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Abstract

Many natural games have both high and low cost Nash
equilibria: their Price of Anarchy is high and yet their
Price of Stability is low. In such cases, one could hope to
move behavior from a high cost equilibrium to a low cost
one by a “public service advertising campaign” encouraging
players to follow the low-cost equilibrium, and if every
player follows the advice then we are done. However, the
assumption thateveryonefollows instructions is unrealistic.
A more natural assumption is that some players will follow
them, while other players will not. In this paper we consider
the question of to what extent can such an advertising
campaign cause behavior to switch from a bad equilibrium
to a good one even if only a fraction of people actually
follow the given advice, and do so only temporarily. Unlike
the “value of altruism” model, we assume everyone will
ultimately act in their own interest.

We analyze this question for several important and
widely studied classes of games including network design
with fair cost sharing, scheduling with unrelated machines,
and party affiliation games (which include consensus and
cut games). We show that for some of these games (such
as fair cost sharing), a randomα fraction of the population
following the given advice is sufficient to get a guarantee
within an O(1/α) factor of the price of stability for any
α > 0. For other games (such as party affiliation games),
there is a strict threshold (in this case,α < 1/2 yields almost
no benefit, yetα > 1/2 is enough to reach near-optimal
behavior). Finally, for some games, such as scheduling,
no valueα < 1 is sufficient. We also consider a “viral
marketing” model in which certain players are specifically
targeted, and analyze the ability of such targeting to influence
behavior using a much smaller number of targeted players.
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1 Introduction

Understanding thequality of Nash equilibria in a game has
been a major focus of algorithmic game theory. The main
motivation is to understand what is the additional cost that
is incurred when we assume that agents are behaving in a
strategic manner, rather than performing a global optimiza-
tion.

Koutsoupias and Papadimitriou [14] proposed the no-
tion of Price of Anarchy (PoA)as the ratio of the cost of the
worst Nash equilibrium to the social optimum [16]. The PoA
has been studied for a large variety of games, including rout-
ing, network design with cost-sharing, job scheduling, net-
work creation etc. (see [17, 9, 12, 2, 10, 13]). While the PoA
takes a worst-case view regarding the resulting Nash equi-
librium, thePrice of Stability (PoS)[4, 8] takes the reverse
view, and considers the ratio of the lowest-cost Nash equilib-
rium to the social optimum. In fact, for many natural games
the Price of Anarchy may be very large while the Price of
Stability is quite low. For example, in job scheduling on un-
related machines the Price of Anarchy is unbounded while
there always is a Nash equilibrium which is socially optimal
(and hence the Price of Stability is1). Another example is
fair cost-sharing games withn players, where the Price of
Anarchy isΘ(n) and the Price of Stability isΘ(log n).

In cases where there are both high and low cost Nash
equilibria, a central authority could hope to “move” behavior
from a high cost equilibrium to a low cost one by running
a public service advertising campaign promoting the better
behavior. If indeedeveryonefollows the given advice, then
we reach the desired equilibrium. This has motivated much
of the research on price of stability [4]. The starting point
of our work, however, is the realization that it is quite a
lot to assume that everyone will follow any given piece
of advice, even if the behavior is optimal if everyone else
follows it as well. A more realistic assumption is that we
might advertise a certain recommended behavior and then
some fraction0 < α < 1 of players will actually go
along. In this paper, we consider the question of what can
be done in such a scenario, where a public authority would
like to encourage behavior to move from a bad equilibrium
to a good one, but can only count on a fraction of players
acting in the desired manner. Is affecting a small constant
fraction of players sufficient to cause the rest of the players
to head towards a low-cost equilibrium, or on the other hand



is even a small constant fractionnotpaying attention enough
to cause the whole thing to unravel? What we show is that
certain well-studied games are quite resilient to this setting,
resulting in low-cost equilibria for any constantα > 0; some
have a threshold property (e.g., producing good equilibriafor
α > 1/2 but poor equilibria forα < 1/2) and some perform
poorly for all constantα < 1.

As a motivating example consider a traffic control set-
ting. Suppose that currently we have reached some equi-
librium which has a high average latency. The authorities
would like to change route selections in order to improve the
social welfare. One possible way of changing a driver’s pre-
ferred route is by posting advertisements (e.g., road signs)
suggesting an alternative (for example:The best route to
reach the bridge is ...). Some drivers would follow the ad-
vertisements (road signs) while others would ignore them
and maybe even try to minimize their driving time given
that only some drivers follow the advertisement and switch
routes. We would like to assume that eventually every driver
would act to minimize driving time conditioned on the be-
havior of the others (and thus the advertisements have a only
limited time effect). The hope is that by having some drivers
switch routes, we would converge eventually to a better over-
all equilibrium. A similar motivation can be given to the fair
cost-sharing games which we discuss in this paper. The cost
of an edge in this case can be viewed as the maintenance cost
of that road segment, and the player’s cost can be viewed as
paying road tolls to cover the maintenance cost of the road
segments the player uses.

To model this type of scenario we introduce the fol-
lowing advertisement model. In this model, the authority
first suggests to each player a proposed action, and each
player accepts the proposal with some (constant) probabil-
ity α. The players that accept the new action are called the
receptiveplayers (since they are receptive to the advertising
campaign), and they stay with the new action while thenon-
receptiveplayers move to some arbitrary Nash equilibrium
for themseleves (given that the receptive players’ actionsare
fixed). Then all players follow a best response dynamics
and converge to some pure Nash equilibrium for the entire
game (we will only consider games where the best response
dynamics is guaranteed to converge to a pure Nash equilib-
rium).

Our Results: We consider three classes of games:fair
cost-sharinggames,job scheduling on unrelated machine
games, andparty affiliation games. For simplicity assume
we advertise the socially optimal solution (although all our
results apply if we start with any approximation of the
optimal solution, including the best Nash equilibrium, and
the guarantees degrade proportionally to the approximation
factor). Our main results are the following:

• For fair cost sharing games (Section 3) we show that
for anyα, the expected cost of the new equilibrium is

O((log n)/α) from the optimal solution. Recall that
the price if stability isΘ(log n) for this game, so the
difference in guarantees is onlyO(1/α), whereas the
Price of Anarchy isΘ(n). Our positive result regarding
fair cost-sharing extends to the case where we add to the
cost model a linear latency function which depends on
the load observed on the edges; the proof for this case
involves analyzing a related “shadow” game.1

• For job scheduling on unrelated machines (Section 4)
we show a negative result, showing that form =
n machines, even if we pickn − 2 of the n jobs,
there is still a possibility of reaching a pure Nash
equilibrium whose cost is unbounded compared to the
social optimum. We also show for two machines and
n jobs, that if we pickn/2 − 1 jobs, there is still a
possibility of reaching a pure Nash equilibrium whose
cost is unbounded compared to the social optimum.
We complement those results showing that there is
always a set ofn − n/m jobs, such that any pure Nash
equilibrium we reach is socially optimal.

• For party affiliation games (Section 5) where players
have degreeω(log n) we show a threshold property:
any value ofα < 1/2 is not sufficient to improve the
equilibrium beyond theΩ(n2) price of anarchy, while
any valueα > 1/2 is sufficient to produce behavior
within anO(1) factor of optimal. In the case of players
with low degree, we show that there is a set of players
of sizeβn, for some constant1 > β > 1/2, such that
if they switch their action, the dynamics will result in a
good equilibrium.

Related Work: It is worthwhile to compare and contrast our
model with that of Value of Altruism [18] and Strong Price
of Anarchy [3]. The Value of Altruism [18] assumes that
the authorities control some fraction of the players (or flow)
and this part never behaves in a strategic way. In contrast we
assume that the receptive players return (eventually) to play
strategically, and hence the dynamics always converge to a
pure Nash equilibrium. Thek-Strong Price of Anarchy [3]
focuses on those equilibria such that no subset of at most
k players can deviate andall strictly benefit; thus it is like
a model of stability when players can intelligently form
coalitions. In contrast, we consider players that are more
myopic in the usual Nash sense, except some fraction are
willing to give the advertised behavior a try. The two solution
concepts are incomparable in their final guarantees. For job
scheduling on two unrelated machines, the2-Strong Price of
Anarchy isO(n) [3], while in our model we show that even if
we pickn/2− 1 jobs, the ratio of the cost of the equilibrium

1We remark that in both cases, after modifying a constant fraction of the
players’ actions the social cost can still be quite high, so the result can not
be derived by the standard potential-function argument.



produced to OPT can still be unbounded. On the other hand,
one can also show a reverse example, of a high cost strong
equilibrium [3] where modifying the action of any single job
would lead to an optimal outcome.

Charikar et al. [5] consider fair cost sharing for the case
that the graph isundirectedand all players have a common
sink, and show that good equilibria can be reached by a
process in which players enter one at a time and then undergo
best-response dynamics. However, for directed graphs, it is
easy to construct simple examples where such a process fails
and players reach an equilibrium that isΩ(n) from optimal.
This further motivates our work as it shows that very bad
equilibria can be reached by natural dynamics in natural
games.

2 The Model

A game is denoted by a tupleG =< N, (Si), (costi) >
whereN is a set ofn players,Si is the finite action space
of playeri ∈ N , andcosti is the cost function of playeri.
The joint action space of the players isS = S1 × . . . × Sn.
For a joint actions ∈ S we denote bys−i the actions of
playersj 6= i, i.e., s−i = (s1, ..., si−1, si−1, ..., sn). The
cost function of playeri maps a joint actions ∈ S to a real
non-negative number, i.e.,costi : S → R

+. Every game
has associated a social cost functioncost : S → R

+ that
maps a joint action to a non-negative real value. In the cases
discussed in this paper the social cost is a simple function
of the costs of the players. For example, we discuss the
sum, i.e.,cost(s) =

∑n
i=1 costi(s), and the maximum,

i.e., cost(s) = maxn
i=1 costi(s). (In the context of load

balancing games we call the maximum social function the
makespansocial cost function.) The optimal social cost
is OPT(G) = mins∈S cost(s). We sometimes overload
notation and useOPT for a joint actions that achieves cost
OPT(G).

Given a joint actions, the Best Response (BR)of
player i is the set of actionsBRi(s) that minimizes its
cost, given the other players actionss−i, i.e., BRi(s−i) =
argmina∈Si

costi(a, s−i).
A joint action s ∈ S is a pure Nash Equilibrium (NE)

if no player i ∈ N can benefit from unilaterally deviating
to another action, namely, every player is playing a best
response action ins, i.e., si ∈ BRi(s−i) for everyi ∈ N .
A best response dynamics is a process in which at each
time step, some player that is not playing a best response
switches its action to a best response action, given the current
joint action. In this paper we will concentrate on games in
which any best response dynamics converges to a pure Nash
equilibrium (which are equivalent to the class of ordinal
potential games [15]).

Let N (G) be the set of Nash equilibria of the game
G. The Price of Anarchy(PoA) is defined as the ra-
tio between the maximum cost of Nash equilibrium and

the social optimum, i.e.,(maxs∈N (G) cost(s))/OPT(G).
The Price of Stability(PoS) is the ratio between the mini-
mum cost of Nash equilibrium and the social optimum, i.e.,
(mins∈N (G) cost(s))/OPT(G).

The main model we introduce and study in this paper
is one that we call theadvertising model. In this model,
the authority first suggests to each player an alternative
action, and each player accepts the proposed action with
some (constant) probability. The players that accept the
new action are called receptive players, and they stay with
the new action while the non-receptive players move to an
arbitrary Nash equilibrium for themselves (given that the
receptive players actions are fixed). Then all players follow
an arbitrary best response dynamics and converge to some
pure Nash equilibrium (we will only consider games where
the best response dynamics is guaranteed to converge to a
pure Nash equilibrium). We define this model formally in
Figure 1.

Figure 1 Advertising model
Input: GameG, parameterα > 0.
Initially players are playing some joint actionsini ∈ S.

1. We use an advertising campaign and propose an action
to each player. Formally, letsad = advertise(G)
be the advertised behavior. (Note:sad is selected only
based on the description of the gameG and independent
of the initial actionssini.)

2. Each playeri independently decides to follow or not
to follow the proposed actionsad

i by flipping a coin of
biasα. LetR be set of players who decide to follow the
proposal - we will call them thereceptive players. Each
playeri ∈ R now switches to playingsad

i .

3. The non-receptive players (players inN \ R) settle on
a Nash equilibriumsnr for themselves, given that the
receptive players playsad. Namely, for each player
j ∈ N \ R we have thatsnr

j ∈ BRj(s
nr
−j ; s

ad
R ).

The equilibriumsnr for players inN \ R might be
adversarially selected. Let smed = (snr; sad

R ) be the
behavior at this point.

4. The players inR stop following the advertising cam-
paign, and the entire set of playersN undergoes a best
response dynamics until a Nash equilibriumsf for the
whole gameG is reached. (We will discuss only games
where the best response dynamics is guaranteed to con-
verge to a pure Nash equilibrium.)

When we refer later to anadvertising strategywe mean
a joint action sad = advertise(G). Given a set of
receptive playersR, there is a setU(sad, R) which includes
all the equilibriasf that the dynamics could reach having



an advertisementsad and a set of receptive playersR.
The expected cost of the final equilibriumgiven sad is
ER[maxsf∈U(sad,R) cost(s

f )]. When we say thatfor game
G there exists a strategy for the advertising model which
has an expected cost of the final equilibrium at mostX we
mean that there exists a joint actionsad for G such that
ER[maxsf∈U(sad,R) cost(s

f )] ≤ X .
Another natural model we study in this paper is theviral

marketing model, where the only difference is that the set
R is not random, but specifically selected with the proposed
actions. Formally, we selectR andsad

i for i ∈ R based only
on the description of the gameG but independently of the
initial joint action sini. (Each playeri ∈ R is assumed to
switch to actionsad

i .) Otherwise the viral model is identical
to the advertising model.

The notation and definitions for the specific games
addressed in the paper are provided in Sections 3, 4 and 5,
where the appropriate games are studied.

3 Cost Sharing Games

In this section we consider fair cost sharing games defined
as follows. We are given a graphG = (V, E), which can
be directed or undirected, where each edgee ∈ E has a
nonnegative costce ≥ 0. There is a setN = {1, ..., n}
of n players, where playeri is associated with a sourcesi

and a sinkti. The strategy set of playeri is the setSi

of si − ti paths. In an outcome of the game, each player
i chooses a single pathPi ∈ Si. A cost-sharing method
assigns nonnegative cost shares to the players, as a function
of the set of players that choose a path that contains the edge
e. The social cost of an outcomes = (P1, ..., Pn) is defined
to becost(P1, ..., Pn) =

∑

e∈∪iPi
ce. Given a vector of

players’ strategiess = (P1, . . . , Pn), let xe be the number
of agents whose strategy contains edgee. In the fair cost
sharing game the cost to agenti is costi(s) =

∑

e∈Pi

ce

xe

and the goal of each agent is to connect its terminals with
minimum total cost.

It is well known that fair cost sharing games are poten-
tial games [15, 4] and the price of anarchy in these games
is Θ(n) while the price of stability isH(n) [4], where
H(n) =

∑n
i=1 1/i = Θ(log n). We show in following that

in the fair cost sharing game there exists a strategy for the
advertising model producing an equilibria whose expected
cost is at most anO((1/α) log n) factor away from the cost
of the optimal solution. Thus we get significant benefit from
advertising in these games.

Before presenting the proof of our main results we
first give two useful lemmas. The first one is well
known characterization of the potential functionΦ(S) =
∑

e∈E

∑xe

x=1 fe(x) of these games [15, 4], wherefe(x) is
cost felt by each user when there arex users on edgee.

LEMMA 3.1. In the fair cost sharing game the for any joint

actions ∈ S we have:cost(s) ≤ Φ(s) ≤ H(n) · cost(s).
The second lemma states the following useful property

of a binomial random variable.

LEMMA 3.2. Let X be a binomial random variable dis-
tributedBi(n, p). ThenEX

[

c
X+1

]

= O
(

c
p·n

)

.

Proof: See Appendix.

We start with our main result concerning fair cost-
sharing games.

THEOREM 3.1. For the fair cost sharing game there ex-
ists a strategy for the advertising model which has an ex-
pected cost of the final equilibrium at mostO((1/α)(log n) ·
cost(OPT)).

Proof: Fix some optimal solutionOPT. Let sad = OPT,
so the advertising strategy will be to tell each playeri
to use his pathPOPT

i in OPT. Let R be the set of
receptive players and̄R = N \ R. For every edgee, let
nopt

e denote the number of people who use edgee in OPT,
and let us decompose this quantity into the numbernopt

e,R of

those in setR and the numbernopt
e,R̄

of those not inR (both

of which are random variables); sonopt
e = nopt

e,R + nopt
e,R̄

.

We start by bounding the expected worst-case cost of
the behaviorsmed produced at the end of step three : that
is, ER[maxsmed=(snr,sad

R
) cost(s

med )], where the max is
taken over all behaviorssnr that are Nash equilibria for
players inN\R given that the behavior of players inR issad

R .
We will call this E[cost(smed )] for short. For every edge
e let Be denote the cost of edgee for a non-receptive player
i ∈ R̄ under the joint actionsmed, and letAe denote the cost
of edgee for a receptive playeri ∈ R under the joint action
smed. Let Xe = ce/(1 + nopt

e,R) and letX ′
e = ce/nopt

e,R.
We clearly haveBe ≤ Xe and Ae ≤ X ′

e. So, for any
playeri /∈ R we havecosti(P

OPT
i , smed

−i ) ≤∑e∈P OP T
i

Xe

and for any playeri ∈ R we havecosti(P
OPT
i , smed

−i ) ≤
∑

e∈P OP T
i

X ′
e. Sincesmed is an equilibrium for the non-

receptive players we havesmed
i ∈ BRi(s

med
−i ) for i ∈ R̄.

This implies the following upper bound on the expected total
cost at the end of step three :

E[cost(smed )] ≤ E[
∑

i/∈R

∑

e∈P OP T
i

Xe]+E[
∑

i∈R

∑

e∈P OP T
i

X ′
e].

Rearranging the sum over players to be a sum over edges we
get:

E[cost(smed )] ≤ E[
∑

e

Xe · nopt

e,R̄
] + E[

∑

e

X ′
e · nopt

e,R].

Note thatX ′
e ≤ 2Xe whennopt

e,R > 0. This implies that

E[cost(smed )] ≤ 3E[
∑

e

Xe · nopt
e ] = 3

∑

e

E[Xe] · nopt
e .



So, to complete the proof we have to analyzeE[Xe].
Lemma 3.2 implies thatE[Xe] is O (ce/(α · nopt

e )) for
nopt

e ≥ 1. This implies that the expected cost at the end
of step three satisfies:

E[cost(smed )] = O

(

(1/α)
∑

e∈OPT

ce

)

= O((1/α) cost(OPT)).

The above equation together with Lemma 3.1 implies that
the expected value of the potential functionΦ at the end of
step three is only anO((1/α) log n) factor larger than the
cost ofOPT, i.e.,

E[Φ(smed )] = O((1/α)(log n) · cost(OPT)).

This implies that the expected cost of the final equilibrium at
the end of step four , i.e.,E[cost(sf )], is at most that large,
as desired.

Note that in fact the proof of Theorem 3.1 can be
adapted to prove something stronger.

THEOREM 3.2. Consider fair cost sharing games and a
joint action F. Using sad = F for the advertising
model has an expected cost of the final equilibrium at most
O((1/α)(log n) · cost(F)).

3.1 ExtensionsA well studied extension of the fair cost
sharing game is one where instead of a constant costce, each
edge has a costce(x) that is a nondecreasing but concave
function of the number of playersx using that edge [4]. For
example, this can model a buy-at-bulk economy of scale for
buying edges that can be used by more players. Notice that
the cost of an edgece(x) might increase with the number
of players using it, but the cost per playerfe(x) = ce(x)/x
decreases ifce(x) is concave. We can extend our result to
this case as well.

THEOREM 3.3. For the cost sharing game with nondecreas-
ing concave cost functionsce(x), there exists a strategy for
the advertising model which has an expected cost of the final
equilibrium at mostO((1/α)(log n) · cost(OPT)).

Another extension [4] of the fair cost sharing game is
one where each edge has both a cost functionce(x) and a
latency functionde(x), wherece(x) is the cost of building
the edgee for x users which the users will share, whilede(x)
is the delay suffered by each user on edgee if x users are
sharing the edge. The goal of each user will be to minimize
the sum of his cost and his latency. If we assume that both the
cost and latency for each edge depend only on the number
of players using that edge, then the total cost felt by each
user on the edge isfe(x) = ce(x)/x + de(x). These games
remain potential games [15, 4] (they are particular cases

of congestion games). One can prove a lemma similar to
Lemma 3.1 relating the cost and the value of the potential
function for any given joint action. In particular, for linear
delays we have:

LEMMA 3.3. Consider the cost sharing game with delays
where the cost function on edgee is fe(x) = ce/x + le · x.
For any joint actions ∈ S we have: 1

2cost(s) ≤ Φ(s) ≤
H(n) · cost(s).

We show here how we can extend our results to deal
with linear delays. The extension is not immediate though
since the part of our argument in Theorem 3.1 that says that
after step two, every non-receptive playeri has a reasonably
cheap option to try (namely its path inOPT) is not clear
anymore: since the original behaviorsini wasarbitrary there
could exist edges with a much higher number of players on
them under the joint action(sini

R̄
, sad

R ) than inOPT. In order
to prove the desired result we instead argue the existence of
a related “shadow” game, whose price of anarchy is not too
large, and then relate performance of the behaviors as well
as the optimum values between the two games.

THEOREM 3.4. For the cost sharing game with delays
where the cost function on edgee is fe(x) = ce/x +
le · x there exists a strategy for the advertising model
which has an expected cost of the final equilibrium at most
O((1/α)(log n) · cost(OPT)).

Proof: Fix some optimal solutionOPT and let sad =
advertise(G) = OPT. Namely, the advertising strategy
will be to tell each playeri to use his pathPOPT

i in OPT.
Let R be the set of receptive players. Letnopt

e,R denote the
number of people inR who use edgee and letnopt

e denote
the number of people inOPT who usee.

By assumption, in step three all the users not inR settle
on some equilibrium (givensad

R ). Let ne denote the number
of users who are now on edgee. So,ne ≥ nopt

e,R. We now
define a new gameG′ with respect to the users in̄R = N \R,
which is a congestion game with a linear latency function
he(n) = ae + le · n, whereae = ce/(1 + ne). Let OPT

′

denote the optimal cost for this gameG′.
We first claim that the behavior at the end of step three is

also an equilibrium for users in̄R if we use the costhe

instead offe on all edgese. In particular, suppose this was
not the case. So, some useri currently using a setS of edges
would prefer switching to the setS − A + B:

∑

e∈A

(

ce

ne + 1
+ lene

)

>
∑

e∈B

(

ce

ne + 1
+ le(ne + 1)

)

.

However, if we replace ce

ne+1 with ce

ne
on the LHS of the

above equation, then the gap only gets larger. This means
that i is not at equilibrium underf since it can benefit from
switching.



Now we use the fact that the new gameG′ has a price of
anarchy of5/2 [6]. So, the total cost inG′ of the behavior
of the non-receptive players at the end of Step three is
O(OPT

′). Note now that the following hold:

(a) The cost of the non-receptive players at the end of Step
three using cost functionsfe is at most twice their cost
using functionshe (since adding1 to the denominator
in going fromf to h at best reduces the cost by a factor
of 2).

(b) E(OPT
′) = O((1/α) cost(OPT)). This is because

one option forOPT
′ is to use the same paths as in

OPT, in which case:

(i) the le · n terms are the same as inOPT, and

(ii) sincene ≥ nopt
e,R and as we argued in Theorem 3.1

we haveE[ce/(1 + nopt
e,R)] = O (ce/(α · nopt

e )),
this means the expected sum of theae terms in

OPT
′ is O

(

∑

e:nopt
e >0

nopt

e,R̄
· ce/(α · nopt

e )

)

.

These imply that the expected cost underf of the non-
receptive players̄R at the end of Step three satisfies:

E[cost(smed
R̄ )] = O((1/α) cost(OPT)).

We now argue that the expected cost in the original game
for the receptive players at the end of step three is also
O((1/α) cost(OPT)). In particular, the key issue is the
latency term, since there could potentially be more non-
receptive players on any given edge than inOPT. However,
if on a given edge there are more receptive players than non-
receptive players insmed, then we lose at most a factor of
two compared to the latency cost inOPT; on the other hand
if there are more non-receptive players than receptive ones,
then we are fine again because we have bounded the cost
of the non-receptive players, so we can charge the cost of
the receptive players to the cost of the non-receptive players,
which we already bounded. So, that the expected cost at the
end of step three satisfies:

E[cost(smed )] = O((1/α) cost(OPT)).

This together with Lemma 3.3 implies that the expected
value of the potential functionΦ at the end of step three is at
most anO((1/α) log n) factor larger than the cost ofOPT,
which implies the cost of any final equilibrium at the end of
step four is at most that large, as desired.

Remarks: Note that in all the variants of the cost sharing
game studied in this section, the cost of the final equilibrium
reached isO((1/α) log n) from the optimal cost while the
price of stability isΘ(log n) as shown in [4]. This implies
that the difference in guarantee is only a factorO(1/α).

Second, our proofs do not really require us to useOPT for
advertise(G), but rather we can start with any solutionF.
We would then converge to a pure Nash equilibrium whose
cost is at mostO((1/α) log n) from cost(F). For example,
if we let F be the best Nash equilibrium, then since the
price of stability isO(log n), the expected cost of the final
equilibrium is withinO((1/α) log2 n) of the optimal cost.

4 Load Balancing Games

In this section we concentrate on load balancing games (see
[16]) defined as follows. There aren jobs andm unrelated
machines. Each player is associated with a job, so haven
players. Every job can impose a load on one of the machines,
so for every playerj its set of feasible actions is to assign
job j to some machinei, i ∈ {1, . . . , m}. Each jobj has
associated a costci,j for running on machinei. Given an
assignment of jobs to machines, the load of machinei is the
sum of the costs of the jobs that are assigned to that machine,
i.e., Li(s) =

∑

j∈Bi(s)
ci,j whereBi(s) is the set of jobs

assigned to machinei, i.e., Bi(s) = {j : sj = i}. The
cost of a playerj is the load on the machine that playerj
selected, i.e.,costj(s) = Lsj

(s). For the social cost we use
themakespan, which is the load on the most loaded machine,
i.e., cost(s) = maxi Li(s). The price of stability in this
games is1, since there is always a pure Nash equilibrium
which is also socially optimal [11].

First, we show a strong negative result: as long as there
are two players (jobs) that are not re-assigned, the ratio ofthe
cost of the equilibrium produced to OPT can be unbounded.
In addition, we show that this negative result holds even
in the viral marketing model, and even if we restrict the
adversary to choosing equilibriasnr that are reachable via
better-response dynamics from the initial statesini (we call
such an adversary areasonable adversary).

THEOREM 4.1. There is a load balancing game withm = n
unrelated machines such that in the viral marketing model,
for any setR of at mostn − 2 players, the cost of the final
Nash equilibrium might be unbounded with respect to the
social optimum. (I.e., for any advertisement joint actionsad

and set of playersR, |R| ≤ n − 2, there is an equilibrium
sf ∈ U(sad, R) s. t. cost(sf ) ≥ 1 while OPT = ǫ.)
Moreover, there exist initial joint actionssini such that this
can occur via a reasonable adversary.

Proof: Consider the following load balancing gameG. Job
j has costǫ on machinej and1 on any other machine. The
social optimum assigns jobj to machinej and has costǫ.
In G, a joint action is a Nash equilibrium if and only if it
allocates to each machine a single job. Let anemptymachine
be a machine with no job assigned to it.

Consider an initial joint actionsini which assigns an
even job2k to machine2k − 1 and an odd job2k − 1 to
machine2k. Note that this initial assignmentsini is a Nash



equilibrium and has cost1. Therefore, the ratio of the initial
configurationsini cost and the social optimum is1/ǫ, which
is unbounded sinceǫ is arbitrary.

Let R be an arbitrary set ofn− 2 jobs and letsad be the
recommendation for players inR. Let j1 andj2 be the two
players not inR andi1 = sini

j1 andi2 = sini
j2 the machines on

which they run insini, respectively. Given our initial joint
action sini we know thatj1 6= i1 and j2 6= i2. Also, if
j1 = i2 thenj2 = i1 and vice versa. Hence, eitherj1 = i2
andj2 = i1 or j1 6= i2 andj2 6= i1. We will show that for our
sini for anysad and anyR, even for a reasonable adversary
the process can terminate in a final Nash equilibriumsf

which has a cost of at least1.
If there is a playerk in R whichsad assigns to a machine

sad
k 6= k, then consider the following dynamics. Let all the

jobs exceptk reach any equilibriums′ for them (say, using a
best response dynamics). Ins′ there is no empty machine,
since otherwise some jobj 6= k can improve its cost by
moving to the empty machine. This implies thats′ is a pure
Nash equilibrium of the gameG and thereforesf = s′. Since
the cost of jobk in sf is 1, we have thatcost(sf ) = 1, and
we are done. Therefore, assume thatsad assigns each job
j ∈ R to its least load machine, i.e.,sad

j = j.
We have two remaining cases to analyze. The first case

is whenj1 6= i2 andj2 6= i1. In this casesad assigns jobi1
to machinei1 and jobi2 to machinei2, and each machine has
a load of1 + ǫ, while machinesj1 andj2 are empty. Jobsj1
andj2 can then undergo a better-response process and select
the following equilibrium: jobj1 selects machinej2 and job
j2 selects machinej1, having a cost of1 for each. Since this
is an equilibrium we also reachedsf which has a cost of1.
In the second casej1 = i2 andj2 = i1. In this case after
sad each machine has a single job, and hence we are at an
equilibrium which has a cost of1.

For the case of two machines and an arbitrary number of
jobs we can derive the following result.

THEOREM 4.2. There is a load balancing game with two
unrelated machines andn jobs such that in the viral model,
for any setR of at mostn/2 − 1 players, the cost of the
final Nash equilibrium might be unbounded with respect to
the social optimum.

Proof: Assume thatn is even, i.e.,n = 2k. We havek jobs
of type I, defined such as their cost on machine1 is ǫ and on
machine2 is 1; we also havek jobs of type II, defined such
as their cost on machine1 is 1 and on machine2 is ǫ. In sini

all the jobs of type I are on machine2 and all the jobs of type
II are on machine1, which is a Nash equilibrium that has a
cost ofk (compared toOPT which has a cost ofkǫ).

Suppose thatR includesk1 jobs of type I andk2 jobs of
type2, and advertisessad for them. Consider the following
Nash equilibriumsmed for the players not inR. We select
k1 jobs from type II andk2 jobs of type I and pair them with

the jobs inR where in each pair one job is of type I and the
other of type II. (SinceR is strictly less than half the jobs,
i.e., |R| ≤ k − 1, we can do it, and there will be at least one
type I job and one type II job remaining.) For each pair of
matched jobsj1 ∈ R andj2 6∈ R we set the action of job
j2 to be the opposite machine ofj1, i.e., smed

j2 = 3 − sad
j1 .

This implies that the pair’s contribution on each machine is
identical. Therefore atsmed we have that the load on both
machines is identical, and hence it is a Nash equilibrium.
Since there is a pair of jobs that did not move from their
action insini the cost is at least1, while the optimal cost is
kǫ.

We can show that the result above is almost tight in the
sense that there is always a set of playersR of size(1−/m)n,
such that in the viral marketing model the final equilibrium
is always optimal.

THEOREM 4.3. For any load balancing game there exists
a strategy for the viral model with a setR of at most
(1 − 1/m)n players such that any final equilibriumsf has
optimal cost.

Proof: Let sad = OPT for someOPT. Let k be the ma-
chine with most players insad, i.e.,k = arg maxi |Bi(s

ad)|.
Let R = N \ Bk(sad), and note that since at leastn/m
players are inBk(sad), then |R| ≤ n − n/m. Note that
given thatsad is performed byR, any jobj ∈ Bk(sad) has a
best response whose cost is at mostcostj(OPT), since in
smed only jobs inBk(sad) would select machinek. There-
fore at the end of step three we have thatcost(smed) =
cost(OPT). Since the best response dynamics does not in-
crease the cost and eventually converge to a pure Nash equi-
librium [11], we havecost(sf ) = cost(OPT), as desired.

5 Consensus Games, Cut Games, and Party Affiliation
Games

In this section we consider three related classes of games,
played by users who are viewed as vertices in a connected,
undirected simple graphG = (N, E) with n vertices, where
N = {1, ..., n}. We will first describe the most general
game ofparty affiliationand then discuss the special cases
of consensus gamesandcut games.

In party affiliation games[7] the set of edgesE is
partitioned into positive and negative edges, denoted byPE
andNE respectively. Each playeri has two actionsr or
b, i.e., Si = {r, b}. A player has cost 1 for each incident
positive edge on which he disagrees with his neighbor,
and cost 1 for each negative edge on which he agrees
with his neighbor, i.e.,costi(s) =

∑

(i,j)∈PE I(si 6=sj) +
∑

(i,j)∈NE I(si=sj). The overall social cost is the sum of
the costs of all the users, plus1, i.e., cost(s) = 1 +



∑

i∈N costi(s).2 It is straight forward to show an exact
potential function [15] for the party affiliation game, simply
let the potential beΦ(s) = (cost(s) − 1)/2. Also, in
any party affiliation game the social optimum is a Nash
equilibrium, thus the Price of Stability is1.

Consensus gamesare a special case of party affiliation
games where all the edges inG are positive edges, i.e.,
NE = ∅. The two social optimal solutions in a consensus
game are “all blue” and “all red”, both of which are also a
Nash equilibrium. On the other hand, for an even number
of players, letG be the cliqueKn with a perfect matching
removed, e.g.,E = {(i, j) : j 6= i} − {(2i, 2i − 1) : n/2 ≥
i ≥ 1}. Consider the joint actions in which even players
play r and odd players playb, i.e.,s2k = r ands2k+1 = b.
This is a Nash equilibrium, since each player has exactly half
its neighbors the same color and exactly half of the opposite
color. This results in a social cost ofΩ(n2) and thus the Price
of Anarchy for consensus games isΩ(n2).

Cut games(see [7]) are a special case of party affilia-
tion games where all the edges inG are negative edges, i.e.,
PE = ∅. Thus cut games have the opposite objective from
consensus games. As mentioned above, in a cut game the
optimal solution is a Nash equilibrium and so the Price of
Stability is1. However, the problem offindingan (approx-
imately) optimal solution is the Min-UnCut problem [1] for
which the best efficient approximation algorithm known has
approximation ratioO(

√
log n). As with consensus games,

the Price of Anarchy for cut-games can be as bad asΩ(n2).
For instance, ifG is the complete bipartite graphKn/2,n/2,
then coloring half the nodes on the left and half the nodes
on the right blue, and coloring half the nodes on the left and
half the nodes on the right red, is a Nash equilibrium with
costΩ(n2) (and yet the optimal solution has cost 1 since the
graph is bipartite).

We first show that if all nodes have degreeω(log n),
then in the advertising model all these games have a sharp
threshold atα = 1/2: any constantα > 1/2 is sufficient
to produce an optimal or near-optimal solution, and yet there
exist families of graphs for which any constantα < 1/2
yields a solution of cost as nearly bad as possible (a factor
Ω(n2) worse than optimal). We begin with the simpler case
of consensus games.

THEOREM 5.1. For consensus games in which each node
has degreeω(log n) there is a sharp threshold atα = 1/2
in the advertising model: for any constantα > 1/2 there
exists a strategy such that with high probability the final
equilibrium is the optimal solution (ratio of 1), and yet
for any constantα < 1/2 there exist graphs such that
for any advertising strategy with high probability the final
equilibrium will be a factorΩ(n2) worse than optimal.

2The “+1” is just to ensure the cost is nonzero so that all ratios are well-
defined.

Proof: For the upper bound, the advertising strategy is
simply to tell all nodes to become color red, i.e.,sad =
(r, . . . , r). By Hoeffding bounds, each node with degree at
leastlog n/(α− 1/2)2 has more than half of its neighbors in
setR with probability at least1 − 1/n2. Therefore, by the
union bound all nodes have this property with probability at
least1− 1/n, and so with high probability at the end of step
three all nodes are red, i.e.,smed = (r, . . . , r), which is
optimal.

For the lower bound, letγ = 1/2 − α and consider
a graph consisting of two cliques of sizen/2, where each
vertex hasγn/8 neighbors in the other clique. Suppose
initially we have one clique red and the other clique blue.
Sinceγ is a positive constant, for sufficiently largen we have
that with high probability each node has at most a1/2−γ/2
fraction of its neighbors in setS. However, since each node
initially has only aγ/4 fraction of its neighbors of the other
color, this will not be sufficient to cause any of the nodes not
in S to change color in step three. Therefore, in step three,
all nodes inS will simply revert to their original color and
we again haveΩ(n2) badly-colored edges.

The key to the upper bound above is that with high
probability the setR satisfies the property that every vertex
not in R has more than half its neighbors inR. For cut
games and more generally party-affiliation games, we will
need a bit more (in particular becauseOPT no longer
necessarily has zero cost for every player). Specifically let
us say that a setS is aβ-dominating set if every vertex not
in S has more than a1/2 + β fraction of its neighbors inS.
Hoeffding bounds imply that in the advertising model with
α > 1/2 + 2β, with high probability the set of receptive
players is aβ-dominating set, so long as all nodes have
degreeω(log n):

LEMMA 5.1. For any party affiliation game in which each
node has degreeω(log n), for any constantα > 1/2 + 2β
with probability 1 − o(1) the set of receptive players is a
β-dominating set in the advertising model.

We now show the following property ofβ-dominating
sets in party affiliation games.

LEMMA 5.2. For party-affiliation games, if the setR fol-
lowing the advertising strategy is aβ-dominating set, then
we can produce a solution within anO(1/β) factor of opti-
mal.

Proof: We argue by considering two kinds of nodes: those
with less than aβ fraction of their incident edges incurring
a cost (of one) inOPT (call those “low-cost” nodes), and
those with more than aβ fraction of their incident edges
incurring a cost inOPT (call those “high-cost” nodes). The
advertising strategy is to tell nodes to behave according to



OPT, i.e., sad = OPT.3 SinceR is a β-dominating set,
each low-cost node will change in step three to its color in
OPT (because that color minimizes its cost with a majority
of its neighbors). For the high-cost nodes, we may not
produce the desired behavior; however, no matter how the
high-cost nodes behave, they cannot incur a cost that is
more than a1/β factor worse than their cost inOPT (by
definition of “high cost”). Therefore, the total cost by the
end of step three is at most(1+1/β)OPT. Finally, the cost
can only improve via the best-response process in Step four .

For α > 1/2, by settingβ = (α − 1/2)/2, Lemma 5.1
and Lemma 5.2 imply that the cost of the final equilibrium is
within anO(1) factor of optimal. Forα < 1/2, theΩ(n2)
bound from Theorem 5.1 still applies; thus exhibiting is a
sharp threshold atα = 1/2 in the advertising model.

THEOREM 5.2. For party-affiliation games in which each
node has degreeω(log n), for any constantα > 1/2 there
exists a strategy for the advertising model such that with
high probability the final equilibrium has costO(OPT).
Moreover, for any constantα < 1/2 there exist party-
affiliation games such that for any advertising strategy with
high probability the final equilibrium will be a factorΩ(n2)
worse than optimal.

Unfortunately, in the low-degree case, no valueα < 1 is
sufficient to achieve a cost that is even within ao(n) factor
of OPT, because the graphG could consist of a collection
of constant-sized components, and with high probability
a constant fraction of these components would have no
member inR. On the other hand, note that if the set of
receptive playersR constitutes aβ-dominating set, then by
Lemma 5.2 we produce a solution within anO(1/β) factor
of optimal. This immediately translates to a result in the viral
marketing model, where we can select the set of receptive
players. The following lemma constructs aβ-dominating set
in an arbitrary graph.

LEMMA 5.3. For any graphG andβ < 1/6, there is aβ-
dominating setR of size at most(31/32)n.

Proof: Let S′ be a random set of vertices, where
each vertex in S′ with probability 1/2 + β, and
let S′′ = {v : v does not have at least⌈dv(1/2 +
β)⌉ neighbors inS′}, wheredv is the degree ofv. Consider
R = S′ ∪ S′′. The setR is by construction aβ-dominating
set, so we simply have to argue about size. In particular, we
show that any vertexv has some constant probability of not
being chosen inS′ ∪ S′′.

3In general, this advertising strategy can be computationally hard to
compute. For cut-games, however, at the loss of an extraO(

√
log n) factor

we can instead use the Min-UnCut approximation algorithm of[1], and the
rest of the argument proceeds in the same way.

With probability1/2 − β the vertexv is not in S′. In
order for v not to be inS′′ it needs at least⌈d(1/2 + β)⌉
neighbors inS′. Consider the following event: the first3
neighbors ofv are inS′ (probability(1/2+β)3) and from the
remainingd−3 neighbors ofv at least⌊(d−3)(1/2+β)⌋ are
in S′ (this has probability at least1/2 since this is less than or
equal to the median of the distribution). If this event occurs,
sinceβ < 1/6, thenv has at least⌊(dv −3)(1/2+β)⌋+3 =
⌊dv(1/2 + β) + 3(1/2 − β)⌋ ≥ ⌊dv(1/2 + β) + 1⌋ ≥
⌈dv(1/2 + β)⌉ neighbors inS′ and therefore it is not inS′′.
Sincev is not in S′ nor S′′ it is not in R. The probability
of the event is at least1/2(1/2 − β)(1/2 + β)3 > 1/32 for
β < 1/6. So, the expected size ofR is at most(31/32)n and
therefore a set of at most that size must exist.

For the case of consensus games we can show improved
bounds (since we only need a strict majority for each node).
Call a setS astrict dominating setif for every nodev not inS
the strict majority of its neighbors are inS, i.e. ⌈dv+1

2 ⌉. For
consensus games it is sufficient to have a strict dominating
set R to guarantee an optimal solution, since then we are
guaranteed that all the players will switch to the color of the
majority of their neighbors. The following lemma derives
bounds for strict dominating sets.

LEMMA 5.4. For any graphG in which each node has odd
degree, there is a strict dominating setR of size at mostn/2,
and for general degrees, there is a strict dominating setR of
size at most(23/27)n.

Proof: First, consider the case that each node has odd degree.
Consider an arbitrary Nash equilibrium of thecut gamein
the given graphG, i.e., all the edges are negative edges, and
let R be the minority color class in this equilibrium (hence,
the size ofR is at mostn/2). Since it is a Nash equilibrium
of the cut game, each vertex not inR has a majority of its
neighbors in the setR (a strict majority since all degrees are
odd).

For the case of general degrees we use a ran-
domized argument similar to Lemma 5.3. LetS′

be a random set of vertices, where each vertex is
in S′ with probability 2/3, and let S′′ = {v :
v does not have a strict majority of neighbors inS′}. We
will then let R = S′ ∪ S′′. SetR by construction has the
property that all vertices not inR have a strict majority of
their neighbors inR so we simply have to argue about size.
In particular, any vertexv has at least a probability1/3 of
not being chosen inS′ and probability at least4/9 having
a strict majority of its neighbors inS′ (the worst case is
whenv has degree2). So, the expected size ofR is at most
(23/27)n and therefore a set of at most that size must exist.

We can now deduce the following theorem for the viral
marketing model.



THEOREM 5.3. In the viral marketing model: (1) For any
party affiliation game there is a setR of (31/32)n players
that guarantees a solution within anO(1) factor of optimal.
(2) For consensus games, there is a setR of at mostn/2
players if all degrees are odd, or a setR of at most(23/27)n
players for general degrees, that guarantees an optimal
solution.

6 Conclusions

In this paper we consider the question of to what extent can
a “public advertising campaign” cause behavior to switch
from a bad equilibrium to a good one even if only a fraction
of people actually follow the given advice, and do so only
temporarily. Unlike the notion of price of stability we do
not assume everyone takes the advice, and unlike the notion
of value of altruism we assume everyone in the end will
act in their own interest. We show that for some natural
games (cost-sharing), it is enough to induce a small fraction
to behave well in order to reach a good equilibrium, whereas
for others (load balancing) one needs to reach nearly the
entire population, and yet others (party affiliation) have a
threshold property. Thus, we provide an interesting metric
along which games can differ: how much “effort” (e.g.,
advertising dollars) a central authority might need to incur
in order to induce good behavior in them.

While we have described our results using advice that
consists of the global optimum behavior, in all cases this can
be replaced with advising the best equilibrium at an extra
cost of the price of stability. In a sense (viewed in reverse)
this can be thought of as asking “how stable is the price
of stability”: starting from a good equilibrium, can a small
shock to the system produce a bad state from which natural
dynamics could not recover?
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A Additional Proofs

We prove here a useful property of a binomial random
variable.
Lemma 3.2 Let X be a binomial random variable dis-
tributedBi(n, p). ThenEX
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)
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Proof: We have
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This implies that
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