of input/output and FSM operations. Figure 5a depicts the space of modeling strategies along these two dimensions. To understand the challenges in deciding these two granularities, we consider three strawman solutions:

1. Use the “giant” FSM formalism from §3 (i.e., the 4-tuple (S, I, E, δ)): However, writing down this FSM at a packet granularity is tedious and error-prone. For instance, to model state transitions involving a single HTTP request/reply in a proxy, we need to model the sub-transitions for tens of packets. Furthermore, it is infeasible to explicitly write down all states, as it requires enumerating all input packet sequences.

2. Use the code as the “model”: This makes test traffic generation challenging because of the code complexity. For instance, Squid has ≥ 200K lines of code and introduces other sources of complexity that are irrelevant to the policies being checked. Also, we may not have the source code, or the code may not match the policy due to bugs.

3. Write DPFs at a very high-level and focus on “relevant” states and inputs: This is labeled as “High-level” in Figure 5a); e.g., write the proxy in terms of HTTP object requests/responses as shown in Figure 5b. Given the diversity of DPF operations that act on different layers, such models are fundamentally non-composable as the input-output granularity of different DPFs will not match; e.g., we cannot simply “chain” the output of a proxy operating at this level to a packet-level firewall as we did in §3.

Next, we describe our solution to the granularity problem. We retain the lock-step processing semantics from §3 and introduce two key ideas to address the shortcomings of the above strawman solutions: (1) the BDU abstraction for input-output behaviors and (2) FSM ensembles for FSM operations.

5.2 BDU abstraction

First, we tackle the issue of the input-output granularity. Our observation is to ensure composability of DPF models, we want a located packet-like abstraction [35] since it is a natural “lowest common denominator” across diverse DPFs. A located packet is simply a packet along with a specific network interface denoting its location. However, a packet (even a located packet) is too low-level to express the desired DPF semantics. To this end, we introduce the BDU or Buzz Data Unit, that extends the notion of a located packet in three main ways.

First, we allow each BDU to represent a sequence of packets rather than an individual packet. The reason is that many “relevant” effects inside a DPFs occur on sets of packets rather than a single IP packet. For example, the proxy’s cache state transitions to an “relevant state” (i.e., cached state w.r.t. an object) only after the entire payload has been reassembled. Second, the BDUs capture relevant features that might be relevant for the test scenarios; e.g., the notion of a HTTP request/response. Third, BDUs effectively encode the effect semantics of the DPFs along its path in the form of alphaTags. Conceptually, we can view an alphaTag as an encoding of a specific effect α ∈ Σ from our formalism. This ensures that the BDU carries its “policy-related processing history” as it goes through the network. Note that in the base case, a BDU is a simple IP packet, but BDUs give us the flexibility to define higher-layer operations as well.

Intuitively, BDUs reduce modeling complexity by consolidating different protocol semantics (e.g., HTTP, TCP) and effects involving multiple IP packets (e.g., all packets corresponding to a HTTP reply are represented by one BDU with the httpRespObj field indicating the retrieved object id). Concretely, a BDU is simply a struct as shown in Listing 1. Note that the struct fields are a

6 In fact, this was the approach in our early workshop paper [28].
5.3 Modeling DPFs as FSM ensembles

We now address the issue of FSM granularity. Here our insight is to borrow from the design of actual DPFs. In practice, DPF programs (e.g., a firewall) do not explicitly enumerate the full-blown FSM. Rather, they have an implicit model; e.g., the state machines are created for the subset of observed packets and the different functional components of the DPF are naturally segmented.

To understand this better, consider a proxy. A proxy is instructive because it is quite complex — it operates on a higher layer of sessions, terminates sessions, and it can respond directly with objects in its cache. The code of a proxy, e.g., Squid, effectively has three independent modules: TCP connections with the client, TCP connection with the server, and cache. While the proxy is effectively the “product” of these modules, modeling it by computing the product explicitly is not practical as this leads to state-space explosion.

Listing 2 shows a partial code snippet of the proxy model, focusing on the actions when a client is requesting a non-cached HTTP object and the proxy does not currently have a TCP connection established with the server. Here the id allows us to identify the specific proxy instance. The specific state variables of different proxy instances are inherently partitioned per DPF instance (not shown). These track the relevant DPF states, and are updated by the DPF-specific functions such as srvConnEstablished.

If the input inBDU is a client HTTP request (Line 3), and if the requested object is not cached (Line 4), the proxy checks the status of TCP connection with the server. If there is an existing TCP connection with the server (Line 5), the output BDU will be a HTTP request (Line 6). Otherwise, the proxy will initiate a TCP connection with the server (Line 8).

This example shows that by decoupling the three stateful aspects of the proxy (i.e., client/server-side TCP connections and cache contents) we can move away from an FSM model of a proxy with each state being of the form ⟨client_TCP_state, server_TCP_state, cache_content⟩ to a simpler ensemble of three smaller FSMs each with a single type of state, i.e., ⟨client_TCP_state⟩, ⟨server_TCP_state⟩, and ⟨cache_content⟩. In other words, we represent the product implicitly, and thereby avoid state space explosion.

Each DPF encodes the relevant effect in the alphaTags field of the outgoing BDU as shown in Line 13. There is a natural correspondence between alphaTags and FlowTags we used previously to track packet modifications and dynamic middlebox actions [29]. For instance, if a DPF modifies headers, then the BDU to carries the context so that the true origins of the packet is not lost, and can be used to check if the relevant policy at some downstream DPF is implemented correctly; e.g., if a NAT modifies the srcIP, then the downstream firewall may not be able to apply its rules consistently. In the next section we explain how these ideas are used to generate a concrete test trace. Note that BUZZ does not require that the actual DPFs be FlowTags-enabled; it merely uses these FlowTags-like constructs internally to model DPF operations.

5.4 Putting it together

Combining the above ideas, each DPF is thus modeled as an FSM ensemble that receives an input BDU and generates an output BDU. The output BDU encodes the relevant contextual information associated with the effect variables is an implementation artifact of using C/KLEE, and is not fundamental to our design.

Listing 1: BDU structure.

```c
struct BDU {
    // IP fields
    int srcIP, dstIP, proto;
    // transport
    int srcPort, dstPort;
    // TCP specific
    int tcpSYN, tcpACK, tcpFIN, tcpRST;
    // HTTP specific
    int httpGetObj, httpRespObj;
    // BUZZ-specific
    int dropped, networkPort, BDUid;
    // Each DPF conceptually records its effect
    int alphaTag[MAXTAG];
    ...}
```

Listing 2: Proxy as an FSM ensemble.

```c
BDU Proxy(DPFId id, BDU inBDU) {
    ... if ((frmClnt(inBDU)) && (isHttpRq(inBDU))) {
        if (!cached(id, inBDU)) {
            if (srvConnEstablished(id, inBDU)) {
                outBDU = rqstFrmSrv(id, outBDU);
            } else {
                outBDU = tcpSYNtoSrv(id, inBDU);
            }
        } else {
            set alphaTags based on context (e.g.,
            cache hit/miss, client ip);
        }
        outBDU = alphaTags = ...;
    }
    return outBDU;
}
```
that the DPF performed on the input BDU. We assume that each DPF instance has a unique id that allows us to identify the "type" of the DPF and thus index into the relevant global state variables.

The generality of BDUs and the fact that they also capture the locations (note networkPort in Listing 1, which species the current network port at which the BDU is located) allow DPFs to be easily composed. Concretely, consider the network of Figure 1 and see how we compose models of proxies, switches, and the monitoring device as shown in Listing 3. Lines 7–10 model the stateless switch. Function lookUp takes the input BDU, looks up its forwarding table, and creates a new outADU with its port value set based on the forwarding table. (Following prior work [35], we consider each switch DPF as a static data store lookup updating located packets.) Lines 12–20 capture the monitoring of the BDU output by the DPF.

We model the data plane as a simple loop (Line 26) following the sequential lock-step semantics from §3. In each iteration, a BDU is processed (Line 27) in two steps: (1) the BDU is forwarded to the other end of the current link, (2) the BDU is passed as an argument to the DPF connected to this end (e.g., a switch or firewall). The BDU output by the DPF is processed in the next iteration until the BDU is "DONE"; i.e., it either reaches its destination or gets dropped by a DPF. The role of assert will become clear in the next section when we use symbolic execution to exercise a specific policy behavior.

6 Test Traffic Generation

Given the data plane model (as described in the last section) and a policy (TraceSpec; TraceSem), our next goal is to generate a test plan that explores the states of the data plane to induce the intended TraceSem. We break this into two logical steps: (1) generating a plan at the granularity of BDUs using symbolic execution, and (2) translate it into a concrete test manifest (test scripts that create test traffic). The key practical requirement is that we want this to be fast (seconds) for interactiveness.

6.1 Symbolic Execution using BDUs

While BDUs address the challenges of modeling data planes, they do not address state space explosion due to composition of DPF models. To see why, suppose a BDU (e.g., a TCP SYN+ACK) sequentially traverses DPF1 (a proxy) and DPF2 (firewall). Suppose DPF1 and DPF2 can reach K_1 and K_2 possible states w.r.t. this BDU, respectively (e.g., the proxy waiting for a TCP SYN+ACK from a web server, and the firewall watching for unsolicited connection requests). The composition of the DPFs can reach $K_1 \times K_2$ states w.r.t. this BDU. This combinatorial growth with the number of DPFs and possible BDUs makes it difficult to find a test trace.

We tried several approaches to tackle state-space explosion using AI planning, model checking, and custom search techniques. However, these techniques did not scale beyond networks with 5-10 DPFs.

To address this scalability challenge, we turn to symbolic execution, which is a well known approach in formal verification to address state-space explosion [21]. At a high-level, a symbolic execution engine explores possible behaviors of a given program by considering different values of symbolic variables [23]. One well-known concern is that symbolic execution can sacrifice coverage. In our specific application context, this tradeoff to enable interactive testing is worthwhile. First, administrators may already have very specific testing goals in mind. Second, configuration problems affecting many users will naturally manifest even with one test trace. Finally, if we have a fast solution, we can run several tests changing the values to improve coverage.

Thus, to generate a high-level plan, we use symbolic execution in BUZZ at the granularity of BDUs to produce a Π_{BDU} or a sequence of BDUs. To this end, we define test BDUs as symbolic variables. The symbolic execution engine assigns values to these test BDUs such that "interesting states" of the data plane representing TraceSem are triggered. Specifically, given the policy (TraceSpec; TraceSem), we use symbolic execution as follows. First, we constrain the symbolic BDUs to satisfy the TraceSpec condition. Second, we introduce the negation of TraceSem or \negTraceSem as an assertion in the model code. In practice, the \negTraceSem assertion will be
expressed in terms of BDU fields (e.g., networkPort, alphaTags) and the global state variables. Then, we let the symbolic execution engine find an assignment to the symbolic BDU variables that causes this assertion to be violated. Because we use the negation in the assertion, the end result is that we will get a BDU-level trace that induces the effects in TraceSem.

To see this more concretely, we revisit the example from Figure 1 in Listing 3. Suppose we want a test plan to observe cached responses from the proxy to Dept. Lines 30-31 shows the assertion so that symbolic execution will instantiate a trace of BDUs that causes a cached response to be returned by the proxy (where being a cached response here is encoded in alphaTags[1] part of BDUs) to arrive at the monitor’s incoming port. For instance, suppose currently there is TCP connection between a host in the Dept. the symbolic execution engine might give us a test plan with 5 BDUs: three BDUs between a host in the Dept. and the proxy to establish a TCP connection (the 3-way handshake), a fourth BDU has httpGetObj = httpObjId from the host to the proxy (which will results in a cache miss at the proxy and triggers fetching the object by the proxy from the remote server), followed by another BDU with the field httpGetObj set to httpObjId to induce a cached response. Note we set the number of symbolic BDUs conservatively high (i.e., 20 in this example) without facing any slowdown. The reason behind this is that as soon as the assertion is violated (e.g., after 5 BDUs), test planning terminates and the extra symbolic BDUs do not affect the symbolic execution.

Listing 4 shows another example of an assertion ensuring that an alarm is triggered at both L-IPS and H-IPS of Figure 3. The assertion in Lines 5-6 creates a trace of BDUs capturing a sequence of connection attempts that triggers both L-IPS and H-IPS to raise alarms.

6.2 Optimizing Symbolic Execution

While symbolic execution is orders of magnitude faster than other options, it does not provide the speed needed for interactive testing. Even after a broad sweep of configuration parameters and command line arguments to customize KLEE, it took several hours even for a small topology (§9). To make it scale to larger topologies, we implemented a suite of domain-specific optimizations:

- Minimizing symbolic variables: Making the entire BDU symbolic will force KLEE to find values for every field. To avoid this, we use policy-specific insights to have a small subset of symbolic fields; e.g., when testing the stateful firewall without a proxy, we can set the HTTP-relevant fields to concrete values.
- Scoping values of symbolic variables: The TraceSpec already scopes the range of values each BDU can take. We can further narrow this range and still find good test traces. To do this, we use protocol-specific insights to assign concrete values to as many BDU fields as possible. For example, we set a client’s TCP port number to a unique value (as opposed to making the srcPort field symbolic). This value is only used in the model for test planning and the actual client TCP port is chosen by the host at run time (§6.3).
- Other optimizations: We applied other optimization to further speed up the traffic planning process. This includes “memorizing” BDU traces to trigger previously explored states as well as utilizing overlaps between TraceSem components of different policies.

6.3 Generating Concrete Test Traffic

We cannot directly inject BDUs into a physical data plane since these are abstract entities; we need to test the data plane using a set of real IP-layer packets. To this end, we design a custom translation layer that takes as input a high-level test plan (i.e., sequence of BDUs) and generates a concrete test manifest that we can feed into the BUZZ traffic injectors. This insight in designing this translation layer is two fold. First, we need to consider the protocol semantics of traffic to which the intended policies apply (we have considered IP, TCP, UDP, and HTTP so far). For example, a sequence of three BDUs that correspond to TCP SYN from host A to server B, TCP SYN+ACK from B to A, and TCP ACK from A to B collectively indicate a TCP connection establishment. Second, we cannot create the concrete test traffic at a packet level (e.g., as opposed to ATPG [55]). This is because many values are determined by the OS at run time; e.g., we cannot predict TCP sequence numbers. Thus, we translate the BDUs to a sequence of traffic generation functions into a script that will be run at a given injection point. For example, the above three TCP BDUs are translated to a function establishTCP (A, B) runs at host A to connect to TCP server B. We currently use 10 such traffic generation primitive functions that support IP, TCP, UDP, and HTTP. We plan to extend this to accommodate other protocols.

7 Test Monitoring and Validation

After the test traffic is injected into the data plane, the outcome should be monitored and validated. First, we need to disambiguate true policy violations from those caused by background interference. Second, we need mechanisms to help localize the misbehaving DPFs.
In the easiest case, if the observed path matches our intended behavior; e.g., do packets follow the policy-mandated paths? In the easiest case, if the observed path Obs matches our intended behavior Orig and we have no interfering traffic, this step is trivial and we declare a success. Similarly, if the two paths match, even if we have potentially interfering traffic, our monitoring reveals that it does not directly impact the test (e.g., it was targeting other applications or servers), we declare a success.

Clearly, the more interesting case is when we have a test failure; i.e., Obs ≠ Orig. If we identify that there was no truly interfering traffic, then there was some potential source of policy violation. Then we identify the largest common path prefix between Obs and Orig; i.e., the point until which the observed and intended behavior match and to localize the source of failure, we zoom in on the “logical diff” between the paths. However, we might have some logical gaps because of our choice to only monitor the stateful DPF-connected ports; e.g., if the proxy response is not observed by the monitoring device, this can be because of a problem on any link or switch between the proxy and the monitoring device. Thus, when we run these follow up tests, we enable MonitorAll to obtain full visibility.

Finally, for the cases where there was indeed some truly interfering traffic, then we cannot have any confidence if the test failed/succeeded even if Obs = Orig. Thus, in this case the only course of action is a fall back procedure to repeat the test but with MonitorAll enabled. In this case, we use an exponential backoff to wait for the interfering flows to die.

8 Implementation

DPF models: We wrote C models for switches, ACL devices, stateful firewalls (capable of monitoring TCP connections and blocking based L3/4 semantics), NATs, L4 load balancers, proxies, passive monitoring, and simple intrusion prevention systems. In writing DPF models, we reuse common building blocks across DPFs (e.g., TCP connection sequence).

DPF Model validation: We implemented several measures to validate our DPF models. First, we use a bounded model checker, CMBC, on individual DPF models and the network model to ensure they do not contain software bugs (e.g., pointer violations, overflow). While this was time consuming, it was a one-time task. Second, we used call graphs [4, 15] to check that the model behaves as expected. Third, we compared the input-output behavior of the model with open source DPFs.

Test traffic generation and injection: We use KLEE with the optimizations discussed earlier to produce the BDU-level plan, and then translate it to test scripts that are deployed at the injection points. Test traffic packets are marked by setting a specific (otherwise unused) bit.

Traffic monitoring and validation: We currently use offline monitoring via tcpdump (with suitable filters); we plan to integrate more real-time solutions like NetSight [32]. We use OpenFlow [40] to poll/configure switch state. We use an OpenDaylight-based implementation of FlowTags [29] to gain better visibility into middlebox actions.

9 Evaluation

In this section we evaluate the effectiveness and performance of BUZZ and show that: (1) BUZZ successfully helps diagnose a broad spectrum of data plane problems (§9.1); (2) BUZZ’s optimizations provide more than three orders of magnitude speedup and enable close-to-interactive running times even for large topologies (§9.2); and (3) BUZZ is also useful for incremental testing, testing DPF implementations, and testing reachability (§9.3). We begin with our setup and approach.

Testbed: In order to run realistic large-scale experiments with topologies of 100+ nodes, we use a testbed of 13 server-grade machines (20-core 2.8GHz servers)
with 128GB RAM) connected via a combination of direct 1GbE links and a 10GbE Pica8 OpenFlow-enabled switch. On each server with KVM installed, we run each injectors and middleboxes as separate VMs. The VMs are interconnected via OpenSwitch on each server. The middleboxes we use are iptables [3] as a NAT and a stateful firewall, Squid [12] as proxy, Snort [11] as IPS/IDS, Balance [1] as the load balancer, and PRADS [9] as a passive monitor. These were instrumented with FlowTags to handle dynamic middlebox actions [29].

Topologies and policies: In addition to the example scenarios from §2, we use 8 recent (>2010) topologies from the Internet Topology Zoo [13]. We use these as switch-level topologies and extend them with middleboxes and use various service chaining policies; e.g., a policy chain of length 3 made of a NAT, IPS, and load balancer.

Background traffic: We generate background traffic intended to *interfere* with the specific behaviors we want to test; i.e., it induces state transitions that can affect our tests. For example, in Figure 3, we use background TCP port scanning traffic as it affects the suspicious connection count per host at the L-IPS. Given the intended policies and data plane model, we modify our trace generation tool for this purpose.

9.1 Validation

Finding hidden errors: We validate the effectiveness of BUZZ using a *red team–blue team* exercise. Here, the blue team (Student 1) has a pre-defined set of policies for each network; i.e., these are the expected behaviors and there is no “overfitting” or additional instrumentation necessary for each run. Then, the red team (Student 2) picks one of the intended behaviors (at random) and creates a failure mode that causes the network to violate this policy; e.g., misconfiguring the L-IPS count threshold or disabling some control module. The blue team used BUZZ to (a) identify that a violation occurred and (b) localize the source of the policy violation. We also repeated these experiments reversing the student roles; but do not show these results for brevity.

Table 3 highlights the results for a subset of these scenarios and also shows the specific traces that blue-team used. Three of the scenarios use the motivating examples from §2. In the last scenario (Conn. limit.), two hosts are connected to a server through an authentication server to prevent brute-force password guessing attacks. The authentication server is expected to halt a host’s access after 3 consecutive failed log in attempts. In all scenarios the blue-team successfully localized the failure (i.e., which DPF, switch, or link is the root cause) within 10 seconds. Note that these bugs could not be exposed with existing debugging tools such as ATPG [55], ping, or traceroute.8

Table 3: Some example red-blue team scenarios.

Finding real bugs: BUZZ also helped us identify an actual bug in our FlowTags re-implementation in OpenDaylight.9 Essentially, the controller code in charge of decoding FlowTags (e.g., to distinguish sources hidden behind a NAT or proxy) was assigning the same tag value to traffic from different sources. By using test traffic in network of Figure 1, we observed that proxy hit replies bypass the monitoring device, which is a violation of the intended behaviors. BUZZ validation also localized the policy violation (i.e., at the proxy). It also provided the traffic trace indicating that the tag values of cache miss and hit cases are identical, that gave us a hint to focus on the proxy tag assignment code of FlowTags controller.

Performance and Scalability

One of our goals is that operators should be able to use BUZZ in a reasonably interactive fashion; i.e., the time for an end-to-end test should be a few seconds or less.

Test traffic generation: We measure the time for BUZZ to generate a test trace across different topologies and service chain sizes. We evaluate the utility of the optimizations we introduced in §6.

8They can detect obvious failure modes such a link/switch being down but cannot capture subtle bugs w.r.t. stateful/contextual behaviors.

9Our original implementation was in POX; the bug arose during the (non-trivial) process of porting it to OpenDaylight; OpenDaylight is a significant codebase with a lot of complexity.
linearly (this is done for other experiments of this subsection too). Since all values are close to the average, we do not show error bars. To put our numbers in perspective, using KLEE without any of our optimizations even on a network of six switches and one policy chain instance with three middleboxes took over 19 hours to complete. The graph also shows the (projected) value of the unoptimized setup using this baseline result.

The first optimization (minimizing the number of symbolic variables) dropped the latency of the baseline example to less than 12 seconds (more than three orders of magnitude reduction). Constraining the values of symbolic variables yields another \(> 9 \times \) latency reduction. Finally, other minor optimizations reduce the time for test traffic generation by about 6%.

Recall that test generation in BUZZ was that existing tools were inadequate to test our FlowTags implementation [29]. To this end, we define intended behaviors for single DPFs and exhaustively test externally observable middlebox actions; e.g., the tagging behavior of the IPS to ensure it tags according to the intended alarm thresholds.

Validation: The latency of validation is composed of two components: analysis of monitoring logs and follow-up test traffic generation (if necessary). Table 4 shows the average validation latency across different topologies. The policy chain in this case is fixed (of length of three), and one randomly selected data plane element fails. In another experiment (not shown) we varied the length of the logical policy chain on fixed topologies. The validation latency in this case increases linearly with the length of the logical policy chain. We also measured the contribution of each of the validation stages (analysis of monitoring and generating to the validation latency). Across different topologies and policy chain lengths, generating follow up test takes between between 26% to 29% of the total validation latency. In the largest topology (Cogent) with 196 switches and 33 stateful DPFs, validation and follow up test took \(\approx 42 \) and \(\approx 17 \) seconds, respectively.

9.3 Other use cases

Testing Flowtags-enhanced DPFs: One of the original motivations for BUZZ was that existing tools were inadequate to test our FlowTags implementation [29]. To this end, we define intended behaviors for single DPFs and exhaustively test externally observable middlebox actions; e.g., the tagging behavior of the IPS to ensure it tags according to the intended alarm thresholds.

Incremental Testing: One natural question is if we can incrementally test the network; e.g., when policies change. While a full discussion is outside the scope of this work, we have early evidence to show that BUZZ is amenable to incremental testing. We update the set of policies that are affected by the policy change rather than rerun the full suite of behaviors. In general, incremental testing requires time proportional to the fraction of affected policies (not shown).

Loops and reachability: While reachability checking in stateless data planes is a “solved” problem [35], it is unclear if this is true for stateful data planes. reach-
ability properties via new types of assertions. For instance, to detect loops we add assertions of the form:
\[
\text{assert(seen[ADU.id][port]<K),}
\]
where \(\text{ADU}\) is symbolic BDU, \(\text{port}\) is a switch port, and \(K\) reflects a simplified definition of a loop that the same BDU is observed at the same port \(\geq K\) times. Similarly, to check if some traffic can reach \(\text{PortB}\) from \(\text{PortA}\) in the network, we initialize a BDU with the port field to be \(\text{PortA}\) and use an assertion of the form
\[
\text{assert(BDU.port != PortB).}
\]
Using this technique we were able to detect synthetically induced switch forwarding loops (not shown).

10 Related Work

Network verification: There is a rich literature in static reachability checking; i.e., a set of Can-A-talk-to-B properties [27, 53, 54]. Recent work provides a geometric header space abstraction (e.g., HSA [35]) and extends this for real-time checking [34]. Other work uses SAT solvers for checking reachability [38]. At a high level, these focus on L2/L3 reachability (e.g., black holes, loops) and do not capture networks with middleboxes. NICE combines model checking and symbolic execution to find bugs in control plane software [24]. BUZZ is complementary in that it generates test cases for data plane behaviors. Similarly, SOFT generates tests to check switch implementations against a specification [37]. Again, this cannot be extended to middleboxes.

Test packet generation: The work closest in spirit to BUZZ is ATPG [55]. ATPG builds on HSA to generate test packets that exercise the intended reachability properties. Unfortunately, ATPG cannot be applied to our scenarios on two fronts. First, middlebox behaviors are not stateless “transfer functions” which is critical for the scalability of ATPG. Second, the behaviors we want to test require us to look beyond single-packet test cases.

Programming languages: Recent work attempts to formalize network semantics to generate “correct-by-construction” programs [17,19,31]. However, to the best of our knowledge, these do not currently capture stateful data planes and context-dependent behaviors. Furthermore, many of the DPFs we consider may actually be black boxes and thus active testing may be our only option to check if the network behaves as intended.

Network debugging: There is a rich literature for fault localization in networks and systems (e.g., [30, 43, 47, 48]). These algorithms can be used in the inference engine of BUZZ. Since this is not the primary focus of our work, we used simpler heuristics in §7.

Modeling middleboxes: Joseph and Stoica formalized middlebox forwarding behaviors but do not model stateful behaviors [33]. In terms of modeling stateful behaviors, the only work we are aware of are FlowTest [28], Symnet [51], and concurrent work by Panda et al [44]. While our preliminary work on FlowTest highlighted the challenges we addressed here, there were three fundamental shortcomings: (1) the AI planning techniques do not scale; (2) the high-level DPF models generated there are not composable as discussed in §5; and (3) the approach is inflexible as it tightly couples the data plane model and intended policies. Symnet [51] writes high-level middlebox models in Haskell to capture flow affinities in NATs/firewalls; we do not have details on their models or verification procedures. Panda et al also independently model the stateful behaviors, but their work is different both w.r.t goals (reachability and isolation) and solution techniques (verification and making model checking tractable).

Simulation and shadow configurations: Simulation [6, 7], emulation [2, 5], and shadow configurations [16] are the common techniques used today to model/test networks. BUZZ is orthogonal in that it focuses on generating test scenarios. While our current focus is on active testing, BUZZ’s applies to these platforms as well. We also posit that there are other avenues where our techniques can be used to validate these efforts.

11 Conclusions

In this work, we presented the design and implementation of BUZZ, a practical testing framework to test complex and contextual policies in realistic network settings with stateful middleboxes. We addressed key challenges in developing tractable-yet-useful models of middleboxes and in making symbolic execution tractable in this domain. We believe that the ideas that were critical to make the BUZZ vision practical—BDUs as the unit of input-output operations, modeling DPFs as FSM ensembles, use of symbolic execution at BDU granularity, and the optimizations we implement in KLEE—will be more broadly applicable for other network verification tasks. By demonstrating the scalability and viability of BUZZ, this work takes the “CAD for networks” vision one giant step closer to reality.

References