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'Non-Adjunctive Inference and Classical Modalities
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Abstract. The article focuses on representing different forms of non-adjunctive
inference as sub-Kripkean systems of classical modal logic, where the inference
from OA and OB to O(A A B) fails. In particular we prove a completeness result
showing that the modal system that Schotch and Jennings derive from a form of
non-adjunctive inference in (Schotch-Jennings, 1980) is a classical system strictly
stronger than EMN and weaker than K.! The unified semantical characterization
in terms of neighborhoods permits comparisons between different forms of non-
adjunctive inference. For example, we show that the non-adjunctive logic proposed
in (Schotch-Jennings, 1980) is not adequate in general for representing the logic of
high probability operators. An alternative interpretation of the forcing relation of
Schotch and Jennings (more in line with the initial ideas of Jaskowski in (Jaskowski,
1969)) is derived from the proposed unified semantics and utilized in order to pro-
pose a more fine-grained measure of epistemic coherence than the one presented in
(Schotch-Jennings, 1980).

Keywords: Classical modal logic, Epistemic logic, High probability operators, Para-
consistent logic, Non-Adjunctive logic

1. Introduction

Non-Adjunctive logical systems are those where the inference from A
and B to AA B fails. As is indicated in (Priest-Tanaka, 2000) the first
of these systems to be produced was also the first formal paraconsistent
logic. This was Jaskowski’s discussive (or discursive) logic (Jaskowski,
1969). The central idea in discussive logic is to formalize the process
of pooling (and reasoning from) the consistent (but possibly contra-
dictory) views of various agents. Most applications of non-adjunctive
inference are epistemically motivated.

As a concrete example, various authors have suggested that formal-
izing the logic of high probability requires the use of non-adjunctive
inference (or the use of some form of paraconsistent formalism). Views
pro and con are discussed in (Kyburg, 1995). A related, but slightly
different argument proposes that ‘it is highly probable that’ should be
formalized as an epistemic modal operator. It is quite obvious that
A A B might fail to be highly probable, even when A and B are highly
probable. Under this construal what fails is not the inference from A

! Following the notation for classical modalities presented in (Chellas, 1980).

© 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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and B to AA B, but the inference from 0A and OB to O(AA B), where
‘0’ is the monadic operator of high probability.

Formalizing this latter account possesses also significant challenges.
In fact, the weakest of the system of modal logics endowed with a
Kripkean semantics, the system K, satisfies the schema:

(C) (@(4) A a(B)) — O(A A B)

So, this suggests that studying a logical system where failures of
this modal form of Adjunction occur requires a generalization of the
standard Kripke semantics for modal operators. This generalization,
even though less carefully studied than its Kripkean counterpart, has
indeed been proposed (independently) by Dana Scott (Scott, 1970) and
Richard Montague (Montague, 1970). A systematic presentation of this
semantics and of the systems of classical modal logic that correspond to
them is offered in Part IIT of (Chellas, 1980) - this includes work first
presented in (Segerberg, 1971). Brian Chellas calls this generalization
of Kripke semantics minimal models. They are otherwise known as
neighborhood models, and this will be the terminology adopted here.
{(Arl6-Costa, 2002) proposes the use of the family of sub-Kripkean
classical logics in order to formalize epistemic operators where different
failures of logical omniscience occur. In particular it is suggested the
possibility of using some of these systems in order to model monadic
operators of high probability. The logical focus of (Arlé-Costa, 2002) is
to study a first order extension of some of the classical modal systems
weaker than K. Kyburg and Teng (Kyburg-Teng, 2002) have focused on
the propositional level and on applications considering high probability.
They identify the logical system EMN as the one involved in repre-
senting high probability operators. Classical systems can be introduced
succinctly as follows (we will provide more background below):

DEFINITION 1.1. A system of modal logic is classical if and only if
it contains the aziom QA « —0O-A, and is closed under the rule of
inference RE, according to which OA «— OB should be inferred from A
— B,

In addition EMIN satisfies the axioms:

(M) o(A A B) — (0A A0B)

as well as:

(N) o(True)
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The weakest Kripkean system, the system K, is equivalent to EMICN,
so EMN is one of the sub-Kripkean systems which fail to satisfy the
modal counterpart of adjunction. It is not difficult to see that the
remaining axioms and rules are naturally motivated for an operator
of high probability.

One of the virtues of the previous account is the natural intuitiveness
of the use of a modal operator in order to represent qualitative proba-
bility. Another virtue is the fact that the analysis can be carried out by
using an extension of classical logic, without modifying the underlying
notion of logical consequence. Of course, the analysis still requires using
a generalization of Kripke semantics in order to understand the nature
of the modal operator ‘.

There is, nevertheless, an intimate connection between non-adjunctive
inference and non-Kripkean modal operators (where (C) fails), which
we intend to study in detail here. As has happened in other areas of
philosophical logic, connections between non-standard logical systems
and extensions of classical logic illuminate the nature of both (an ex-
ample is given by the connections between intuitioninsm and the modal
system S4).

Schotch and Jennings have offered in (Schotch-Jennings, 1980) one of
the standard contemporary systems of non-adjunctive inference, and in
the process of doing so, they also derived a modal system from the non-
adjunctive notion of consequence (the forcing relation) used in their
analysis. Nevertheless, the nature of this modal operator and its even-
tual relationships with the epistemic O axiomatized by EMN is not
immediate. They offer a semantics, which they see as a generalization
of Kripke semantics. One of my goals here is to show that their modal
operator has neighborhood models of the type proposed by Scott and
Montague. I shall provide closure conditions on neighborhoods that
completely characterize Schotch and Jennings’ modal operator. The
semantics allows us to locate Schotch and Jennings’ modal system as a
classical system of modal logic stronger than EMN and weaker than K.
The system in question has not been independently studied by modal
logicians. I shall also study a natural strengthening of their logic, also
weaker than K.

Even when the resulting classical modal system is an EMN-system,
I shall show via examples that it is not adequate to represent oper-
ators of high probability. This, in turn, sheds some light concerning
the nature of the forcing relation proposed by Schotch and Jennings.
Even when the notion in question admits an epistemic interpretation,
I shall argue that the interpretation in question is very different from
the one required for monadic operators of high probability. The nature
of non-adjunctive inference in Schotch and Jennings’ system, as well as
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various strengthenings studied here, seem to be more naturally related
to the first systems developed by Jaskowski.

I shall proceed as follows. First, I shall introduce the forcing relation
of Schotch and Jennings as well as their derived modal operator. Then I
shall enter the details of neighborhood semantics and I shall prove that
the axiomatization of Schotch and Jennings’ is complete with respect
to the proposed neighborhood model. Once this is done we will use the
models in question in order to show that operators of high probability
need not meet the constraints on neighborhoods needed for Schotch
and Jennings’ operators (with the exception of some limit cases). Fi-
nally a strengthening of Schotch and Jennings’ modal logic will be
considered. I shall close with some philosophical remarks concerning
the epistemic nature of the forcing relation and I shall utilize them in
order to motivate a new measure of coherence of information.

2. Measures of coherence and non-adjunctive inference

The central idea behind Schotch and Jennings’ notion of forcing is
their proposal for measuring the coherence of a set of sentences. Their
coherence function c is a function having as its domain the set of all
finite sets of sentences and as a codomain the set Nat U {w}, where
Nat is the set of natural numbers.

DEFINITION 2.1. For false € T', ¢(T') = m if and only if m is the
least integer such that there are sets

01y .oy O, with a;  false (1 <i<m)
and U2 a; =T
where - is the classical notion of consequence and where c¢(I') = w

by convention if false € I’

Now we can define a notion of derivability in terms of this notion
of levels of coherence. The forcing relation [~ is characterized as a
relation between finite sets of sentences and sentences and defined as
follows:

DEFINITION 2.2. For ¢(T) = n(w), T' [~ A if and only if for every
n-fold (w-fold) decomposition a1, ...,an, of I', there is some i such that
a; F A(l <1 < n(w)).

The forcing relation obeys the following structural rules (as the
classical notion of consequence +):
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(Ref) AcT - T[-A
(Mon)T'[FA - TUAFA, when ¢(TUA) = ¢(T).
(Trans) TU{A}[FB andT'FA - T[+B

We need an additional structural rule as well, which depends on the
previous concept of m-cluster. For a any finite set we say that C C 2°
is an m-cluster if and only if m € Nat and:

For all f € m®, there is z € C, and there is y <m: z C f~1[y].

In words: for any way of dividing a into m subsets there is a member
z of C such that z is included in at least one of the m subsets into which
a has been divided.

(Clus) If C = {e¢s,...,cn} is an m-cluster constructed out of Ai, ..., A
€T and ¢(T') = m, then (¢; [ B, ez [F B,..., ecn [F B) = T'[FB

In addition we have the usual rules for introducing and eliminating
connectives, with the notable exception that the rule for introducing
conjunction only holds for sets T, such that ¢(I') = 1. In other words,
from '+ A and T' [ B it no longer follows that I'[F (A A B), unless
) = 1.

We can now introduce a generalization of the standard (logical)
notion of theory. The most immediate definition is an obvious gen-
eralization of the classical notion:

DEFINITION 2.3. A is am-theory if and only if c(A) =m and A A
entails A € A.

The notion of m-theory can also be expressed via two closure con-
ditions, without appealing to a direct use of * [’

DEFINITION 2.4. A is a m-theory if and only if
(a) A€ A and - A — B, entail that B € A

() If {c1,...,ck} C 22 is an m-cluster, then VE{Acy, ..., Acx} € A,
where Ac; denotes ‘A1, ..., As;’ for ¢; = {As, ..., A}

This notion of m-theory, which generalizes the standard notion of
theory, will be useful in order to introduce the necessity operator that
Schotch and Jennings derive from the forcing relation. This derivation
will be the focus of the next section.
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3. Necessity derived from the forcing relation

The first step in the derivation is to enlarge the language of the propo-
sitional calculus PC with a new connective 0. A pre-model B for the
enlarged language PC(0) is a standard model (U, P) of a non-empty
set U and a valuation P mapping the atoms of the language to events
in 2V, P is extended (uniquely) to a function ||.||® which evaluates all
sentences of the language by means of classical truth conditions. So, we
have ||A A B||B = ||A||® N ||B]|B, etc.

No specific truth conditions are introduced for ‘0’ aside from stipu-
lating that ||0(A)]|® € 2U, for all A. So, ‘10’ is not really behaving as a
logical constant at this stage. Still the O-operator can be used in order
to ‘guard’ inconsistent formulae. So, even when |[{4,-A}||B = §, we
have |[{O(A4), D(=A)}I® # 0.

The second step in the derivation of a model for the O-operator will
be to restrict the class of pre-models to a special subclass called full
pre-models.

DEFINITION 3.1. B is a full PC{0)) pre-model if and only if, B is a
pre-model and for all u such that O(u)® = {A] =B 0A)} is an n-theory,
a C O(u)B, such that a I false, a C b and b I/ false, then ||b]|P # 0.

Now as a final step of the construction we derive the underlying
structure of the desired model and the truth conditions for 0A form
the restrictions imposed by [-. This is done in two steps, the first of
which is to define a n-natural relation.

DEFINITION 3.2. Let B be a full PC(Q) pre-model. For each n € Nat
let 7 be a function r: {z|c(0(x)®) = n} — U™. Let u be an element of
U such that c(0(u)B®) = n. Further let A(u) = {6]6 : ¢(O(u)B) — n}
be the set of non-trivial n-fold decompositions of ¢(0(u)?)

Then m(u) = {{z1,...za)zs € |67 Hi]||® (1 < i < n) for some
6 € A(w)}. Finally if (z1,...,z,) € r(u) we write uRz1,...,T, and call
R the n-natural relation of u.

Now we can prove the following theorem stating the desired truth
conditions for the derived modal operator:

THEOREM 3.1.  (Schotch and Jennings) If B is a full PC(Q) pre-
model and O(u)® is an n-theory and R the n-natural relation, then =5
OA if and only if for all 21, ..., 2y, if uRZ1, ..., Tn, then lzfl Aor.. or
B A

ZTn
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Schotch and Jennings comment that their semantics is a generaliza-
tion of Kripke semantics. Nevertheless, the presentation is non-standard
and dependent of the notion of pre-model. It would be nice to see
whether the proposed semantics can be classified in terms of some of
the well-known generalizations of Kripkean semantics. I shall focus on
this topic in section 4.

3.1. THE LoGIC K,

The goal of Schotch and Jennings is to show that the class of structures
generated in the previous section determine a modal logic extending the
non-adjunctive logic presented above. The logic in question is obtained
by supplementing the axioms and rules constraining the [ relation
with the following rule:

(RKy) If ¢(I') = n, and I'[-B, then O[] - O(B), where O[] =
{O(A)|A e T}

Schotch and Jennings built a canonical model for the resulting logic
K, and they prove that the model is a full PC'(O0) pre-model, satisfying
the closure restriction used in the theorem presented above.

In the following sections I shall proceed as follows. First I shall pro-
vide some background about neighborhood models of modalities. Then
I shall introduce a constraint on neighborhoods, called clustering, and
I shall show that this constraint is a ‘natural’ semantic counterpart of
the notion of m-theory. This introductory result might help connecting
the new neighborhood structures with the ones built up by Schotch
and Jennings. Then I shall prove a general representation result for K,
in terms of neighborhood models, which does not require using the full
PC(O) pre-models of Schotch and Jennings.

4. Neighborhood models for modalities

We will introduce here the basis of the so-called neighborhood semantics
for propositional modal logics. We will follow the standard presentation
given in Part IIT of (Chellas, 1980).

DEFINITION 4.1. M = (W, N, P} is a neighborhood model if and only
if:

(1) W is a set

(2) N is a mapping from W to sets of subsets of W
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(3) P is a standard valuation mapping the atoms of the language to
subsets of W.

Of course the pair F = (W, N) is a neighborhood frame. The following
definition makes precise the notion of truth in a model.

DEFINITION 4.2. Truth in a neighborhood model: Let u be a world
in a model M = (W, N, P). P is extended (uniquely) to a relation =,
(where M |=, A states that A is true in the model M at world u).
The extension is standard for Boolean connectives. Then the following
clauses are added in order to determine truth conditions for modal
operators.

(1) M =, O(A) if and only if ||A||™ € N(u)
(2) M =, O(A) if and only if ||-A||M & N(u)
where, ||[A|M = {u € W: M, =, A}

||A||M is called A’s truth set. Intuitively N(u) yields the proposi-
tions that are necessary at u. Then 0OA is true at w if and only if
the ‘truth set’ of A (i.e. the set of all worlds where A is true) is in
N (u). If the intended interpretation is epistemic N(u) contains a set of
propositions understood as epistemically necessary. This can be made
more precise by determining the exact nature of the epistemic attitude
we are considering. N(u) can contain the known propositions, or the
believed propositions, or the propositions that are considered highly
likely, etc. Then the set P ={A € W: |=, 0(A)} determines the space of
epistemic possibilities with respect to the chosen modality - knowledge,
likelihood, etc.

Clause (2) forces the duality of possibility with respect to necessity.
It just says that Q(A) is true at u if the denial of the proposition
expressed by A (i.e. the complement of A’s true set) is not necessary
at u. N(u) is called the neighborhood of I

4.1. AUGMENTATION

The following conditions on the function N in a neighborhood model
M = (W, N, P) are of interest. For every world u in M and every
proposition (set of worlds) X,Y in M:

(m) X NY € N(u), then X € N(u), and Y € N(u).
(c) If X € N(u), and Y € N(u), then X NY € N(u).
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(n) W € N(u)

When the function N in a neighborhood model satisfies conditions
(m), (c) or (n), we say that the model is supplemented, is closed under
intersections, or contains the unit respectively. If a model satisfies (m)
and (c) we say that it is a quasi-filter. If all three conditions are met
it is a filter. Notice that filters can also be characterized as non-empty
quasi-filters - non-empty in the sense that for all worlds u in the model

N(u) # 0.

DEFINITION 4.3. A neighborhood model M = (W, N, P) is augmen-
ted if and only if it is supplemented and, for every world u in it:

NN(u) € N(u).

Now we can present an observation (established in (Chellas, 1980),
section 7.4), which will be of heuristic interest in the coming section.

OBSERVATION 4.1. M is augmented just in case for every world u
and set of worlds X in the model: (a) X € N(u) if and only if NN (u)
c X

It easy to see that every augmented model is a filter: supplemented,
closed under intersections and possessed of the unit. Moreover, every
finite filter is augmented. This suggests a tight relationships between
neighborhood and Kripke models: a Kripke model is essentially an
augmented neighborhood model.

4.2. EPISTEMIC INTERPRETATION OF AUGMENTATION

In recent work in epistemic logic it is quite usual to represent agents by
acceptance sets or belief sets, obeying certain rationality constraints. If
the representation is linguistic the agent is represented by a logically
closed set of sentences. If the representation is done in a o-field or
relative to a universe of possible worlds, the agent is represented by a
set of points such that all propositions accepted (believed) by the agent
are supersets of this set of points. Adopting either representation is
tantamount to imposing logical omniscience as a rationality constraint.

When a neighborhood frame is augmented we have the guarantee
that, for every world u, its neighborhood N(u) contains a smallest
proposition, composed of the worlds that are members of every propo-
sition in N(u). In other words, for every u we know that N(u) always
contains NNV (u) and every superset thereof (including W).
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We will propose to see the intersection of the neighborhood of a
world as an acceptance set for that world, obeying the rationality con-
straints required by logical omniscience. The following results help to
make this idea more clear.

OBSERVATION 4.2. If M is augmented, then for every wu in the
model: (1) =y OA iff and only if N(u) C ||A||M, and (2) =, —O(4)
iff and only if N(u) € ||A||M.

Epistemic possibility is, in this setting, understood in terms of com-
patibility with the belief set NV (u). In other words |=,, {(A) if and only
if ||A|[™ N (N N(u)) # 0. This in turn means that, when the model M
is augmented, }=, ¢(A) holds whenever ||A||™ is logically compatible
with every epistemically necessary proposition in the neighborhood.

This epistemic interpretation of augmentation can be extended to
the case of neighborhoods that are not augmented. The basic idea is to
extend the previous account even for inconsistent neighborhoods with
empty intersection:

DEFINITION 4.4, (Poss) M k=, O(A) if and only if for every X in
N(u), [AIM N X # 0

The central idea being that an (unclosed) inconsistent set of state-
ments can be used in order to establish what is possible as follows: if a
statement contradicts a member of the set, then it is not possible. For
certain standard of quality control, that one of the pieces has passed
my inspection is not OK is not a serious possibility. And at the same
time, it is not a serious possibility that all the inspected pieces are
OK. A detailed analysis of the logical consequences of adopting this
extended notion of epistemic possibility for first order languages, as
well as some consequences concerning the lottery paradox, is presented
in (Arl6-Costa, 2002).

4.3. THE LEVEL OF COHERENCE OF NEIGHBORHOODS

The previous remarks bring us directly to the fact that most of the
sub-Kripkean classical models will contain inconsistent neighborhood
models. We can measure the level of coherence of these neighborhoods
as we can measure the level of coherence of a set of sentences.

DEFINITION 4.5. A set of propositions N has level of coherence m if
and only if m is the least integer such that there is a sequence of sets
of propositions Xi, ..., X, such that § # NX; and U;X; = N. Each of
the sequences Xi,..., Xom will be called an m-decomposition of N.
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This is a straightforward adaptation of the ideas of Schotch and
Jennings presented above. We can add a bit of useful notation here:

DEFINITION 4.6. If a set of propositions N has degree of coherence
m, and X1,...,Xm s an m-decomposition of N, then the sets Gi =
NX1, .oy G = NXyp, are called a set of m-generators of N.

Now the following closure condition on neighborhoods, which we can
call clustering is of interest:

DEFINITION 4.7. A neighborhood model M = (W, N, P} is m-clustered
if and only if for every u € W, and for every X C 2%, if N(u) has
level of coherence m,

X € N(u) if and only if for all generators Gy,...,Gn for N(u),
either G1 C X,or...,orG,, € X

We will say that a neighborhood of level of coherence m in a clustered
model is m-clustered. It is not difficult to see that a clustered neighbor-
hood is supplemented and possesses the unit, even though it need not
be closed under intersections. The next section will be devoted to show
that clustering is the counterpart for neighborhoods of the syntactic
notion of m-theory.

5. From pre-models to neighborhood models

Now we can proceed independently of pre-models. Let N/ = (U, N, P)
be a neighborhood model. We can then prove the following result about
clustering:

THEOREM 5.1. Let N be a neighborhood model and let o(u)V be an
m-theory. Then N(u) is m-clustered.

Proof. Assume that X = ||A||Y € N(u). Then, by the truth condi-
tions of the O-operator, A € O(u)". Therefore, O(u)V [~ A (by [Ref]).
So, for all m-decompositions & of O(u)V, there is 4, |[§~1[i]||V C ||A]|V.

Since O(u)" is an m-theory, N(u) has level of coherence m and all
m-generators of N(u) are given by the sets ||671[1]||V, ..., [|0= [m]|V
for each §. So, we have that for all sets of m-generators G, ..., G, for
the neighborhood, there is G; in the set entailing X, and this is enough
to establish the LTR part of the proof.

For the RTL part of the proof assume that X = ||A|Y ¢ N(u).
Then we have that A ¢ O(u)" and since 0(u)" is, by hypothesis, a m-
theory, O(u) /+ A. Therefore there is § € A(u): for all i (1 <4 < n)
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1671V & |JA|[V. For the reasons invoked in the first part of the
proof, this means that there is a set of m-generators of N(u), [|6=1[1]||V,
.y [J672[n]|[ such that neither of them entails ||A|["Y. This completes
the proof.

The proof is more direct than a similar proof in terms of the m-
natural relation, offered by Schotch and Jennings. The reason for this
directness is the fact that m-clustering seems to be a more ‘natural’
semantic counterpart for the syntactic notion of m-theory.

6. Completeness in terms of canonical neighborhood models

A direct completeness proof in terms of canonical neighborhood models
proceeds as follows. The construction of the canonical model is stan-
dard. Let ¥ be a system of classical modal logic. Then let MazsT
denote a maximal and consistent set of sentences of X. Let p, denote
the atoms of the language. In addition we have the notation [A|s =
{Mazxs|A € T}, where |Alx is A’s proof set for the system I'. The
canonical model N' = (W, N, P) is built up as follows:

(1) W = {T'|MazxsT}
(2) For all u € N, O(A) € w if and only if |Alz € N(u)
(3) P, =lppls, forn=0,1, ...

I shall not repeat here the main results about canonical models for
classical systems, which can be found in (Chellas, 1980). The result
that interest us in order to prove a determination result for the logic
K, is the following one:

THEOREM 6.1. Let N' = (W, N, P) be the smallest canonical neigh-
borhood model for the classical system containing the rule RK,. Then
for every w in N such that N(u) has degree of coherence n, N(u) is
n-clustered.

Proof. Let ¥ be a system of classical logic containing the rule RK,
and let N be the smallest canonical neighborhood model for ¥, i.e. a
model such that N(u) = {|A|=|0(A4) € u}. Assume for arbitrary u that
N(u) has degree of coherence n. Assume in addition that X € N(u).
Then, X = |Al|g, for 0(A4) € u.

Since O(A) € uwe have that A € O(u)" = {4|0(A) € u}. This indi-
cates, by Reflexivity of [, that D(u)N [F A. So, for all n-decompositions
§ of O(w)V, there is 4, §71[i] - A. Now, all the n-generators of N(u)
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are the sets:
167 1], ..., |67 [n]|x for some decomposition § of C(u)V.

So, we know that for any arbitrary set of n-generators G, ..., G, for
N (u) where:

Gy = |67 1]|g, ..., Gn = |67 [n]| for some decomposition & of
o(u)V.

there should be 4, such that G; = |67 [i]|z C |4]s.

On the other hand, if we assume that for all n-generators G1,..., Gy,
of N(u) there is at least one G; entailing |A|s; this is tantamount to
assume that O(u)Y [FA. So, by the rule RK,, I" = {z| z = O(B)
and 0O(B) € u} F O(A). Therefore 0(A) € u, which entails that |A|s €
N(u), as needed.

7. High probability neighborhoods and clustering

Let Np = (U,Np,V) be a high n-probability model, where U is the
universe, V a valuation and P a probability function defined on a
Boolean sub-algebra of the power set of U. In addition, Np is defined
as follows:

DEFINITION 7.1. Np(u) = {X|P(X) > n}

As we reported above, it is clear from the work of Kyburg and Teng
(Kyburg-Teng, 2002) that high probability models are supplemented
and possess the unit, and they are not closed under intersections. In
addition, we can apply Schotch and Jennings’ ideas here by measuring
the coherence of high probability neighborhoods.

Some salient cases are immediate. High n-probability neighborhoods
which contain a point w € U such that P({w}) > n are augmented with
NN (u) = {w}. Nevertheless, high probability neighborhoods are not in
general clustered:

EXAMPLE 7.1. Consider a .6-probability neighborhood where U con-
tains four points, and let P({w1}) = .5, P({w2}) = .1, P{ws}) = .3,
P({u1}) = .1. This neighborhood has level of coherence 1 with only
one generator in {wy}. Nevertheless, the neighborhood is not clustered,
because {w1} & N(u).
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The example gives some hints about the nature of the notion of
clustering itself and about the nature of the non-adjunctive logics based
on it. There are, of course, a variety of possible epistemic interpretations
for the notion. I am interested here on the fact that clustering admits an
interpretation, which is compatible with endorsing the most demanding
standards of epistemic rationality in terms of logical closure. Here is
the basis of this account of clustering (comparisons with the logic of
high probability will flow naturally from the interpretation itself).

The gist of the idea is to see clustering as an account of epis-
temic indeterminacy prompted by data, which can be incoherent. An
alternative example will help motivating the idea.

EXAMPLE 7.2. Consider a .6-probability neighborhood where U con-
tains four points, and let P({w1}) = .4, P{ws}) = .3, P({ws}) =
.2, P({w1}) = .1. This neighborhood has level of coherence 2. Possible
generators include G1 = {wa}, G2 = {ws}; G1 = {wi}, G2 = {wa,ws};
G1 =A{wi}, G2 = {wg, wa,ws}; G1 = {w1}, G2 = {wa}; G1 = {w1},
G2 = {’U)g}

A cluster in the sense of Schotch and Jennings is: C1 = {wy,ws},
Co = {w1,ws}, C3 = {wa, wa, ws}. So we have that N(u) = {X| either
CiCX,orCy C X, orCs C X}

Even when the last example was generated by utilizing high proba-
bility, I ask the reader to abstract from that fact and to just consider
the data in the neighborhood as a possible data set independently of its
origin. An agent facing the set of possible 2-decompositions of the data
can be seen as being in doubt between various ways of articulating the
data as the pooled knowledge of two consistent, but unclosed views. So
the idea of forcing can be articulated as a form of cautious inference,
where one should be committed to infer something from the data as
long as it follows from any of the possible manners of articulating the
data. So, for example, one of the generators will be in the neighborhood
as long as it is a conclusion inferable from all possible articulations of
the data.

So, clustering can be seen as a condition which requires the max-
imum degree of logical perfection as is compatible with the degree of
indeterminacy represented in the neighborhood. If, as in the first ex-
ample, there is no degree of indeterminacy, and the level of coherence is
one, then the agent should be logically omniscient, i.e. the neighborhood
should be augmented. Of course, this is a requirement which clashes
with the logic of high probability, which permits augmentation only
in some limit cases, but that establishes its own standard of rational-
ity, not necessarily coherent with logical closure (seen as an ideal of
rationality).
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8. A more fine-grained measure of coherence?

The previous epistemic account of clustering suggests, in turn, that
Schotch and Jennings’ measure of coherence might not be fine-grained
enough to reflect an intuitive notion of coherence in terms of epis-
temic determinacy. It seems that there are cases where neighborhoods,
which intuitively bear different degree of coherence, receive neverthe-
less the same measure. For example, consider the following class of
neighborhoods of level of coherence n:

DEFINITION 8.1. A neighborhood N(u) is closed under a set of m-
generators G, ..., G if and only if N(u) can be represented as {X C
V|G € XY U ..U {X Cc2V|G, C X}.

It is clear that neighborhoods closed under m-generators have level
of coherence m. Nevertheless, of two neighborhoods of level of coherence
m it seems that if one is closed under generators and the other is not, the
one which is closed is epistemically more determinate (and intuitively
more coherent) than the one which is unclosed. For example, consider
the following modification of our second example:

EXAMPLE 8.1. Consider a neighborhood N(u) which is closed under
the generators G1 = {wa}, Go = {ws} in the example 7.2.

Certainly there are grounds here in order to make a logical distinc-
tion. The models whose neighborhoods are closed under generators are
a strict subclass of the clustered models. Syntactically the requirement
can be expressed by constraining further the forcing relation:

(CG) If ay, ..., an is an n-decomposition of T, then I' [~ A a;, for all i,
1<i<n.

A possible improvement on the measure of coherence we have been
using can be to define:

DEFINITION 8.2. For consistent T', ¢(T') = m.n if and only if m is
the least integer such that there are sets

@1y, O,y @; i false (1 <i<m)
and U2 a; =T
where - is the classical notion of consequence, where ¢(T') = w if

false € T, and where n is the number of possible m-decompositions of
T.
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So, according to this proposal, the coherence of the neighborhood in
example (7.1) is 1; the coherence of the neighborhood in example (7.2)
is 10; and the coherence of the neighborhood in example (8.1) is 2.

9. Closure under generators

Neighborhood models closed under generators have applications that
have been considered previously by paraconsistent logicians. Here is
the gist of the idea behind the discussive logics of Jaskowski.

In a discourse, each participant puts forward some information,
beliefs, or opinions. What is true in a discourse is the sum of opin-
ions given by participants. Each participant’s opinions are taken
to be self-consistent, but may be inconsistent with those of others.
To formalise this idea, take an interpretation, I, to be one for a
standard modal logic, say $5. Each participant’s belief set is the
set of sentences true in a possible world in I. Thus, A holds in I
iff A holds at some world in I. Clearly, one may have both A and
—A (but not A A —A) holding in an interpretation (Priest-Tanaka,
2000).

Neighborhood semantics is a generalization of Kripke semantics. So,
we can obtain the entire Kripkean family of modal systems by adding
appropriate constraints on neighborhoods. Here is a list of those con-
straints for the standard schemas D, T, B, 4 and 5 (in epistemic logic 4 is
called KK o positive introspection, etc). The constraints are conditions
on a model M = (U, N, P), for every world u and proposition X in M.

(d) If X € N(u), then X° & N(u)
(t) If X € N(u), then u € N(u)
(b) If u € N(u), then {w € M| X°¢ ¢ N(w)} € N(u)
(iv) If X € N(u), then {w € M| X € N(w)} € N(u)
(iv) £ X ¢ N(u), {fw e M| X ¢ N(w)} € N(u)
Now consider the following constraint on neighborhoods:

DEFINITION 9.1. (J-%) X € Ny(u) if and only if X € U{N(w) |
w €Y C U and N(w) is a neighborhood in a model of a classical
system X}
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When ¥ is any normal Kripkean system, (J-X) seems to model con-
straints inspired by Jaskowski’s ideas.! (J-)-neighborhoods represent
the sum of the beliefs of n participants in a ‘discussion’ (where n is
the cardinality of Y'). The set of beliefs of each participant w € Y is
represented by the propositions in Ny (u). The standards of rationality
of participants are given by the constraints imposed by I.

Notice that as long as ¥ is any Kripkean system, a model closed
under (J-X) is clustered, closed under generators and of level of coher-
ence n, where n is the number of participants. In fact, since in this
case we have K C ¥, the corresponding model of & is augmented, with
# # NNy (u) € N(w) for each w. Therefore each NNy (u) is a generator.

It seems that most of the studied systems of non-adjunctive logic
have modal counterparts that live between EMN and K. There is a
hierarchy of models closed under generators which obey (J-X) for the
various possible Kripkean .

Of course, we can consider as well the possibility of studying models
constrained by (J-X), where ¥ is classical, but not Kripkean. This
possibility, apparently not considered by Jaskowski, yields a class of
models that need not be closed under generators.

10. Conclusion

Some of the best known non-adjunctive logics have neat modal counter-
parts as sub-Kripkean systems of classical modal logic. The relationship
is tight. If V' = (W, N, P) is the smallest canonical neighborhood model
for the classical system containing the rule RK,, we have that for all
u, O(u)" is an n-theory, and moreover:

If o(u)V [F A, then =V O(4)

' Qur 'éoal in this section is to motivate the interest of a family of logics which
require closure under generators. The motivation appeals to ideas first presented
by Jaskowski. Further work is needed in order to determine whether some of the
systems actually axiomatized by Jaskowski, like the system 7, has neighborhood
models requiring closure under generators. Some of the recent axiomatizations of
J, like the one presented in (da Costa-Dubikajtis, 1977), are natural candidates for
studying this problem. In fact, the axiomatization presented in Lemma B of this pa-
per proceeds by adding only a monadic modal operator to the classical propositional
language. It is an open problem whether this operator is a classical modality and if
this were the case, it is also an open problem to determine where it is located in the
hierarchy of classical systems presented in this paper. Part of my motivation here
is to suggest that the methodology used here in order to present a neighborhood
semantics for Schotch and Jennings’s system can be extended in order to classify and
unify the semantics of a larger set of non-adjunctive and paraconsistent systems.
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Schotch and Jennings established a similar result by utilizing their
models, which they propose as generalizations of Kripke semantics.
Our results permit to identify these models as neighborhood models.
This has various advantages. One the one hand, it seems that proofs
and definitions are simpler. On the other hand, there are, as we have

- seen, different kinds of neighborhood models which are not closed under
intersections. While the models which are supplemented and possess the
unit seem reasonable to model operators of high probability; clustered
models seem to encode a different type of epistemic modality naturally
related to Schotch and Jennings’s forcing relation. And, in the same
manner that we can identify an interesting sub-class of models which
are supplemented and possess the unit (clustered models), there is also
a salient sub-class of those, the ones which are closed under generators.
In the latter case we can see the models as rationalizing the data con-
tained in the neighborhood in terms of the pooled knowledge of n agents
who are fully rational. Each generator is the strongest proposition be-
lieved by one of these agents. As we explained above, clustered models
seem to reflect a modality that has little to do with high probability.
Our account in terms of epistemic determinacy suggested also a new
measure of coherence, which seems to improve on the one offered by
Schotch and Jennings (quite independently of the epistemic construal
which motivated it).

The connection between non-adjunctive logics and classical modal
logics seems to be mutually beneficial. On the one hand we learn more
about the many possible sub-Kripkean classical logics. On the other
hand, neighborhood models seem to offer good both conceptual and
logical models of the particular form of paraconsistent inference under
study.
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