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1. Introduct ion• In this paper we treat the non-linear integral

equation considered previously in [2], namely,

(1.1) y(x) = f K(x,t)y(t)(P(t) + F(y2(t),t)dt.

The hypotheses are as follows. 0 is assumed to.be a bounded

region in some Euclidean space. The kernel K is assumed to be

real valued, symmetric and measurable on Q X 0. Moreover it

is assumed that for a certain pair p,q of conjugate indices,

(1.2) 1 < q £ 2 ^ p, p"1 + q"1 = 1,

the operator A defined by

(1.3) [Au](x) = f K(x,t)u(t)dt,

is completely continuous from IJ (0) to lP{£X) , and positive

definite on IJ (0) in the sense that,

(1.4) J K(x,t)u(x)u(t)dxdt > o, u e Lq(O)\{O) .

We suppose that P(x) is non-negative and that

(1.5) P € Lr(ft), r = p/(p-2).

The function F is defined on R X ft and is assumed to satisfy

i) the Caratheodory hypothesis: F(*,x) is continuous on R

for almost all x € ft and F(rj, •) is measurable for all r) e R ,

ii) there exists a positive constant 3 > 0 such that for almost

all (fixed) x e Cl,
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(1.6) 0 < 7?^F(r?rx) £ T?^F(t)2,x), o < rjjL < r?2 ,

iii) there are positive constants c,y and there is a non-negative

function a,

(1.7) a e Lr(0), r = p/(p-2),

such that for almost all (fixed) x e Q,

(1.8) F(rj,x) £ cr)y + a (x), 0 £ r? .

where

(1.9) 0 < 2y £ p-2.

A sufficient condition for the complete continuity of A,

defined by (1.3), is,

(1.10) jj |K(x,t) | dt < oo ,
W

or

(1.11) ess sup |K(x,t)| dt < », for some a > p/2 ;
X G O J O

see[4]. When A : L^(0) -* LP(O) is completely continuous a

necessary and sufficient condition for (1.4) is that A|L (0)

be positive definite and that the range of A be dense in Li (0);

see [2].

The results of this paper are obtained by employing techniques

developed in the series of papers [6-9]. In a previous paper, [2],

we adapted the methods of [9], which treats the case of (1.1) in

which K is a continuous kernel, to treat the case where K is

unbounded. The existence theorems of [9] and [2] assert the
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existence of just a single solution of (1.1). However it is

shown in [8] that for P and F continuous, P positive, and

F satisfying (1.6), the boundary value problem

(1.12) yf ! + P(x)y + yF(y2,x) = 0 , y(0) = y(l) = 0,

has infinitely many solutions. In this paper we prove the existence

of an infinity of solutions of the integral equation (1.1). For

this purpose we have found it necessary to make use of the methods

of the Lusternik-Schnirelman theory, however we do not use the

so-called Lusternik-Schnirelman category but rather the closely

related concept of M genus11 which is used in [5].

One question which we have left unanswered concerns the

relation between the characteristic numbers for (1.12) defined by

the methods of this paper and those defined by Nehari in [8].

When we specialize our results to (1.12) then it can be shown that

the n— characteristic number X for (1.12), as defined in [8],

is not less than the n— characteristic number A , defined by the

methods of this paper. It is trivial that A, = A, in all

cases, and for n > 1 we will have A* = A , if, to within a

factor of -1, (1.12) has at most one solution with precisely n-1

zeros in (0,1); conditions for this to be the case are given in [1].

Whether X = A in general remains an open question. Some

support for conjecturing that the answer is affirmative lies in

the fact that both methods of definition lead to certain stability

properties of the characteristic numbers. These we hope to study

in subsequent work.

We remark finally that our results can be applied to a class

of non-linear elliptic boundary value problems. See [2] and [3].
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2. Statement of results. In this section we introduce the

basic definitions and formulate the main results. It is assumed

throughout that the hypotheses stated in the introduction hold.

For simplicity of notation we shall omit the range of integration

from formulas involving integrals unless that range is other than

tt, also LP,Lq will always mean Lp(0), Lq(0).

If X is a Banach space we shall denote by £(X) the

class of subsets of x\{0} which are symmetric through the

origin. For B e £(X), we define the genus of B, p(B)9 to

be the supremum of the set of non-negative integers n such that

0}
-1

every odd continuous map of X\{0} into R has a zero on B;

here we understand R = {0} * R - f*

A function y e iP will be said to be admissible if

(2.1) y(x) = JK(x,t)u(t)dt, where u e Lq\{0},

and

(2.2) J y2(x) (P(x)+F(y2(x),x))dx ̂  J y(x)u(x)dx.

An admissible set will be a subset of LP consisting of admissible

elements. (By (2.2) and Lemmas 1 and A.I below a bounded

admissible set has compact closure). The class of all compact

symmetric admissible sets will be denoted by (Q. Finally, for each

non-negative integer m, we put,

B m = {B e B | p(B) ^ m).

Let the functional H(y) be defined in lP by

H(y) = J[y2(x)F(y2(x),x)-G(y2(x),x]dx,
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where G(rj,x) has the same domain of definition as F(?7, x) and

is given by,

G(rj,x) = J F(s,x)ds.
o

The characteristic values of the problem (1.1) are the

numbers

A = inf max H(y).
m yeB

m

Theorem 1. For each positive integer m the class H is

non-empty. The character ist ic values {A } form a. non-decreasing

sequence of non-negative real numbers and

lim A = °° .
m

Let A, <^ A~ <^ • • • be the eigenvalues of the linear integral

equation

(2.3) y(x) = A[K(k,t)P(t)y(t)dt,

then for a given integer m > 1, A > 0 if and only if A > 1.
— — .*— ^ — Hi

In this assertion and throughout the paper we follow the

convention that v(x) is an eigenfunction of (2.3) corresponding

to the eigenvalue +«> if P(x)v(x) = Oa.e. on Q. In particular

A-, = A2 = • • • = +00 if P (x) = 0 a. e- on 0. Let m be a

positive integer such that A >A , if m > l . If £ > 1 ,
c m m-1 -̂- *
and if

Am = \n+<t-l < \+l '

then we shall say that A has multiplicity I. The set of

Xp-solutions y of (1.1) which satisfy
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H(y) = Am

will be denoted by E .

Theorem 2. For each m = 1,2, . . ., E m is. fL symmetric com-

pact subset of iP. jCf. A > 1 then E J^ not empty and

n(E ) > multiplicity of A .
^ m •*- ^ m
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3. With the exception of the theory of the genus, the basic machinery

for the proof of Theorems 1 and 2 will be developed in the following

sequence of lemmas.

f 2 P 2 2

Lemma 1. The functionals Jy (x)P(x)dx, I y (x)F(y (x),x)dx,

jG(y (x),x)dx, and H(y) are continuous on L^ and bounded on

bounded subsets of L .
Proof. See Lemma 1 and its proof in [2].

If y e L^, and y admits representation in the form (2.1),

i.e. if y is in the range of A, then, because of (1.4), u

in (2.1) is uniquely determined by y. Accordingly, when y e ALq

we shall write Jy(x)u(x)dx always with the understanding that

y and u are related by (2.1). When u ^ 0 then, by (1.4),

Jy(x)u(x)dx > 0. For y given by (2.1), y ^ 0, we define real

valued functions x,X-, as follows

(3.1) x(y) = Jy2(x)P(x)dx / Jy(x)u(x)dx,

(3.2) xx(y) = Jy
2(x)(P(x)+F(y2(x),x)dx / Jy(x)u(x)dx;

X A and X-. A will be denoted respectively by x and X, .

We observe that x and X-. are continuous on L^\{0}.

Lemma 2. For y e ALq, y ^ 0, .if.

(3.3) X(y) < 1

then there exists â  unique positive a = a(y) such that

(3.4) X1(ay) = 1.
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The function a = a A JLs. continuous on the open subset of

determined by x(u) < 1.

Proof. Since y / 0 in L^, it follows from (1.6) that

P 2 2 2y (x)F(a y (x),x)dx is strictly increasing as a function of a

and tends to °° as a -> °° and to 0 as a -» 0. It follows

that x1 (ay) is a strictly increasing function of a and that

xn (ay) -• °° as a -+ °° and xn (ay) -• x(y) as a -• 0. Thus,
JL L

provided (3.3) holds, there exists a unique a corresponding to

y such that (3.4) holds. The fact that the subset of Lq {0)

determined by x(u) < 1 is open and the continuity of a A on

that set follow from the continuity of x and x-i •

Lemma 3. Let A > 1, there exists -a constant v = v (A) > 0

such that

(3.5) J y2(x)F(y2(x),x)dx > v,

for all admissible y with x(y) < A

Proof. If y is admissible then y can be represented in

the form (2.1), thus

(Jy2(x)F(y2(x),x)dx)2 = ( JJK(X, t)u(t)y(x)F(y2(x) , x) dtdx) 2

<^ (J J K(x, t)u(x)u(t)dxdt) (JjK(x, t)y(x)F(y (x) ,x)y(t)F(y'

or

(3.6) (Jy2(x)F(y2(x),x)dx)2 £ (Jy(x) u(x) dx) ( JJK(X, t)y(x)F(/2

By (2.2), for x(y) < A~ ,

(3.7) Jy2(x)F(y2(x),x)dx ̂  Jy(x)u(x)dx - Jy2 (x) P(x) dx,

> (1 - A"1)|y(x)u(x)dx.
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Combined with (3.6) this gives

Jy2(x)F(y2(x),x)dx £ (1-A"1) ~ 1JJK(X, t) y(x) F (y2 (x) ,x) y (t) F(y2 (t) , t) dxdt,

from whence, by the continuity of A : Lg - L ,

(3.8) Jy2(x)F(y2(x),x)dx £ M( 1-A"1) ""Hjl y(x) F(y2 (x) ,x)| qdx) ̂ .

By Holder's inequality

q/2
(3.9) J |y(x)F(yZ(x),x) |qdx^(J |F(yZ(x),x) | clx) (Jy (x) P(y^ (x) ,x) dx)

where, as before, r = p/(p-2). Together (3.8) and (3.9) give,

for admissible y with x(y) < A ,

(3.10) 1 £ M(l~A~1)*"1J|F(y2(x),x)|rdx,

Suppose now that

(3.11) i n f { | y 2 ( x ) F ( y 2 ( x ) , x ) d x | y a d m i s s i b l e , x(y) < A " 1 } = 0,

Then by (3.7)

inf My(x) u(x)dx| y admissible, x(y) < AT } = 0

It then follows from A.2 of Lemma A.I (Appendix) that 0 is a

— 1 P 2 T

cluster point of {y|y admissible, x(y) < A"" }. Since J | F (y (x),x)] dx

is continuous on LP, this contradicts (3.10) so (3.11) is false

and the lemma is proved.
Let the non-linear transformation y > J K( •,t)y(t)(P(t)+F(y (t),t)dt

of L^ into LP be denoted by T. We define

= a(T(y)) T(y), for y € LP\{0}, x(T(y)) < 1.
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Lemma 4. For y admissible. x(T(y)) < 1,

(3.12) H(* (y)) £ H(y),

and equality holds in (3.12) only if y satisfies (1.1). For

each A > 1 there exists C = C (A) > 0 such that, for admissible
*- o o —•

y, when x(y) <1 A" , then

(3.13)

Proof. Let y e N be given by (2.1) 3 let a = a(T(y)), and

let v = (j> (y) • Since X-.(v) = 1 we have,

(3.14) Jv2(x)F1(v
2(x),x)dx = aJv(x)y(x)F1(y

2(x),x)dx,

where F-(rj,x) = P(x) + Ffr/jX), and thus by Schwarzfs inequality

2

(3.15) (Jv2(x)F1(v
2(x),x)dx) ^ a2(Jv2(x)F1(y

2(x),x)dx) (Jy2(x)F1(y
2(x)p$dx).

By (2.1)

Jy2(x)F1(y
2(x),x)dx = JJ*K(x, t) u( t)y( t) F^y 2 (x) , x) dtdx,

from which, by Schwarz's inequality,

(Jy2(x)F1(y
2(x),x)dx) ^(J[K(X, t)y(x)F1(y

2(x),x)y(t)F1(y
2(t), t) dxdt)<Jp*5tW*3««M

(3.16)

Since y is admissible

JjK(x,t)u(x)u(t)dxdt = Jy(x)u(x)dx <; Jy2 (x)F1(y
2(x) ,x)dx,

and from the definition of v̂

aJjK(x,t)y(x)F1(y
2(x),x)y(t)F1(y

2(t),t)dxdt = Jv(x)y(x) F± (y
2 (x) , x) dx.
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From the above we obtain,

aJy2(x)F1(y
2(x),x)dx ̂  Jv(x)y(x) F1(y

2(x) , x) dx.

This last inequality, together with (3.14), gives,

(3.17) a
2Jy2(x)F1(y

2(x),x)dx £ Jv2 (x) F^v 2 (x) ,x) dx,

which, combined with (3.15), yields,

(3.18) Jv2(x)F1(y
2(x),x)dx ̂  Jv2 (x) F±{ v

2 (x) , x) dx.

However, for any y, v e L , as is shown in [9],

(3.19) H(v) £ H(y) + Jv2 (x) [F±( v
2 (x) , x) -F^y 2 (x) , x) dx.

Thus, as v = <f>o(y) , (3.12) follows from (3.19) and (3.20). In order

for equality to hold in (3.12), it must hold in each of the in-

equalities in the proof. In particular we must have equality

in (2.2), (i.e. y e N), and in (3.16). The equality can hold
2

in (3.16) only if u(x) and y(x)F.,(y (x),x) are colinear,

but then, since equality holds in (2.2), we must have

2
u(x) = y(x)Fx(y (x) ,x) ,

in which case y is a solution of (1.1).

We now prove (3.13). For y e LP,

(3.20) H(y) ^e (1+e) Jy2 (x) F(y2 (x) ,x)dx,

where C is the constant in (1.6); see [9].

From (3.17) and (3.5)

(3.21) a2 £ i/"1Jv2(x)F1(v
2(x),x)dx £ cjv2 (x) F(v2 (x) , x) dx
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where v = v(x(y)) and C = (1-0 (T(y)))~3 i/""1. Since

v = 0o(y), bY (3.12), (3.20) and (3.21) we have,

(3.22) a2 ̂  C€(l+e)H(v) ^ Ce (l+€ ) H(y) .

In Lemma 2 of [2] is proved the existence of constants R .. and

R2 such that

1 t I

(J|J K(x,t)y(t)F(y2(t),t)dt|Pdx)p £ (k^kjy2 (t)F(y2 (t), t) dt) q .

From this inequality, the definition of (f> , and (3.20) and

(3.21) readily follows (3.13).

The mapping (f) defined above is adequate for our purpose

only when A, > 1, in which case the domain of (f> is iP {0}.

Our next objective is to construct, in the general case, a mapping

(f> : Lp\{0] —* Lp\(0] such that: for admissible y e Lp either

a) $(y) e N and

(3.23) H«/)(y)) £ H(y)

with equality only if y jus a, solution of (1.1) ; .or

(3b24) H(f(y)) < e , k = 1,2,...,

where e Jjs a^ preas signed positive constant.

To this end we first prove the following.

Lemma 5. Let S c A(Lq\{0)) and suppose that for y € S,

0 < C £ x(y) < xx(y) £ M < •

where C,M are constants. Then S _is compact in LP. The

functional Ju(x)y(x)dx ^£ bounded on S.
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Proof. The general element y e S can be represented in

the form (2.1) . It follows from Lemma A.I that S is compact

if |y(x)u(x)dx is uniformly bounded for y € S. Suppose there-

fore that there is a sequence [y } in S such that

y (x)u (x)dx -» « as n -• °°, (where u has the obvious
J n n n

meaning). Let the constants p be determined by

(3.25) 02n Jyn(x)un(x)dx = 1,

we shall assume that p < 1 for all n and that p y -• y / 0

in L^; the second part of the assumption is justified by Lemma

A.I. Under this assumption, by Lemma 1,

2 P 2 2 2 P 2 2
(3.26) p y (x)F(p y (x),x)dx - y (x)F(y (x) ,x)dx, as n-«>.

n o n nn J O O

By (3.1) , (3.2) and (3.25)

X1(yn)-X(yn) = p^

and by (1.6), since p < 1

Since p -* 0, as n - » and y / 0 these last two relations,

together with (3.26), imply that X-,(y ) -> °° as n -• », x(y )
-1

being bounded by A, (see Lemma A.3). This yields a contra-

diction, and consequently y(x)u(x)dx must be bounded on S.

In view of the observation made at the beginning of the proof, the

assertion of the lemma follows.

HUNT LIBRARY
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For A > 1 put

and

H. = sup{H(y)|y e N, x(y) ̂  A" 1],
A

= inf{H(y)|y e. N, x(y) £ A71},

(the finiteness of H. follows from Lemma 5).

Lemma 6. For A > 1,

0 «\ h A <̂  H •

Moreover,

lim HA = 0.A

Proof. The positivity of h. follows from (3.20) and Lemma

3; the inequality h. < H. is obvious. The second assertion follows

from Lemma 5 since for y e N,

H(y) £ Jy2(x)F(y2(x),x)dx = (1 - x(y))Jy(x)u(x)dx,

and thus

HA ^ const. (1 - A""1)^ for 1 < A. £ const.

By (1.6) and the definition of H, for 1 > p > 0

H(py) ^ p

2 T 2 2
£ p Jy (x)F(y (x),x)dx.

r 2 2

Let e > 0 be preassigned, since^ by Lemma 1, Jy (x)F(y (x),x)dx

is bounded on the unit sphere in L^ there follows the existence

of a positive constant p such that,
H(p||y|!~1y) ^ e, ye LP\{o}.
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We now define, for admissible y,

a(y) = max {a(y), p||y||

where for convenience we take a(y) = 0 when x(y) >̂ 1. Since

this extension of a preserves the continuity of a • A on

kq\(0}, as is easily verified, we have also that a « A is

continuous on L \{0}. We now define (f>(y) 9 for y e L*\(0}, by,

<t>(y) = a(Ty)Ty.

Clearly the image by j) of LP\(0} is the set {y € L*\{O}|a(y) =

1} which we shall denote by NT .

Lemma 7. _If y e Nf then

(3.27) !|y|lp 2 P,

thus 0 / N1 . There exists a. A1 > 1 such that equality holds in

(3.27) lor x(y) ^ A1""1 .

Proof. By definition a(y) ^> p||y|| , thus a(y) = 1 implies

(3.27). To prove the second assertion we need only show that

sup{||y|! | y e N, x(y) .]> A" } -• 0 as A - 1-* This follows
P

from Lemmas 5 and 6 and the fact that, in view of (3.20) and (1.6),

H(y) = 0 for y e iP if and only if y = 0.

Lemma 8. The mapping (f> Ĵ s ari odd continuous transformation

of LP\{0} into Nf . For any admissible y either

(3.28) e < H(0(y)) ^ H(y)

with equa 1 ity only if y is â  solution of (1.1) , or

(3.29) H(0k(y)) £ e k = 1,2,... .
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Finally there exists ja constant C > 0 such that, for admissible

(3.30) ||fy)||p^Co(l + H(y))
(2+q)/2<* .

Proof, It is clear that (f> is odd. The continuity of f>

follows from the continuity of T and a • T, which in turn

follow from the continuity of A : IJ -» LP, a • A : L^\{0} -• R

2

and the continuity of the transformation y(x) -» y(x)F(y (x),x)

from Lp to L^. The continuity of this last mapping follows from

(1.8), (1.9) and Theorem 19.1, [10]. The second assertion of the

lemma follows immediately from the first assertion of Lemma 4 and

the construction of (f>.

To prove (3.30) we note that, by Lemma 7, either ||0(y)|! =

p, or x(T(y)) < A <1 and 0(y) = <p (y) . Choose (by Lemma

6) AM > 1 so that H. M < h ., , then when the second alternative

holds, we have by Lemma 4,

H(y) ;> H(* (y)) ;> hA t > HAM ,

and thus x(y) < A11"1. By Lemma 4, (3.30) holds in t h i s case

with CQ = Co(A
TI ). If we take CQ = max( p,CQ( A")) then (3.30)

w i l l hold for a l l admiss ible y .

Lemma 9. Let y e iP. J[f

e = lim inf H((f> (y) ) > e,
o '

then the cluster points of the sequence {<j)n(y) } form a. non-

empty connected set of solutions of (1.1) .
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Proof. By (3.28) of Lemma 8, the limit inferior in the asser-

tion above is actually a limit. Using Lemma 8 again we see that the

sequence (0n(y)) is bounded. Since $n(y) e N, n - 152,...,

the sequence has cluster points, in fact by Lenima 1, (2.2) and

Lemma A.I, any bounded admissible set has compact closure. By

the continuity of <|) and H if yQ is one of these cluster

points then H(y ) = e . If we suppose that y = lim (f> (y)

i ° inid-1 *-•
then <p(y ) = lim (p (y) 9 from which we conclude that

H(^(y )) = e = H(y ) and therefore y is a solution of

(1.1).

The connectedness of the set of cluster points follows by a

standard argument from the fact that ||</>n(y)-$n~ (y) || -• 0 as

n -+ »•
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4. Proof pjf Theorems 1 and 2. We begin by listing the
o

relevant properties of the genus. Let £(X) = (Be£(X)|B com-

pact} .

o
1) If G p G 2 e £(X)* and if there exists a continuous

odd map f : G^ - G2 then piG^) £ p{G2), in particular, if

Gx c G2 then p(G±) £ o(G2) .

2) For G r G 2 € C(X), p(G1UG2) <£ p(G 1 ) + p(G 2 ) .

o
3) If G € C(X) t h e n p(G) < •,

and G has a neighborhood U such that U € £(X) and p(U) =

4) If G G C(2C) and G is a homeomorphic image of an

n-sphere then p(G) = n+1.

We note first that^ in view of Tietze1s extension theorem,
o

p(B) £ n, for B e C(x)* if there exists a r;ero free odd

continuous map of B into R ; assertion 1) is then obvious.

Assertion 2 and the first part of 3) follow from Lemma 10

below, the proof of which will be omitted. The second part of

3) follows from standard extension theorems and 4) follows from

the Borsuk-Ulam theorem. For a more complete discussion of the

genus see [5].

Lemma 10. Let G e £(x)* then p(G) ^n if and only if

there exist n sets G,,...,,G e C(^) with p(G.) = 1, i = 1, . .
• ————— " l n ' I

n a n d G cr U 1 ? _ G . .
• ' —• I — i I

L e t M b e a n m - d i m e n s i o n a l s u b s p a c e o f 1J(Q) a n d l e t

r i n = {u e M| ||
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By the results of section 3 the transformation u(x) -* y(x) =

a K(x, t)u(t)dt, where a > 0 is chosen so that y e N1, is

a continuous mapping of Ef onto a compact symmetric subset

of Nf . Since this mapping is one to one, it is a homeo-

morphism (E being compact), and therefore p(B) = m+1. It

follows that for an arbitrary positive integer the class IB ,

defined in section 2, is non-empty, as asserted in Theorem 1.

The non-negative and non-decreasing character of the

{A } is evident, we pass now to the last assertion of Theorem

1. Suppose that A £ 1 < A. , (0 <^ mo) let in be the
IUQ "*O

subspace of \P spanned by the first m e igenf unctions of

(2.3). Any non-zero element of tn is admissible, hence any

symmetric subset of tn\{0} is admissible. It readily follows,

since H(y) - 0 as y - 0 that Am = 0 for

1 <^ m <£ m • Let P denote the projection onto in which

annihilates all the other eigenfunctions of (2.3). If B is

set of genus J> m +1 then 0 e PB, for otherwise we would

have PB G £(L P) with p(PB) ^ p(B) ^ mQ + 1, and this is

impossible since PB c ft\. If y € L^, y / 0 and Py = 0 then

x(y) <^ h~ +1 < ls (see Lemma A. 3) ; if in addition y is
o

admissible we have by Lemma 3 and (3.20),

H(y) ^ e mo+l

It follows that for an admissible set B with p(B) ^> mo+l,

( 4 .

and

1)

thus ,

max
yeB

H(y) :> €(1+6)1/(A
mo



-20-

(4.2) ^m

This completes the proof of the last assertion of Theorem 1.

We come back to the second assertion of Theorem 1, namely

that,

(4.3) lim 7\ = ».

We assume once and for all that the number e which figures

in the construction of (f> in section 3 satisfies,

(4.4) € (1-K )i/(Am + 1) > e > 0,

where A <£ 1 < A ... Consider the mapping 0 defined, for
o o __

y admissible, by ij){y) = a(y)y. It is easily seen that for y

admissible a(y) £ 1 whenever H(y) > e. For an admissible set

B with p(B) >̂ m +1 we have from (4.1) and (4.4) that

and thus

max H(y) > e
yeB

max H(y) <£ max H(y) .
ye\b(B)

Consequently, for m J> m + 1 ,

(4.5) A = inf max H(y)

where

Now for c > 0 let

N'(c) = (yeN'|H(y)
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By Lemma 8, 0 maps NM (c) into a bounded subset of itself,

thus <̂ (Nf (c) ) has compact closure. It follows from property

1 of the genus, since <f> is odd, that Nf (c) can contain no

symmetric set of genus greater than p(^fNHc))) . As we have

shown Nf contains symmetric sets of arbitrarily large genus,

thus (4.3) follows from (4.5). This completes the proof of Theo-

rem 1.

Let m be a positive integer and assume that m J> m +1

and A > A - ; let c be a real number, with c > A and
m m-1 m

such that none of the characteristic values of (1.1) lie in the

interval (A , c). Let
m

Sm = {y € "?TF7|H(<f(y)) J> Am, n = 1,2,...}-

Since <f> is continuous and odd and 0(N ) is compact it follows

that S is symmetric and compact. Let E be as defined in
m *• m

section 2. It is clear that E is symmetric and since it is
m •*

obviously a closed subset of S it is compact. For 6 > 0,

put

U(Em,6) = [y e N|0 £dist (y,Em) < 6}

where

dist (y,Em) = inf(||u|||y + u € ,E m),

so that U(Em,6) is empty if E is empty. Choose 6 > 0

so that U(E ,6) € £(:LP) and

p(U(Em,6)) = o(Em).
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S \U(E 9 -x) is compact there exists a constant c- > Am* m 2 * 1 m

For y € S , H(y) > A unless y e E , therefore, since
m in in

-

such that

H(y) 1 C±, for y e m m j

From (4.5) and the definit ion of the mult ipl ic i ty of A

i t follows that there exists a set B e fit1 . .., where I

mult ipl ic i ty of A , with

H(y) < c . .
yeB

From the definition of c.,

B n

thus, for every y e B\JJ(E ,

By a standard argument it follows from the compactness of

B\U ( E ,6) and the monotone decreasing character of (/ (y)

that there exists an integer n such that

n

for a l l y € B\U(E , 6). Consequently

n
p(B\u(Em,6)) <: p((f °(B\u(Em,6)) < m.

It follows from the subadditivity of the genus (Property 2))

that

p(Em) = p(U(Em,6)) ̂  p(B)-p(B\u(Emy6)) 2 *•

Thus o(E ) ̂  I, in particular E is not empty. This

completes the proof of Theorem 2.
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JRemark 1. Let Y be a Banach space stronger than Lp,

(i.e. Y <= I/P, || • • • II ^ const. ||. . . || ), and let some power,

say T , of T map IJ continuously into Y. Then it is

clear first of all that every I/P-solution of (1.1) actually

belongs to Y. Moreover, if i denotes the inclusion map

Y - Lp, then, for a given m, T n| E
m = ^l

1 3^*" 1 thus the

Lp and Y topologies on E coincide. In particular E
^ J m c m

has the same genus as a subset of Y as it does as a subset of

LP. Also, if n has the same meaning as above, then (j>n

maps Lp\(0} continuously into Y. Thus, by (3.28), A is
given by,

A = inf max H(y) ,
m ^ yeB

where

Remark 2. When P,F and K are continuous on 09 R X 0

and 0 x 0 respectively then one can use the above techniques

in the space of continuous functions on 0 to obtain the same

results as above but without assuming (1.8). The derivations

of certain of the required bounds may be slightly different in

this case, but most of these are obtained in [9], or can be derived

as here by formally putting q = l , p = » , r = l .
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5. Application to (1.12). We suppose that P and F are

continuous on [05l] and on R+ X [0,1] respectively and that

F satisfies (1.6). We shall use a somewhat restricted notion

of admissibility and say that y is admissible only if it

belongs to

CQ[O,1] = [y€C
2[O,l]| y(0) = y(l) = 0}, and

J y2(x)(P(x) + F(y2(x),x))dx^> J(y?(x))2dx,

the characteristic values for (1.12) are defined as in the

general case except that we take the infimum only over compact
2

symmetric admissible sets in C [0,1]. This, as well as the omission

of (1.8) is justified by the remarks at the end of section 5.

Theorem 3. Each positive characteristic number of (1.12)

is simple9 (i.e. has multiplicity 1).

Proof. Suppose A > 0, and A > A , if m > 1. Then
cjr m m m-1

E is a compact symmetric non-empty subset of C [0, lt\{0} and

y -* yf(0) defines a continuous odd map of E m into R\{0). By
2

Tietze's theorem this extends to an odd continuous map of C [0,1]

into R, thus p(E ) = 15 so it follows from the last assertion

of Theorem 2 that the multiplicity of A is one.

Theorem 4. Let y be ja non-trivial solution of (1.12) with

precisely m-1 zeros in (0,1). Then

If we let A denote the m — characteristic number of (1.12)

as defined in [8] then Theorem 4 implies the following.
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Corollary. For each m,

there is equality if and only if E contains <a solution y

of (1.12) with exactly m-1 zeros in (0,1). rf A is the

first non-vanishing characteristic number of (1.12) then A = A •

1 ' ' ' ' tdi ' ' ' -— — ——-"— ni m

Proof of Theorem 4. If (1.12) has a non-trivial solution with

precisely m-1 zeros in (0,1) then by the Sturm comparison

theorem the m— eigenvalue A. of
(5.1) u'' + Ap(x)u = 0, u(0) = u(l) = 0,

is strictly larger than 1 and thus by Theorem 1, A > 0.

If y is a solution of (1.12) with just m-1 zeros in (0,1)

then the linear problem

v" + MvVY2(x),x) - 0, v(o) = v(l) = 0,

has eigenvalues \i^ < \x2 <•...< Mm
 = !• L e t M be t h e sub-

2
space of C [0,1] spanned by the corresponding eigenfunctions.

Then for v e M, v y& 0

(5o2) J v2(x)F1(y
2(x),x)dx / J (v'(x))2dx ̂  1.

2
We now consider the set M fl N(, which is compact (in C [0,1]),

symmetric, admissible and of genus m. Since A > 1* the proof

of Theorem 2 shows that by a suitable choice of the number e

(in the construction of <j>), we can be assured that the maximum

value of H on M 0 Nf is attained on N. However for v € N

J v2(x)F1(v
2(x),x)dx / J (vf(x))2dx = 1,
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thus from (5.2), for v € M fl N,

J v2(x)F1(v
2(x),x)dx < J V

2(x)F1(y
2(x),x)dx.

o o

It then follows from (3.19), for v € M n N, that

H(v) £ H(y) .

We have therefore

max H(v) = max H(v) £ H(y) .
V€M(1Nf VGMDN

Since p(M (1 N!) = m, this completes the proof of Theorem 4.

Theorem 7 • 1 of [8] implies that when the m— eigenvalue

of (5.1) is strictly greater than 1 then (1.12) has a solution y

with precisely m-1 zeros in (0,1), and, as we have already

observed, this condition is necessary for the existence of

such a solution. The m— characteristic number of (1.12) as

defined in [8] can be characterized as the minimum value of H

over all non-trivial solutions of (1.12) with exactly m-1 zeros

in (0,1). Taking these facts into account, the proof of the

corollary is immediate.
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Appendix. This section contains several results for

linear integral operators and integral equations which are used

in the preceeding sections.

We begin by quoting a result from [5].

(*) Let the operator A, given by (1.3), be completely

continuous from L q jto Lp, (1 < q <1 2 <̂  p, — + — = 1). Then,

(A.I) A = HH*,

where H Jjs a. completely continuous operator from L to. LP;

H* : .Lq - L JLs the adjoint £f H.

See Theorem 4.4, [5].

As a corollary of the above assertion we have the following

result, we assume throughout that A is as in (*).

Lemma A.I. Let y be given by (2.1), then

(A.2) ||y|| < const. Jy(x)u(x)dx.

Moreover, if B jLs subset of Lp lying in the range of A and

if Jy(x)u(x)dx is bounded on B then B is compact.

Proof. By (*) we have,

(A. 3) Jy(x)u(x)dx = ||H*u||2 ,

thus (A.2) follows from (2.1), (A.I) and the continuity of

H. If B c L P lies in the range of A then B = ABT = HBM ,

where B! c L q and B n = H^B! c L . By (A. 3) , B M is a

2 P
bounded set in L if Jy(x)u(x)dx is bounded on B. The

compactness of B, when the latter is the case, follows from the

compactness of H.
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We consider next the problem (2.3) where K and P are

as in section 1, and P does not vanish almost everywhere.

Lemma A. 2. The problem (2.3) has a, sequence 0 < A- <£ A~ <1- •

of eigenvalues of finite multipl'icity, moreover A -• °° jis.

m "* °°# IJL m _i£ fL positive integer then there exists <z

projection P of L^ onto the subspace spanned by the first m

eigenfunctions of (2.3) (i,e. those corresponding to An9 ...3A )— 1 mQ

and which annihilates all other eigenfunctions of (2.3).

Proof. We shall use P to denote the operation of

multiplication by P(x). By (1.5) it follows that the operator

P is continuous from LP to Lq. By (*) it then follows that
2

the symmetric operator H*PH is completely continuous on L .

The assertions of the lemma then follow from the theory of

2
compact self-adjoint operators. In particular, if L is

2
X © X where X and X

2
represented as a direct sum, L = X-.©Xp where X, and X~
are invariant subspaces for H*PH and X, is finite dimensional,

then L p = Y-^2
 w h e r e Yi = HXi> Y2 = ^2 a n d Yl a n d Y2

are invariant subspaces for AP.

We observe also that if v = H*u, u € Lq\{0}, and y = Au,

then

x(y) = Jp(x)y2(x)dx / Ju(x)y(x)dx = (v,

As a consequence we have the following.

Lemma A. 3. For y € AL qVo},

x(y) £ A"1 ,

if P j^ as^ _in Lemma A. 2 and Py = 0 then
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