Results on Vertex Degree and K-Connectivity in Uniform S-Intersection Graphs

Jun Zhao, Osman Yagan and Virgil Gligor

January 1, 2014

CMU-CyLab-14-004

CyLab
Carnegie Mellon University
Pittsburgh, PA 15213
Results on vertex degree and k-connectivity in uniform s-intersection graphs

Jun Zhao, Osman Yağan and Virgil Gligor

CyLab and Dept. of ECE
Carnegie Mellon University
{junzhao, oyagan, virgil}@andrew.cmu.edu

Abstract. We present results related to the vertex degree in a uniform s-intersection graph which has received much interest recently. Specifically, we derive the probability distribution for the minimum vertex degree, and show that the number of vertices with an arbitrary degree converges to a Poisson distribution. A uniform s-intersection graph models the topology of a secure wireless sensor network employing the widely used s-composite key predistribution scheme. Our theoretical findings is also confirmed by numerical results.

Keywords: Key predistribution, random intersection graphs, wireless sensor networks, vertex degree.

1 Introduction

The uniform s-intersection graphs have received much attention recently [1–3, 8, 11, 12]. Such graphs are induced by the s-composite key predistribution scheme [5], which has been recognized as a typical solution to secure communication in wireless sensor networks [3, 7, 9–12].

The uniform s-intersection graph is defined as follows. For a graph with n vertices, each vertex independently selects X_n different items uniformly at random from a pool comprising Y_n items. X_n and Y_n are both functions of n, with the natural condition $1 \leq X_n \leq Y_n$. There exists an edge between two different vertices if and only if they have at least s items in common, where $1 \leq s \leq X_n$. For a secure wireless sensor network employing the s-composite key predistribution scheme [5], when the network is modeled by a uniform s-intersection graph, vertices in the graph correspond to nodes in the network; and the items on each vertex corresponds to the cryptographic keys on each sensor.

In this paper, we report results on the vertex degree in uniform s-intersection graphs. The degree of a vertex v is the number of vertices having edges with v; and the minimum (vertex) degree of a graph is the least among the degrees of all vertices. Specifically, we obtain the asymptotic probability distribution for the minimum degree, and demonstrate that the number of vertices with an arbitrary degree asymptotically converges to a Poisson distribution.

The rest of the paper is organized as follows. We discuss the graph notation in Section 2. Section 3 presents the results. Section 6 offers numerical experiments
to confirm our analytical results. In Section 7, we report relevant results in the literature. Section 8 concludes the paper.

2 Notation

We use $G_s(n, X_n, Y_n)$ to denote a uniform s-intersection graph defined in Section 1. Throughout the paper, s is a positive integer and does not scale with n. Let the vertex set of $G_s(n, X_n, Y_n)$ be $\mathcal{V} = \{v_1, v_2, \ldots, v_n\}$. For each vertex $v_i \in \mathcal{V}$, the set of its X_n different items is denoted by S_i. Two distinct vertices v_i and v_j ($1 \leq i < j \leq n$) establish an edge in between if and only if $|S_i \cap S_j| \geq s$, where $|A|$ for set A signifies the cardinality of A. Let p_u be the edge probability. With $\mathbb{P}[E]$ denoting the probability of event E throughout the paper, we obtain $p_u = \mathbb{P}[|S_i \cap S_j| \geq s]$.

3 The Results

We detail the results for graph $G_s(n, X_n, Y_n)$ in Theorems 1 and 2 below. We use the standard asymptotic notation $o(\cdot), O(\cdot), \Theta(\cdot), \sim$. In particular, for two positive functions $f(n)$ and $g(n)$, we write $f(n) \sim g(n)$ if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.

Theorem 1 For graph $G_s(n, X_n, Y_n)$ with

$$X_n = \omega(1),$$

for some positive integer h and some sequence γ_n satisfying

$$-1 < \lim \inf_{n \to \infty} \frac{\gamma_n}{\ln \ln n} \leq \lim \sup_{n \to \infty} \frac{\gamma_n}{\ln \ln n} < 1,$$

and having $\lim_{n \to \infty} \gamma_n \ (\lim_{n \to \infty} \gamma_n \in [-\infty, \infty])$, consider

$$\frac{[X_n(X_n - 1) \ldots (X_n - (s - 1))]^2}{s! Y_n^s} = \frac{(h - 1) \ln n + \gamma_n - \ln [(h - 1)!]}{n}.$$

Then properties (a) and (b) below hold.

(a) With d denoting the minimum vertex degree of $G_s(n, X_n, Y_n)$, we have

$$\lim_{n \to \infty} \mathbb{P}[d = h] = \exp \left\{- \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\} \right\},$$

$$\lim_{n \to \infty} \mathbb{P}[d = h - 1] = 1 - \exp \left\{- \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\} \right\},$$

and

$$\lim_{n \to \infty} \mathbb{P}[(d < h - 1) \text{ or } (d > h)] = 0.$$
(b) The number of nodes with degree \(r \) converges to a Poisson distribution, and its mean \(\lambda_r \) satisfies

\[
\lim_{n \to \infty} \lambda_r = \begin{cases}
0, & \text{for } r = 0, 1, \ldots, h - 2, \\
\exp \left\{ - \lim_{n \to \infty} \gamma_n \right\}, & \text{for } r = h - 1, \\
\infty, & \text{for } r = h, h + 1, \ldots.
\end{cases}
\]

Theorem 1 for graph \(G_s(n, X_n, Y_n) \) presents the asymptotic probability distribution for the minimum vertex degree, and the asymptotic Poisson distribution for the number of nodes with an arbitrary degree.

Remark 1 From property (a) of Theorem 1 above, it is clear that

\[
\lim_{n \to \infty} \Pr \left[\text{Graph } G_s(n, X_n, Y_n) \text{ has a minimum vertex degree at least } h \right] = \exp \left\{ - \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\} \right\}.
\]

Remark 2 Note that \(e^\infty = \infty \) and \(e^{-\infty} = 0 \). Therefore,

- if \(\lim_{n \to \infty} \gamma_n = \infty \), then \(\exp \left\{ - \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\} \right\} = 1 \);
- if \(\lim_{n \to \infty} \gamma_n = -\infty \), then \(\exp \left\{ - \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\} \right\} = 0 \).

We give Theorem 2 below as an analog of Theorem 1, with the complex expression in L.H.S. (left hand side) of (3) replaced by \(\frac{1}{s!} (\frac{X_n^2}{Y_n})^s \), under the cost of a more constrained condition on \(X_n \) compared to (1).

Theorem 2 For graph \(G_s(n, X_n, Y_n) \) with

\[
X_n = \omega(\ln n),
\]

for some positive integer \(h \) and some sequence \(\gamma_n \) satisfying (2) and having \(\lim_{n \to \infty} \gamma_n \left(\lim_{n \to \infty} \gamma_n \in [-\infty, \infty] \right) \), consider

\[
\frac{1}{s!} \left(\frac{X_n^2}{Y_n} \right)^s = \frac{\ln n + (h - 1) \ln \ln n + \gamma_n - \ln[(h - 1)!]}{n}, \tag{5}
\]

Then properties (a) and (b) of Theorem 1 hold.

Remark 3 Under the conditions of Theorem 1 or 2, below we show that it always holds that

\[
\frac{X_n^2}{Y_n} = O \left(\left(\frac{\ln n}{n} \right)^{\frac{1}{h}} \right). \tag{6}
\]

Under the conditions of Theorem 1, from (1) and (3), we have

\[
\frac{1}{s!} \left(\frac{X_n^2}{Y_n} \right)^s = \left[\frac{X_n(X_n - 1) \ldots (X_n - (s - 1))}{s! Y_n^s} \right] \cdot [1 + o(1)]
= \left[\frac{\ln n + (h - 1) \ln \ln n + \gamma_n - \ln[(h - 1)!]}{n} \right] \cdot [1 + o(1)]. \tag{7}
\]
From \(\limsup_{n \to \infty} \frac{\gamma_n}{\ln \ln n} < 1 \) given (2), we obtain \(\frac{\gamma_n}{\ln \ln n} < 1 \) for all \(n \) sufficient large. Therefore, it holds that for all \(n \) sufficient large,

\[
\frac{\ln n + (h - 1) \ln \ln n + \gamma_n - \ln [(h - 1)!]}{n} < \frac{\ln n + h \ln \ln n}{n}.
\]

(8)

Under the conditions of Theorem 1 or 2, we have either (7) or (5). In view of (8), we further obtain

\[
\frac{1}{s!} \left(\frac{X_n^2}{Y_n} \right)^s \leq \frac{\ln n + h \ln \ln n}{n} \cdot [1 + o(1)] = O \left(\frac{\ln n}{n} \right).
\]

which clearly leads to (6).

4 Evaluating the Edge Probability \(p_u \)

We present Lemma 1 to evaluate the edge probability \(p_u \).

Lemma 1 The properties (a) and (b) below hold.

(a) If \(\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0 \) and \(X_n \geq s \) for all \(n \) sufficiently large, then

\[
p_u = \frac{X_n(X_n - 1) \ldots (X_n - (s - 1))}{s!Y_n^s} \cdot \left[1 \pm O \left(\frac{X_n^2}{Y_n} \right) \right].
\]

(9)

(b) If \(\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0 \) and \(\lim_{n \to \infty} X_n = \infty \), then

\[
p_u = \frac{1}{s!} \left(\frac{X_n^2}{Y_n} \right)^s \cdot \left[1 \pm O \left(\frac{X_n^2}{Y_n} \right) \right] \pm O \left(\frac{1}{X_n} \right).
\]

(10)

Before proving Lemma 1 in Section 4.1, we explain the following result given Lemma 1: under the conditions of Theorem 1 or 2, there always exists some sequence \(\gamma_n^* = \gamma_n \pm o(1) \) such that

\[
p_u = \frac{\ln n + (h - 1) \ln \ln n + \gamma_n^* - \ln [(h - 1)!]}{n}.
\]

(11)

We now demonstrate (11) using the following Lemma 2, the proof of which is deferred to Section 4.2.

Lemma 2 For some \(h \) and some sequence \(\gamma_n \) satisfying (2), we have

\[
\frac{\ln n + (h - 1) \ln \ln n + \gamma_n - \ln [(h - 1)!]}{n} \sim \frac{\ln n}{n}.
\]

(i) We first consider the case where the conditions of Theorem 1 hold. From Remark 3, we have (6), leading to \(\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0 \). From (1), it follows that \(X_n \geq s \)
for all n sufficiently large. Then we use property (a) of Lemma 1 to obtain (9). For γ_n satisfying (2), from (3) and Lemma 2,

$$[X_n(X_n - 1) \ldots (X_n - (s - 1))]^2 \sim \frac{\ln n}{n}. \quad (12)$$

Substituting (3) and (12) to (9), we obtain

$$p_u = \frac{\ln n + (h - 1) \ln \ln n + \gamma_n}{n} \pm O\left(\frac{\ln n}{n}\right) \cdot O\left(\frac{\ln \ln n}{\ln n}\right). \quad (13)$$

(ii) We now consider the case where the conditions of Theorem 2 hold. From Remark 3, we have (6), leading to $\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0$. From (4), it follows that $\lim_{n \to \infty} X_n = \infty$. Then we use property (b) of Lemma 1 to obtain (10). Substituting (4) (5) and (6) to (10), we obtain

$$p_u = \frac{\ln n + (h - 1) \ln \ln n + \gamma_n}{n} \pm O\left(\frac{\ln \ln n}{\ln n}\right) \cdot \left[1 \pm O\left(\frac{\ln \ln n}{\ln n}\right)\right]. \quad (14)$$

Summarizing cases (i) and (ii) above, with $\gamma_n^* \equiv \gamma_n \pm o(1)$ defined by (11), we obtain from (13) and (14) that $\gamma_n^* = \gamma_n \pm o(1)$.

4.1 The Proof of Lemma 1

We demonstrate properties (a) and (b) of Lemma 1 below.

Establishing Property (a):

By definition, the edge probability is expressed by

$$p_u = \sum_{r=s}^{\infty} \mathbb{P}[|S_i \cap S_j| = r].$$

From $\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0$, it holds that $Y_n \geq 2X_n$ for all n sufficiently large. Then as given in our work [13], we have

$$\mathbb{P}[|S_i \cap S_j| = r] = \frac{C_{Y_n}^{X_n} - C_{X_n}^{r}}{Y_n^{X_n}}. \quad (15)$$

We will demonstrate the following (16) and (17).

$$\mathbb{P}[|S_i \cap S_j| = s] = \frac{[X_n(X_n - 1) \ldots (X_n - (s - 1))]^2}{s!Y_n^s} \cdot \left[1 \pm O\left(\frac{X_n^2}{Y_n}\right)\right], \quad (16)$$
and

\[
\sum_{r=s}^{X_n} \mathbb{P}[|S_i \cap S_j| = r] = O\left(\frac{X_n^2}{Y_n}\right) \tag{17}
\]

Once (16) and (17) is proved, with \(\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0\), we have

\[
p_u = \sum_{r=s}^{X_n} \mathbb{P}[|S_i \cap S_j| = r]
\]

\[
= \mathbb{P}[|S_i \cap S_j| = s] \cdot \left\{ 1 + \sum_{r=s+1}^{X_n} \frac{\mathbb{P}[|S_i \cap S_j| = r]}{\mathbb{P}[|S_i \cap S_j| = s]} \right\}
\]

\[
= \frac{[X_n(X_n-1)\ldots(X_n-(s-1))]^2}{s!Y_n^s} \cdot \left[1 + O\left(\frac{X_n^2}{Y_n}\right) \right] \cdot \left[1 + O\left(\frac{X_n^2}{Y_n}\right) \right]
\]

\[
= \left[\frac{X_n(X_n-1)\ldots(X_n-(s-1))]^2}{s!Y_n^s} \cdot \left[1 + O\left(\frac{X_n^2}{Y_n}\right) \right] \right] \cdot \left[1 + O\left(\frac{X_n^2}{Y_n}\right) \right]
\]

i.e., the property (a) of Lemma 1 holds.

We start with showing (16). From (15), it follows that

\[
\mathbb{P}[|S_i \cap S_j| = s] = \frac{\left(\frac{X_n}{s}\right)_{X_n-s}}{\left(\frac{X_n}{s}\right)}
\]

\[
= \frac{1}{s!} \left[\frac{X_n!}{(X_n-s)!} \right]^2 \cdot \frac{(Y_n-X_n)!}{(Y_n-2X_n+s)!} \cdot \frac{(Y_n-X_n)!}{Y_n!} \tag{18}
\]

Then

\[
\mathbb{P}[|S_i \cap S_j| = s] / \left\{ \frac{[X_n(X_n-1)\ldots(X_n-(s-1))]^2}{s!Y_n^s} \right\}
\]

\[
= \frac{X_n^s \cdot \frac{(Y_n-X_n)!}{(Y_n-2X_n+s)!} \cdot \frac{(Y_n-X_n)!}{Y_n!}}{\left[\prod_{\ell=0}^{X_n-s-1} (Y_n-X_n-\ell) \cdot \prod_{\ell=0}^{X_n-s-1} \frac{1}{Y_n-\ell} \right]}
\]

\[
= \frac{X_n^s}{\left[\prod_{\ell=0}^{X_n-s-1} \frac{Y_n-\ell}{Y_n} \right]} \cdot \frac{X_n^s}{\left[\prod_{\ell=0}^{X_n-s-1} \frac{Y_n-\ell}{Y_n} \right]}
\]

\[
= \left[\prod_{\ell=0}^{X_n-s-1} \left(1 - \frac{X_n+\ell}{Y_n} \right) \right] / \left[\prod_{\ell=0}^{X_n-s-1} \left(1 - \frac{\ell}{Y_n} \right) \right] \tag{20}
\]

By [11, Fact 2(b)], we have

\[
\prod_{\ell=0}^{X_n-s-1} \left(1 - \frac{X_n+\ell}{Y_n} \right) \geq \left(1 - \frac{2X_n}{Y_n} \right)^{X_n} \geq 1 - \frac{2X_n^2}{Y_n} \tag{21}
\]
Results on vertex degree and \(k \)-connectivity in uniform \(s \)-intersection graphs

\[
\prod_{\ell=0}^{X_n-1} \left(1 - \frac{\ell}{Y_n} \right) \geq \left(1 - \frac{X_n}{Y_n} \right)^{X_n} \geq 1 - \frac{X_n^2}{Y_n}. \tag{22}
\]

In addition,

\[
\prod_{\ell=0}^{X_n-s-1} \left(1 - \frac{X_n + \ell}{Y_n} \right) \leq 1 \tag{23}
\]

and

\[
\prod_{\ell=0}^{X_n-1} \left(1 - \frac{\ell}{Y_n} \right) \left(1 - \frac{X_n}{Y_n} \right)^{X_n} \leq 1. \tag{24}
\]

Applying (21) and (24) to (20), we obtain

\[
(19) \geq 1 - \frac{2X_n^2}{Y_n}. \tag{25}
\]

From \(\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0 \), it holds that for all \(n \) sufficiently large

\[
\left(1 + \frac{2X_n^2}{Y_n} \right) \left(1 - \frac{X_n^2}{Y_n} \right) = 1 + X_n^2 - 2 \left(\frac{X_n^2}{Y_n} \right)^2 \geq 1.
\]

Then applying (22) and (23) to (20), we obtain

\[
(19) \leq \frac{1}{1 - \frac{X_n^2}{Y_n}} \leq 1 + \frac{2X_n^2}{Y_n}. \tag{26}
\]

Clearly, (16) is proved in view of (25) and (26).

We now demonstrate (17). From (15),

\[
\sum_{r=s+1}^{X_n} \frac{\mathbb{P}[\mathcal{S}_{ij} = r]}{\mathbb{P}[\mathcal{S}_{ij} = s]} = \sum_{r=s+1}^{X_n} \left[\binom{X_n}{r} \left(\frac{Y_n - X_n}{X_n - r} \right) \binom{X_n}{s} \left(\frac{Y_n - X_n}{X_n - s} \right) \right]
\]

\[
= \sum_{r=s+1}^{X_n} \left\{ \frac{s!}{r!} \binom{X_n - s}{r} \left(\frac{Y_n - 2X_n + s}{Y_n - 2X_n + r} \right) \right\} \quad \text{(by } \binom{r}{s} \geq 1 \text{ for } r > s) \]

\[
\leq \sum_{r=s+1}^{X_n} \left[\frac{1}{(r-s)!} \cdot X_n^{2(r-s)} \cdot (Y_n - 2X_n)^{r-s} \right]
\]

\[
\leq e^{\frac{X_n^2}{Y_n}} - 1 \quad \text{(by Taylor series)}
\]

\[
= O\left(\frac{X_n^2}{Y_n} \right).\]
Property (a) of Lemma 1 is proved with (16) and (17).

Establishing Property (b):

From condition $\lim_{n \to \infty} X_n = \infty$, we have $X_n > s$ for all n sufficiently large, leading to

$$X_n(X_n - 1) \ldots (X_n - (s - 1)) \geq (X_n - s)^s = X_n^s \left(1 - \frac{s}{X_n}\right)^s.$$

By [11, Fact 2(b)], we further obtain

$$X_n(X_n - 1) \ldots (X_n - (s - 1)) \geq X_n^s \left(1 - \frac{s^2}{X_n}\right),$$

which together with $X_n(X_n - 1) \ldots (X_n - (s - 1)) \leq X_n^s$ yields

$$X_n(X_n - 1) \ldots (X_n - (s - 1)) = X_n^s \left[1 - O\left(\frac{1}{X_n}\right)\right]. \quad (27)$$

Given $\lim_{n \to \infty} \frac{X_n^2}{Y_n} = 0$ and $X_n > s$ for all n sufficiently large, we use property (a) of Lemma 1 to obtain (9). Substituting (27) into (9), we get

$$p_u = X_n^s \left[1 - O\left(\frac{1}{X_n}\right)\right] \cdot \left[1 \pm O\left(\frac{X_n^2}{Y_n}\right)\right],$$

which along with $\frac{X_n^2}{Y_n} = o(1)$ leads to (10).

4.2 The Proof of Lemma 2

Given (2), then for all n sufficient large, we obtain $-1 < \frac{\ln n}{n \ln n} < 1$, leading to

$$-\ln \ln n < \gamma_n < \ln \ln n. \quad (28)$$

From (28), it is clear that

$$\frac{\ln n + (h - 1) \ln \ln n + \gamma_n - \ln[(h - 1)!]}{n} \sim \frac{\ln n}{n}. \quad (29)$$

5 Establishing Theorems 1 and 2

As shown in Section 4, under the conditions of Theorem 1 or 2, we have

$$p_u = \frac{\ln n + (h - 1) \ln \ln n + \gamma_n^* - \ln[(h - 1)!]}{n}, \quad (30)$$

where γ_n satisfies (2) and γ_n^* satisfies

$$\gamma_n^* = \gamma_n \pm o(1). \quad (30)$$
Results on vertex degree and k-connectivity in uniform s-intersection graphs

Based on (29), we further derive \(p_u \sim \frac{\ln n}{n} \) below. From (2) and (30), we obtain

\[
-1 < \liminf_{n \to \infty} \frac{\gamma_n^*}{\ln \ln n} \leq \limsup_{n \to \infty} \frac{\gamma_n^*}{\ln \ln n} < 1; \tag{31}
\]
i.e., (2) with \(\gamma_n \) replaced by \(\gamma_n^* \) holds. Then from (29) (31) and Lemma 2, it follows that

\[
p_u \sim \frac{\ln n}{n}. \tag{32}
\]

We denote by \(G(n, p_n) \) an Erdős–Rényi graph [6] defined on a set of \(n \) nodes such that two vertices have an edge in between with probability \(p_n \), independent of other vertices. We have proved in our technical report [13] that with \(M_r \) denoting the number of vertices with degree \(r \) in graph \(G_s(n, X_n, Y_n) \cap G(n, p_n) \), where \(r = 0, 1, \ldots \), if \(\lim_{n \to \infty} X_n = \infty \), \(\lim_{n \to \infty} X_n^2 = 0 \) and \(p_u p_n \sim \frac{\ln n}{n} \), then \(M_r \) converges to a Poisson distribution with mean

\[
\lambda_r := n(r!)^{-1}(np_u p_n)^r e^{-np_u p_n}. \tag{33}
\]

Applying (29) and (32) to (34), we have

\[
\lambda_r \sim n(r!)^{-1}(\ln n)^r e^{-\ln n - (h-1) \ln \ln n - \gamma_n^* + \ln(h-1)!}.
\]

\[
= n(r!)^{-1}(\ln n)^r \cdot n^{-1}(\ln n)^{-h-1} e^{-\gamma_n^*} \cdot (h-1)!
\]

\[
= (r!)^{-1} (h-1)! e^{-\gamma_n^*} (\ln n)^{r+1-h}. \tag{34}
\]

For \(r = h - 1 \), from (34), it holds that

\[
\lambda_r = \lambda_{h-1} \sim e^{-\gamma_n^*}. \tag{35}
\]

Under the conditions of Theorem 1 or 2, \(\lim \gamma_n \) exists and we have \(\lim \gamma_n \in [-\infty, \infty] \). From (30), it follows that \(\lim_{n \to \infty} \gamma_n = \lim_{n \to \infty} \gamma_n^* \). Then using (35), we obtain the following three cases.

- If \(\lim_{n \to \infty} \gamma_n = x \), then \(\lim_{n \to \infty} e^{-\gamma_n} = e^{-x} \) and \(\lim_{n \to \infty} \lambda_{h-1} = e^{-x} \).
- If \(\lim_{n \to \infty} \gamma_n = \infty \), then \(\lim_{n \to \infty} e^{-\gamma_n} = 0 \) and \(\lim_{n \to \infty} \lambda_{h-1} = 0 \).
• If \(\lim_{n \to \infty} \gamma_n = -\infty \), then \(\lim_{n \to \infty} e^{-\gamma_n} = \infty \) and \(\lim_{n \to \infty} \lambda_{h-1} = \infty \). Summarizing the three cases above, it is clear that

\[
\lim_{n \to \infty} \lambda_{h-1} = \exp \left\{ - \lim_{n \to \infty} \gamma_n \right\}.
\] (36)

Given (31), we select two constants \(c_1 \) and \(c_2 \) such that

\[-1 < c_1 < \liminf_{n \to \infty} \frac{\gamma^*_n}{\ln \ln n} \leq \limsup_{n \to \infty} \frac{\gamma^*_n}{\ln \ln n} < c_2 < 1.\] (37)

Then for all \(n \) sufficiently large, we have

\[-1 < c_1 < \frac{\gamma^*_n}{\ln \ln n} < c_2 < 1,\] resulting in

\[c_1 \ln \ln n < \gamma^*_n < c_2 \ln \ln n.\] (38)

For \(r \geq h \), using (38) in (34), we obtain

\[
\lambda_r \geq (r!)^{-1} (h-1)!e^{-\gamma^*_n} \ln n \cdot [1 - o(1)]
\]
\[
\geq (r!)^{-1} (h-1)!e^{-c_2 \ln \ln n - o(1)} \ln n \cdot [1 - o(1)]
\]
\[
= \Omega ((\ln n)^{1-c_2})
\]
\[
\rightarrow \infty, \text{ as } n \rightarrow \infty,
\] (39)
in view of \(c_2 < 1 \) from (37).

For \(r \leq h - 2 \), using (38) in (34), we obtain

\[
\lambda_r \leq (r!)^{-1} (h-1)!e^{-\gamma^*_n} (\ln n)^{-1} \cdot [1 + o(1)]
\]
\[
\geq (r!)^{-1} (h-1)!e^{-c_1 \ln \ln n + o(1)} (\ln n)^{-1} \cdot [1 + o(1)]
\]
\[
= O ((\ln n)^{-1-c_1})
\]
\[
\rightarrow 0, \text{ as } n \rightarrow \infty,
\] (40)
in view of \(c_1 > -1 \) from (37).

Summarizing (36) (39) and (40), we obtain

\[
\lim_{n \to \infty} \lambda_r = \begin{cases}
0, & \text{for } r = 0, 1, \ldots, h - 2, \\
\exp \left\{ - \lim_{n \to \infty} \gamma_n \right\}, & \text{for } r = h - 1, \\
\infty, & \text{for } r = h, h + 1, \ldots.
\end{cases}
\] (41)

Then for each of Theorems 1 and 2, its property (b) holds.

Given \(\lambda_h \) in (41), the process of evaluating \(\mathbb{P}[d = h] \) is similar to the technique in [13, Section IV]. Due to the space limitation, we do not repeat the details.

Finally, for each of Theorems 1 and 2, its property (a) follows.

6 Numerical Experiments

We present numerical experiments below to support the theoretical results. For graph \(G_s(n, X, Y) \), where \(n \) is the number of vertices, \(X \) is the number of items
Results on vertex degree and \(k\)-connectivity in uniform \(s\)-intersection graphs

11

for each vertex, and \(Y\) is the item pool size, we set \(n = 1,000\), \(Y = 20,000\) and \(s = 2\). Figure 1 depicts both the analytical and experimental curves for the probability that graph \(G_s(n, X, Y)\) has a minimum vertex degree at least \(\ell\) with \(\ell = 2\) or \(\ell = 7\). For the analytical curves, we use the results in Theorem 1; namely, we first compute \(\gamma\) satisfying

\[
\frac{[X(X-1) \ldots (X-(s-1))]^2}{s!Y^s} = \frac{\ln n + (\ell - 1)\ln \ln n + \gamma - \ln[(\ell - 1)!]}{n}.
\]

Then we use \(e^{-e^{-\gamma}}\) as the analytical value for the probability that graph \(G_s(n, X, Y)\) has a minimum vertex degree at least \(\ell\). For the experimental curves, we generate 1,000 samples of \(G_s(n, X, Y)\) and count the times where the minimum vertex degree is no less than \(\ell\). We divide the counts by 1,000 to derive the empirical probabilities. As illustrated in Figure 1, the simulation results confirm our theoretical findings.

7 Related Work

For graph \(G_s(n, X_n, Y_n)\), Bloznelis and Luczak [4] recently consider the following three properties: (i) the graph has a minimum vertex degree at least 1; (ii) the graph has a perfect matching; (iii) the graph is connected. They present that when \(n\) is even, for each of these three properties, its probability converges to \(\exp\{ - \exp\{ - \lim_{n \to \infty} \alpha_n \}\}\) as \(n \to \infty\), under conditions \(p_u = \frac{\ln n + \alpha_n}{n}\) (\(p_u\) is the edge probability), \(p_u = O\left(\frac{\ln n}{n}\right)\) and \(\left\{ (s + 2) \left[\binom{K_n}{s} \right]^2 (\ln \ln n)^2 \right\}^{\frac{1}{\beta(n + s - 1)} \leq (\ln n)^{\beta}}\) for some \(\beta \in (0, 1)\).
Bloznelis [1] investigates the clustering coefficient of graph $G_s(n, X_n, Y_n)$ and show that the chance of two neighbors of a given vertex v to be adjacent decays as cd^{-1}, where c is a positive constant and d is the degree of vertex v. Bloznelis et al. [2] study the correlation coefficient of degrees of adjacent vertices in $G_s(n, X_n, Y_n)$. Bloznelis et al. [3] demonstrate that a connected component in $G_s(n, X_n, Y_n)$ with at least a constant fraction of n emerges as $n \to \infty$ when the edge probability $p_{u,s}$ exceeds $1/n$.

8 Conclusion

In this paper, we derive results for several topological properties related to the vertex degree in a uniform s-intersection graph. We also present numerical experiments to confirm our analytical results.

Acknowledgements

This research was supported in part by CyLab at Carnegie Mellon University under grant DAAD19-02-1-0389 from the US Army Research Office. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

References

