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ABSTRACT

This paper will attempt to show that one of the trends in the area of process synthesis is
its gradual evolution towards the mathematical programming approach. This is in part due to the
fundamental understanding that has been gained on the nature of the synthesis problems over the
last twenty years. However, another major part has to do with the development of new and more
powerful mathematical programming algorithms. In particular, the development of new MINLP
algorithms, coupled with advances in computers and software, is opening promising possibilities
to rigorously model, optimize and automate synthesis problems. A general overview of the
MINLP approach and algorithms will be presented in this paper with the aim of gaining a basic
understanding of these techniques. Strengths and weaknesses will be discussed, as well as
difficulties and challenges that still need to be overcome. In particular, it will be shown how
proper problem representations, effective modelling schemes and solution strategies can play a
crucial role in the successful application of these techniques. The application of MINLP
algorithms in process synthesis will be illustrated with several examples.

INTRODUCTION

After nearly 20 years of research in the area of process synthesis it would seem to be
appropriate to ask the questions of how much has been accomplished and how much remains to
be done. This paper will not attempt to provide a detailed answer to the first question since that
would require an extensive review which is beyond the scope of this paper. Here we will only try
to point out some trends that have emerged, and instead try to concentrate on the second
question, albeit some personal views on the area. The major premise of this paper is that a next
major step in the synthesis area will be geared towards its formalization through the
mathematical programming approach, with major driving forces being the increased need for the
automation of the synthesis process, and the need to quickly and rigorously explore a larger
number of alternatives at the preliminary stages of design in order to improve the economics and
other design criteria. We will try to show that new algorithmic developments with MINLP have
already started to show their potential for increasing their impact on how synthesis problems
might be approached. This however, will not be done at the exclusion of other approaches that
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are based on heuristics, AI techniques, thermodynamic targets or hierarchical decomposition,
since it will also become clear that there are also some inherent limitations in the mathematical
programming approach despite the advances that we can foresee in this area. Thus, there is
clearly also the major question of how to properly combine the quantitative and qualitative
approaches (see Glover, 1986; Simon, 1987).

This paper will be organized as follows. We will first present a very brief overview of
the major trends that have emerged in process synthesis. We will then outline the major steps
that are involved in the mathematical programming approach: formulation of a superstructure of
alternatives, and modelling and solution of a mixed-integer nonlinear programming (MINLP)
problem. We will discuss for the former step, major alternative representations that can be used,
and identify the limitations that are present at this point. We will then concentrate on the
modelling and on the basic ideas behind several MINLP algorithms that have emerged. The
importance of solution strategies will be discussed and illustrated with a number of example
problems. Finally, we will summarize this paper by trying to point out some future research
directions.

MAJOR TRENDS IN PROCESS SYNTHESIS

Extensive reviews on process synthesis have been reported in a number of papers. For
instance, general overviews can be found in Hendry et al. (1973), Stephanopoulos (1981),
Nishida et al (1981), and Floquet et al (1988), while reviews on specific areas can be found in
Gundersen and Naess (1988) on heat exchanger networks, and in Westerberg (1985) on
separation systems. In addition, many papers have been published in the literature since the
general overview papers.

At the risk of oversimplifying the review of previous work, and of not paying due credit
to all the original research work, one could try to summarize the status of process synthesis as
follows. In terms of area of application, the synthesis of heat exchanger networks is the one that
is the best understood and more developed. Here, thermodynamic targets and insights
(Hohmann, 1971; Linnhoff and Flower, 1978; Umeda et al, 1979; Linnhoff and Hindmarsh,
1983) have made a great impact, and helped to motivate algorithmic approaches (Cerda and
Westerberg, 1983; Papoulias and Grossmann, 1983; Jones and Rippin, 1985; Floudas and
Grossmann, 1986; Saboo et al, 1986; Ciric and Floudas, 1989). The extension to more general
forms of heat and power integration is also relatively well developed (Nishio et al, 1980;
Townsend and Linnhoff, 1983; Papoulias and Grossmann, 1983; Shelton and Grossmann, 1986;
Colmenares and Seider, 1987; Swaney, 1988). Separation systems are the next in terms of
attention that they have received. Considerable attention has been devoted to some restricted
forms of distillation sequences (Hendry Hughes, 1972; Stephanopoulos and Westerberg, 1976;
Gomez and Seader, 1976; Andrecovich and Westerberg, 1985; Eliceche and Sargent, 1986;
Wehe and Westerberg, 1987; Floudas and Anastasiadis, 1988; Floudas and Paules, 1988; Duran
and Flores, 1988) and specialized azeotropic separations (Ryan and Doherty, 1987), where



heuristics, insights and algorithmic methods have emerged. However, there is still significant
work to be done in terms of considering complex columns and incorporating separation
technologies other than distillation. Reactor networks have received limited attention (Jackson,
1962; Chitra and Govind, 1985; Achenie and Biegler, 1986; Glasser et al, 1987) partly because
of the greater difficulty in modelling these systems. Finally, the synthesis of total flowsheets still
remains the least well developed area. Here the initial efforts were led by Siirola et al (1971)
using an approach based on the general problem solver. This work was followed by Mahalec
and Motard (1977) using mainly heuristics and an evolutionary approach. The more recent
developments include the hierarchical decomposition scheme by Douglas (1985, 1988) for
conceptual process design, and the simultaneous structural and parameter optimization approach
by Grossmann (1985) and co-workers. From the above it is clear that the most progress has been
made in the synthesis of homogeneous systems, although even in this case the question of how to
develop automated synthesis methods to effectively support the decision making of design
engineers remains an open question.

In terms of approaches to synthesis there are three major lines of attack that have
emerged: (a) the heuristic approach which relies on intuition and engineering knowledge, (b) the
physical insight approach which relies on exploiting basic physical principles, (c) the
optimization approach which relies on the use of mathematical programming techniques. The
advantages and limitations that have been found with each of them are well known and will not
be elaborated in this paper (for discussion see for instance Stephanopoulos, 1981; Grossmann,
1985). While physical insights will clearly continue to play an essential role for the
understanding of process synthesis problem and motivating novel problem representations, the
objective of developing more general and powerful automated synthesis procedures that can
systematically examine large numbers of alternatives can only be addressed with a knowledge
based approach, or with a mathematical programming approach. Thus, a relevant question to ask
at this point is the following: Given advances that can be expected in the near future in Artificial
Intelligence and Mathematical Programming, how will these impact the future development of
the area of process synthesis? We will leave the conclusive answer to this question to the reader
and to the future. We will try to present here the perspective from the Mathematical
Programming viewpoint, and only indicate briefly some potential combination with the Al
approach.

MATHEMATICAL PROGRAMMING APPROACH

From a conceptual viewpoint, the process synthesis problem can be stated as follows.
Given are specifications of inputs that typically correspond to raw materials, and of outputs that
correspond to desired products that are to be produced. The problem then consists in integrating
a process flowsheet that will convert the inputs into desired outputs so as to meet desired
specifications while optimizing a given objective or goal function.



The synthesis of such a system involves the selection of a configuration or topology, as
well as its design parameters. That is, one has to determine on the one hand which process units
should integrate a flowsheet and how they should be interconnected, and on the other hand one
has to determine the sizes and operating conditions of the units. The former clearly imply
making discrete decisions, while the latter imply making a choice from among a continuous
space. Thus, from a conceptual standpoint the synthesis problem corresponds to a
discrete/continuous optimization problem which mathematically gives rise to an MINLP
problem.

In general, the major steps involved in approaching this problem are as follows:

Step 1. A superstructure is postulated that has embedded
alternatives that are candidates for a feasible and optimal design.

Step 2. The superstructure is modelled as the MINLP problem:

Z =min C(y, x)

s.t. h(y,x) = 0 (MINLP)

g ( y , x ) < 0

Here y represents a vector of 0-1 variables that denote the potential existence of units (0 not
included, 1 included), while x represents a vector of continuous variables which correspond for
instance to flows, pressures, temperatures and sizes of equipment. C(y,x) represents the
objective function, h(y,x) = 0 the process equations and g(y,x) < 0 design specifications and
logical constraints. For most of the applications in synthesis the only dominant structure is that
the MINLP is most often linear in the 0-1 variables with nonlinearities being present in the
continuous variables.

Step 3. The optimal design is extracted from the superstructure by solving
the corresponding MINLP problem.

The general approach to process synthesis outlined in the previous steps is not new.
Umeda et al. (1972) were probably among the first authors to advocate it. However, at that time
the problem was formulated as a nonlinear programming problem involving only continuous
variables, and solved with direct search techniques. Next, Papoulias and Grossmann (1983)
formulated the synthesis problem as a mixed-integer linear programming problem in order to
explicitly handle 0-1 variables, and resorted to standard branch and bound computer codes. It is
not until very recently, however, that due to new algorithmic developments (Duran and
Grossmann, 1986a,b), the synthesis problem has been explicitly formulated as an MINLP and
first successfully demonstrated on a process flowsheet by Kocis and Grossmann (1987).



The two crucial steps in the approach described above are Step 1 for generating the
superstructure, and Step 3 for solving the MINLP problem. As it turns out, however, Step 2 is
also extremely important because the way one models MINLP problems can have a great impact
on the performance of the algorithms. The next section will discuss the question of formulation
of superstructures.

SUPERSTRUCTURES

As indicated in the previous section, in order to formulate the synthesis problem as an
optimization problem one has to develop a representation containing all the alternative designs
that are to be considered as candidates for the optimal solution. Developing an appropriate
superstructure is clearly of paramount importance, as the optimal solution that one obtains can
only be as good as the representation that is being used. While this point is often regarded as a
major weakness of the optimization approach, knowledge based approaches suffer also from the
same limitation since these also require a representation of alternatives, which is often implicit.

Superstructure representations can in general be explicit or implicit in nature. The
former give in general rise to networks, while the latter give rise to trees. As an example,
consider the separation of a single feed of 4 components A,B,C, and D into pure products. As is
well known (Hendry and Hughes, 1972), the alternative separation sequences consisting of sharp
splitters can be represented through the tree shown in Fig. 1. This tree representation lends itself
to decomposition where the discrete alternatives of separation tasks can be enumerated implicitiy
through a branch and bound search. However, in using this representation the MINLP problem
must be converted into the separable optimization problem over the discrete space Y D , i=l..m,

Z=minY

where continuous variables are selected independently at each node of the tree. Therefore, this
formulation is likely to lead to suboptimal solutions even if the branch and bound search is
performed rigorously. Note also that in the AI approach, which relies on an implicit enumeration
of the discrete alternatives, fewer nodes are examined in the tree with the use of heuristics, which
increases further the likelihood of obtaining suboptimal solutions.

On the other hand, consider the network representation shown in Fig. 2 that is implied
by the MELP model of Andrecovich and Westerberg (1985). Here in contrast to the tree, every
node corresponds to a distinct separator. Furthermore, alternative sequences can be represented
by using the same subset of nodes (e.g. Sequence 1: A/BCD, B/CD, C/D, Sequence 2: AB/CD,



A/B, C/D share the node C/D). This network is a more compact representation for modelling the
problem explicitly as an MINLP. The advantage here is that the optimization can be performed
rigorously as then the continuous variables can be optimized simultaneously with the selection of
the configuration. The disadvantage is that one loses the capability of performing the
straightforward decomposition that is possible with the tree. It will be shown later in the paper,
however, that one can still resort to more sophisticated decomposition schemes to rigorously
solve the MINLP problem for the network.

From the above discussion, it then follows that network representations that are
explicitly modeled as MINLP problems provide a more general and rigorous framework for the
optimization.

The next question to be addressed is how to actually postulate or derive the
superstructures. As our experience and the one of other researchers has shown, this is an easier
task for homogeneous systems (e.g. heat exchanger networks, distillation sequences, reactor
networks) than for heterogeneous systems (e.g. total flowsheets). An example of a homogeneous
superstructure is the network in Fig. 2, although it is only restricted to sharp separations. One can
however, extend this representation for multiple feeds, with single feed columns that allow the
possibility of by-passes and nonsharp splits (e.g. see Floudas and Anastasiadis, 1988).

As an additional example of an homogeneous system, consider the synthesis of heat
exchanger networks. Here, one possible representation that allows for stream splitting and
mixing is shown in Fig. 3, where each exchanger unit corresponds to a potential match of pairs
of streams (see Floudas ex al, 1986, Ciric and Floudas, 1988b). A more general and richer
representation for the same problem where the layout and pipe connections can be accounted for,
is shown in Fig. 4 where one only has to specify the maximum number of units in the network
(see Yee and Grossmann, 1988). Note that in this case aside from all the alternatives of Fig. 3,
there is the possibility of rematching the same pair over several exchangers, and to even mix
different process streams or represent multi-stream heat exchangers (see Yee and Grossmann,
1989).

It is interesting to note in the previous example, that in the superstructure of Fig. 3 there
is a one-to-one correspondence between the units and the tasks they can perform (e.g. unit 1
involves a match of HI and Cl). On the other hand in the superstructure of Fig. 4 there is a
one-to-many relationship between the units and the tasks (e.g. unit 1 can perform matches Hl-Cl
or H1-C2). Another example of a one-to-many relationship, is the superstructure for separation
in Fig. 5 proposed by Sargent and Gaminibandara (1976), which in addition to accomodating
sharp and non-sharp splits has embedded Petlyuk columns as alternative designs. From these
examples it is clear that superstructures that have one-to-many relationships between units and
tasks tend to be richer in terms of alternatives that they have embedded. On the other hand, the
more restricted one-to-one superstructures tend to require simpler MINLP models that are
quicker to solve.



Also, it should be noted that higher level representations of these superstructures can be
developed which aggregate the components and streams of these detailed superstructures. Here
again the example per excellence is the heat exchanger network problem, where the targets for
minimum utility cost and minimum number of units can be modelled respectively as LP and
MDLP transportation (Cerda and Westerberg, 1983) or transshipment problems (Papoulias and
Grossmann, 1983). For the case when the stream data are variable (flowrates and temperatures),
the utility target problem can be modelled as a system of inequalities (see Duran and Grossmann,
1986c), while for the case when only the flowrates are variables it can be represented by the
transportation or transshipment equations (see Papoulias and Grossmann, 1983; Andrecovich and
Westerberg, 1985). While these representations clearly simplify the synthesis problem, they also
have the drawback that they do not provide all the explicit information to synthesize a network.

To systematically develop superstructures for heterogeneous systems is in principle a
more difficult task. For instance consider a process flowsheet that is composed of reaction,
separation and heat integration subsystems. One could in principle develop a superstructure by
combining the superstructures for each subsystem. This, however, could lead to a very large
MINLP optimization problem.

Therefore, the major approach that has been taken up to know is to assume that some
preliminary screening is performed (e.g. through heuristics) in order to postulate a smaller
number of alternatives in the superstructure (Kocis and Grossmann, 1987). While this approach
would seem to be restrictive, it does provide a systematic framework for analyzing specific
alternatives at the level of tasks. As an example, consider the synthesis of a plant where a
preliminary screening would indicate that the major options are as follows: single or two stage
compression for the feed, three possible reactor types, possible use of membrane separator for
the purge stream, use of flash separation with the option of absorption/distillation columns.
Figure 6 displays the superstructure for these altematives. This superstructure has actually
embedded a minimum of 24 different configurations. As another example, Fig. 10a shows a
superstructure for the HDA process developed by Kocis and Grossmann (1988b) based on the
alternatives that were postulated by Douglas (1988) in the hierarchical decomposition scheme.
Thus, generating superstructures for heterogeneous systems based on specific alternatives at the
level of tasks is actually not a very difficult problem. However, it is clear that in order to
consider a larger number of alternatives, the more natural approach would be to combine all the
superstructures of the homogeneous subsystems. At this point, it is an open question as to
whether this will require the capability of solving much larger MINLP problems, the
development of strategies to successively aggregate and disaggregate subsystems, or else a
combination with AI techniques (Beltramini et al, 1989) or with the hierarchical decomposition
scheme by Douglas (1985) to systematically eliminate alternatives from a superstructure that
potentially has a very large number of alternatives.



MINLP MODELLING OF SUPERSTRUCTURES

Having developed a superstructure for the candidate designs to be considered, the next
step involves the modelling of the MINLP optimization problem. The major feature in such
models is the modelling of discrete decisions which is typically performed with 0-1 variables.
For most applications it suffices to assign these variables to each potential unit in the
superstructure as the interconnecting streams are activated or deactivated according to the
selection of units. There are, however, cases when it is also necessary to assign 0-1 variables to
the streams (e.g. see Yee and Grossmann, 1989).

The handling of 0-1 variables allows the specification of constraints which are extremely
relevant for synthesizing practical flowsheet structures. Typical examples include the following:

a) Multiple choice constraints for selecting among a subset of units I:

Select only one unit: z^yf1^ 0)

Select at most one unit: / . J , - ^ 1 (3)

Select at least one unit: ^ 7 / ^ 1 (4)

b) If then conditions:

If unit k is selected then unit i must be selected:

Xlc-Xi^O (5)

In addition, 0-1 variables can be related to activate or deactivate continuous variables,
inequalities or equations. As an example consider the condition for the continuous variable x:

If y = l - > L < x < U ,

which can be modelled through the constraint

Ly < x < Uy (6)

The above constraint is often used in conjunction with cost models with fixed cost
charges which again requires the use of 0-1 variables (see Garfinkel and Nemhauser 1972,
Nemhauser and Wolsey, 1988). Furthermore, it has been recently shown by a number of authors
(e.g. Cavalier and Soyster, 1987) that virtually any prepositional logic statement can be
systematically translated into a set of linear inequalities involving 0-1 variables.



While the use of 0-1 variables introduces a very important capability in the modelling of
MINLP problems, it is also true that the way one models an MINLP can have a great impact on
the performance of the MINLP algorithm. This phenomenon has been widely recognized in the
field of integer programming (e.g. see Williams, 1978; Nemhauser and Wolsey, 1988). As an
example consider the logical constraint that may arise in a multiperiod problem:

{ - mz < 0 (7)

where z represents the selection of a given unit and yj the operation of the unit in periods i,
i=l,...m. This constraint simply states that if z=0 no operation of the unit is possible in the m
time periods, while if z=l operation in any of the m periods is possible. While (7) is a
"legitimate" constraint, it turns out that its equivalent representation by the set of inequalities

y r z < 0 i=l,...m (8)

is a much more effective way to model this constraint since its relaxation with continuous
variables y{ introduces a greater number of extreme points with 0-1 values (see Fig. 7) which
greatly reduces the branch and bound enumeration procedure. Another typical example in
modelling is the use of a tight upper bound U in the logical constraint, x - Uy < 0, to tighten the
relaxation problem where the 0-1 variables are treated as continuous.

Some of these empirical observations have led to the theoretical study in integer linear
programming of facets of 0-1 poly topes that define the convex hull of integer programming
problems (Schrijver, 1986). Algorithms are starting to emerge which can systematically
generate approximations to these type of constraints, and hence reformulate a "badly" posed
integer programming problem in order to tighten the continuous relaxation (e.g. see Crowder et
al, 1983, for unstructured 0-1 linear problems, Van Roy and Wolsey, 1987, for MILP problems).

In MINLP, however, there is the additional complication that nonlinearities can also be
often formulated in many different ways which are equivalent, and as expected this can also have
a great impact on the performance of MINLP algorithms. In general, three major empirical
guidelines for a "good" MINLP formulation are the following:

1. Try to keep the problem as linear as possible.

2. Try to develop a formulation that has as tight an NLP relaxation as possible.

3. If possible, reformulate the MINLP as a convex programming problem.

The motivation behind these guidelines requires some basic understanding of the MINLP
algorithms which we will cover in the next section.

MINLP ALGORITHMS

BASIC ALGORITHMS

While there is a vast body of literature on LP, NLP, and on integer LP with special
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MINLP is regarded as a very difficult problem since it corresponds to an NP-hard problem
(Nemhauser and Wolsey, 1988) that is prone to combinatorial explosion for large problems. In
our view, however, it is a mistake to regard these problems as "unsolvable". Not only are the
applications for MINLP extremely rich, but with current methods and technology one can in fact
already solve problems of significant size and complexity as will be shown later in the paper.
Futhermore, with advances in new algorithms and computer architectures it is reasonable to
assume that over the next decade we will see increases in the order of magnitude of sizes of
problems that can be currently solved (e.g. see Pekny and Miller, 1989).

Our objective in this section will be to provide a general overview of the basic MINLP
algorithms, and emphasize their basic ideas and properties. Firstly, for convenience in the
presentation we will assume that the MINLP has the restricted form where the 0-1 variables
appear in linear form and where no equations are involved:

Z = min cTy + f(x)

s.t. By + g(x) £ 0 (PI)

y € Y , x€ X

where Y={y|Ay <a , y € {0,1 }m} , X = {x|xL < x <> xu}

Major algorithms for solving the MINLP problem in (PI) include the following:

a) Branch and bound (Beale, 1977; Gupta, 1980)

b) Generalized Benders Decomposition (Benders, 1962; Geoffrion, 1972)

c) Outer-Approximation (Duran and Grossmann, 1986b)

The branch and bound method for MINLP is a direct extension of the linear case
(MILP). This method starts by relaxing the integrality requirements of the 0-1 variables which
leads to a continuous NLP optimization problem. It then continues by performing a tree
enumeration where a subset of 0-1 variables are succesively fixed at each node. The solution of
the corresponding NLP at each node provides a lower bound for the optimal MINLP objective
function value. This lower bound can then be used to expand the nodes in a breadth first
enumeration (i.e. expand the node with lowest lower bound), or else to fathom nodes in a depth
first enumeration whenever the lower bound exceeds the best current upper bound. Clearly the
size of the tree is dependent of the number of 0-1 variables (maximum 2m+*), although of course
the objective in the search is to hopefully enumerate only a small subset of nodes.

The major disadvantage of the branch and bound method is that it may require the
solution of a relatively large number of NLP subproblems which cannot be updated as readily as
in the linear case where few pivot operations are required to update the LP solution of a new
node. On the other hand, if the MINLP has a tight NLP relaxation the number of nodes to be
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enumerated may be modest. In the limiting case where the NLP relaxation exhibits 0-1 solutions
for the binary variables (convex hull formulation) only one single NLP problem need to be
solved.

In contrast to the branch and bound method, both the Generalized Benders
Decomposition (GBD) and Outer-Approximation (OA) algorithm consist of solving at each
major iteration an NLP subproblem (with all 0-1 variables fixed) and an MILP master problem
as shown in Fig. 8. The NLP subproblems have the role of optimizing the continuous variables
and provide an upper bound to the optimal MINLP solution. The MILP master problems have
the role of predicting a lower bound to the MINLP as well as new 0-1 variable values for each
major iteration. The predicted lower bounds increase monotonically as the cycle of major
iterations proceeds, and the search is terminated when the predicted lower bound coincides or
exceeds the current upper bound.

The main difference between the GBD and OA method lies in the definition of the MILP
master problem. In the case of GBD it is given by a dual representation of the continuous space,
while in the case of the OA it is given by a primal approximation. In particular, given solutions
xk with multipliers |ik of the NLP subproblems for fixed yk, k=l,...K,

s.t. g (x )< -By k (9)

X€ X

the master problem of GBD is given by

z£B=minocGB (10)

s.t. aG B £ cTy + f(xk) + ]T ^k (g j(xk)-b j y) k=l..K

y € Y , a G B € R1

while the master problem of OA is given by
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=

s.t. cTy + f(xk) + V f ( x k ) T ( x - x k) - a0A <> 0

k=l..K

By + g(xk) + V g ( x k ) T ( x - x k ) < 0

y e Y , xe X , OLOAe R1

Note that in both methods the MILP master problems in (10) and (11) accumulate new
constraints as iterations proceed. GBD accumulates one Lagrangian cut in the space of the 0-1
variables, while OA accumulates a set of linear approximations of the nonlinear constraints in
the space of both the 0-1 and continuous variables. It can be actually proved (see Duran and
Grossmann, 1986b), that each Lagrangian cut in GBD represents a surrogate constraint of the
corresponding linear approximations in OA. Therefore, since the master problem of the OA
method is richer in information, it can be proved that it predicts stronger lower bounds than GBD
and therefore it requires fewer major iterations (Duran and Grossmann, 1986b), This then
implies that the OA method requires the solution of fewer NLP subproblems, which in addition
become successively easier to solve as the MILP master problem also predicts values of
continuous variables which provide excellent initial guesses (Kocis and Grossmann, 1989). On
the other hand, it is also clear that the computational demands on the MILP master problem of
OA are greater since when compared to the master of GBD, it contains the continuous variables
as well as a larger number of constraints. Furthermore, it is clear that the advantage in GBD is
that its master problem contains only the 0-1 variables and one scalar variable as well as fewer
constraints.

In terms of convergence, neither GBD nor OA have the property that the convex hull
formulation converges in one single major iteration as would be the case in the branch and bound
method. Here instead the OA algorithm converges in one major iteration if the MINLP reduces
to an MILP as then the master problem in (11) provides an exact representation. In the case of
GBD, convergence cannot be guaranteed in one major iteration for this limiting case. However,
as has been shown by Magnanti and Wong (1981), the optimal formulation for GBD in terms of
number of major iterations is the convex hull formulation for which in practice convergence is
often achieved in few iterations.

As for sufficient conditions for convergence to the global optimum, all the above
algorithms require that the functions in (MINLP) satisfy some form of convexity conditions. The
specific requirements vary with each algorithm. For instance, since the OA algorithm is based on
the construction of supporting hyperplanes with function linearizations, strict convexity is
required by the functions that involve the continuous variables. On the other hand, the branch
and bound method requires that each of the NLP subproblems have a unique solution, and
therefore strict convexity is not required. Finally, in the case of GBD strict convexity is required
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for fixed values of the binary variables, and strict convexity for the Lagrangian function in terms
of the 0-1 variables (Geoffirion, 1972). Note, that this condition is not as stringent as for the OA
algorithm.

EXTENSIONS

The three MINLP algorithms described above can be extended to explicitly handle
nonlinear equations h(x) = 0. In the case of branch and bound this is simply accomplished by
appending these equations to the relaxed NLP subproblems that are solved at each node. For the
case of GBD no modification is required in the master problem (10), as the multipliers |i of the
NLP subproblem with the equations will reflect their effect. In the case of the OA algorithm,
handling of equations in the master problem can be accomplished with the equality relaxation
strategy by Kocis and Grossmann (1987) (OA/ER algorithm). Here, linearizations of the
equations at the solution of the NLP subproblem k, are added to the master problem in (11) by
relaxing them according to the sign of the Lagrange multipliers; that is,

T k f V h ( x k ) T ( x - x k ) l <0 (12)

where Tk = [ t £ 1 and

1 if ^ k > 0

-1 if ^ k < 0

0 if A.f = 0

As has been shown by Kocis and Grossmann (1987) sufficient conditions for global optimality
with the OA/ER algorithm require quasi-convexity of the relaxed nonlinear equations.

In addition to the above cited algorithms, a number of extensions have been suggested
recently. In the case of GBD, Floudas et al (1988) have proposed strategies to partition the
continuous variables into complicating variables that are introduced in the master problem, and
noncomplicating variables that are optimized in the NLP subproblem. In this way, MINLP
problems that are linear in the 0-1 variables and bilinear in the continous variables can be
decomposed into continuous LP subproblems (fixed 0-1 and complicating continuous variables)
and MDLP master problems (involving the 0-1 and complicating continuous variables). Global
optima can then be obtained for each, the LP subproblem and the MILP master, respectively.
However, theoretically this does not imply that the global optimum of the MINLP can be
attained since the lower bound from the master might not always be valid due to nonconvexities
that are introduced in the Lagrangian function. Nevertheless, computational results reported by
Ciric and Roudas (1988a) and Floudas et al (1988) seem to indicate that the success ratio is very
high which is most probably due to the loose approximations in the master problem with which a
larger number of integer points is examined.
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As for the case of the OA/ER algorithm, Kocis and Grossmann (1988a) proposed a two
phase strategy in which nonconvexities are identified numerically with local and global tests in
the first phase where the OA/ER algorithm is applied. In the second phase, linearizations of the
constraints that are identified as being nonconvex, are relaxed with slack variables which are
introduced with a penalty function in the master problem. Also, at this stage, since the master
problem is not guaranteed to predict rigorous lower bounds, the termination criterion is changed
to one where the cycle of major iterations continues until the NLP subproblem fails to decrease
the objective function value. This strategy was shown to yield the global optimum in 80% of a
set of test problems.

Recently, Viswanathan and Grossmann (1989) have developed a new variant of the
OA/ER algorithm that makes use of an augmented penalty function in the master problem
(AP/OA/ER algorithm). The algorithm does not require that an initial guess of the 0-1 variables
be supplied as it starts by solving the relaxed NLP problem. If an integer solution is found the
algorithm stops. Otherwise it proceeds to formulate an MILP master problem that is similar in
nature to the phase two master by Kocis and Grossmann (1988a). However, instead of trying to
identify nonconvex linearizations, slacks are added to all the linearizations of the nonlinear
relaxed equations and inequalities, yielding the master problem:

T p k

s.t. cTy +f(xk) + V / ( x k ) T ( x - x k ) - a 0 A < q (13)

k=l,..KTk p7h(xk)T(x-xk)l < pk

By + g(xk) + Vg(x k ) T (x -x k )< ; sk

y € Y , xe X, a 0 A e R1

qk , pk , sk > 0 , k=l..K

where qk, pk, sk are slack variables with corresponding large finite weights wJ,Wp,w^

For the general case, the cycle of major iterations in AP/OA/ER proceeds until there is
no decrease in the NLP solution. It is interesting to note, however, that if the convexity
conditions are satisfied, the MILP master problem predicts rigorous lower bounds and in this
case this algorithm reduces to the OA/ER algorithm, except that it uses as a starting point the
solution of the relaxed NLP. Computational experience with this method has shown a high
degree of robustness with nonconvex problems.

Among other important extensions, Yuan et al (1987) have extended the OA algorithm
for the case when the 0-1 variables are nonlinear. This is simply accomplished by linearizing the
0-1 variables in the master problem. Convergence to the global optimum can be guaranteed for
the case when these functions are strictly convex. For the branch and bound method, Ostrovsky
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et al (1989) have proposed a strategy in which, at each node corresponding to the best bound, the
relaxed NLP solution is rounded in order to compute an upper bound. The search is terminated
when the lower and upper bounds lie within a specified tolerance. This strategy, however, would
seem to be only suitable for the case when there is a small gap in the relaxed NLP solution.
Finally, Mawengkang and Murtagh (1986) and Mawengkang (1988) have proposed a feasibility
technique where the main idea is to round the relaxed NLP solution to an integer solution with
the least local degradation. This is accomplished through the computer code MINOS by
successively forcing superbasic variables to become nonbasic based on information of the
reduced costs. While this method has no guarantee of global optimality, it has shown to have
very good performance on a set of test problems with modest computational effort (typically
50% of time over the relaxed NLP problem).

COMPUTATIONAL EXPERIENCE

While until very recently there was very little experience reported in the literature for
solving MINLP problems, this situation has undergone a significant change over the last few
years with developments in algorithms for MINLP and computer software for NLP (Murtagh and
Saunders, 1985; Han, 1976; Powell, 1976; Vasantharajan et al 1989), MILP (MPSX, ZOOM),
and modelling systems such as GAMS (Brooke et al, 1988) which have facilitated the
implementation of MINLP algorithms (e.g. Paules and Floudas, 1989; Kocis and Grossmann,
1989).

For instance, Table 1 presents computational results with DICOPT++ (Viswanathan and
Grossmann, 1989) where the AP/OA/ER method has been implemented as part of GAMS using
MINOS for the NLP optimization and MPSX for the MILP master problems. The 18 test
problems in Table 1 involve a variety of applications: e.g. planning, flexibility analysis, retrofits
of heat exchanger networks, batch design problems, complex column designs and flowsheet
synthesis problems. As can be seen, problems with up to 60 0-1 variables and 700 constraints
and variables require reasonable computational effort. Additional computational experience with
MINLP can also be found in Kocis and Grossmann (1989) and Sahinidis and Grossmann (1989).
The latter authors have reported the solution of an MINLP scheduling model for continuous
parallel production lines involving 780 0-1 variables, 23,000 continuous variables and 3,200
constraints. GBD was used by exploiting the structure of the NLP subproblem whose dual
solution can be obtained very efficiently.

Among the major trends that can be identified from the experience in solving MINLP
problems, we can cite the following.

Firstly, problem formulation is one of the most crucial aspects for the successful solution
of MINLP problems. Major features that can greatly enhance the efficient solution and
convergence to the global optimum are tight NLP relaxations which can be accomplished for
instance by tightly bounding the continuous variables, specifying smallest upper bounds in
logical constraints such as in (6) and replacing weak integer constraints such as in (7) by a
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stronger set of inequalities. This has the effect of reducing the number of branches or major
iterations in GBD or in the OA variants. To maximize the occurrence of linear constraints and
minimize the occurrence of nonlinear functions is another desirable guideline for modelling, as
this enhances the robustness of the solution of the NLP subproblems and tends to minimize the
effect of nonconvexities. Also, one should avoid if possible the use of products of 0-1 variables
with continuous variables or functions as this often introduces nonconvexities. Lastly, one
should try to reduce the number of 0-1 variables by exploiting the connectivity in a
superstructure; this has the obvious effect of reducing the potential size of the tree that is to be
examined by the branch and bound methods for MINLP and MILP.

Secondly, no algorithm is consistently superior in all the applications. Branch and
bound is clearly superior if the relaxed NLP happens to exhibit integer solutions. As this is
usually not the case, both GBD and the variants of the OA algorithm will normally outperform
branch and bound which in large problems may require the solution of hundreds or thousands of
NLP subproblems. As for the two latter algorithms, the family of OA algorithms will normally
require much fewer major iterations (typically 3 to 5) than GBD, although the expense in solving
the MILP master problem will be greater. For modest number of binary variables this is often not
a serious limitation. However, this can become the major bottleneck in the computations if the
relaxation in the MILP master is poor and the number of integer variables is large.

A distinct advantage with GBD, is that special structures can be exploited more readily.
For instance, fixing a subset of complicating variables the resulting subproblem might reduce to
an LP, to a convex NLP or to a set of disjoint problems that can be solved in parallel (Geoffiion,
1972). However, although the advantage in GBD is that the MILP master problem is easier to
solve than in the OA methods, the number of major iterations with GBD can be somewhat
unpredictable (many cases 5 to 20, but sometimes up to one hundred with many infeasible NLP
subproblems). This can be a serious limitation if the NLP subproblems are expensive to solve.
One way to reduce the number of major iterations in GBD is to either add extra constraints to the
master problem and/or define some of the continuous variables as complicating variables for the
master problem (e.g. see Yee and Grossmann, 1988; Sahinidis et al, 1989; Ciric and Floudas,
1988b) which then however increases the expense in solving the MILP.

Thirdly, nonconvexities can cause difficulties in two ways. Firstly, the solution to the
NLP subproblems may not be unique, and secondly the master problems in GBD and in the OA
variants may cut-off the optimal solution. At present, a promising method to overcome
nonconvexities for bilinear NLP subproblems is the partitioning scheme for GBD by Floudas et
al. (1988), who have demonstrated the effectiveness of this scheme for the NLP optimization of
the superstructure for heat exchanger networks (Ciric and Floudas, 1988a). As for the master
problem, due to the strong convexity assumptions, the original OA and OA/ER algorithms are
the most sensitive to nonconvexities, while GBD tends to be the least affected by this problem.
This is due to the fact that convexity is only required in the Lagrangian function, and that the
master problem in GBD is poorly constrained and therefore has less likelihood of cutting-off the
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global optimum. On the other hand the most recent AP/OA/ER variant by Viswanathan and
Grossmann (1989) has shown a remarkable degree of robustness to nonconvexities comparable
to GBD. For instance all 18 problems in Table 1 converged to the global optimum despite the
fact that half of these problems involve nonconvexities.

Finally, some other issues or observations that have emerged in the numerical solution
are the following. A desirable feature in the OA algorithms is that the solution of NLP
subproblems can be made successively easier to solve by using as a starting point the continuous
variables predicted by the master problem (see Kocis and Grossmann, 1989). This follows from
the fact that as iterations proceed the master problem becomes an increasingly better
approximation of the MINLP problem. This feature cannot be exploited in GBD since its master
problem does not involve continuous variables. In the case of branch and bound one can also
obtain good guesses for the NLP from the solution of the previous node, although if the
relaxation gap is large, the quality of the guesses for the initial nodes will not always be very
good. As for the solution of the MILP master problems, the requirements by the OA algorithms
will be the highest. In fact, for larger problems we have found that unless one resorts to an
advanced MILP package (e.g. MPSX, MPSIII) these problems are prone to failure due to the
accuracy that is required for the function linearizations, and to the more effective pruning
techniques and features (e.g. special ordered sets) that are needed for large number of 0-1
variables. Future developments in cutting plane techniques (Crowder et al. 1983, Van Roy and
Wolsey, 1987) may offer the possibility of solving with reasonable expense large MILPs with
poor relaxation. Alternatively, recent search techniques (e.g. tabu search, Glover (1988),
simulated annealing (Aaarts and van Laarhoven, 1985), neural networks (Carpenter and
Grossberg, 1988)) could be used instead of solving directly large MINLP problems with poor
relaxation.

SOLUTION STRATEGIES FOR MINLP IN PROCESS SYSTEMS

One obvious approach to the MINLP optimization of process flowsheets is to formulate
the problem and solve it directly with any of the algorithms discussed in the previous section. A
number of successful applications have been reported in the literature using such an approach
(Kocis and Grossmann, 1987, 1988; Floudas and Paules, 1988; Yee and Grossmann, 1988; Ciric
and Floudas, 1988b; Duran and Flores, 1988; Wellons and Reklaitis, 1989). However, it is clear
that in order to increase the reliability and the efficiency of the solution procedure, one ought to
recognize the special structure and properties that characterize the optimal synthesis of process
systems. Up to this date, not much work has been done in this area. Below we briefly describe a
recent modelling-decomposition (M/D) strategy that has been proposed by Kocis and Grossmann
(1988b) and which is especially suitable for heterogeneous networks where there is a one-to-one
correspondence between units and tasks. Its major motivation has been to simplify the solution
of the NLP and MILP problems, and to reduce the undesirable effect of nonconvexities and of
having to optimize "dry units" with zero flows which are temporarily turned off in the
superstructure. The solution of the NLP is simplified by optimizing only the particular flowsheet
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at hand, as opposed to optimizing it within the superstructure as implied by problem (9). The
MILP solution is simplified by only incorporating at each iteration an approximation to the
particular flowsheet. Finally, the effect of nonconvexities is reduced by special modelling
techniques.

The basic idea in the M/D strategy is to first recognize that a flowsheet superstructure
can be viewed as a network consisting of two types of nodes: interconnection nodes (splitters and
mixers) and process unit nodes (reactors, separators). In summary, the modelling is then
performed as follows. Since interconnection nodes play a crucial role in defining the flowsheet
structures and they exhibit well defined equations, special modelling techniques can be applied
to these nodes. In particular, splitters and mixers that imply the choice of one single alternative
can in fact be modelled through linear constraints which avoid the nonconvexities associated to
the use of split fractions. For the case when multiple choices are possible, one can in fact develop
valid linear outer-approximations that properly bound the nonconvex solution space in the MILP
master problem. As for the process unit nodes, the mass balances are expressed in terms of
component flows rather than in terms of fractional compositions. Lastly, the right hand side in
the linearizations of the process units are modified to ensure that nonzero-flows are attained
when the 0-1 variable is set to zero.

As for the decomposition part of this strategy the idea is as follows. Suppose we start by
optimizing a particular flowsheet structure. It is clear that for the existing process units we are
able to obtain linear approximations for the master problem. The question is then how to
generate linear approximations of the "deleted" units in the superstructure. This can actually be
accomplished by suboptimizing groups of units that are tied with existing interconnection nodes.
Since prices (i.e. multipliers) and nonzero flows are available at these nodes, these can be used to
suboptimize the nonexisting units "as if they were to exist" in the superstructure. This then
provides not only nonzero flow conditions, but also points that are often very good for
approximating these units. An example of how a superstructure based on an initial flowsheet can
be decomposed into subsystems to be suboptimized is illustrated in Fig. 9 for the superstructure
in Fig. 6. In this way, by optimizing the initial flowsheet structure, and suboptimizing the groups
of nonexisting units, it then simply suffices to optimize the specific flowsheet that is generated at
subsequent iterations in order to update the MILP. This then has two desirable effects: to only
solve the NLP for each specific flowsheet, and to reduce the size of the MILP since only
linearizations of existing units are incorporated at each iteration. This strategy is currently being
automated in the flowsheet synthesizer PROSYN by Kravanja and Grossmann (1989), where the
heat integration is handled through an extension of the constraints proposed by Duran and
Grossmann (1986c) where area optimization is accounted for.

Another important aspect, is that up to date most of the results that have been reported in
the literature are for systems where the MINLP is represented in equation form using simplified
models. To our knowledge, the work by Harsh et al (1988) is the first where an MINLP
procedure has been interfaced with a process simulator with rigorous models. These authors
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implemented the OA algorithm in FLOWTRAN for the optimal retrofit design of flowsheets
with fixed topology. For the case when the topology is also to be optimized, the M/D strategy
could be used to circumvent the problem of simulating units with zero flows in a superstructure.
It should also be noted that recently Duran and Flores (1988) have developed MINLP models for
synthesizing heat integrated distillation sequences using the OA algorithm with rigorous
thermodynamic models.

Finally, an important comment on solution strategies is the global approach for attacking
the problem through MINLP or through related mathematical programming techniques. The
strategy described above is still based on the idea of a simultaneous solution procedure where
decomposition is being exploited by the problem structure. It is clearly conceptually sound to use
a simultaneous approach since this reduces the risk of distorting trade-offs as interactions are
explicitly accounted for (see also Grossmann, 1985).

On the other hand, it is always tempting to perform a sequential decomposition where
instead the problem is sequentially partitioned according to a hierarchy of goals. A very good
example of this is the synthesis procedure for heat exchanger networks that was proposed by
Floudas et al (1986). Here, the problem was decomposed by minimizing the utility cost first with
an LP, predicting the units with their stream matches by minimizing the number of units with an
MILP, and finally optimizing with NLP a superstructure where the units are known but not their
interconnections. This strategy, which was implemented in MAGNETS, has proved to be in
general quite efficient. However, it has also had limitations, one of them being that due to the
sequential decomposition suboptimal solutions can be obtained, especially when extended to
multiperiod problems (Floudas and Grossmann, 1987; Gautam et al> 1988). The lesson to be
learned here is that "insight" driven decomposition has significant risks of producing suboptimal
solutions. However, at the same time that does not mean that this approach should be
abandoned. For instance, in the heat exchanger synthesis problem Gundersen and Grossmann
(1988) and Colberg and Morari (1989) have shown that by modifying the MILP step so as to
anticipate the effects of area (e.g. using considerations of vertical heat transfer), the problem of
obtaining suboptimal solutions is greatly reduced. Thus, the conclusions would seem that when
performing decomposition the clue is to develop aggregate models that can to a large extent
anticipate the decisions that are made downstream in a design. Good examples of this are the
simultaneous optimization and heat integration method by Duran and Grossmann (1986c), and
the compact scheduling models developed by Birewar and Grossmann (1989) that can
effectively anticipate the effect of sequencing of batches at the design stage in multiproduct
batch plants.

APPLICATIONS

Over the last 5 years MINLP optimization models have been reported for the synthesis
of process flowsheets, heat exchanger networks, separation sequences, utility plants, and design
of batch processes. Rather than describing in detail each of these works, we will briefly highlight
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three examples from our research group at Carnegie Mellon to illustrate the capabilities and the
current limitations of the MINLP approach.

Firstly, Kocis and Grossmann (1988b) have recently synthesized the HDA process that
has been studied extensively by Douglas (1988). The superstructure for this process
(heterogeneous network with one-to-one relationship between units and tasks) is shown in Fig.
10a which was derived based on a preliminary qualitative analysis of alternatives described in
Douglas (1988). Given the basic options considered for selection of reactors, use of membrane
separators and absorbers, and a restricted set of alternatives for the separation and recycle it is a
relatively simple task to develop the superstructure representation. In this case the simplified
nonlinear models were used to model the problem as an MINLP, which involves 13 0-1
variables, 672 continuous variables, and 678 constraints (140 nonlinear equations, 567 linear
equations, 71 linear inequalities). The optimal solution, which is shown in Fig. 10b, was obtained
with both the M/D strategy and with the AP/OA/ER algorithm on the full MINLP using MINOS
and MPSX. The M/D strategy required 2 min of CPU time (DSM-3083), while AP/OA/ER
required 8 min; both took 2 major iterations. This then shows the desirability of developing
strategies that can exploit the structure of flowsheets. Furthermore, the example also shows how
a qualitative pre-screening can lead to MINLP problems that are of reasonable size.

Secondly, Yee and Grossmann (1988) have developed a new superstructure
representation for heat exchanger networks (see Fig. 4) which is particularly suitable for retrofit
design (homogeneous network with one-to-many relations of units to tasks). 0-1 variables are
used to denote the assignment of matches to units, and existence of pipe connections for the
streams. A small example is shown in Fig. 11, where the optimal retrofit of the existing network
(Fig. l la) is shown in Fig. l ie . The solution that is obtained is rather unexpected and different
from the intutitive solution in Fig. l ib . Note that in Fig. 1 lc the bottom stream of the column is
assigned to the cooler, and the reboiler of the column is reassigned for cooling purposes! This
MINLP which involves 30 0-1 variables, 74 continuous variables and 144 constraints, was
solved with the AP/OA/ER algorithm and with GBD using transshipment constraints to tighten
the master problem. The AP/OA/ER algorithm required 100 sec (IBM-3083) and 3 major
iterations, while GBD required 240 sec and 17 major iterations. The explanation for the slow
convergence is the fact that the relaxed NLP solution had an objective value of only $3,777
compared to the $29,300 for the MINLP solution. Also while GBD required more iterations, its
master problem took on average 8 sec per iteration versus 27 sec for the AP/OA/ER algorithm.
Thus, this example shows that richer superstructures may exhibit poor NLP relaxations and
consequently require considerable computational effort.

Lastly, Viswanathan and Grossmann (1989) have developed an MINLP model for
determining the optimal feed tray location and the number of plates in distillation columns. The
superstructure which is shown in Fig 12, consists of a number of potential trays, with subsets of
them having potential feeds and by-pass streams to the condenser and reboiler (homogeneous
network with one-to-one relation of units to tasks). The specific example that was considered
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involved the separation of benzene and toluene and was modelled tray by tray with ideal
thermodynamic correlations. For the case when a fixed number of 26 trays was specified, the
MINLP involved 10 0-1 variables, 238 continuous variables and 239 constraints. The optimal
feed tray location from among 10 candidate plates was determined by solving the relaxed NLP in
19 sec (IBM-3083). For the case when the number of trays was optimized for a fixed feed tray
location from among 30 candidate trays, the MINLP involved 30 0-1 variables, 338 continuous
variables and 467 constraints. In this case, the AP/OA/ER algorithm required 4 major iterations
and 103 sec (IBM-3090). This example then shows that MINLP methods can be applied to
complex process models.

CONCLUDING REMARKS

In this paper we have tried to present an overview of MINLP strategies and algorithms
for process synthesis. From this review, it is clear that there has been considerable progress with
this approach over the last few years. At the FOCAPD meeting in 1980, where the first session
on process synthesis took place, heuristics and thermodynamic targets were dominant due to the
skepticism and little hope that there was with the mathematical programming approach. At this
point in time, however, we have evolved to a state where the modelling and solution of large-
scale MINLP problems for synthesis can no longer be regarded as a Utopia. Results by our group
at Carnegie Mellon, and by other researchers clearly support this claim.

While one can expect that the scope of MINLP optimization for synthesis will increase,
it is also clear that a number of important challenges remain unsolved, and which most likely
will be the subject of future work. Below we cite few major open questions:

1. How to systematically develop superstructures for heterogeneous systems?

2. How to effectively solve MBLP and MINLP problems with poor relaxations?

3. What is the likely impact on MINLP of recent algorithmic developments such as
Karmarkar's algorithm or strong cutting planes techniques?

4. What is the role of the new generation of combinatorial search techniques for
synthesis such as neural networks, simulated annealing and tabu search?

5. How to effectively exploit the computational power of parallel computers to
increase by several orders of magnitude the size of MINLP problems that can
currently be solved?

6. How to effectively combine and integrate the MINLP optimization paradigm with
qualitative AI techniques?

Although these questions remain largely unanswered at this point, there is no doubt that over the
next decade we will see some exciting developments along these lines.
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Table 1

Computational Results with DICOPT++

(Augmented-Penalty/Outer-Approximation/Equality-Relaxation)

Problem

LAZIMI
HW74
NONCON
YUAN
CAPITAL

FLEX
REL1
EX3
EX4

BATCH
BATCH8
BATCH12
TABATCH

UTILRED
TFYHEN
EX5FEED
EX5TRAY
HDASS

0-1

2
3
3
4
10

4
16
8

25

24
40
60
24

28
30
10
30
13

Size MINLP
Cont.V.

8
9
3
4
3

12
21
26
7

23
33
41
71

118
74

238
338
709

Const.

5
9
6
10
7

16
18
32
31

74
142
218
129

168
144
239
467
719

Iterations*

1
4
1
3
4

3
3
5
5

3
4
4
3

3
3
1
4
3

Time**
(sec)

0.22
2.43
0.1
1.87
2.32

2.24
17.9

3.7
65.1

7.9
24.4
38.5
53.6

41.9
102.0

19.2
103.6
482.0

%
NLP:MILP

100:00
26:74
100:00
36:64
22:78

46:54
36:64
51:49
9:91

70:30
63:37
45:55
53:47

14:86
20:80
100:00
39:61
84:16

* N iterations require N NLP subproblems and N-1 MILP master problems

" Total time NLP:MINOS / MILP:MPSX. All problems on IBM-3083,
except EX5TRAY on IBM-3090
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Fig. 1. Tree representation for separation of 4-component mixture.
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Fig. 2. Network representation for separation of 4-component mixture.
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Fig. 3. Heat exchanger network superstructure by Floudas et al (1986).



Fig. 4. Superstructure by Yee and Grossmann (1988) for
heat exchanger network.



A
B
C
D

B

Fig. 5. Superstructure by Sargent and Gaminibandara (1976)
for separation of 4 components.
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Fig. 7. Plot of feasible region for alternative constraint models.
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