Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility

Elmar Mertens
Federal Reserve Board, em@elmarmertens.com

James Nason
North Carolina State University, jmnason@ncsu.edu

Follow this and additional works at: http://repository.cmu.edu/sem_conf
INFLATION AND PROFESSIONAL FORECAST DYNAMICS: an evaluation of stickiness, persistence, and volatility

Elmar Mertens ¹ James M. Nason ²

¹Federal Reserve Board
²North Carolina State University

The results presented here do not necessarily represent the views of the Federal Reserve System or the Federal Open Market Committee

July 2015
What is the relationship between survey forecasts and inflation?

Inflation process is characterized by . . .
- drifting mean / trend component
- time-varying volatility in shocks to trend and gap
- time-varying persistence

Evidence about survey forecasts says . . .
- surveys are good at forecasting inflation
- but there are also persistent forecast errors
- consistent with informational frictions in survey formation
QUESTIONS MOTIVATED BY INFORMATION FRICTIONS

① Does “stickiness” vary over time?

② How does “stickiness” interact with inflation?

③ Is “stickiness” related to monetary regimes?
1) Stock-Watson-type UC model of inflation

\[
\pi_t = \tau_t + \epsilon_t \\
\tau_t = \tau_{t-1} + \varsigma \eta_t - \varsigma \\
\epsilon_t = \varsigma \nu_t - \varsigma \\
\log \varsigma_{2l,t} = \log \varsigma_{2l,t-1} + \sigma_l \zeta_{l,t}
\]

\(\forall l = \eta, \nu \)

2) Sticky/noisy information in survey forecasts

\[
F_t \pi_t + h = (1 - \lambda) E_t \pi_t + h + \lambda F_{t-1} \pi_t + h
\]

\(\lambda_t = \lambda_{t-1} + \sigma_\lambda \zeta_{\lambda,t} \)

\(0 \leq \lambda_t \leq 1 \)

\(\theta_t = \theta_{t-1} + \sigma_\theta \zeta_{\theta,t} \mid \theta_t \mid \leq 1 \)
1) Stock-Watson-type UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \]
\[\tau_t = \tau_{t-1} + \varsigma_{\eta,t-1} \eta_t \]
\[\varepsilon_t = \varsigma_{\nu,t-1} \nu_t \]
\[\log \varsigma_{l,t}^2 = \log \varsigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall \ l = \eta, \ \nu \]

2) Sticky/noisy information in survey forecasts
STOCK-WATSON SV ESTIMATES $\zeta_{t|T}$
Trend SV (black), Gap SV (red)
1) Filtered Trend is EWMA

\[\tau_{t|t} = (1 - K_t)\tau_{t-1|t-1} + K_t\pi_t \]

where \(K_t \) is the Kalman gain for the trend
PROPERTIES OF THE UCSV MODEL FOR INFLATION

1) **Filtered Trend is EWMA**

\[
\tau_{t|t} = (1 - K_t)\tau_{t-1|t-1} + K_t\pi_t
\]

where \(K_t\) is the Kalman gain for the trend

2) **IMA representation**

\[
\Delta\pi_t = (1 - \psi_t L)e_t \quad e_t = \pi_t - E(\pi_t|\pi_{t-1})
\]

\[
\frac{\partial\pi_t + \infty}{\partial e_t} = (1 - \psi_t) = K_t
\]
STOCK-WATSON INFLATION PERSISTENCE

Long-run response $\frac{\partial \pi_{t+\infty}}{\partial e_t} = (1 - \psi_t)$
1) Stock-Watson-type UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \]
\[\tau_t = \tau_{t-1} + s_{\eta,t-1} \eta_t \]
\[\varepsilon_t = s_{\nu,t-1} \nu_t \]
\[\log \varsigma_{l,t}^2 = \log \varsigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall \ l = \eta, \ \nu \]

2) Sticky/noisy information in survey forecasts
1) Stock-Watson-type UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \]
\[\tau_t = \tau_{t-1} + \varsigma_{\eta,t-1} \eta_t \]
\[\varepsilon_t = \varsigma_{\nu,t-1} \nu_t \]

\[\log \varsigma_{l,t}^2 = \log \varsigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall l = \eta, \nu \]

2) Sticky/noisy information in survey forecasts

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]
1) Stock-Watson-type UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \]
\[\tau_t = \tau_{t-1} + \zeta_{\eta,t-1} \eta_t \]
\[\varepsilon_t = \theta \varepsilon_{t-1} + \zeta_{\nu,t-1} \nu_t \]

\[\log \sigma_{l,t}^2 = \log \sigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall \ l = \eta, \ \nu \]

2) Sticky/noisy information in survey forecasts

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]
1) **Stock-Watson-type UC model of inflation**

\[
\pi_t = \tau_t + \varepsilon_t \\
\tau_t = \tau_{t-1} + \varsigma_{\eta,t-1} \eta_t \\
\varepsilon_t = \theta \varepsilon_{t-1} + \varsigma_{\nu,t-1} \nu_t \\
\log \varsigma_{l,t}^2 = \log \varsigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall \ l = \eta, \nu
\]

2) **Sticky/noisy information in survey forecasts**

\[
F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h}
\]
1) Stock-Watson-type UC model of inflation

\[
\begin{align*}
\pi_t &= \tau_t + \varepsilon_t \\
\tau_t &= \tau_{t-1} + s_{\eta,t-1} \eta_t \\
\varepsilon_t &= \theta_{t-1} \varepsilon_{t-1} + s_{\nu,t-1} \nu_t \\
\log s_{l,t}^2 &= \log s_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall \ l = \eta, \nu
\end{align*}
\]

2) Sticky/noisy information in survey forecasts

\[
F_t \pi_{t+h} = (1 - \lambda_{t-1}) E_t \pi_{t+h} + \lambda_{t-1} F_{t-1} \pi_{t+h}
\]

... and add new time-varying parameters
1) Stock-Watson-type UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \]
\[\tau_t = \tau_{t-1} + \varsigma_{\eta,t-1} \eta_t \]
\[\varepsilon_t = \theta_{t-1} \varepsilon_{t-1} + \varsigma_{\nu,t-1} \nu_t \]
\[\log \varsigma_{l,t}^2 = \log \varsigma_{l,t-1}^2 + \sigma_l \zeta_{l,t} \quad \forall l = \eta, \nu \]

2) Sticky/noisy information in survey forecasts

\[F_t \pi_{t+h} = (1 - \lambda_{t-1}) E_t \pi_{t+h} + \lambda_{t-1} F_{t-1} \pi_{t+h} \]

... and add new time-varying parameters

\[\lambda_t = \lambda_{t-1} + \sigma_\lambda \zeta_{\lambda,t} \quad 0 \leq \lambda_t \leq 1 \]
\[\theta_t = \theta_{t-1} + \sigma_\theta \zeta_{\theta,t} \quad |\theta_t| \leq 1 \]
RELATED LITERATURE

Surveys and fundamentals
- Coibion & Gorodnichenko (2014), Nason & Smith (2014)
- Ang, Bekaert, & Wei (2007), Faust & Wright (2013)

Inflation models
- Cogley & Sargent (2005), Cogley, Primiceri, & Sargent (2010)

Particle filters
AGENDA

1 Sticky Information Model
2 Nonlinear State Space
3 Results
SI Law of Motion

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]

\[= (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j E_{t-j} \pi_{t+h} \]
STICKY SURVEY FORECASTS
constant SI weight

SI Law of Motion

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]

\[= (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j E_{t-j} \pi_{t+h} \]

Implication: Persistent forecast errors

\[(E_t - F_t) \pi_{t+h} = \lambda (E_{t-1} - F_{t-1}) \pi_{t+h} + e_t \]

Coibion & Gorodnichenko (2014, forth AER): "SI" law of motion consistent with...

- Sticky information (Mankiw & Reis, 2002)
- Noisy information/Rational inattention (Woodford, 2002; Sims, 2003; Mackowiak & Wiederholt, 2009)
STICKY SURVEY FORECASTS
constant SI weight

SI Law of Motion

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]

\[= (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j E_{t-j} \pi_{t+h} \]

Implication: Persistent forecast errors

\[(E_t - F_t) \pi_{t+h} = \lambda (E_{t-1} - F_{t-1}) \pi_{t+h} + e_t \]

Coibion & Gorodnichenko (2014, forth AER):

“SI” law of motion consistent with . . .

- Sticky information (Mankiw & Reis, 2002)
- Noisy information/Rational inattention (Woodford, 2002; Sims, 2003; Mackowiak & Wiederholt, 2009)
STICKY SURVEY FORECASTS
NEW: time-varying SI weight

SI Law of Motion

\[F_t \pi_{t+h} = (1 - \lambda_{t-1}) E_t \pi_{t+h} + \lambda_{t-1} F_{t-1} \pi_{t+h} \]

\[= \sum_{j=0}^{\infty} (1 - \lambda_{t-1-j}) \cdot \left(\prod_{l=0}^{j-1} \lambda_{t-1-l} \right) E_{t-j} \pi_{t+h} \]

Implication: Persistent forecast errors

\[(E_t - F_t) \pi_{t+h} = \lambda_{t-1} (E_{t-1} - F_{t-1}) \pi_{t+h} + e_t \]

Coibion & Gorodnichenko (2014, forth AER):

“SI” law of motion consistent with . . .

• Sticky information (Mankiw & Reis, 2002)
• Noisy information/Rational inattention (Woodford, 2002; Sims, 2003; Mackowiak & Wiederholt, 2009)
SW-UC model of inflation

\[
\pi_t = \tau_t + \epsilon_t \quad \tau_t = \tau_{t-1} + \zeta_{\eta,t-1}\eta_t \quad E_{t-1}\epsilon_t = 0
\]

\[
E_t \pi_{t+h} = E(\pi_{t+1}|\tau^t, \epsilon^t) = \tau_t
\]
SW-UC model of inflation

\[
\pi_t = \tau_t + \varepsilon_t \quad \tau_t = \tau_{t-1} + s_{\eta,t-1} \eta_t \quad E_{t-1} \varepsilon_t = 0
\]

\[
E_t \pi_{t+h} = E (\pi_{t+1} | \tau^t, \varepsilon^t) = \tau_t
\]

Forecaster \(i\) receives noisy signal

\[
s_t^i = \tau_t + e_t^i \quad e_t^i \sim N(0, \sigma_e^2) \quad F_t^i \pi_{t+h} = E(\tau_t | s_t^{i,t})
\]
<table>
<thead>
<tr>
<th>SW-UC model of inflation</th>
</tr>
</thead>
</table>
| $\pi_t = \tau_t + \varepsilon_t$
$\tau_t = \tau_{t-1} + \zeta_{\eta,t-1} \eta_t$
$E_{t-1} \varepsilon_t = 0$
$E_t \pi_{t+h} = E(\pi_{t+1}|\tau^t, \varepsilon^t) = \tau_t$ |

<table>
<thead>
<tr>
<th>Forecaster i receives noisy signal</th>
</tr>
</thead>
</table>
| $s^i_t = \tau_t + e^i_t$
$e^i_t \sim N(0, \sigma_e^2)$
$F^i_t \pi_{t+h} = E(\tau_t|s^{i,t})$
$E(\tau_t|s^{i,t}) = E(\tau_t|s^{i,t-1}) + \kappa_{t-1} (s^i_t - E(s^i_t|s^{i,t-1}))$ |
NOISY INFORMATION EXAMPLE

SW-UC model of inflation

\[
\pi_t = \tau_t + \epsilon_t \quad \tau_t = \tau_{t-1} + \varsigma_{\eta, t-1} \eta_t \quad E_{t-1} \epsilon_t = 0
\]

\[
E_t \pi_{t+h} = E \left(\pi_{t+1} \mid \tau^t, \epsilon^t \right) = \tau_t
\]

Forecaster \(i \) receives noisy signal

\[
s^i_t = \tau_t + e^i_t \quad e^i_t \sim N(0, \sigma^2_e) \quad F_t^i \pi_{t+h} = E(\tau_t \mid s^{i,t})
\]

\[
E(\tau_t \mid s^{i,t}) = E(\tau_t \mid s^{i,t-1}) + \kappa_{t-1} \left(s^i_t - E(s^i_t \mid s^{i,t-1}) \right)
\]

Average Forecast

\[
F_t \pi_{t+h} = \int_i F_t^i \pi_{t+h} \, di
\]

\[
F_t \pi_{t+h} = \kappa_{t-1} E_t \pi_{t+h} + (1 - \kappa_{t-1}) F_{t-1} \pi_{t+h}
\]
SW-UC model of inflation

\[\pi_t = \tau_t + \varepsilon_t \quad \tau_t = \tau_{t-1} + s_{\eta,t-1} \eta_t \quad E_{t-1} \varepsilon_t = 0 \]

\[E_t \pi_{t+h} = E (\pi_{t+1} | \tau^t, \varepsilon^t) = \tau_t \]

Forecaster \(i \) receives noisy signal

\[s^i_t = \tau_t + e^i_t \quad e^i_t \sim N(0, \sigma^2_e) \quad F_t^i \pi_{t+h} = E(\tau_t | s^{i,t}) \]

\[E(\tau_t | s^{i,t}) = E(\tau_t | s^{i,t-1}) + \kappa_{t-1} (s^i_t - E(s^i_t | s^{i,t-1})) \]

Average Forecast \(F_t \pi_{t+h} = \int_i F_t^i \pi_{t+h} \, di \)

\[F_t \pi_{t+h} = \kappa_{t-1} E_t \pi_{t+h} + (1 - \kappa_{t-1}) F_{t-1} \pi_{t+h} \]

SI weight \(\lambda_t \) corresponds inversely to Kalman gain \(\kappa_t \)
RECURSIVE SI LAW OF MOTION
consider the case of a constant AR for the inflation gap . . .

UC model of inflation

\[x_t = \begin{bmatrix} \tau_t \\ \varepsilon_t \end{bmatrix} \]

\[\pi_t = \delta_x x_t \quad \Rightarrow \quad E_t \pi_{t+h} = \delta_x E_t x_{t+h} \]

\[x_t = \Theta x_{t-1} + \Xi_{t-1} \omega_t \quad \Rightarrow \quad E_t x_{t+h} = \Theta^h x_t \]

SI forecasts

\[F_t \pi_{t+h} = (1 - \lambda_{t-1}) E_t \pi_{t+h} + \lambda_{t-1} F_{t-1} \pi_{t+h} \]

\[\Rightarrow \quad F_t \pi_{t+h} = \delta_x F_t x_{t+h} \]

\[\Rightarrow \quad F_t x_{t+h} = \Theta^h F_t x_t \]

Recursive SI representation

\[F_t x_t = (1 - \lambda_{t-1}) x_t + \lambda_{t-1} \Theta F_{t-1} x_{t-1} \]
AGENDA

1. Sticky Information Model
2. Nonlinear State Space
3. Results
“Linear” States S_t

\[
\begin{bmatrix}
 x_t \\
 F_t x_t
\end{bmatrix} = S_t =
\begin{bmatrix}
 \Theta \\
 (1 - \lambda_{t-1}) \Theta \\
 0 \\
 \lambda_{t-1} \Theta
\end{bmatrix}
\begin{bmatrix}
 S_{t-1} \\
 \lambda_{t-1} \Theta
\end{bmatrix} +
\begin{bmatrix}
 B_{t-1} \\
 (1 - \lambda_{t-1}) \Theta
\end{bmatrix}
\begin{bmatrix}
 S_{t-1} \\
 \lambda_{t-1} \Theta
\end{bmatrix} \cdot w_t
\]

“Non-Linear” States V_t

\[
V_t = \begin{bmatrix}
 \lambda_t \\
 \log \zeta_{\eta, t}^2 \\
 \log \zeta_{\nu, t}^2
\end{bmatrix} \sim p (V_t | V_{t-1})
\]
“Linear” States S_t

\[
\begin{bmatrix}
 x_t \\
 F_t x_t
\end{bmatrix} = S_t = \begin{bmatrix}
 \Theta_{t-1} \\
 (1 - \lambda_{t-1}) \Theta_{t-1} \lambda_{t-1} \Theta_{t-1}
\end{bmatrix}
\begin{bmatrix}
 \Theta_{t-1} \\
 \lambda_{t-1} \Theta_{t-1}
\end{bmatrix} S_{t-1} + \begin{bmatrix}
 B_{t-1} \\
 (1 - \lambda_{t-1}) B_{t-1}
\end{bmatrix} w_t
\]

“Non-Linear” States \mathcal{V}_t

\[
\mathcal{V}_t = \begin{bmatrix}
 \lambda_t \\
 \log \varsigma_{\eta,t}^2 \\
 \log \varsigma_{\nu,t}^2 \\
 \theta_t
\end{bmatrix} \sim p (\mathcal{V}_t | \mathcal{V}_{t-1})
\]
"Linear" States S_t

\[
\begin{bmatrix}
 x_t \\
 F_t x_t
\end{bmatrix} = S_t = \begin{bmatrix}
 \Theta_{t-1} & 0 \\
 (1 - \lambda_{t-1}) \Theta_{t-1} & \lambda_{t-1} \Theta_{t-1}
\end{bmatrix} S_{t-1} + \begin{bmatrix}
 B_{t-1} \\
 (1 - \lambda_{t-1}) B_{t-1}
\end{bmatrix} \omega_t
\]

Interaction between λ_t and (B_t, Θ_t) and TVP-transition!

"Non-Linear" States \mathcal{V}_t

\[
\mathcal{V}_t = \begin{bmatrix}
 \lambda_t \\
 \log \varsigma_{\eta,t}^2 \\
 \log \varsigma_{\nu,t}^2 \\
 \theta_t
\end{bmatrix} \sim p(\mathcal{V}_t|\mathcal{V}_{t-1})
\]
Measurement Vector

\[
y_t = \begin{bmatrix}
\pi_t^* \\
\pi_{t,t+1}^{SPF} \\
\vdots \\
\pi_{t,t+5}^{SPF}
\end{bmatrix} = \begin{bmatrix}
\pi_t \\
F_t \pi_{t+1} \\
\vdots \\
F_t \pi_{t+5}
\end{bmatrix} + \begin{bmatrix}
\xi_{t,\pi} \\
\xi_{t,t+1} \\
\vdots \\
\xi_{t,t+5}
\end{bmatrix} = C_t S_t + \xi_t
\]

Data

- Real-time measure of realized inflation \(\pi_t^* \)
- SPF surveys for GDP/GNP deflator 1968:Q4 – 2015:Q2
- Forecast horizons up to one year out
- Surveys are collected mid-quarter \(t \), treated as \(F_{t-1}(\cdot) \)
Nonlinear state space with conditional linearity

Data: \(Y_t \sim p(Y_t|S_t, V_t; \Psi) \)

States: \(S_t \sim p(S_t|S_{t-1}, V_{t-1}; \Psi) \)
\(V_t \sim p(V_t|V_{t-1}; \Psi) \)
\(S_t|(Y^t, V^t; \Psi) \sim N(S_{t|t}, \Sigma_{t|t}) \)

Previous draft of the paper:
Particle filtering and smoothing conditional on calibrated \(\Psi \)

Revised draft: “Particle Learning”
Online estimation of \(\Psi \)
embedded in particle filter and smoother
(see Storvik, 2002; Carvalho et al, 2010)
AGENDA

1. Sticky Information Model
2. Nonlinear State Space
3. Results
• Joint UC-SI state space

• TVP-AR(1) in inflation gap

• GDP/GNP deflator, real time 1968:Q3 – 2015:Q1

• SPF for $h = 1, \ldots, 5$

• Estimated with particle learning
\[F_t \pi_t = (1 - \lambda_{t-1}) \pi_t + \lambda_{t-1} F_{t-1} \pi_t \]
INFLATION GAP
RE (black), SI (red), filtered estimates
SPF AND TREND INFLATION
One-step ahead forecast (red), inflation (blue), SI trend (black)
SPF AND TREND INFLATION
Two-steps ahead forecast (red), inflation (blue), SI trend (black)
SPF AND TREND INFLATION
Three-steps ahead forecast (red), inflation (blue), SI trend (black)
SPF AND TREND INFLATION
Four-steps ahead forecast (red), inflation (blue), SI trend (black)
STOCHASTIC VOLATILITY IN TREND SHOCKS

Top: filtered, bottom: smoothed
STOCHASTIC VOLATILITY IN GAP SHOCKS

Top: filtered, bottom: smoothed
SI WEIGHT λ_t

top: filtered, bottom: smoothed
SI WEIGHT AND MODEL SPECIFICATION

λ_t: TVP-AR(1) in red
SI WEIGHT AND MODEL SPECIFICATION

λ_t: TVP-AR(1) in red, Const-AR with $\theta = 0$ in black
SI WEIGHT AND (ONE MINUS) INFLATION PERSISTENCE

Blue: IMA coefficient ψ_t from $\Delta \pi_t = (1 - \psi_t L) e_t$
1. Does “stickiness” vary over time?
 Yes! Surveys have been quite sticky over the last couple of decades, but they were much less sticky before the mid-1980s.

2. How does “stickiness” interact with inflation?
 Stickiness seems to rise with falling inflation persistence and decreasing trend volatility.

3. Is “stickiness” related to monetary regimes?
 For future research: Stickiness seems to coincide with “well anchored” inflation expectations.