Discussion of paper "A selective overview of nonparametric methods in financial econometrics" by Jianqing Fan

Per A. Mykland
University of Chicago

Lan Zhang
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/statistics
Part of the Statistics and Probability Commons
We would like to congratulate Jianqing Fan with an excellent and well written survey of some of the literature in this area. We will here focus on some of the issues which are at the research frontiers in financial econometrics but are not covered in the survey. Most importantly, we consider the estimation of actual volatility. Related to this is the realization that financial data is actually observed with error (typically called market microstructure), and that one needs to consider a hidden semimartingale model. This has implications for the Markov models discussed above.

For reasons of space, we have not included references to all the relevant work by the authors that are cited, but we have tried to include at least one reference to each of the main contributors to the realized volatility area.

**THE ESTIMATION OF ACTUAL VOLATILITY: THE IDEAL CASE**

The paper discusses the estimation of Markovian systems, models where the drift and volatility coefficients are a function of time \( t \) or state \( x \). There is, however, scope for considering more complicated systems. An important tool in this respect is the direct estimation of volatility based on high frequency data. One considers a system of, say, log securities prices, which follows

\[
dX_t = \mu_t dt + \sigma_t dB_t ,
\]

where \( B_t \) is a standard Brownian motion. Typically, \( \mu_t \), the drift coefficient, and \( \sigma_t^2 \), the instantaneous variance (or volatility) of the returns process \( X_t \), will be stochastic processes, but these processes can depend on the past in ways that need not be specified, and can be substantially more complex than a Markov model. This is known as an Itô process.

*Per A. Mykland is Professor, Department of Statistics, The University of Chicago, Chicago, IL 60637. E-mail: mykland@galton.uchicago.edu. Lan Zhang is Assistant Professor, Department of Finance, University of Illinois at Chicago, Chicago, IL 60607, and Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, E-mail: lzhang@stat.cmu.edu. We gratefully acknowledge the support of the National Science Foundation under grant DMS-0204639.*
A main quantity of econometric interest is to obtain time series of the form \( \Xi_i = \int_{T_i^-}^{T_i^+} \sigma_i^2 dt \), \( i = 1, 2, \ldots \). Here \( T_i^- \) and \( T_i^+ \) can, for example, be the beginning and the end of day number \( i \). \( \Xi_i \) is variously known as the integrated variance (or volatility) or quadratic variation of the process \( X \). The reason why one can hope to obtain this series is as follows. If \( T_i^- = t_0 < t_1 < \ldots < t_n = T_i^+ \) spans day number \( i \), define the realized volatility by

\[
\hat{\Xi}_i = \sum_{j=0}^{n-1} (X_{t_{j+1}} - X_{t_j})^2. \tag{2}
\]

Then stochastic calculus tells us that

\[
\Xi_i = \lim_{\max|t_{j+1}-t_j|\to 0} \hat{\Xi}_i. \tag{3}
\]

In the presence of high frequency financial data, in many cases with transactions as often as every few seconds, one can, therefore, hope to almost observe \( \Xi_i \). One can then either fit a model to the series of \( \hat{\Xi}_i \), or one can use it directly for portfolio management (as in Fleming, Kirby and Ostdiek (2001)), options hedging (as in Mykland (2003)), or to test goodness of fit (Mykland and Zhang (2002)).

There are too many references to the relationship (3) to name them all, but some excellent treatments can be found in Karatzas and Shreve (1991) (Section 1.5), Jacod and Shiryaev (2003) (Theorem I.4.47 on page 52), and Protter (2004) (Theorem II-22 on page 66). An early econometric discussion of this relationship can be found in Andersen, Bollerslev, Diebold and Labys (2000).

To make it even more intriguing, recent work both from the probabilistic and econometric side give the mixed normal distribution of the error in the approximation in (3). References include Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang (2002). The random variance of the normal error is \( 2 \int_{T_i^-}^{T_i^+} \sigma_i^4 dH(t) \), where \( H \) is the quadratic variation of time. \( H(t) = t \) in the case where the \( t_i \) are equidistant.

Further econometric literature includes, in particular, Gallant, Hsu and Tauchen (1999), Chernov and Ghysels (2000), Andersen, Bollerslev, Diebold and Labys (2001, 2003), Dacorogna, Gençay, Müller, Olsen and Pictet (2001), Oomen (2004) and Goncalves and Meddahi (2005). Problems that are attached to the estimation of covariations between two processes are discussed in Hayashi and Yoshida (2005). Estimating \( \sigma_t^2 \) at each point \( t \) goes back to Foster and Nelson (1996), see also Mykland and Zhang (2001), but this has not caught on quite as much in the econometric application.

**THE PRESENCE OF MEASUREMENT ERROR**

The theory described above runs into a problem in real data. For illustration, consider how the realized volatility depends on sampling frequency for the stock (and day) considered in Figure 1. The estimator does not converge as the observation points \( t_i \) become dense in the interval of this one day, but rather seems to take off to infinity. This phenomenon was originally documented in
dependence of estimated volatility on sampling frequency

Figure 1: Plot of realized volatility for Alcoa Aluminum for January 4, 2001. The data is from the TAQ database. There are 2011 transactions on that day, on average one every 13.365 seconds. The most frequently sampled volatility uses all the data, and this is denoted as “frequency= 1”. “Frequency=2” corresponds to taking every second sampling point. Because this gives rise to two estimators of volatility, we have averaged the two. And so on for “frequency= k” up to 20. The plot corresponds to the average realized volatility discussed in Zhang, Mykland and Aït-Sahalia (2002). Volatilities are given on an annualized and square root scale.

Andersen, Bollerslev, Diebold and Labys (2000). For transaction data, this picture is repeated for most liquid securities. (Hansen and Lunde (2006), Zhang, Mykland and Aït-Sahalia (2002)).

In other words, the model (1) is wrong. What can one do about this? A lot of people immediately think that the problem is due to jumps, but that is not the case. The limit in (3) exists even when there are jumps. The requirement for (3) to exist is that the process $X$ be a semimartingale (we again cite Theorem I.4.47 of Jacod and Shiryaev (2003)), which includes both Itô processes and jumps.

The inconsistence between the empirical results where the realized volatility diverges with finer sampling, and the semimartingale theory which dictates the convergence of the realized volatility,
poses a problem, since financial processes are usually assumed to be semimartingales. Otherwise, slightly loosely speaking, there would be arbitrage opportunities in the financial markets. For rigorous statements, see, in particular, Delbaen and Schachermayer (1995). The semimartingaleness of financial processes, therefore, is almost a matter of theology in most of finance, and yet, because of Figure 1 and similar graphs for other stocks, we have to abandon it.

Our alternative model is that there is measurement error in the observation. At transaction number \( i \), instead of seeing \( X_{t_i} \) from model (1), or, more generally, from a semimartingale, one observes

\[ Y_{t_i} = X_{t_i} + \epsilon_i, \]  

We call this the hidden semimartingale model. The rationale is (depending on your subject matter) either that a transaction is a measurement of the underlying price \( X_{t_i} \), and of course there is error, or that it is due to market microstructure, as documented by, among others, Roll (1984), Glosten (1987), Glosten and Harris (1988), Brown (1990), Harris (1990), and Hasbrouck (1993). See Ait-Sahalia, Mykland and Zhang (2005) for a discussion of this.

A natural model for the error is that it is either iid or a stationary process, as considered by Zhou (1996), Gloter and Jacod (2000), Zhang, Mykland and Ait-Sahalia (2002), Bandi and Russell (2003), Zhang (2004), Ait-Sahalia, Mykland and Zhang (2005), and Hansen and Lunde (2006).

Under quite loose conditions, this alternative model is consistent with the plot in Figure 1. Instead of (3), one gets that the realized volatility becomes \( nE(\epsilon_1 - \epsilon_0)^2 + O_p(n^{-1/2}) \). In the early literature (as cited in the previous section), the problem is usually taken care of by (sic) reducing \( n \). A variety of approaches that improve on this are documented in Zhang, Mykland and Ait-Sahalia (2002), to which we refer for an in depth discussion. As demonstrated by Zhang (2004), the true volatility \( \Xi_t \) can be consistently estimated at rate \( O_p(n^{-1/4}) \), as opposed to \( O_p(n^{-1/2}) \) when there is no error. This is not as slow as it seems, since \( n \) is quite large for liquid securities.

An alternative description of the error is that it arises due to rounding (financial instruments are, after all, traded on a price grid). Research in this direction has been done by Delattre and Jacod (1997) and by Zeng (2003). To first order, the rounding and additive error models are similar, as documented by Delattre and Jacod (1997), see also Kolassa and McCullagh (1990).

It is awkward that these models imply the existence of arbitrage. The size of the error, however, is so small that it is hard to take economic advantage of them, and this, presumably, is why such deviations can persist.

**IMPLICATIONS FOR MARKOV MODELS**

We now return to the subject to Jianqing Fan’s overview, namely the Markov case. It is clear that the model without observation error is not consistent with the data. This may not be a problem when working with, say, daily data, but would pose problems when using high frequency (intraday) observations. It is presumably quite straightforward to extend the methods discussed in
the paper to the case of observation error, and it would be interesting to see the results. The same applies to similar studies on Markov models by the “French school”, such as Hoffman (1999) and Jacod (2000).

REFERENCES


