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1. Introductione In this paper we treat the non-linear integral

equati on considered previously in [2], nanely,

(1.1) y(x) =f K(x,t)y(t)(P(t) + F(y?(t),t)dt.

The hypotheses are as follows. O is assuned to.be a bounded
region in some Euclidean space. The kernel K 1is assuned to be
real valued, symmetric and neasurable on QX 0. Moreover it

is assuned that for a certain pair p,gq of conjugate indices,
(1.2) 1 <qg£2"p, p"t + g"t = 1,
the operator A defined by

(1.3) [Au](x) = f K(x,t)u(t)dt,

is conpletely cd_nti nuous from IJq(O) to IP{£X), and positive

definite on IJq(O) in the sense that,

(1.4) J K(x,t)u(x)u(t)dxdt > o, ue LY(O\{O
W suppose that P(x) is non-negative and that
(1.5) P € L'(ft), r = pl(p-2).

The function F is defined on "F3+ X ft and is assuned to satisfy
i) the Carath&odory hypothesis: F(*,x) is continuous on ﬁ+

for alnost all x € ft and K(rj, ) is neasurable for all r) e R’+,
1i) there exists a positive constant 3 > 0 such that for al nost

all (fixed) xe d,

a3
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(1.6) 0 < nfF(ny,x) < Ny Fln,,x), 0< M <My,
iii) there are positive constants c,y and there is a non-negative

function o,
(1.7) c e LY (O, r = p/(p-2),

such that for almost all (fixed) x € Q,

(1.8) F(7n,x) < cny + 0 (x), o<n.
where
(1.9) 0 < 2y < p-2.

A sufficient condition for the complete continuity of A,

defined by (1l.3), is,

1%
(1.10) [[ Ixx0)] at < =,
or
a
(1.11) ess sup f |K(x,t)| dt < », for some a > p/2 ;
xeQ o

see[4]. When A : Lq((» - Lp((» is completely continuous a
necessary and sufficient condition for (1.4) is that A|L2((»

be positive definite and that the range of A be dense in LP(O);
see [2].

The results of this paper are obtained by employing techniques
developed in the series of papers [6-9]. In a previous paper, [2],
we adapted the methods of [9], which treats the case of (1.1) in
which K is a continuous kernel, to treat the case where K is

unbounded. The existence theorems of [9] and [2] assert the




exi stence of just a single solution of (1.1). However it is
shown in [8 that for P and F continuous, P positive, and

F satisfying (1.6), the boundary val ue probl em

(1.12) y'' + P(x)y + yF(y% x) =0, y(0) =y(l) =0,

has infinitely many sol utions. In this paper we prove the existence
of an infinity of solutions of the integral equation (1.1). For
this purpose we have found it necessary to make use of the nethods
of the Lusternik-Schnirel man theory, however we do not use the
so-cal l ed Lusterni k-Schnirel man category but rather the closely
rel ated concept of ™genus® which is used in [5].

One question which we have |eft unanswered concerns the
rel ati on between the characteristic nunbers for (1.12) defined by
t he nethods of this paper and those defined by Nehari in [8].
VWhen we specialize our results to (1.12) then it can be shown that

t he nEPcharacteristic nunber X _for (1.12), as defined in [8],

n
Is not less than the ﬁglcharacteristic'nunber Axf defined by the
met hods of this paper. It is trivial that A, = A in al
cases, and for n > 1 wewill have A =A_, if, towithina

factor of -1, (1.12) has at nost one solution with precisely n-1
zeros in (0,1); conditions for this to be the case are given in [1].
Wet her Xn = An in general remains an open question. Sone
support for conjecturing that the answer is affirmative lies in
the fact that both nethods of definition lead to certain stability
properties of the characteristic nunbers. These we hope to study
I n subsequent work.

We remark finally that our results can be applied to a class

of non-linear elliptic boundary value problens. See [2] and [3].




2. Statenment of results. In this section we introduce the

basic definitions and fornulate the main results. It is assumed
t hroughout that the hypotheses stated in the introduction hold.
For sinplicity of notation we shall omt the range of integration
fromformulas involving integrals unless that range is other than
tt, also LP, LY will always nean LP(0), L9 0).

If X is a Banach space we shall denote by £(X) the
cl ass of subsets of x\{0} which are symetric through the
origin. For Be £(X), we define the genus of B, p(B)s to

be the supremum of the set of non-negative integers n such that

every odd continuous map of X {@} into Rn"l has a zero on B;
here we understand R®= {0} * R_l-‘f’:
A function y e iP wll be said to be adnmissible if
(2.1) y(x) = J.K(x,t)u(t)dt, where u e LN\{0},
and
(2.2) J yA(x) (P(x)+F(y*(x),x))dx ~ I y(x)u(x)dx.
An admissible set will be a subset of LP consisting of adnmissible

el enent s. (By (2.2) and Lemmas 1 and A.1 bel ow a bounded
adm ssi bl e set has conpact closure). The class of all conpact
symmetric admissible sets will be denoted by (Q Finally, for each

non-negative integer m we put,
Bn={BeB]| p(B "m.
Let the functional H(y) be defined in |P by

Hy) = J[y%(x) F(y4(x), x)- QA y*(x), x] dx,




where {rj,x) has the sanme domain of definition as H?7, x) and

is given by,

qrj,x) =J F(s,x)ds.
0

The characteristic values of the problem (1.1) are the

number s

A = inf max H(y) .
oo, BeBm yeB

Theorem 1. For each positive integer m the class H is
non-enpty  Ihe characteristic values {A} farma. non-decreasing
sequence of non-negative real nuobers and

lim A = °°
M m

Let A <" Ay <M e be the eigenvalues of the |inear integral

1

equation
(2.3) y(X) =A_[K(k,t)P(t)y(t)dt,

then for a given integer m>1, A >0 if and only if A > 1

— — L A — bt

In this assertion and throughout the paper we followthe
convention that v(x) is an eigenfunction of (2.3) corresponding
to the eigenvalue +& if P(x)v(x) = Oa.e. on Q In particular

At = A2 = e =+ jf P(x) =0 a e on 0. Let m be a

positive integer such that A >A | if m>1 . If £>1,
¢ m m 1 A
and if

A= \n<t-1 < \ 4
then we shall say that A, bhas rruitiplicity . The set of

XP-solutions y of (1.1) which satisfy




will be denoted by E.

Theorem 2. For each m = 1,2,..., EL is a symmetric com-

pact subset of P. _:L_f_ Am >1 then E is not empty and

p(Em) > multiplicity of ANn®




3. With the exception of the theory of the genus, the basic machinery
for the proof of Theorems 1 and 2 will be developed in the following

sequence of lemmas.

Lemma 1. The functionals Jyz(x)P(x)dx, j yz(x)F(yz(x),x)dx,

IG(yz(x),x)dx, and H(y) are continuous on P  and bounded on

bounded subsets of LP.

Proof. See Lemma 1 and its proof in [2].

If y ¢ Lp, and y admits representation in the form (2.1),
i,e. if y 1is in the range of A, then, because of (l1.4), u
in (2.1) is uniquely determined by y. Accordingly, when vy € ard
we shall write jy(x)u(x)dx always with the understanding that
y and u are related by (2.1). When u # O then, by (1.4),
fy(x)u(x)dx > 0. For y given by (2.1), y # 0, we define real

valued functions xX,%q @s follows

(3.1) x(y) = [y (x0p(xdx / [y(x)u(x)ax,
2 2
(3.2) x () = [v2 (0 (p(0+F(y? (), 00 ax / [y(x)u(x) ax;

®x A and %y A will be denoted respectively by x and ;l .

We observe that x and ;l are continuous on Lq\{o}.
Lemma 2. For vy e ALY, y # o, Aif

(3.3) w(y) <1

then there exists a unique positive o = a(y) such that

.(3'4) xl(ay) = 1.




The function a =, A Js_ continuous on the open subset of Lq\[o]

determned by x{(u) < 1.

Proof. Since y/ 0 in L* it follows from (1.6) that
fy 2(x)F(a2y2(x),x)dx is strictly increasing as a function of a
and tends to °° as a->° andto O as a-» 0. It follows
t hat xl_(ay) is a strictly increasing function of a and that

Xy (ay) -« °° as a -+ °° and x,(ay) - x(y) as a -+ 0. Thus,
JL L

provided (3.3) holds, there exists a unique a corresponding to
y such that (3.4) holds. The fact that the subset of L% {0)
determned by x(u) < 1 is open and the_continuity of a A on
that set follow fromthe continuity of x and xi"
Lemma 3. +tet+ A > 1, there-exists—-a eonstant v = v(A >0
sgeh +hat
(3.5) J YA () F(y*(x), x) dx >,
for aH- adrissible vy wiih Xx(Y) <A
Pr oof . If y is admissible then y can be represented in

the form (2.1), thus

2(X) F(y3(x), X) dx)Z:(JJK(x,t)Q(t)y(x) F(y3(x) , X) dt dx)?

(Jy“(
<M IIK(x, t)u(x)u(t)dxdt) (TKx, 1) y() FOF(X) ) y(t) (Y2 (e, ) axat)
(3.6) (Jy2(x) F(y*(x), x)dx)*£ (Iy(x) u(x) dx) (IIK(X, t)Y(X)F(/° by (&m0, 008

By (2.2), for x(y) <A~1,

(3.7)  Iy2(x) F(y?(x), x)dx * Jy(x)u(x)dx - Jy®(x) P(x) dx,

> (1 - A" y(x)u(x)dx.




Conmbined with (3.6) this gives

Jy*(x) F(y*(x), x) dx £ (1- A% ~130K(x, 1) y(x) F(y*(x) ,x) y (1) F(y*(t) , t) dxdt,

fromwhence, by the continuity of A : L9- LP

(3.8)  Jy*(x)F(y*(x), x) dx £ M 1-A").""HI y(x) F(y?(x) ,%)| %dx) * .
By Hol der's i nequal ity

(3.9) JTY(x)F(y“(x), x) | %dx (I [F(yA(x), %) X (Jy 1) P(y" () ,X) 0|X)q/2 ;

where, as before, r =p/(p-2). Together (3.8) and (3.9) give,

for admissible y with x(y) < A%

(3.10) 1 £ MI~AY*" 1 F(y*(x), x) | "dx,
Suppose now t hat

(3.11) inf{|y?(x)F(y?(x),x)dx|y admissible, x(y) <A"'} = 0,

Then by (3.7)
. ¥ . T -
inf My(x) u(x)dx| y adnissible, x(y) <AT'} = 0
It then follows fromA 2 of Lemma A | (Appendix) that 0 is a
! P 2 T
cluster point of {y|ly admssible, x(y) <A" }. Since J| F(y (x),x)] dx
is continuous on LP, this contradicts (3.10) so (3.11) is false

and the lemma is proved. - 2
Let the non-linear transformation vy > JK( o, t)y(t)(P(t)+F(y (t),t)dt

of LA into LP be denoted by T. W define

$(v) =a(T(y)) T(y), for y € LA{0}, x(T(y)) < 1.
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Lemma 4. For vy admissible, x(T(y)) < 1,

(3.12) H($, (v)) < H(Y),

and equality holds in (3.12) only if y satisfies (1.1). For

such that, for admissible

each A > 1 there exists Co = CO(A) >0

y, when x(y) < Afl, then

(2+q)/2q
(3.13) po (1l < ey (A (1+H(y)) .

Proof. Let y ¢ N be given by (2.1), let o = a(T(y)), and

let v = ¢O(y). Since nl(v) = 1 we have,
(3.14) jvz(x)Fl(vz(x),x)dx = aJv(x)y(x)Fl(yz(x),x)dx,

where Fl(n,x) = P(x) + F(n,x), and thus by Schwarz's inequality

2
(3.15)  ([v?(0r (v? (0, 0a0 < o?([vP0r (v2 (0, a0 ([y? (07 (v (x0)ax).

By (2.1)

[Y2or (v (0 ,xax = [[r(x,0)u(e)y(0)F, (y? (30, %) atax,

from which, by Schwarz's inequality,

f 2 2 2 2 2
(Jy " () F, (y (X),X)dX).S(ﬂ?(x,t)y(X)Fl(y (x)x)y(£)F, (y (t),t)dxdtxﬁmambﬁﬁxkﬂ
(3.16)

Since y 1is admissible
2 2
[Jx, pyuoumraxae = [ynumax < [y’ (o, (v° (20,0 ax,
and from the definition of v,

of [k(x,0)y(0F, (v* (30,30 y(0)F (v* () , ) axat = [v(xy(xF, (v (x),x) dx.
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From t he above we obtai n,

ady*(x) Fu(y*(x), x) dx » Jv(x) y(x) Fi(y*(x) , x) dx.

This last inequality, together with (3.14), gives,
(3.17)  2Iy3(x) Fa(y3(x), x) dx £ Jv3(x) FAv?(x) ,x) dx,

whi ch, conbined with (3.15), yields,

(3.18)  JVA(x) Fy(y3(x), x)dx A IvZ(X) Ff v2(x) , x) dx.
However, for any y, v e LP as is shown in [9],

(3.19)  H(V) £Hy) +JIV2(x) [Fo(V3(X) , X) - FAy2(X) , x) dx.

Thus, as v = <f>,(y), (3.12) follows from(3.19) and (3.20). In order
for equality to hold in (3.12), it must hold in each of the in-
equalities in the proof. In particular we nmust have equality

in (2.2), (i.e. ye N), and in (3.16). The equality can hold
2
in (3.16) only if wu(x) and y(x)F.i(y (x),x) are colinear,

but then, since equality holds in (2.2), we nust have
u(x) = y(x) Fely £ %)
inwhich case y 1is a solution of (1.1).
W now prove (3.13). For y e LP,
(3.20) Hly) ~e (1+e) Jy*(x) F(y?(x) ,x)dx,

where C 1is the constant in (1.6); see [9].

" From (3.17) and (3.5)

(3.21) @ £i/" Iv3(x) Fy(v3(x), x)dx £ cj vZ(x) F(vZ(X) , x) dx
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where v = v(x(y)) and

v = 0o(y), bY (3.12),

C= (1-0 (T(y)))~® i/"™Y Since

(3.20) and (3.21) we have,

(3.22) a2 A CE(l+e)H(v) " Ce (1+€) H(y) .

In Lemma 2 of [2] is proved the existence of constants R'l and
R, such that

1 t L
(J1J K(x, t)y(t) F(y*(t), t)dt|"dx)P£ (k" kj y?(t)F(y?(t), t) dt)9.

Fromthis inequality,

t he definition of (f>0,
(3.21)

and (3.20) and
readily follows (3.13).

The mappi ng (fg defi ned above is adequate for our

pur pose
only when A,J_> 1, in which case the domain of (f> is iP {0}.
Qur next objective is to construct, in the general case, a mapping
(f>: LP{0] = L”\ (0] suchthat: for adnissible y e LP either
a) $(y) e N and
(3.23) Hd)(y)) £ H(y)
with equality only if_vy jus_a, solution of (1.1) ; .o
(3°24) Hf(y)) <e, k=12...,
“where e Jjs_a" preassigned positive constant.
To this end we first prove the foll ow ng.
Lerma 5. Let S c A(LN{0)) and suppose that for y € S,

0 < CEX(Yy) < x«(y) £M<-

‘where C M are constants. Then S

is conpact in LP. The

functional  Ju(x)y(x)dx £ bounded on S.
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Proof. The general element y € S can be represented in
the form (2.1). It follows from Lemma A.l that S is compact
if Iy(x)u(x)dx is uniformly bounded for y € S. Suppose there-
fore that there is a sequence [yn] in S such that
fyn(x)un(x)dx - ® as n - «©, (where un has the obvious

meaning). Let the constants Ny, be determined by
2 2 j dx = 1
(3.25) o, JY, (¥u (x)dx = 1,

we shall assume that p < 1 for all n and that py -y  # O
in 1P; the second part of the assumption is justified by Lemma

A.l. Under this assumption, by Lemma 1,
: 2 2 2 2 J 2 2
(3.26) Py Jyn(x)F(pnyn(x),x)dx - yo(x)F(yo(x),x)dx, as n-o,

By (3.1), (3.2) and (3.25)
ny (y ) -wly) = pi Iyi(x)F(yi(x),X)dx,

and by (1.6), since o < 1,

o2 [0 r(y2(x) 0 ax > p 2 1o ]v2 (0 F (02y2 (), x) ax] .

Since Py O, as n - o and Yq # O these last two relations,
together with (3.26), imply that xl(yn) - ® as n - ®, x(yn)
being bounded by Ail (see Lemma A.3). This yields a contra-
diction, and consequently Jy(x)u(x)dx must be bounded on S.

In view of the observation made at the beginning of the proof, the

assertion of the lemma follows.

HUNT LIBRARY
CABNEGIE-MELLON UNIVERSI[;
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For A> 1 put
Hy = sup{H(Y)|y e N, x(y) ~ A"7],
and
h, = inf{Hy)ly e. N, x(y) £A7"},

(the finiteness of H“ follows fromLemma 5).

Lenmma 6. For A > 1,

O d( hf‘;é Hﬂ:
Nbr eover ,

lim H, = 0.

Ael- A

Proof. The positivity of hh follows from (3.20) and Lenma
3; the inequality hh < Hh is obvious. The second assertion follows

fromLemma 5 since for y e N

Hly) £ 3y*(x) F(y*(x), x)dx = (1 - x(y))Iy(x)u(x)dx,
and thus

HA_‘_ A oconst. (1 - A""HA for 1 < A £ const.
By (1.6) and the definit}on of H for 1 >p >0

Hpy) ~ p2fy’(0r(e?y? (30, %) ax

£ p2y Ax) F(y? (x), %) dx.
r 2 2
Let e > 0 be preassigned, since® by Lemma 1, Jy (X)F(y (x),x)dx
i's bounded on the unit sphere in L there follows the existence

of a positive constant p such that,
Hpl Iyl 5y) ~ e, ye LA\ {o}.
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We now define, for admissible vy,

S(y) = max (a(y), slyl:Y,

where for convenience we take a(y) = 0O when x(y) > 1. Since
this extension of o preserves the continuity of aeA on
Lq\{o}, as is easily verified, we have also that oA is

continuous on Lq\{o]. We now define ¢(y), for vy € Lp\{O}, by,

d(y) = a(Ty)Ty.

Clearly the image by _¢ of Lp\[o} is the set {y € Lp\{o]la(y) =

1} which we shall denote by N'.

Lemma 7. If y e N' then

(3.27) HYUP > 8,

thus O £ N'. There exists a A' > 1 such that equality holds in

(3.27) for x(y) > A'7% .

Proof. By definition aly) > BHyH;l, thus a(y) = 1 implies
(3.27). To prove the second assertion we need only show that
sup{Hpr | v e N, n(y) > Afl} - 0 as A - 1-. This follows
from Lemmas 5 and 6 and the fact that, in view of (3.20) and (1l.6),
H(y) = 0 for vy € P if and only if y = O.

Lemma 8. The mapping ¢ is an odd continuous transformation

of 1P\{0} into N'. For any admissible y either

(3.28) e < H(P(y)) < H(y)

with equality only if y 1is a solution of (1.1), or

(3.29) H(PR(y)) < e k=1,2,... .
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Finally there exists ja_constant Co > 0 such that, for adm ssible

Y,
(3.30) || fy)] |_p/\co(_| + H(y)) (2ra)/2<x

Proof, It is clear that (f> is odd. The continuity of f>
follows fromthe continuity of T and a-+ T, which in turn

followfromthe continuity of A: 1J%» LP, a«A: LMN{0} -« R
2

and the continuity of the transformation y(x) -» y(x)F(y (x),x)
from LP to L». The continuity of this last mapping follows from
(1.8), (1.9) and Theorem 19.1, [10]. The second assertion of the
lenmma follows imediately fromthe first assertion of Lemma 4 and
t he construction of (f>. _

To prove (3.30) we note that, by Lemma 7, either ||O(y)|!p =
p, or Xx(T(y)) <A <1 and O(y) = <p°(y). Choose (by Lemma
6) AM> 1 so that Hm < h .!,‘ , then when the second alternative
hol ds, we have by Lema 4,

H() = HGEA(Y)) = hat > Haw

and thus x(y) < A™!'. By Lemma 4, (3.30) holds in this case
with Cq = Co(A™ ). If we take Cq = max(p,Cq(A")) then (3.30)

will hold for all admissible vy.
Lemma 9. Let y e iP. Jf

e = |lim inf H((f>n(y)) > e,

0 In—oo

then the cluster points o_i_the sequence {9)Vy) } forma. non-

‘enpty connected set of solutions of (1.1) .
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Proof. By (3.28) of Lemma 8, the limit inferior in the asser-
tion above is actually a limit. Using Lemma 8 again we see that the
sequence (¢7(y))} is bounded. Since ¢"(y) e N, n = 1,2,...,
the sequence has cluster points, in fact by Lemma 1, (2.2) and
Lemma A.l, any bounded admissible set has compact closure. By
the continuity of ¢ and H if Yo is one of these cluster

n
points then H(yo) = e,. If we suppose that Yo = lim ¢ k(y)

,nk+l ke
then ¢(yo) = lim ¢ (y), from which we conclude that
koo
H(¢(Yo)) = e, = H(yo) and therefore y, is a solution of
(1.1).

The connectedness of the set of cluster points follows by a

standard argument from the fact that "¢n(y)-¢n"l(y)“p - O as

n - o
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4. Proof pf Theorens 1 and 2. W begin by listing the
0
rel evant properties of the genus. Let £(X) = (Bef(X)|B com
pact}. | '

0

1) If GpGy e £(X)* and if there exists a continuous

odd mep f : G - & then piG) £ p{&), in particular, if
G cG then p(G) £ o(G) .

2) For G:G: € C(X), p(GiUGy) <E£ p(Gi1) + p(Gy).

(6]
3) If G € C(X) then p@G) < e

and G has a neighborhood U such that U€ £(X) and p(U = p(6).

4) 1f GG 20 and G is a honeonorphic inage of an
n-sphere then p(G = n+l.

W note first that® in view of “Tietze's extension theorem
p(B) £n, for Be g(x)* If there exists a r;ero free odd
cont i nuous map'-of B into Rnf assertion 1) is then obvious.
Assertion 2 and the first part of 3) follow fromLema 10
bel ow, the proof of which will be omtted. The second part of
3) follows from standard extension theorenms and 4) follows from
t he Borsuk;UI amtheorem For a nore conpl ete discussion of the

genus see [5].

Lemma 10. let Ge £(*)* _then p(G ~*n if and only if
.G e %) wth p(G) =1, i =1, ...,

there exist n sets G,...
B " |

nand GerU'?2_G. .

— l—i 1

Let M be an m-dimensional subspace of ?J(Q) and let

rin= {u e M| [laljg 1.
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By the results of section 3 the transformation u(x) -* y(x) =

EI K(x, t)u(t)dt, where a >0 is chosen sothat y e N!, s
a continuous mappi ng of Ei’m onto a conpact synmetric subset
of N . Since this mapping is one to one, it is a homeo-

nor phi sm (Em being conpact), and therefore p(B) = ml. It

follows that for an arbitrary positive integer the class IBm,

defined in section 2, is non-enpty, as asserted in Theorem 1.
The non-negative and non-decreasing character of the

{Am} is evident, we pass nowto the |last assertion of Theorem

1. Suppose that A_£1<A"_H(O<_"m)) let in be the
1UQ "*O

subspace of \P spanned by the first m°

ei genfunctions of
(2.3). Any non-zero elenment of tn is adm ssible, hence any
symmetric subset of tn\{0} is admssible. It readily follows,
since Hy) - 0 as y- 0 that A,= 0 for

1 <" m<E¥e Let P denote the projection onto in which

anni hilates all the other eigenfunctions of (2.3). If B 1is
set of genus J> M +1 then 0 e PB, for otherwi se we would
have PB G £(LP) with p(PB) " p(B) "m+ 1, and this is
irrpossiblgsince PBcft\.If y €L~ y/ 0 and Py = 0 then
x(y) <" h® ;< |, (see Lemma A 3) ; if inaddition y is

0
adm ssi bl e we have by Lemma 3 and (3. 20),

Hy) ~ e(1+e)v(ﬁm)+|

It follows that for an adm ssible set B with p(B) "> m+l,

(4. 1) max H(y) = €1+6)1/(A. 1)
yeB "o

and thus,




-20-

(4.2) > <-:(1+e)v(A.m +1) > 0.
(o)

xmo+l
This completes the proof of the last assertion of Theorem 1.

We come back to the second assertion of Theorem 1, namely

that,

4.3) lim A = «.
( 0 M

We assume once and for all that the number e which figures

in the construction of ¢ in section 3 satisfies,
(4.4) €(1A€)v(Amo+1) >e >0,

where A <1< Am +1- Consider the mapping 3¢ defined, for
o o _

y admissible, by ¥(y) = a(y)y. It is easily seen that for vy

admissible a(y) < 1 whenever H(y) > e. For an admissible set

B with p(B) > mo+1 we have from (4.1) and (4.4) that

max H(y) > e
yeB
and thus
max H(y) < max H(y).
yed(B) yeB

Consequently, for m > m, + 1,

(4.5) Km

inf max H(y)
Beﬁé yeB

where

B' = {BeB_|B < N'}.
m m - —
Now for ¢ > O 1let

N'(c) = {yeN'|H(y) < ©].
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By Lemma 8, O maps NM(c) into a bounded subset of itself,
thus <N (c¢) ) has conpact closure. It follows from property
1 of the genus, since <f> is odd, that N (c) can contain no
symretric set of genus greater than p(~fNHc))) . As we have
shown N contains symmetric sets of arbitrarily large genus,
thus (4.3) follows from (4.5). This conpletes the proof of Theo-
rem 1.

Let m be a positive integer and assune that mJ> m +1

and Am>A let ¢ be a real nunber, with c¢ >Am and

: m1’
such that none of the characteristic values of .(1.1) lie in the

i nterval (Am c). Let

Su={y € "?TFI|H(<f(y)) 3> Ay n=1,2...}-

- Since <f> is continuous and odd and (l\z) is conpact it follows

that S Is symmetric and conpact. Let E be as defined in
m ' *e m _
section 2. It is clear that E is symetric and since it is
m o*
obvi ously a cl osed subset of s™ it is conpact. For 6 > O,
put

UE,6) = [y e NO £di st (y,Ey < 6}
Wwhere
dist (y,Ey) = inf(||ul]]ly + u €, En),
so that U(E, 6) is enpty if BEm is enpty. Choose 6 >0

so that U Em®6) € £:L° and
P(U(En 6)) = 0o(Em) .
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For y e S, H(y) > Am unless y € E s therefore, since
() . . :

Sﬁ\U(Em, 5) is compact there exists a constant ¢y > km

such that

H(y) > Cy, for y e Sm\U(Em,-g-) .

From (4.5) and the definition of the multiplicity of Ay
it follows that there exists a set B ¢ ﬁ&w&—l’ where 4 =

multiplicity of Am, with

Am < max H(y) < cy-
yeB

From the definition of Cqs

o
BNS_ CUE,3,

thus, for every vy € B\U(Em,ﬁ),

lim H($™(y)) < -

n—oo

By a standard argument it follows from the compactness of
B\U(Em,ﬁ) and the monotone decreasing character of ¢ (y)

that there exists an integer ng such that
T
H( “(¥)) < Ay
for all vy ¢ ﬁ\U(Em,b). Consequently
n
p(B\U(E_,8)) < p($ °(B\U(E_,8)) < m.

It follows from the subadditivity of the genus (Property 2))

that

p(E.) = o(U(E_,0)) > p(B)-o(B\U(E_,6)) > <.

Thus O(Em)-z 4, in particular E. is not empty. This

completes the proof of Theorem 2.
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JRemark 1. Let Y be a Banach space stronger than LP,
(i.e. Y<=I/IRB || - --ﬂl A const. |]. ..Y||)? and | et sone power,
say Tn, of T map | P continuously into Y. Then it is
clear first of all that every |/ P-sol ution of (1.1) actually
bel ongs to Y. Moreover, if i denotes the inclusion map
Y- LP, then, for a given m T"|E,= Al13A%x"1 +thys the .

LP and Y topologies on E coincide. In particular E
A J m c m

has the sanme genus as a subset of Y as it does as a subset of
LP.. Also, if n has the sane meaning as above, then (j>"

maps LP\ (0} continuously into Y. Thus, by (3.28), A" is

gi ven by,

A = inf max Hy) ,
" BeB" yeB

wher e
8= (B e 8 [BCY].

Remark 2. When P,F and K are continuous on 5§'§+ XD
and 0 x 0 respectively then one can use the above techniques
in the space of continuous functions on O to obtain the sanme
results as above but wi thout assuming (1.8). The derivations
of certain of the required bounds nmay be slightly different in
this case, but nmost of these are obtained in [9], or can be derived

as here by formally putting g=1, p=», r=1.
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5. Application to (1.12). We suppose that P and F are

continuous on [0,1] and on E; X [0,1] respectively and that
F satisfies (1.6). We shall use a somewhat restricted notion
of admissibility and say that y 1is admissible only if it

belongs to
2
cglo,1] = {yec’[0,11] y(0) = y(1) = 0], and
[ Ve + riy?0,x)ax > [(v' (x0)%ax,

the- characteristic values for (1l.12) are defined as in the
general case except that we take the infimum only over compact
symmetric admissible sets in Ci[O,l]. This, as well as the omission.

of (1.8) is justified by the remarks at the end of section 5.

Theorem 3. Each positive characteristic number of (1.12)

is simple, (i.e. has multiplicity 1).

Proof. Suppose km > 0, and km > xm if m > 1. Then

-1
E, is a compact symmetric non-empty subset of cg[o,lf\{o} and
y = y'(0) defines a continuous odd map of E. into ﬁ\@o]. By
Tietze's theoremlthis extends to an odd continuous map of Ci[O,l]
into R, thus p(Em) = 1, so it follows from the last assertion

of Theorem 2 that the multiplicity of Rm is one.

Theorem 4. Let y be a non-trivial solution of (1.12) with
precisely m-1 2zeros in (0,1). Then

0 <A, L H(Y).

~

If we let km denote the mEh characteristic number of (1.12)

as defined in [8] then Theorem 4 implies the following.
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Corollary. For each m

t here 'i_s equality if and only if E_ contains <a solution

y
_QL(l.lZ) with exactly m1l zeros in (0,1). rf Am is the

first non-vanishi ng characteristic nunber of (1.12) then A = A -«

1. v vt — — — " n m

Proof of Theoremd4. If (1.12) has a non-trivial solution wth
precisely mlthzeros in (0,1) then by the Sturm conparison

Tu
theoremthe m— eigenvalue A. of

(5.1) u' + Ap(x)u = 0, u(0) =u(l) =0,
Is strictly larger than 1 and thus by Theorem 1, Am > 0.

| f Ym

then the l|inear problem

is a solution of (1.12) with just m1l zeros in (0,1)

v' o+ MVY?(x), x) - O, v(o) =v(l) =0,
has eigenvalues \i™ < \x, <e¢...< M,~ le Let Mbethe gyp

2
space of CO[O, 1] spanned by the correspondi ng ei genfunctions.

Then for ve M vy&O0

(502) lez(x) Fi(y2(x), x) dx / J1 (v' (x))%dx ~ 1.

] o
V¢ now consi der the set Mfl N(, which is conpact (in Cﬁo,l]),

symmetric, adm ssible and of genus m  Since Am > 1* the proof
of Theorem 2 shows that by a suitable choice of the nunber e
(in the construction of <j>), we can be assured that the maxi num

value of H on MO N is attained on N However for v € N

1 1 .
JVA(X) F(v3(x), x)dx [ 3 (vi(x))%dx = 1,

Q o
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thus from(5.2), for v € Mfl N

INVX) E(VA0  X) dx < TE(x) Eu(YA(X) ) dx

0 0
It then follows from(3.19), for v € Mn N, that

Hv) £ Hy)

W& have therefore

max Hv) =max Hv) £ Hy) .

\EM IN VGMDN
Since p(M(1N) =m this conpletes the proofﬂ(])f Theor em 4.

Theorem 7+ 1 of [8] inplies that when the m— eigenval ue

of (5.1) is strictly greater than 1 then (1.12) has a solution vy
with precisely m1 zeros in (0,1), and, as we have al ready
observed, this conditi ontlils necessary for the Iexi stence of
such a solution. The m— characteristic nunber of (1.12) as
defined in [8 can be characterized as the mninumval ue of H
over all non-trivial solutions of (1.12) with exactly m1l zeros
in (0,1). Taking these facts into account, the proof of the

corollary is imrediate.
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Appendix. This section contains several results for
linear integral operators and integral equations which are used
in the preceeding sections.

We begin by quoting a result from [5].

(*) Let the operator A, given by (1.3), be completely

continuous from L% to Lp, (1<g<K2<p, %-+ é = 1). Then,

(A.1) A = HH*,

where H 1is a completely continuous operator from L2 to P

g : 19 - 1? is the adjoint of H.

See Theorem 4.4, [5].

As a corollary of the above assertion we have the following
result, we assume throughout that A is as in (¥*).
Lemma A.l. Let y be given by (2.1), then

(A.2) _Hpr‘g const. Jy(x)u(x)dx.

Moreover, if B is subset of P  1lying in the range of A and

if jy(x)u(x)dx is bounded on B then B is compact.
Proof. By (¥*) we have,
' 2
(A.3) fy(X)u(X)dx = |Exlly ,

thus (A.2) follows from (2.1), (A.1l) and the continuity of

H. If B c 1P 1lies in the range of A then B = AB' = HB" ,

where B' C 1?2 and B" = H*B‘E L2. By (A.3), B" is a
bounded set in L2 if ﬁf(x)u(x)dx is bounded on B. The
compactness of E, when the latter is the case, follows from the

compactness of H.
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We consider next the problem (2.3) where K and P are

as in section 1, and P does not vanish al nost everywhere.

Lemma A 2. The probl ém (2.3) has a, sequenée 0 <A l<§ A, L -

of eigenvalues of finite rrultijol"icityi _m)reover' A'rh' °° jis.

Mk eo® gL mo_i£fl'_ positive integer then there exists <z

projection P of L™ onto the subspace spanned by the first m

ei genfunctions of (2.3) (i,e. those corresponding to Arg C 3AmQ)

and which annihilates all aother_eigenfunctions af (2.3).

Proof. W shall use P to denote the operation of
multiplication by P(x). By (1.5) it follows ‘that the operator

P is continuous from L° to L9 By (*) it then follows that
2
the symmetric operator H'PH is conpletely continuous on L

The assertions of the lema then follow fromthe theory of

. . . 2 .
conpact self-adjoint operators. |In particular, if L is

2
represented as a direct sum L = XC WaRre X! apd X<
are invariant subspaces for HPH and X,l is finite dinensional,

then Lp — Y_/\2 wher e Yi = HXi > Y2 = A D and Y| and Y2
are invariant subspaces for AP.
W observe also that if v = Hwu, u€ LN{0}, and y = Au,

t hen

x(y) = Ip(x)yA(x)dx / Ju(x)y(x)dx = (v,H*pHv)/uvug .

As a consequence we have the follow ng.

Lemma A. 3. For y € ALY9Vo},
x(y) £ A%,

if P j~ as™ _inLenma A 2_and Py =0 t hen

]
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