

4.5 SERIALIZABILITY PROTOCOLS FORBSTS 99
Host latency | Throughput Messages
(msec) (ops/sec) per operation

Centralizedlocking 638 800 12.6
Callbacklocking 57.0 800 11.2
Device-saved locking | 51.8 800 14.8
Timedampordering 51.6 800 10

Zero-overhead protocol | 48.7 800 8.6

Table 4.3: Summary performance results of the various protocols under the baseline workload. The zero-
overhead protocol does not perform any control work, simply issuing I/Os to the devices and, hence, it does
not provide any correctness guarantees.

ddivety latency is also boundel, adeviceneednot acep arequesttimestanpedwith avalue much
smaler than its currert time. Hene, per-block timesampinformaion olderthan T' seands, for
same value to T, can be discadedamnd a value of NOW — T usedingea (where NOW stands
for currenttime). Moreower, if adevice s re-initiated after a “crah” or power cycle, it can simply
wait time T after its clock is synchronizedbefore accepting requeds, or record its initial synchro-
nizedtime and rejectall requestswith earlier timeseamps Therefore timegampsonly need volatile
storage,and only enoughto record afew secondsof actvity.

In our implementation, a device does nat maintain a pair of timestamps for each block on the
device. Inskad it maintains per-block read and write timedampsonly for those blocks tha have
beenaccessal in the pastT secords Thesereantper-block timegampsare maintained in a dat
structure, known asthe timestamp log. Perdically, every T' seonds, the device truncatesthe log
sich that only timestmpsthat are within T' secands of currert time are maintained. T' is known
asthe log truncation window. If anacces is recavedto a block but the block’s timestamp is not
maintainedin thelog, theblock is assuned to have atimestamp of NOW —T', where NOW stends
for currernt time.

To undastard why log truncaion does not reault in unnecessay rejectons, reall that host
clocks are loosly synchronizedto within tensof millisecands and mesage latercy is bounded, so
a new requestarriving to a device will have atimesamptha is within tens of milli seonds of the
device’s notion of current time. The device rejects arequestif itstimedampopts doesnot exceed
the maintainedvalues of rts and wts. In paticular, the devicewill unnecesarily reject the requeg

whenopts exceedsthe“real” readand write timestamps, realrts and realwts, but whenopts fails

100 CHAPTER 4. SHARED STORAGE ARRAYS

16.26

15

10 o —a4— device-served locks

. — X~ server locking
e ---¢-- callback lockling
---@ —e— timestamp ordering
---e-- zero-overhead protocol

messages per operation

0 T ¥ T " T
40 50 60 70 80
30 90

read fraction (%)

Figure 4.19: The effect of (read/write) workload composition on messaging overhead for the various proto-
cols. Under read-intensive workloads, timestamp ordering comes close to the zero-overhead protocol. Its
messaging overhead increases as the fraction of writes increases. However, it still performs the least amount

of messaging across the range of workloads.

to exceedthe truncatad values usedby the device, rts andwts. Condgdering only rts, this mears
that:

realrts < opts < rts

Regacing rts by its truncaedvalue of NOW — T, the inequation becanes:

realrts < opts < NOW —T

Thus, for arequestto be rgectedunnecessrily, it mustbetimesampedwith avalue opts thatis
morethanT secondsin the pag, wher T isthelogtruncaion window. Thiscanbemadeimpossble
in pradice by sdecting avalueof T' tha is many multiplesof the clock skew window augmenedby
the network latengy. A T' of afew semnds largdy satsfiesthis neal. This minimizesthe charcethat
arequestwill berecevedard rejected because of aggressive reduction of the number of acarately
mairtained timedamgs kept in thedeviceceche.

In addition to being highly scalable asil lustratedin Figure4.18, andheradvantage of timesamp
ordering is thatit uses the smallestamount of mesagng compared to all the other protocols (Fig-

ure4.19. It hasno messigng overheadon reads and with the piggy-backing optimization applied,

4.5 SERIALIZABILITY PROTOCOLS FORBSTS 101

0.2738

0.1

°©
2.
oy
5]
-c .
1) ----- callback lockling
Q 0.01 — x— server locking
S —4— device-served locks
o —e— timestamp ordering
c
i)
=1
Q
00015 o -x--""
0.0002708 4 k**,/*/,’/,.
5 10 15
0.5 16

message latency window (msec)

Figure 4.20: The effect of the variability in network message latencies on the fraction of operation delayed
or retried for the various protocols. Message latency is varied uniformly between 500 microseconds and a
maximum value, called the window size. This is the window of variability in network message latencies. Higher
window sizes model a network that has highly unpredictable (variable) message latencies. The graph plots the
fraction of operation delayed or retried against the size of the variability window size.

it canalsoeliminatethe mesagdng overhead assodatedwith read-modfy -write operdions.

4.56 Sersitivity analysis

This sectionreports on theperformarce of theprotocds over unpredctale network latencies(caus

ing interleavedmesage ddiveries) and usng fager disks.

Sensitivit y to network variabili ty

When several opaations attemp to accessa corflicting range, the succeeding opeations are de-
layed until thefirst onecompletes The probahility of delay depends on the level of contertion in
the workload. But evenfor a fixed workload, the concurrency control protocol and environmentd
factors (e.g network reardering of messges)can reallt in differert delay behavior for the different
protocals. As shown in Figure 4.20and Figure 4.21, the fraction of operdions delayed is higheg
for callbadk locking beauseit has the highest window of vulnerability to conflict (lock hold time).
Moreover, itslock hold time is independent of mesage time variability becaise it is basel onlea®
hadd time.

102 CHAPTER 4. SHARED STORAGE ARRAYS

118.4 X

100 - e

— x— server locking
---e-- callback lockling
—a&— device-served locks
—e— timestamp ordering

latency (msec)

o711 1
5 10 15
0.5 16

message latency window (msec)

Figure 4.21: The effect of the variability in network message latencies on host latency for the various protocols.
Message latency is varied uniformly between 500 microseconds and a maximum window size. The graph plots

latency against the size of the variability window size.

Distributed device-based protocols both do better thancalback locking and sewer locking be-
causethey exploit piggy-backing of lock/ordeling requegs onthe 1/0s,thereby avoiding thelatercy
of communicating with the lock saver before stating the I/O and shortening the window of vul-
nerahili ty to conflict. Both device-basedpratocols, however, are potentially more senstive to the
messige trangort laye, or more predsey, to messagearrival skev. Messaearrival skew can caue
deadocks and redarts for device-erved locks, and rejectionsand retriesfor timesampordering be-
cause concurrentmulti-device requestsare savicedin adifferentorder at different devices.Redarts
and retries are also counted as ddays and arethereforeaccauntedfor in Figure 4.20.

To investigatethe effect of mesgageskew on the delay and laterncy behavior of the protocds,
an experiment was conducted where messagelatengy variahility was changed and the effects on
peformarce measired. Messae latercy wasmodded as a uniformly distributed rancbm variade
over a given window size, extendng from 1 to ws millisemnds. A larger window size implies
highly variable messaye latendesand leadsto a higher probahili ty of out-of-order mesggeartival.
Figures4.20and4.21graph thefradion of operaionsdelayedard host end-to-end latercy aganst
the network delay variabili ty window sizews. All schemes sufferfromincreasedvariability because
it alo increagsthe meanmesage delivery time. However, timesampordering and device-basel

locking slow down li ttle more thanthe zer-overheadprotocd. But high mesage variahility plagues

4.5 SERIALIZABILITY PROTOCOLS FORBSTS 103

62.27
60 —

50

40
— %~ server locking

—e— callback locking

—a— device-served locks
----- timestamp ordering
---®-- zero-overhead protocol

30

latency (msec)

20+

10

' 5(|)0 T 10|00 '
0 1350
total throughput (ops/sec)

Figure 4.22: The scalability of callback locking, device-served locking and timestamp ordering under a 40%
disk cache hit rate. The bottom-most line represents the performance of the zero-overhead protocol. While
timestamp ordering and device-served locking continue to approximate ideal performance at higher hit rates,

callback locking bottlenecks at a fraction of the achievable throughput.

the certralizedlocking variants significanty more sincethey perform more pre-4/O messajing.

Sensitivit y to faster disks

Findly, one experiment wascarried out to try to anticipate the performarce of the protocols when
faste disks are used Disk drive access performarce is expecied to keep growing asa reault of
evolutionary hardwvare technology improvemers (e.g. highe densities leading to higher trarsfer
rateg, theintroduction of new techndogies (e.g. solid-stae disksleadng to reducedaccestimes or
device ecanomics(dropping memoy pricesandincreagddevicefunctionality [Gibson etal., 1998]
leading to larger on-disk cache memorysizesard thereby rediwced acces times.

To simulate the effect of faste disks, an experiment was caried out where thehit rate of the disk
cachewasincreasel andscalabiity of the protocols undertheseseemirgly faser disks measired.
As shown in Figure 4.22, callback locking doesnot keep up with the throughput of the faster disk
drives. Device-seved locks andtimedamp ordering, on the other hand, continue to appoximate

idealscaling behavior.

104 CHAPTER 4. SHARED STORAGE ARRAYS

4.6 Caching storagecontrollers

In the discusson sofar, we assumel tha data caching is performed on the device side. The client-
side controllers did not cache data or parity blocks This desgn implies that a read by a BST
exeauting at a starage controller invokesa mesage to the device staing that daa. The device
savicesthereadard returnsthe data to the requeding controller. The cortroller pases this datato
the host or usesit to computethenew parity, but in eithercassdiscardsit afterthe BST completes.

Sucha cache-lesscontroller design is acepabe when the storage network connecting de-
vicesand cortrollers has relaively high-bandwidth and low lateng. In such a case the time
taken by a controller to read a block from a device’s cache is comparable to a local read from
the controller's own memory. If this holds, ther is berefit from avoiding double-caching the
data blocks at the starage cortroller. Controller-side cading is wasteul of memoy since a block
would be soon replicaied in the device’s cache ard in the controller’s cacte. It also induces un-
necessay coherence traffic when blocks are cached at multiple cortrollers have to be kept up-to-
dae [Howard etal., 1988, Lamb etal., 1991, Carey etal., 1994]. This coherercetraffic canhave a
negaive effect on performarce under high contertion.

False shaing occus when higher level sdtware is writing to objects that are smaller than the
block-size of the controller’s cate, cdled the “cacheblock size” In this case,two applicationsor
amlication threadsrunning on two clients canbewriting to two objects which happento fall in the
sane “storage block” Sud a scerarnio induces conererce traffic betwee the controllers to keep
their copiesof the block up-to-date even though there may be no overlappng acces®s. Another
kind of false sharing arises from contertion over parity blocks when two controllers write to the
samne stripe. Becausefalse sharing is expected at the starace layer, it is geneally undesralde to
cacheat theparallel controller or hostunlessthe network is substartially slower thanlocd acese®s.
Anothe reasm agairst caching is the fad that higher level sygem software, e.g. filesystans ard
daabases, have thar own caches, which will absab “locality induced” reads. Regicating thes
blocksin thehod's filesystembuffer cacheard in the controller’s cache is wageful of memory.

So, if thefilesystan or datebase cache absarbs most application reads, when is cading at the
parallel controller useful atall? Caching at thecontroller canyield performarcebendfitsin anumber
of situations. First, caching atthe controller avoids the network andreducesthe loadon the devices.
When the nework is slow, this can trandate into dramaic benefits. Furthermoe, offloading the
devicesimprove scding. For example, controller-side cadhing caneliminatke the “read pha®” in
two-phasal BSTs. Many BSTs desaibedin Section 4.3 pre-reada daa or a parity block before

4.6, CACHING STORAGE CONTROLLERS 105

Storage devices

Switched
hostread/hostwrite —— Network -Eﬁ
reply <—
hostread/hostwrite

C
reply <— [PSC [cl—J
[T

devread -

’T@ cache * storage deviec
. data
hostread/hostwrite —

reply

Figure 4.23: In a caching storage array, parallel storage controllers receive host requests and coordinate
access to the shared storage devices. Data blocks are cached at the device where they are stored and also
on the storage controllers. Consequently, some reads in a BST are serviced from the cache on the controller,

avoiding a network message to the device.

writingit. Caching theseblocks on the controller side canavoid network trangers from the device
caches. This cantrandateinto dramatc reductionsin latency whenthe network is overloaded, and
whenthere is little write contention across cortrollers for blocks. Low contertion increases the
charncethata block cachedat controller A is nat updated by another controller before controller A
aesesthesameblock agan, making caching it worthwhile.

Caching at the pardlel cortroller can also prove useful when the applicaion working setdoes
nat fit in the filesystan cache. In this case, the controller's cache canbe used to cacle blocks
that have been evicted from higherlevel caches (the filesysteam buffer cache for example). The
controller in this case mug coordinate its cacte replacement policy with the higher level cacle.
Recent work has shown tha such an approach can yield sizeable benefits for certain applica
tions[Wong and Wilkes, 2000].

Figure4.23 defictsashared array where daablocks are cactedatthe pardlel starage controllers
aswell at the storage devices When a starage cortroller caces data and parity blocks, pre-reads
can be sdisfied from its local cache Predsdy, areal by a BST execuing localy can be seviced
fromthelocd cade

The distributed seridizahlity protocols discus®din the previous sedion do not readly apply

to this architecture. Both device-served locks and timestamp ordering rely on the starage device

106 CHAPTER 4. SHARED STORAGE ARRAYS

receving requeststo perform conaurrercy control chedks before savicing them. Going to thedevice
for seializablity checks when the controller has the datain its cache seemsto defeat the purpose
of client-side caching. This sedion focuses on the two distributed protocds which were shown in
the previous sectionsto have nice scaling properties. It outlineshow they can be extendcedto allow
effective controller-side caches. We assumne that for both protocds, storage controllers cache daa
blocks in a local cache, called the controller ceche. A devwrite writes datathrough the cacheto
the starage device, updating both the local copy andthe storage device. A devread is sewiced by
cheding the cache first. If avalid copy exists, the block is readlocally, othewiseait is retrieved

fromthestoragedevice.

461 Device-servedleases

As in device-®rved locking in Sedion 4.5.4, locks are acquired from the devices The protocd
is ale two-phase, guaranteeing seializability: All locks neaded for the exeaution of a BST are
aquired before ary of themis releasaed. The key difference between device-senved locking ard
device-rved leasesis tha in the latter, the locks are nat released immeditdy after they areac-
quired in thefirst phase.Ingeal, locks are cachedat thehost. Consejuenty, bothablock’s conterts
and the as®ciated lock are cachedby the cortroller. A devreadis sewiced exclusively from the
controller’'slocal cackeif boththeblock ard alock for it are found in the controller’s cache.

Like the cdlbadk locking approach of Secton 4.5.2,locks expire after a spedfied time period,
hence thename“lease”. This time period is known asthe lea® duration. A lock is valid until the
leaseduration expiresor until it is explicitly revokedby the devicein arevokeLeas messge (which
is analogousto a callback). When a lea® expires or is revokedby the device tha granted it, the
block in the catheis considerdinvalid and is logicaly discaded fromthecahe A BST devread
would then have to be forwarded to the device. The devreadis piggy-badced with a lock request
asin device-ervedlocking. The cortroller sends a lock-and-devread messaye to the device, which
respands with the dataafter thelock canbe grantedto the requesting controller.

Figure 4.24 depicts howv the® BSTs break down into basic operations. The piggy-badking
optimizationis still applied. If ablock is not found in the cache alock-and-devreadrequed is sen
to the device where the block is stored. However, locks are not releasel in the pos-read phase but
are instead cacheal locally. On the device-side, requess to lock, readand write are seviced asin
device-rved locking, except for onedifference. In device-savedlocking, locks are not cachedamd

are releasal immeditdy after the BST completes. Thus a device that can nat grant alock due to

4.6, CACHING STORAGE CONTROLLERS 107

begin hostwrite begin hostwrite

(@ 75
SO) R

end hostwrite end hostwrite

two-phase write single phase write single phase read

Figure 4.24: The breakdown of a host operation with device-served leasing with piggy-backing. An ‘L’ node
represents a lock operation, ‘LR’ represent the lock-and-desreadoperation, while ‘W’ stands for devwrite. A lock
(L) request is satisfied locally if the lock is cached and the lease has not yet expired. A ‘LR’ is satisfied locally
if the block is in the cache and the associated lease is valid. If the lease is invalid, then a message is sent to
the device to refresh the lock (‘L' request) or to refresh the lock and read the block (‘LR’ request). The edges
between the nodes represent control dependencies. A ‘C’ node represents a synchronization point at the host

as before.

a conflicting outstanding lock queues the request urtil the conflicting locks are released However,
in device-seved leasing, the device does not wait for the controller to releasethe lock, since the
controlleris caching it and will not spantaneously releaseit. Thus the device explicitly revokesall
valid conflicting locks granted (locks thathave not expired) by sending revokeLeaemesagesto the
caching controllers.

To simplify recowery, it is requiredthata controller not update any block until the commit point,
whenall needal locks have been succesfully acquired However, in device-senved leasng, locks
can eventudly expire leading to same tricky complications It is possble that a controller acquires
thefirst lock, but waits to acquire theremaning locks so longthatthefirst lock becomesinvalid (the
leasepeliod passes). In this case,thefirst lock is re-aaquired The commitpoint is reached only
afterall the locks have been acquiredandare all valid.

Onrecovery from a sdt fault (e.g. power-fail), the device can not grant a lock to a cortroller
if avalid conflicting lock exists at another. If information abaut outstanding leagsatthedeviceis
maintainedin volatile memory, the device mud wait until a sde peliod after restat before it can
grantlocks agan. This sde period can be as short as theleaseperiod but not shorter.

Therewvery protocals discussed in Secton 4.7require, for performarcereasons,thatthedevice

108 CHAPTER 4. SHARED STORAGE ARRAYS

beale to idertify the set of leagstha may be valid and outstandng at the controllers at the evert
of afailure. This identificaion doesnat have to be acaurae and canoverapproximate this set as

longasit is areldively smal fraction of theblocksonthe disk.

4.62 Timestampordering with validation

Device-srvedleasng distributescontrol work acrossthe devicesand hoss. It doesnot have acen
tral scdahility battleneck. Neverthdess, it hastwo sefious disadvantages. First, it cansuffer from
degradedperformance undercontertion. Lock acauisition can have substantial latency due to revo-
caion messaing. Furthemore, spuriousrestats under contention cancausedegradedperformarce.
Secmd, it is reldively complex to implemen. Timestanp ordering has the scalabiity adwantages
of devicesewvedlea$ng without the vulnerahility to contertion or to spuiousresarts (sinceit is
deadock-fre@. Timestamp ordering, however, doesnot readily support caching ard it hasnolocks
which can beeasly overloadedto ensire cachecohaerce

To extend timestamp ordering to suppat controller-side caching in a straight-forward manne,
we will redace cache hits with version te€ mesagesto thedevices. This will only have a negaive
on read hit latengy if all data needng to bereadis in the controller’s local cacke. The controller
cachesdda blocks together with their write timedamps, wts. Each block in a controller's cacheis
ascciated with an wts, whichis the write timedamppublicized by the device for that block when
the cortroller readthe block into its cache. Intuitively, this wts canbe thought of asa version
number If another cortroller writes its copy of the block, the wts for thatblock is updated on the
device, logically making the version cached by othercontrollersinvalid. It suffices to compare the
local wts in the controller cache with thatmaintained at the device to verify whether the device and
controller blocks are the sane.

Thecontrollersand devices behave asin the badc timedampordeling, except for the readphase
of a single or two-phas BST. In this case, the cortroller services the readfrom its local cade if
alocd block exists. To validat that the local version of the block is nat stde and thereby is sde
to read, a readlfinvalid 1 messageis sent to the device for eachblock. This messaye contains the
timestamp of the BST, opts, and thewrite timestamp of the block readfrom the cacle, wts. If the

wts of the cachedblock mathesthewts maintainedby the device, thenthereal performed by the

1This mears readif thelocd copycacledatthe hostis invalid. The device either returnsan OK respns validating
thatthe local copy cachel atthe hostis valid, or, if thevalidation fails, returnsthe nen contentsof the block and the new
assaiatedwts.

4.6, CACHING STORAGE CONTROLLERS 109

begin hostwrite begin hostwrite
restart 7 resat /4
@ @ @" e °>° begin hostread
©) @@ ®
end hostread
end hostwrite end hostwrite
two-phase write single phase write single phase read

Figure 4.25: The composition of host operations in the TSOV protocol. devread devwrie, and prewrite requests
are denoted by ‘R’, ‘W’ and ‘P’ nodes respectively. A ‘RII’ denotes a readlflnvalid request which is issued in
lieu of a read if the block is found in the cache. This request includes the wts of the cached block and instructs
the device to read and return the block only if the cached version is invalid. If the cache block is valid, the rts
is updated at the device and a positive reply is returned. A ‘RP’ denotes a read-axd-prewrite request. An ‘RP’
request is issued if the block is not in the cache. If the block is found in the cache, a readflnvalid-and-prewrite

(‘RIIP’) is issued. A ‘C’ node represents a synchronization barrier at the host as before.

controller from its own cadheis valid. In this cas, the device updates therts of the block to opts
and returnsan OK regon<e. If thewts of the cachedblock is different from that maintaned at the
device, thenthereadis nat valid. In this case two things can happen If opts > wts, the block is
returnedand rts is updaedto beopts if opts exceeds ris. If opts < wts, the reques is rejected
ard the client will retry with a highertimedamp. This protocd is called timegampordering with
validation (TSOV).

Figure 4.25 depicts how BSTs breakdown into basic device opaations. In TSOV, the device
checks prewritesand writes asin thebasic TSO protocol. Realsarehardleddifferently asexplained
above. In the caseof atwo-phaseBST, the read-ard-prewrite becomesa readand-prewrite if the
blockis nat fourd in thecadeor areadifinvalid-and-prewriterequeg if it is. If validaion sucaeed,
no datis returned by thedevice ard the block in the local cache is used

The device maintains its timesamplog by rounding up all wts's thataremore than T' secands
in the pastto thevalue of NOW — T'. As explainedin Sedion 4.5.5,this does not comgomise
the correcines of basc timegampordering. In the caseof TSOV, the effect of this rounding up
can result, however, in readlfinvalid requedsfailing validaion despite thefacttha the cached copy
atthehostisvalid. Whenthe write timegampassaiated with ablock is truncated, i.e. increasel,

the next readlfl nvalid requed from a hog will fail becaise the wts mantained by the host will be

110 CHAPTER 4. SHARED STORAGE ARRAYS

9229

80

(o2}
o
|

—+— device-served locks
—a&— device-served leases
---@-- timestamp validation

IN
o
|

latency (msec)

20

0 ++—r e e
100 200 300 400
0 412.6

total throughput (ops/sec)

Figure 4.26: The scalability of device-served leases and timestamp ordering with validation. The storage
controllers have a local cache that is big enough such that no blocks are evicted because of limited cache
capacity. The lease duration is 240 seconds, and the timestamp log truncation window is 300 seconds. The
graph also shows the performance of device-served locking (which is also representative of that of basic

timestamp ordering) when the controllers do not cache any blocks.

smaler thanthe truncaedvalue maintainedby the device. This indueesanunnecessay read of the
daa from the device. Therefore, in TSOV, the timestamplog truncation window mug be longer
thanafew secands. For theimplemenation evaluated in this sedion, avalue of 5 minuteswasused.

The following subsedions compae and contrastthe performarce of the cache coherert dis-
tributed pratocols. In particular, the evaluation critena are takento be the latency of compléing a
BST, the amount of network mesagng peformed,the fracion of operations delayed or blocked,
the size of device-sidestae, and theimplemenéation complexity of the protocals (bath atthedevices

ard atthecontrollers).

4.63 Latency and scaling

Recdl thata caching starage controller forwards devwritesto the device under both protocals. De-
vreads, however, arehanded differertly. Under TSOV, a control messgeis sert to the device to
validatea locally cached block and local contents are readif the validation succeeds. If the vali-
dation fails, the device returns the new contents of the block or the requestis regjected (dueto an

unaccepale timegamp. Consider the cas of low contertion, where blocks cacheal at one con

4.6, CACHING STORAGE CONTROLLERS 111

troller are not sconwrittenby arother. In this case,the validationwill often succeal. Thedifference
beweenTSO and TSOV is tha the latter convertsthe pre-reads or readsin cas of a cacle hit to
a control mesageexchange with the device. Device-ervedleasing (DLE) completely eliminates
mesagngin caseof acachehit. Theblockisreal fromthecacteif thelocdly cathed leaseisvalid.
However, whenalock is not cachedlocally at the host, one mug be aajuired from thedevice. The
device mud recdl all the conflicting and outgarding leasescached by all hogts before respanding
to therequeging host Thisinduceslatency whenan exclusive lock is requegedby a cortroller for
ablock tha has beencachedat many hostsin shared moce.

Themajor vulnerakli ty of device-sevedleasngis that this work is performed by thedevice ard
nat by the controller which can load the device in large systems. Under timegampordering with
validation, a hostA writes to thedevicesby sending a prewrite messagein afirst phasefollowed by
awrite messgyein aseond phase Other hosts that have a cached copy of the block written to by
host A are not notified. They will discover that the block hasbeen updated when and if they try to
validate thereadlater. Thework to keepthe caches coherent is ddayed until (and if) an accessis
performed

When each host accesesa different part of the device, leasing works well. However, when
controllersshae accessto the samedevicesand objects, device-seved leasing can be expeciedto
sufer beauseof increagd messaing and device load. Shaedarraysarenat charecterized by sep
aratelocality atead cortroller, however. First, becaise cluster applicaions running ontop of them
oftenbdanceloaddynamicaly acrossthehaostsrealting in blocks being accessal by multiple hosts
within ashat period of time. Secord, even if apgications havelocdity in thelogical address space,
RAID canmaptwo logically differernt object to the same stripe set This induces cortention not
only on the parity blocks but also on the data blocks themsévesdue to RAID write optimizations
which sametimesreauire reading blocks tha are not being updaied Unde high contertion, valida-
tion messigesof TSOV will oftenfail, andthe device will thenreturn the new contentsof theblock.
TSOV thus reducesin this caseto basic timegampordering with no caching. DLE under high con-
tention also gereraesalot of lea® revocaionswhich also makeit perform asbasic device-served
locking. Therevokeleasemesage in DLE is the equivalent of the unlock mesagein device-saved
locking. However, adevice under DLE is expededto suffer from blocking longer becauseits locks
are distributed acrosshogs and revocaions will tendto be queued and wait for sewice at more
nodes. More importtartly, DLE is more vulnemable to deadocks than basic device-erved locking

becawse longer blocking times cause more spurious deadlock detedion time-outs, ead initiating

112 CHAPTER 4. SHARED STORAGE ARRAYS

15.75

—+— device-served locks
—a— device-served leases
---e-- timestamp validation

messages per operation

200 300 400 500

throughput (ops/sec)

Figure 4.27: The messaging overhead of device-served leases and timestamp ordering with validation, com-
pared to that of device-served locking. The latter assumes no controller-side caches. Note that under high
load, device-served leasing (DLE) induces more messging than device-served locking. This is because the
fraction of operations retried (to avoid a likely deadlock) under high load is larger under DLE than under
device-served locking. Deadlock-induced timeouts are more likely under DLE because lock hold times are
longer under DLE (lease duration) than under device-served locking (duration of the operation).

restats whichfurtherloads the devices.

The basdine workload and simulation parameersde<ribedin Table 4.2 are usedto evaluae
the caching protocols, except for the system being third as large (10 devicesand 8 host). Simu-
lating the more complex caching pratocols requires moreresouces making large scale simulations
impracical. All the grgphsin Secton 4.6 ard later corresppnd to 8 hods and 10 devices.

Figure 4.26 plots laterncy versus throughput of TSOV, DLE anddevice-srved locks. Device-
seavedlocking correspmds to the performarcein theabsence of host-side caching. Sugrisingly, the
graphs shows thattimestamp ordering exhibits lower laterciesthan DLE. Both TSOV and DLE re-
ducelatendescomparel to device-sevedlocking without hog-side cating. However, the caching
bendit of DLE is samewhat offset by theincreasedload on the devices for leasemanagemert ard

recall aswell asby theincreasel messaing leagsinduce when hods contend for a shared staage

space.

4.6, CACHING STORAGE CONTROLLERS 113

4.64 Network messaging

TSOV doesnat reducethe number of messges sert on the nework over TSO although it converts
same datatrandersto control mesages redwcing thetotal numbe of bytestransferred. DLE, onthe
other hand, eliminatespre-reads and read atogetherwhen a requesthits in the cachebut requires
revocation messayjing whendat is shared. Figure 4.27 plotsthe average number of messajespe
operdion (thatis, per BST) for eachprotocol. TSOV hasarelaively congant number of messayes
per BST, ard equal to that of basc TSO. Similarly, device-saved locking hasa relatively congart
mesagng overheal. DLE starts with the lowest messajing overhead when the numbe of hosts
is limited (2) and few lea® revocaions occur. As the number of hoss in the systan increasss, the
amouwnt of mesadng requiredto revoke leagsincreags At thesametime, leasesarerevokedmore
often requiring hoststo re-aajuire them more frequertly. Underhigh throughput, this degrades to
worse than the performance of device-saved locking because of the large number of operations
retried under DLE. This is dueto the fact tha DLE is morevulnerable to the deadock detedion
time-outs.

When aBST is startedatahog, it often partially hits in the cache suchthatsomeblocksard their
leases are found in the cache while someothersare not. The blocks tha are not in the cade or for
which novalid leasesare cached mug bere-fetched from the device. This hold-and-wait cordition
of hdding same locks locally and atemping to acquire the reg (from multiple devices) opers
the possihility of deadlocks. Both devicesewed locking and DLE have a similar time-cut based
deadock detecion medanism at the devices However, DLE sufers much moretimeout-induced
restats. Thisis beauseDLE holdslockslongerby cacingthemand therdoreis morevulnerade to
deadockswith many more BSTsthat startwhile the locks arelocdly cached. Futhermore becaise
the leaserevocation work at somedevicescantake considerably long, deallockeddetedion time-

outs canoften expire in themeanime.

4.65 Read/write composition and locality

Unde a predominartly read workload, where blocks are rarely invalidated by writesfrom other
haosts device-served leasing yieldssimilar latendesto timestamp ordering with validation asshown
in Figure4.28 Figure 4.29 graphsthemessaying overhead of the protocds as afunction of theread
traffic ratio in the basdine workload Under a predaninantly read workload, device-saved leases
induceslower messaging overheaddue to the large fradion of locd cade hits. However, asthe

fraction of writes increase, and be@usehods acassa shaed storage spaceuniformly randomly in

114 CHAPTER 4. SHARED STORAGE ARRAYS

194.1 4
150

100 —a— device-served leases
—e— timestamp ordering with validation

latency (msec)

50

0 T T T T T T T
20 40 60 80
10 90

read fraction (%)

Figure 4.28: The effect of the read/write workload mix on host latency for device-served leases and timestamp

ordering with validation.

this workload, the number of cdlbads increase. This makesthe messaing overhead of device-
savedleaseshigherthan tha of timesampordeiing.

When eachhosthasits own “working set” of blocks tha no other hostscanacces, thenacauir-
ing alock and caching it becomesmore appeding. Under such a workload, DLE should of course
exhibit lower latendesthan TSOV becauseit eliminatesmany readmesageswhile TSOV cornverts
theminto control mesages. While such a workloadis not typical of clustas ard of shaedarrays,
it is valuable to quartify and bound the benefit of DLE over TSOV. Unde basdine paramdersand
perfect locality (no revocaions from other hostg, DLE wasfound to exhibit 20% lower latercies
than TSOV.

In the reported expeimerts, the leasetime was 240 secands, this lease time was configured
to give device-erved leasng the bestpeformane for this workload. Nevertheless,under such a
sharad uniformly randomworkload timegampordering with validation is still preferrable and more
robust to changes in contertion, read/write compasition and network messaye latengy variahili ty.

Thesenstivity of DLE to leaseduration is explored beow.

4.66 Sensitivity to leaseduration

Lea durdion impact both the concurency control and recovery protocds. Shater leases make

recovery faste as discussal in Secton 4.7. The duration of the leag canbe good or badfor the

4.6, CACHING STORAGE CONTROLLERS 115

19.7 4
c .
9o 15
T .
e
(]
(o8
o 4
@ 10 —a— device-served leases
Q] —e— timestamp ordering with validation
(%]
()
()]
@
[7)] 4
O 5
= .

0 T T T T

10 90
read fraction (%)

Figure 4.29: The effect of the read/write workload mix on messaging overhead for device-served leases and
timestamp ordering with validation. Messaging overhead for both protocols decreases as the ratio of reads
increases. When write traffic dominates, timestamp ordering with validation induces a lower messaging over-

head than device-served leasing, which suffers from revocation messaging and time-out induced retries.

0.6269
0.501187 -
—e— device-served leases

0.398107 1

0.316228

blocked or retried operations (per op)

0.2705 4rrrrrrrr R e

Lease duration (sec)

Figure 4.30: The effect of lease duration on the fraction of operation delayed under device-served leases.
The longer the lease duration, the higher the likelihood that an operation is delayed at the device waiting for

conflicting granted leases to be revoked.

116 CHAPTER 4. SHARED STORAGE ARRAYS

13.63 ///a“

104

—e— device-served leases

messages per operation

Lease duration (sec)

Figure 4.31: The effect of lease duration on the messaging overhead for device-served leases. Shorter leases
result in lower lock cache hit rates at the controllers, but reduce the amount of revocation messaging needed
when sharing occurs. Longer leases, on the other hand, reduce the need to refresh, but increase the likeli-
hood of revocation messaging when sharing occurs. Their combined effect shows that the overall messaging
overhead is minimized with shorter leases, although the difference is not daramtic.

performarce of the concurency conrol, deperding on the workload. If the workload has high
locality andlow contention, then longer leags are better becaise they allow one read to saisfy
more acceses before the lease is refresked Under high-contenion, however, shorter leases are
better becaise they minimize delays due to revocaions. When a short lea® is requeded from a
device, agood fraction of the previoudy acquiredleagsby othe hastswould have already expired
ard so few revocdions would reault. This further redwces messiging overheadand device load
contributing to obsewvally lower latenges.

To investigatethe effect of lease duraiion on DLE, the end-to-end latercy, messaing overheal
ard the fraction of operationsdelayed weremeasuedunderdifferert leasedurationsfor thebasdine
configuration (8 hostsard 10 deviceg. Figure 4.31 shows the effect of lea® duration on mesaying
overhead. Short leases require lessrevocatons but also must berefreshed more often Long leases
inducemore revocationsbut do not recuire refreshes unlessthey arerevoked Medium-length leases
are theword under the basdine workload becaisethe sumof both effectsis larger for them. Fig-
ure4.30 demondratestha longer leases causeopeationsto bedelayed moreoftenwhile corflicting

outstanding leasesare being revoked Figure 4.32 summarizesthe net effect of lease duration on

4.6, CACHING STORAGE CONTROLLERS 117

48.46 v\,\’\’\"’\‘

40

—e— device-served leases

20

latency (msec)

10

Lease duration (sec)

Figure 4.32: The effect of lease duration on host latency. Very short leases result in relatively higher latencies.

Increasing lease durations beyond 240 seconds does not result in noticeably lower latencies.

end-to-end latency. It showsthatunderthe basdine randam workload which hasmoderae loadand

contention, alea® exceedng few minutesis advisable.

4.6.7 Timestamplog trun cation

Unde timestamp ordering, devicesmaintain alog of recently modified read and write timegams
for the recently aces®dblocks To bound spae overhead, the device periodicaly executesalog
truncation algorithm. This truncation algorithm ddetesall timestamps older than T', measuredin
secords whichis thelog size paameer. All blocksfor which no timesamps(rts or wts) arefound
in thelogare assumedto haveanrts = wts = NOW —T by thetimestanp verifi cationalgorithms.
For basic TSO, the log can be very small hoding only the lag few seconds of timesampsas
described before.

The timesamplog mug be stored on non-volatile storage to sugport the recoery pratocols
discuisdin Section 4.7. Becausethe timesiamplog mug be stored on non-volatile starage (e.g.
NVRAM), it must betruncated frequertly to maintan it atasmall size. Section4.5.5arguedthat a
very smalllog size is suficient for basic timestanp ordering becauseclock skev and messayedelay
are bounded For TSOV, the log cannot be very small becaise cachevalidation requess would be
morelikely to fail. If thelog istruncaedevery few secondsthenahostissung avalidaton (RIl or

RIIP) sereral seconds after reading a block will have its validation failed, forcing the device to re-

118 CHAPTER 4. SHARED STORAGE ARRAYS

e M

40

30

—— timestamp validation

20

latency (msec)

10

Log size (sec)

Figure 4.33: The effect of timestamp log size on host latency for timestamp ordering with validation. The
log size is measured in seconds of activity. A log size of 200 seconds implies that the device truncates all
timestamps older than 200 seconds ago to “current time - 200 seconds”. The graph shows that a timestamp

log of a few minutes is sufficient to achieve good performance for the baseline workload.

trander theblock to the host Natualy, thetimestampcache “hit rate” (the fracion of accessesfor
which validaions succedl) increases for TSOV with larger timestanp logs or equivalently bigger
valuesof T'.

For the graphsin this sedion, the timedamplog size at ead device wassetto acomomodate 5
minutes of timesamprecads. To edimate the size of this log, recall that a typical disk device
savicesamaxmumof 100 disk operationsper second, or 30000 opsin 5 minutes. Tha assumes
thatall request missin the device's cache and are therdore savicedfrom the platters If 32 bytes
are used to store the (block, timestamp) pair in a log datastructure, this five minute log need to
960 KB. Smller log sizesoffer good performarcealso. Notetha if the cache hit rateis high, then
the traffic is likely to have more locality. In this case a more locdizedworking setislikely to neal
asmaler numbe of timegamprecords. Figure 4.33 supports the argumert tha small log sizesare
suficient, showing that alog size of only 200 seondsis suficient to provide good performana for
the ranrdom workloadof Table 4.2.

4.6, CACHING STORAGE CONTROLLERS 119

TSO | DLOCK | TSOV DLE
Storagedevice 192 1629 1975 1749
(Lines of codg
Caching support atdevice — — 33 120
(Lines of codg (=1975-1942) | (=1749-1629
Storagecontroller 1821 1810 2008 2852
(Lines of codg
Caching support atcortroller | — — 187 1042
(Lines of codg (=2008-1821) | (=2852-1810

Table 4.4: Simulation prototype implementation complexity in lines of code. The numbers concern the basic
concurrency protocols excluding the recovery part, which is largely shared across all protocols. The second
and fourth rows of the table show the additional lines of code added to the device and to the storage controller
to support block caching in each case. This is simply the additional lines of code added to TSO to make it
TSOV and added to device-served locking (DLOCK) to make it DLE.

4.6.8 Implementation complexity

Although device-rved leasng and timesamp ordeling have similar performarce, device-seved
leasing is relaively more comgdex to implement. Table 4.4 shows the lines of code needkd to
implemert ead of the protocols in detaled simulation. Except for more robust error hardling, the
protocals can be realily transganted into a running prototype. The linesof code may therdore
berepresataive of their red compaale implemertation complexity. Thetable shawvs that while
timestamp ordering ard device-rvedlocking are of relative complexity, their caching counterparts
are quite different. While it took only 180 linesto add cadhing support for timegampordering at the
storage controller, athousandlinesof code were neededto do the samefor device-sevedlocking.
Thereasonbehindthis differencein complexity is tha DLE deakwith the additiond complexity
of lea® expiration and leaserenewal, deadock handling code, and leasereclamatbnlogic. A leag
hdd by ahog canberedaimed while anacessis concurrenty trying to acquire thelocks. A lea®
from onedevice can expire becalsea lock requed to andher device touchedby the sane hostwrite
wasqueuel for along time. All of theseconcerrs areabsert from theimplemertation timestamp
ordeling with validation. In thelatter, only thewrite timestamp of theblock in the cadheis recorded
and sent in a validaion messaye to the device. No deadocks canoccur, no leases canexpire, ard

no calbacksarerecevedfromthedevice.

120 CHAPTER 4. SHARED STORAGE ARRAYS
4.7 Recovery for BSTs

Variouskinds of failures canocaur in asharedstorage array. Devicesand cortrollers cancrashdue
to non-hard software or hardwvare bugs or due to loss of powver. Coredness mustbe maintained
in the event of sud failures. This secion discus®eshow a sharad array can recover from sucd
urtimely failures. In particular, it descibesthe protocals that ensure the condstercy property for
BSTs, discussed in Secton 4.4.

4.71 Failure model and assimptions

A sharal storagearray congsts of four components: storage controllers, starage devices staage
marages and network links. Fromthe perspecive of this discussion, failures canbe experienced
by all four comporerts. Network failuresinclude opermatar, hardvare or sdtware faults that cause
linksto be unavailale, tha is incapale of trarsmitting mesagesbetween nodes. This discussion
assumes thatall network failuresare trarsient. Moreover, it assimesthat areliable trarsport proto-
cad, capable of masking transientlink failures is usal. This discussion also makes the simplif ying
assumption thata starage marage failure is alwaystransient and masked. Thatis, the storageman
acerwill eventudly becaneavailable suchthatacommurication with it will always succead. Other
work desclibes atechriqueto implement thisin pracice [Golding and Borowsky, 1999. Therfore,
this discusson will focusonly onfailuresin clientsand devices

A devicecan undego a pemanent failure reaulting in the loss of all datastaredonit. A device
can also undergo atrandent failure or outage cawsing it to lose all the state storedin its volatile
memoy. Similady, a controller canundergo a permanert failure which it doesnotrecower from. It
can asoundemgoatrarsient failure, or outage after which it evertually redarts but cawsingit to lose
all stde in its volatile memory. For the reg of the discussion, a failure of a device or a controller
will desgnatea permanert failure while anoutage will designat atrandent failure.

Figure 4.34showvsthe pratocols usedin ashared storagearray. The storagecontrollersuseBST-
basad acessprotocolsto read andwrite virtual starage objects. Accessprotocals involve cortrollers
ard devices. The layout maps usedby the acces pratocols arefetched by the cortroller from the
storage manager. Layout mapsare asodated with leases spedfying the period of time during
which they arevalid. After this lea® period expires the controller mustrefresh the layout map by
contacing the storagemanaer. A storage manaer can invalidaie a layout mapby contacing the
storage controller caching thatmap

The storagemanager changes a virtual object’'s modeor layout maponly whenno storagecon

4.7. RECOVERY FORBSTS 121

Clients(storage Network Storage devices
controllers) and Storage managers
]
protocol ~—
(BSTY) -
-
cl— .
device
layout map recover;l/
device failure protocol Storage protoco
notication manager (S)

protocol

Figure 4.34: A shared storage array consists of devices, storage controllers, and storage managers. Storage
controllers execute BSTs to access the devices. The BSTs require the controller to know the object’s layout
across the devices. A layout map protocol between the storage controller and storage manager allows con-
trollers to cache valid layout maps locally. If a storage controller discovers a device failure, it takes appropriate
local actions to complete any active BSTs then notifies the storage manager through the device failure notifi-
cation protocol. Similarly, a device may encounter a controller failure after a BST has started but before it is
finished. Such a device naotifies the storage manager. This latter executes the proper recovery actions (device

recovery protocol).

trollers are actively accessngtha objed. Precisely, a staage marage mustmake sure no cortroller
has avalid layout map in its cachewhen it performsa change to thelayout map. Layout mapsare
stored (replicaied) on stable starage. A storagemarager synchronoudy updaesall replicasof a
layout map whenit switchesa virtual object to a different mode or whenit changeswhere storage
for theobjectis allocaked. Thisis aacepale giventhatvirtual object maps arechanged infrequently
whenobject aremigraedor whendevicesfail.

For example, to switch a virtud object from fault-freemode to a migrating mode, the storage
manaer canwait urtil all outstandng leasesexpire. Alternaively, it can send explicit mesagesto
invalidatethe outstanding layout mapscadedby storagecortrollers. At theend of thisinvalidation
phase, the controller is asaired that no starage controller is accessng starage since no valid layout
mapsare cacked arywhere At this time, the starage marager can switch the layout map of the
virtual object and moveit to amigrating mode. After this, the new mapcanbe sewvedto the storage
controllerswhich will useBSTs spedfied in themapandcormregponding to the migrating mode.

A staage controller candiscover a failed device or can expelience a device outageafter aBST

has stated and before it has comgeted. Sud exceptional conditions oftenrequire marager adion

12 CHAPTER 4. SHARED STORAGE ARRAYS

rst phase request @
received, REJECT

/ sent back to controller

(recivy — 2 (Bioding) 2 (Upte
rst phase pre-write

| second phase write
received, ACCEPT received, storage ACK reply sent
sent back to controller

updated back to controller

Second phase cancel

time-out period -

expireswhile received @
Storage manger in Blocking state
notied, recovery
algorithm completed

G

Figure 4.35: The states of a device during the processing of a BST. The device starts in the Inactive state.
The transition to the Blocking state occurs with the receipt and the successful processing of a first phase
prewrite request from a storage controller. If a second phase write message is received confirming the prewrite,
the device updates storage and transitions to the Updated state. A reply is sent to the controller and a final
transition to the Done state from the Updated state is performed. If the second phase message is a cancel the
device discards the prewrite and transitions to the Done state. If a time-out period passes while the device is
in the Blocking state and without the receipt of any message, the device transitions to the Recovering state.
The arrows labeled with a “1” (“2”) refer to transitions that are caused by the receipt and processing of a first
(second) phase message from the controller.

to redore condsteng/ and properly complete the BST. A controller-manager protocol allows cort
trollersto report such failure conditionsto the storage manager (Figure 4.34). Similarly, a starage
device can block in the middle of executing a BST waiting for a controller messaye tha never ar
rives. The controller may have failed or restated and lost all its state asaresut. In this cas, the
device mug natify the storage manager to propery completethe BST and ensure condstency. A
device-marager protocd (Figure4.34) is definedto allow devicesto report incompleteBSTs to the

storage marager.

4.72 An overview of recovery for BSTs

Thediscussbn assimesthat all starage manager failuresand network failuresaremasked|eaving
four remainng kinds of failuresof intered: device failures device outages, cortroller failuresand
controller outages. The amount of work required to recover properly from a failure or outage de-
pends largely on whentheeventoccurs Figure4.35shows the staesof adevice involved in aBST.

Thedevice startsin the I nactive state. This discussbn assumesa timesampordering protocol, but

4.7. RECOVERY FORBSTS 123

the ca® of device-ervedlocking is quite similar. Both protocds essantially export a lock to the
daablockafter thefirst phasereqed is acceptedat the device. This exclusive lock is releasedonly
after the secand phas messajeis received. In the Inactive state the device receives a first phase
request, a prewrite or aread-and-prewrite requed. If therequestis regjected arepy is sent backto
the controller ard the operation comgetesat the device and the device moves to the Done state A
new operdion mustbe initiated by the controller to retry the BST.

If the request is accepted, the device tramsitions to the Blocking stae. In this state the block
is locked and no acces is allowed to it until a secord phas mesag is reeived The seond
phase messige can be a cancd mesag or a write messae corntaining the newv content of the
block If acancd messageis recaved thedevice discadsthe prewrite and trarsitions to the Done
state If awrite mesage is received confirming the prewrite, the device transitionsto the Updated
stateoncethedatis tranderred sucessully to stable storege The device thenformulatesa reply
adknowledgng the succes of the write and serdsit to the controller. Oncethe messageis sert out,
the device trarsitions to the Done stateand the BST competes.

If atime-out period pasesand nose®nd phae mesageis reeived, thedevicetrarsitionsto the
Recowring stae. From this stde, the device ndtifies the starage manager of theincomgdete BST
and awaits the managers acions. The manaer restaresthe array’s consistency before allowing
the device to reaumesenvicing requeststo thevirtud object. Similary, if the device experierncesa
failure in the midst of processng awrite mesage suwch tha starage is patrtially updated, the device
trangtionsto the Recowvering stae and notifies the storage manager.

Figure 4.37 shows the states of a cortroller exeauting a BST. The figure shows a write BST.
In the first phase, prewrite messayes possbly comhined with reads are sentout. Thesemessiges,
markedwith a“1” in Figure 4.35, cawsethe device to transition from the I nactive to the Blocking
stateif theprewrite is accepgedor to theDone stateif the prewrite is rejected Onceall therefdiesto
thesefirst phas messaes are cdlected by the controller, a secord phaserournd of mesage is sert
out to confirm the write or to canl it. Thesemessayes, matkedby a“2” in Figure 4.35 causethe
device to trangtion from Blocking to Done (in caseof a cancd) or from Blocking to Updated (in
caseof asuaessllly processal write).

The state diagram of Figure 4.35 is helpful in understanding the implications of a device or
controller failure or outagewhile a BST isin progress. A controller failure or outage before any
phae 1 messagesare sent out is berign, tha is, it doesnot recuire the involvement of the storage

manayer to ensiure recovery. Recorery can be achieved by local acfons at the nodes In this case,

124 CHAPTER 4. SHARED STORAGE ARRAYS

benign device/controller outage

Fault-Free \
7\ (active) _
critical device outage /‘ reconstruction completed

critical controller outage) .
a0 benign device

gg/nilgg/controller recovery completed permanent devi cefailure or Controller outage
outage _/
Unavailable replacement
benign allocated
device/controller C Degraded Reconstructi ng
\ outage
permanent device failure permanent device fallure permanent device failure

\ critical controller/device outage critical controller/device outage
44/_/

Figure 4.36: The modes of a virtual object and the events that trigger modal transitions. Benign failures and
outages do not cause the object to switch modes. Critical device outages, device failures, and critical controller
failures and outages cause the object to switch modes. A second critical failure while the object is in degraded,

reconstructing or recovering modes is catastrophic and results in data unavailability.

upon resart, the controller mug simply refetch the layout maps to begin accessto storage. In this
case,nodevicehastrarsitionedto theBlocking stae and nolocksareheld by theBST. If acontroller
experiencesa failure or outage after all the seoond phase mesagesare sent out and successuully
received by the devices, then the deviceswill update the blocks on perdstentstorageand complete
the BST. The deviceswill trarsition from the Blocking to the Updated ard unilateally to the Done
state Suchafailureis also benign. However, a cortroller failure or outage after at least one device
has trandtioned to the Blocking state andbefore all the secord phas messges are sert out to the
devicesis condderd critical; thatis, will require special adion by the starage manayer to redore
the array' s condstency and/or to ersure progress.

Similarly, a device failure or outage before ary device has reached the Updated state can be
handed easily by the controller. Since no storagehas beenupdaed anywhere, a storage controller
facing a pemanent devicefailure or adevice outage (inacessble device) can simply abat theBST
by multicaging acarcd mesagein thesecond phasto all thesurviving devices. Thedevicefailure
or outage can be conddered to have occured before the BST started Thestorage controller notifies
the starage marage of the problem ard the starage manayer movesthe object to the proper moce.

However, if a device failure or outage occuss after same devices have recaved and processeal

4.7. RECOVERY FORBSTS 125

the seond phase messayeand trarsitionedfromthe Blocking to Updated state, recovery is slightly
morecomgicated The storagecortroller completesthesecand phaseby writing to all the surviving
devices.This failureis condderedcritical becaiseit requiresspecial adion by thestarage marage
onrecovery. The manager mug edallish whether the device haspermanently failed or has expe-
rienced an outage (restat). If the device haspermarertly failed, the failure can be consderedto
have occuredright after the device wasupdated TheBST is conddered to have suceeededbut the
virtual object must be movedto a degraded mode and reconstuction on areplacemen device mug
besom started If the device has expeliencedanoutage the device should not be made accessble
immediatdy upon resartsinceit still containsthe old contents of the blocks. The storage marage
mustensue that the datathat the BST intended to write to the device is on stalle starage before
re-erabling acess This datacanbe reconstructed from theredundart copywrittenby the BST.

A virtud object canbe in one of several modes: Fault-Free,Migrating, Degraded, Remnstruct
ing, Unavailable or Dataloss. Thefirstfour modeswerealready introduced The lasttwo were not
becawsethey do not pertain to the concurrency control discussion. In the lasttwo states(Unavailable
and Data-oss), hostaacesesto thevirtual object arenot allowed In the Datalossmode, theobject
is not accesible at al. In the Unavailable mode, the storage manageris the only entity which can
acestheobed. In thismode,the storage manaer restares the corsistency of the array. Oncethe
array is corsigent, the managyer movesthe object to an accessmode andre-eralles acess to the
object.

Figure 4.36 represents a sketh of the different modes of a virtual object. The object starts
out in Fault-Free mode. A permanent device failure cawses a trarsition to the Degraded moce.
The allocaion of a replacement device inducesa transition to the Reconstucting mode from the
Degradedmode. A secand device failure or a critical outage (of a device or controller in the midst
of aBST) while the objectis in degraded or reconstucting modesrestts in dataloss. The object
transtionsto the Data-lossmodeard its datais no longer available. Critical outages of controlleror
device while the object is in Faut-Free mode cause atrarsition to the Unavailable modewhere the
object isnot acessble until thearray’s consigercy isresbred. In thismode, no starage cortroller
can acessthe object becawse no new leasesare issual ard previous leases have expired. The
storage marager consults a table of adions which specifies what recovery procedure to take for
each kind of failure andBST. A compensating BST is executed to acheve paiity consistency, the
object is potertially switched to a new mode, and then new leasescan beissueal. Berign failures

and outages,on the other hand, do not causethe object to change modes. They do not require any

126 CHAPTER 4. SHARED STORAGE ARRAYS

recovery work besdespossbly alocal action by the node expeliencing the outage upon regart

4.73 Recovery in fault-freeand migrating modes

Under Faut-Free and Migrating modes, all devicesareoperdiond. The discussion will focus ona
single failure or outage occurring at a time. The pseuwlo-code exeauted by the devicesis given in
Secton 4.7.6.

Cortroller outage/failure. Controller failures and outagesareesserially similar. A pemrmanert

controller failure can beregarded as a long outage. Becaise a starage controller losesall its stae
during anoutage, it makesno differenceto the storage systen whether thecontroller restats or not.
Any recovery work requred to restarethearray’s consistency must proceed without the assiganceof
the failed starage controller. A controller outageamountsto losing all the layout mapscachedatthe
client. Afterrestat, the starage cortroller mustre-fetch new layout mapsfrom the storagemarager
to accessvirtual objecs. Uponregart, no special recovery work is performedby the controller.

When thevirtud object is in Faut-Free/Migrating modeand the storage controller experiences
anoutagewhile no BSTs are active, the outage is berign. Thevirtual object does not changemodes
asaresut of the controller failure or outage. Upon restrt of the starage controller, accessto the
virtual object can begin immedately.

Critical controller failuresand outages can occur in the midst of a BST's exeaution. The con
troller can crashafter same deviceshave acepted its prewrite request. The® deviceswill move
to the Blocking stateand wait for a second-phasemessge. This second phasemessige will never
comebecausethe controller hascrashed A storage device asscciatesatime-out with each accepted
prewrite request. If the corresponding semnd phasemesage (cancel or write) is not received within
the timeaut period, the storage marager is notified.

The storage manager mustredore the consstency of the array becauseit may have been cor
rupted asa resut of the controller updaing somebut nat all of the devices The storage marager
restaresthe consigercy by recomptting paity. The storage manager does not guarantee that the
daaon the devicesreflect the daathe controller intendedto write. To completethewrite, the appli-
cdion mustre-aibmitthewrite. This is correct sincethe semanics of a hostwrite, like awrite to a
disk drive today, is not guaranteed to have completedand reachel steble storage until the controller
respands with a postive reply. In this case,the controller did not survive urtil theend of the BST
ard could not have repondedto the application with a positive comgetion refy.

Deviceoutage. A device outage whenthedeviceis in the Inactive state doesnot require much

4.7. RECOVERY FORBSTS

@ replies

@ replies

127

®
e@
®
@@

\l/@replies
Coone >

[] Roll-back BST, retry using a (possibly different) BST
D Roll-forward BST, complete all the writes that can be completed

replies

@
e

Figure 4.37: The algorithm followed by the controller when executing a BST. Ovals correspond to the state of
the BST at the controller. Circles correspond to the processing of a message at the device. An arrow from an
oval to a circle is a message from a controller to the device. An arrow from a circle to an oval is a reply from the
device to the controller. The controller starts in the inactive state, issues a first round of prewrite messages,
and once the replies are collected decides to commit or abort the BST. Once a decision is reached, second
phase messages are sent out to the devices. Once the replies are received, the BST completes. The point
right before sending out second phase write messages is called the commit point. The controller experiencing
a device failure or outage before the commit point decides to Abort the BST. If all devices accept the prewrite,
the BST is committed and writes are sent out to the devices that remain available. All failures in the second
phase are simply reported to the storage manager.

recovery work besdescareful initializaion proceduresupon restat from the outege. Under times
tamp ordering, thedevice mustwait period of T' secordsuponrestrt before stating to sevice new
requests Thedevice canedalish thatno BSTs werein progressduring the outage by inspeding
its queueof aceptked prewrites storedin NVRAM. If the queueis empty, the device waits for T’
seconds and starts aceping requests If the queue contains same enties, the device enters the
Recwering mode and natifies the storage marager.

Notice that all BSTs usedin a sharedstarage array are regresened as direced agyclic graphs
(Figure 4.37), in which it is possble to ensuwre tha no device write beginsuntil afterall devicereads
are complete [Courtright, 1997]. This point, right before the storage controller sends out seond
phasewrite requestsis cdled the commit paint. A starage controller may encounter a device outage
before the commit point, that is before any secand phase mesagsaresert out. In this case, the
storage controller natifies the starage marager thatit suspeds a device failure, after carcding its
first phaserequess at the other devicestha have respnded to it during thefirst phase In ary case,
recovety is simply enacted by retrying the BST later whenthe device is badk on-line. No speial

recovery work is required atthe device or starage marage.

128 CHAPTER 4. SHARED STORAGE ARRAYS

If the starage controller has crossedthe commit point but did not complete the writes every-
whetre, then the surviving deviceswill update starage (move to the Updated andDone staes while
the device expeliencing the outage will not. This device hasacceptedthe prewrite but is not avail-
ale to processthe correspnding write. In this case,recavery proceals as follows. Upon resart,
the deviceinspedsits queueof acepedprewrites staredin NVRAM ard discoversthatit hasfailed
afteraccepting a prewrite and before processing the correspanding write. Such a device natifies the
storage maracer to perform recovery.

Devicefailure. A permanert device failure can occur (or bediscoveral) when the systamisidle
orwhenaBST is adive. If thefailure occurs during an idle petiod, the starage marage is natified.
The storage mamge revokesall leases to the virtual objects that have been allocaed staage on
that device. The virtud objeds are moved to the degraded or recorstructing mode maiking the
device asfailed. The object is moved to aremnstructing modeif the starage marage can redlocae
storage spae onafunctiond device to repace the spaeon thefailed device. Giventhatthe device
is no longer available, datastared on the device mug be reconstructed from redundantcopies. The
storage manager changes the layout mapto reflectthe new allocation and movesthe object to a
recorstructing mode. A taskto recandruct the conterts of the failed device and write it to the
replacement space is started. If there is no spaceavailable to allocate asa redacement the object
is moved to a degraded mock. In degraded mode, writesaddres&dto the failed device are reflected
in the parnty. In any case, storage controllersthat fetch the new map will be requred to usethe
degradedmode or theremngructing mode BSTs asspecified in the map.

A permarent device failure canals bediscoreredafter aBST has started In this case the stor-
ace controller mugd be cardul in how to comgetethe BST. Before reaching the commit point, any
BST encourtering a permanet device failure (during aread simgy terminaes andits parent tak
reissuesanen BST in degradedmode. This occursasfollows. The storage controller discovering
the permarentfailure aborts the current BST, discadsthe curent layout mapandnatifies the stor-
ace manaer of thefailure The storagemarager verifies that the device hasfailed andthenmoves
the virtual objectsto degradead or recmnstructing mode. The storage controller fetchesthe nev map
and restatstheaacessusng a degradedmode BST.

After the commit point, a BST canencounter a permarent device failure. A storage controller
encountering a single device failure after one or more writes are sert to the devicessimply com-
pletes. This is correct becaise an observer camat distinguish betweena single failure occurring

after the commit point and the failure of tha device immeditdy after the BST competes. The

4.7. RECOVERY FORBSTS 129

recovery protocol proceeds as follows. After the write completes, the storage manayer is notified
of the failed device. The storagemarager movesthe object to a degradedor recangructing mode
before re-erabling acessto the objedt.

Leas expiration. A staage controller can experience a spedal kind of outage dueto the expi-

ration of alease Notethataleasecanexpire whenthecliert is in the middle of executing aBST. If
the expiration occurs before thecommitpaint, thenthe second phaseis not started Instead, requess
are sert to the devices to cancel the first phaseand releasethelocks. The map is thenrefreshed by
contecting the appropriate storage manayer effecively extendng the lease. The acces protocol at
the storage controller checksthe leaseexpiration time before starting the secand phas to edalish
thatthe leasewill remain valid for the duration of the second phase. Becauseall lock requestshave
beenacquiredin thefirst pha, the secand phasewill not lastfor alongtime. Once all replieshave
beenrecavedfromthedevices,the BST is consgderedto have compleedsucesfully.

A storagemarager may ener an objed into a recvery mode during this secord phase. This
occurs if the second phase lass for a long enaugh time tha the leaseexpires. Since no client
acesesareacededin recmvery mode and al locks are resd, the storagedevice will respnd to
the controller’s second phase messaewith aemror code TheBST is corsideredfailed by the storage
controller andthe write must be retried to make sure that the conterts of starage reflectthe values

in thewrite buffer.

4.7.4 Recovery in degradedand reconstructing modes

Unde this mode, a device has failed in the array and therefore the aray is not faut-tolerant. A
secord device failure or an untimely outage can reault in dataloss

Cortroller outagéfailure.Asin theFault-Freeand Migrating modes acontroller outageamounts

to losing all the layout mays cached attheclient. After restat, the storagecortroller mustre-fetch
new layout maps from the storage manayer to accessvirtual objects. Berign failures that occur
whenno BST is adive or in the issuing stateof a BST are straightforwardto handle. Upon regarn
of thecrashedcortroller, acces canbegin immediatdy also.

Cortroller failuresand outagesthat occur in the mids of a BST can often lead to dataloss
becawsethey comrupt the parity code making the dataon the failed device irrecmnstructible. If the
outage ocaurs before the commit point but after somedevices have reachedthe Blocking state, then
no device has been updaled The deviceswill eventually time-aut and natify the storagemarager.

The starage marager, however, may nat be able to asceatain whether the controller did or did not

130 CHAPTER 4. SHARED STORAGE ARRAYS

crossthe commit point and must in this caseassimethe controller may have partially updated the
stripe and corsequenty dedare dataloss. Under afew fortunatecases the starage manager will be
ale to esalish thatno device hasbeenupdaedand carcel(roll- bak) the BST without moving the
object to the Datalossstate.

If the starage manager finds thatall the devices patticipating in the BST started by the failed
controller are in the Blocking stae, then it can corcludetha no device has updaed storage. In
this case,the storage manager can carcd the prewritesand re-erable ac@ssto the object. If onthe
other hard, the storage maracerfindsthat atleastonedevice hasaccepted a prewrite or write with a
higher timestmpthan that of theincomgete BST, it cannat esteblishwhether tha devicerejected
the prewrite of the incamplete BST or whether it accepted it. It is possble that this device has
acceped theprewrite. Thestoragecontroller could have sert awrite mesageto the deviceand then
crashedbefore updating theremainng devices. In this case,the device would have updated starage
ard completed the BST locdly. It could have later acepiedandher prewrite or write with a higher
timestamp. In this cas, the storage marager mug assimethe conservative option and dedare that
the BST updated same devicesbut nat all of them declaring dataloss

In order for the storagemanayer to acaratdy detamine the fate of theincomplete BST at all
the devices, it mud have acessto the history of writes serviced in the pag. This canbe achieved
if the device maintains in NVRAM not only the acepied prewritesbut also the recertly senviced
writes to the block.

Deviceoutage. A critical device outageoccurs when a device participatesin thefirst phaseof
a BST and then experiences an outage before receiving the seond phasemesage. In this case,
recovery depends on when the outage is discovered. If the outage ocaurs during the Issuing or
Blocked states, the storage controller will fail to contact the device ard will therefore cancel the
requessaacepted at the otherdevicesand inform the storagemarage of the device'sinaccesihili ty.
In this cas, the accessis simply retried later whenthe device is badk ortline. No spesial recovery
work is required at the device or storage maraggr.

If the storage controller has written to the storagedevicesit intenced to updake except for a
device that experienced the outege after responding to the first phase messaye, then the starage
controller completesthe write to the surviving devices andwritesthe dataintended for the crashed
device to a designated scrach space. Then, it natifies the storage marager. The storage marager
revokesall leasesand movesthe objectto the recovery mode. Whenthe device restats, the datais

copiedfromthe scrach spaeto thedeviceand acessis re-enabled. If the outage wasexperienceal

4.7. RECOVERY FORBSTS 131

by therepacemen device,thenthe incanplete BST is compersaedfor by copying the daa which
wassuaessiully writtento the degraded array to thereplacemen device. In this case, the cortroller
neednot write to a scratch space sinceit is already storedin the degraded array.

Devicefailure. A pemanent device failure in degraded mode amounts to data loss. The object

is moved to the Unavailade mode andits datais nolongeraccessble.

4.7.5 Storagemanageractionsin the recovering mode

The storage manager receives ndatifications of device outages and failures from controllers. The
storagemaragertakes asimpe sequenceof acionsupontherecept of such notifications. It revokes
all leasesfor the virtual objectbeing updated, thenexecuestheprope compersaing BST to redore
the array' s consisteng/ then movestheobjectto adifferert modeif necessay andfinally re-enables
aesto thevirtual object.

Upon agererd power failure, al thedevicesard client experience atrangernt failure and mug
restat fresh,losing all the state in their volatile memory In this case ther is no suwviving enity to
natify the starage manager of the outage. All the devices and controllersexperience a simultaneus
outace. Cortrollers have no stae and upon redart cannat assst the storage marager in regoring
the array's consigercy. They cannact tell the starage marager wha BSTs werein progressduring
the outace.

Thestoragemanacgr relies onthedevicesto efficiently perform recovery afteragereral outace.
Upon a restat, a device notifies the storagemanagel(s) tha allocated space on it so that storage
manaye's can cary out ary recowery work before the device is allowed to stat seavicing client
requests The storage manager must detemine whether and which nodes experienced a critical
outage;thatis, wereacively procesing aBST during the outage. Thisisadievedasfollows. Upon
restat from anoutage, a storage deviceinspetsits queue of accepted prewrites. This informaion
is stored in NVRAM on the device and therefore survives trarsient outeges. If the queues are
found empy, thedevice is made acessible to seve requess to the storagecontrollers. If the queue
contans outdarding prewrites thenthe starage manager knows thata BST wasin progressduring
the outage. It canthenexecue the proper compensaing acion.

Table4.5 summaizestherecovery adionstaken by thestoragemarageruponacriti cal outageor
failure. The table shavs the compensating transaction exeauted by the storage marager to complete
the BST to achieve consigercy. It also shows the new mode thatthe objectwil | trangtion to (from

the Unavailable mode) after recovety is compleéed

132

CHAPTER 4. SHARED STORAGE ARRAYS

Active BST | Object mode Type of failur e Compensating New objectmode
Write Fault-Free Critical outage Rehuild-Rarge Faut-Free
Write Fault-Free Devicefailure None Degraded
Multi-Write Migrating Critical outage Rehuild-Rarge Migrating
Multi-Write Migrating Devicefailure Rehuild-Rarge Migrding
(degradedarray)
Multi-Write Migrating Rephcanent Rehuild-Rarge Migrding
devicefailure
Copy-Ramge Migrating Critical outage Copy-Ramge Migrating
Copy-Ramge Migrating Devicefailure Copy-Ramge Degraded
(degradedarray)
Copy-Ramge Migrating Rephcanent Regart copy Migrding
devicefailure taskon new device
Write Degraded Critical outage None DatalLoss
Write Degraded Devicefailure None DatalLoss
Write Reconstucting Critical outage None DataLoss
Write Reconstucting Devicefailure None DataLoss
(degradedarray)
Write Reconstucting Rephcanent Regartrecm Recmdructing
devicefailure taskon new device
Rehuild- Reconstucting Critical outage Rehuild-Rarge Recmdructing
Rarge
Rehuild- Reconstucting Devicefailure None DataLoss
Rarge (degradedarray)
Rehuild- Reconstucing | Redacementdevice Regartreco Recaodructing
Rarge failure taskon new device

Table 4.5: The recovery actions taken upon a failure or outage. The table shows for each critical outage or
failure the compensating BST executed by the storage manager to restore the BST’s consistency as well as
the new mode that the object is moved to after recovery is completed by the storage manager. “Write” is used
to refer to all the write BSTs available in the specified mode.

4.7. RECOVERY FORBSTS 133

Compensating storage transactions in degraded and remnstructing modes

In degraded mode, one of the daa disks has alread/ failed. A sewond disk or client failure in
the middle of an acess tak before the dataon the first disk is recangructed is consdered fatal.
Similarly, in the recangructing mode, one of the data disks has alrealy failed A second disk or
client failure in the middle of an accesstask before the dataon the first disk is recorstructed is
conddered fatd. However, if the failure ocaursin the middle of a recangruct tak (the Rebuild-
Rang BST), then the BST can be simply restated. The degraded array is not corrupted by the
failure, although the replacanent block beng written to may have been only partially updated.
The BST can be restated andthe value of the failed dat block recomputed and written to the

replacemen device.

Compensating transactionsin Fault-Freeand Migrating modes

Oncethe failed BST is deleded andrepated to the starage manayer, the storage manager waits
urtil al leases to the virtual object expire andthen exeautes a compensaing transaction to regore
the array’s congstency. Onceconsigercy is resored, the mode of the virtual objectis updated if
necesay andaaessre-enabled by granting layout maps to the requesting controllers Eac BST
has a compensating BST which is exeauted exclusively by the storage marage in recvery mode
whereveraBST fails.

Under fault-free mode, once the suspect rarges are idertified, congsteng can be effectively
re-edalishedby recomputing the parity block from the stripe of daa blocks. Under this mode all
devicesare operdional, so the Rekuild-Range BST canbe usedto recmmpue the parity block.

In migratingmode aBST is invokedeitherby anaccesstask or by amigratetask. For BSTstha
are invoked by hostwrite taks, the compensting transadions are similar to the onesin Faut-Free
mode. In the caseof a copyBST thatisinvokedby a migrate task, the compensting trarsactionis

the transactionitsdf. Thatis,the storagemanager simply reissuesthe copy transaction.

4.7.6 Therewvery protocols

This sedion preserts the pseudo-code for the actions taken by the devices and starage controllers.
Storage controllers arerelaively simpler. They are staeless, do nat have to execute ary speial
algorithms on restrt or recovery from an outage. The importart task implemenéd by the storage
controller is the execttion of a BST. The pseuwdo-code on the following pageshows the algorithm

abstracing the details of the concurrerncy control algorithm andfocusng on the recovery actions

134 CHAPTER 4. SHARED STORAGE ARRAYS

taken by thecontroller while in the midst of executing aBST. Thestaragecortroller canexperien@
a device outage or failure of simply a device thatis not resppnding. Upon encountering such an
event, the starage controller canels the BST if it did not cross the commit point. Othemise, it
completesthe BST. As soon as the BST is completed or carcded, the starage controller reports the
problemto the storage marager which in turns takestherecovery actions de<ribed above.
Storagedevices are morecomplicated, be@usethey maintan state acoss outagesand restats of
controllersand of their own. Upon recovery, storagedevicesexecue thefunction InitUponRegart().
During normd opeaation, requestsarehardled by invoking the HandeReauest function. If atime-
out is reachedwhile asecand phasemessgeis notrecaved theHandleTimeoutfundionisinvoked.

Thepseuwo-codereflectsthe steps already discusedfor device recvery ard time-out hardling.

/I Devi ce Actions
01 /* Device-side pseudo-code: Handl e request req fromcontroller contr */

02 Handl eRequest (req, contr)

03 if (req.type == read)

04 resp = checktinestanp(req. opts, req.blockid);
05 if (resp==CK)

06 send (data[req.blockid], OK) to contr;

07 el se

08 send (REJECT) to contr;

09 endi f

10 if (req.type == prewite or read-and-prewite)
11 resp = checktinmestanp(req. opts, req.blockid);
12 if (resp == OX)

13 enqueue (req, NOW+ TIMEQUT) to timeoutq;
14 send (OK, data) to contr;

15 el se

16 send (REJECT) to contr;

17 endi f

18 endi f

19 if (req.type == wite)

20 /* discard request with tinmestanp opts from queue */
21 wite req.buf to req.blockid on stable storage;
22 ti meout g. di scard(req.opts);

23 send (OK) to contr;

24 endi f

4.7. RECOVERY FORBSTS

01
02
03
04

01
02
03
04
05
06
07
08
09
10

/1

01
02
03
04
05
06
07
08
09
10

/* Device-side pseudo-code to handle a tinmeout */

Handl eTi neout (req)
send (req, BST_NOT_COWPLETED) to s
end

torage manager;

135

/* Devi ce-side pseudo-code to execute after restart froman outage */

I ni t UponRestart ()

if (prewiteq is enpty)
wait T seconds;
return (OK); /* upon return,
el se
send(NULL, BST_NOT_COVPLETED)
return (RECOVERI NG ;
endi f
end
Control l er actions

requests can be accepted */

to storage nmnager

/* Execute a two phase wite bst to object with nmap objmap */

Execut eTwoPhaseBST (bst, obj map)
for dev = 1 to bst.nundevices
send (bst.device[i]);
endf or
deadl i ne = NOW + Tl MEQUT;
while (replies < nundevices and
recei ve(resp);

replies ++;

endwhile /* continued on next page ...

time < deadline)

*/

136

11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
26
27
28
29
30
31
32
33
34
35
36
38
37
38
39
40
42
44
45
46
47

CHAPTER 4. SHARED STORAGE ARRAYS

if (replies < nundevices)
/* sone devices did not respond */
for dev = 1 to bst. nundevi ces
send (CANCEL) to bst.device[i];
endf or;
/* notify manager of the not-responding devices */
for each dev not in replies
send (dev, NOT_RESPONDI NG to storage nmnager;
endf or;
Di scard(obj map); /* discard |ayout map, nust be re-fetched later */
return (DEVI CE_OQUTAGE_OR FAI LURE) ;
else if (nunoks in replies < nundevices)
/* rejection at one or nore devices, send CANCELs */
for dev = 1 to bst. nundevi ces
send (CANCEL) to bst.device[i];

endf or;
return (RETRY);
else if (nunmoks in replies == nundevi ces)

for dev = 1 to bst.nundevices
send (OK, bst.data[i] to bst.device[i])
endf or
replies = 0; deadline = NOW+ TI MEQUT;
while (replies < nundevices and tine < deadline)
receive (resp);
endwhi | e
if (replies < nundevices) /* sone devices did not respond */
slist = null; /* list of devices suspected of failure */
for dev = 1 to bst. nundevi ces
if (dev did not respond)
add dev to slist;
/* notify manager of the not-responding devices */
send (bst, BST_NOT_COWPLETED, slist) to storage manager;
Di scar d(obj map) ;
return (DEVI CE_OUTAGE_OR _FAI LURE) ;
endi f
endi f

4.8 DISCUSSION 137
4.8 Discusson

The discussin so far focussel on protocols that ensure seializabiity for all executing BSTs. Sert
alizability is a“sufficient” guarantee since it makesa sharedarray behave like a certralizedone,in
which asingle controller receivesBSTsfrom all clients and exeautes them one atatime. This guar-
antee however, canbetoo strong if certain assumptions hold regarding the semartics and structure
of high-level software Furthemore thediscussion hasfocussedonRAID level 5 layouts. However,
alarge number of disk array architectureshave beenproposedin theliterature.

Thissecion highlightsthegererdity of thepreseriedprotocols by showinghow they can readily
generalizedto adat to and exploit different applicaion semartics and underlying dat layouts. It

alsoincludes adiscusgon of the recovery protocols.

4.81 Relaxing read semantics

Many applicationsdo not send a corcurrent hostreadandhaostwrite to thesameblock. For exampe,
mary filesystemssuch asthe Unix Fast File Sysem[McKusck etal., 1996], do not send a write
to the storage systan unlessan exclusive lock is aayuired to tha block, which prohibits any other
client or thread from initiating areador write to that block urtil the write completes Consequently,
it never occusthat areadis initiated while awriteis in progressto that block.

This propetty of many aplicafons precludes the need to ensure the seridizahlity of reads
becawsethey never occur concurrertly with writes. In fault-freeopemtion, where readsdo not need
to accessparity blocks, a hostread accessesonly datablocks the higherlevel filesystemhasalready
aqyuired (filesystem-level) locks for. It follows that the only concurrert writes to the samestripe
mustbe updaing other daa blocks besdesthe ones being acessedby thehostread. It is therefore
unnecessary to acquire alock to thedatablock before aread

Recdl thatin fault-free mode, only hostead and hostrite tasks are allowed Thus, if the
higherlevel filesydemensiresno readwrite corflicts, hostreads can simgy be mapped onto dired
devreadswith no timestanp chedks or lock aaquirefrelea® work. This canspeeal up the processng
atthedevicesard reducethe amount of messajing on the network. Note that this read optimization
can not be apgdied in degraded mode. Setalizahlity checking is requiredin degraded mode and
recorstructing modes because contention can occur over the samedata block evenif the hosts do
not issueconcurent hodread and hogwrites to the sameblock. The performarce evaluation reaults
and conclusions do not change much even if concumrercy control is not performed on faut-free

modereads. In this case,all the protocolswill not performany cortrol mesaging onbehalf of reads

138 CHAPTER 4. SHARED STORAGE ARRAYS

and therefore have the minimallatercy possble for hostreads. Concurrengy control is still requred
for hostwriteswhich canconflict on parity aswell asdatablocks

Note tha regardless of what the higher-level software is doing, concurreng/ cortrol mustbe
ersured for two concurrentwritesto the same stripe. This is becausetwo writesto different data
blocks can contend over the samedaa or parity blocks, samething that is totally invisible to higher
level sdtware (congder, for example a ReadModify -Write BST and a Remngruct-Write BST,
bath shown in Figure 4.5, ocaurring concurently in Faulk-freemode). Seralizability of such write
BSTs is essertial sothat paiity is not corrupted. Similarly, the seializaklity of copy BSTs with
ongoing writesis also requiredfor correches regardess of whatthe synchronizaion protocd used
by higher-level software.

Findly, the deadock problem as®ciated with device-served locking variants can be eliminated
by requiring clients to acquire locks on ertire stripes. This breaks the “hod and wait” condition
becauseclients do not have to acquire multiple locks per stripe. Only a single lock is acquired.
Stripe locking substantially redwces concurrercy, however, egpedally with large stripe sizes. This
in turn degrades!/O throughput and increassesaccesslatendesfor applicationstha perform alot of

smal writes to sharedlarge stripes.

4.82 Extensionto other RAID levels

Theappoachdiscussdin this chepter can be extendedin a straightforward mamerto other RAID
levels, including douHde-fault tolerating architectures The reasm is that all the readand write
operationsin all of the RAID architectures known to the author at the time of the writing of this
dissetation [Blaum etal., 1994, Holland et al., 1994] corsist either of a single (reador write) phas
or of aread phas followed by a write phase Thus, the piggy-backing and timesamp validation

approad described in the previous sectionsapply directly to these architecures aswell.

4.83 Recovery

Multiple companert failurescaneasly lead to anobjectending in theUnavailable state. In prectice,
apoorly dedgnedsystemcan bevulnerale to the correlatedfailures and outagesof severd compo
nents. For exampke, if disks sharethesame powersaourceor coadling suppat, then multi ple disks can
experiencefaults atthe same time. The likelihood of more thana single failure canbe substantially
reducedby desgning sugport equipment sothatit is not shared by the samedisksin the same stripe
group [Schulzeet al., 1989]. Anotherschemeis to use uninterruptible power supplies (UPS. Mul-

4.9 SUMMARY 139

tiple or sucesive failures cancauseseveral trarsitions beeweenmodes Thefollowing discusson
will focus onasinglefailureor transtion atatime.

While the concurrengy cortrol protoca work is largely distributed, the recorery work heavily
relies onthestarage marager. Thisis not a seaiousproblem becaus recovery is not supposedto be
common. Furthermoee, there neal nat beasingle starage manayer in the sydem. Therecanbemany
storage managers aslong as, atary given time, thereis auniquemarage serving the layout mapfor
a givenvirtual object Thus, the starage marager’s load can be easily distributed and parallelized
aaoss mary nodes.

When a marager fails, however, ancther starage marager mug take over the virtual objects
that it was respongble for. Other work hasinvesigated how storage marages can be decided
dynamically by the storagedevicesuponafailure sotha nostatic assgnment of manayersto devices
is neesary[Golding and Borowsky, 199]. This work is complementary to the solutionsdiscussed
in this dissetations and solvesa complementary problem of ersuring fast pardlel recovery when
the systemredarts after agererd failure. Theprotocols desaibedin [Golding and Borowsky, 1999
hande network partitions aswell asdevice and manageroutages.

TickerTAIP [Cao etal., 1994] is apaallel disk array architecurethatdistributedthe function of
the disk array controller to the storage nodes in the array. Oneof the design goals of TickerTAIP
wasto toleratenodefaults. Hogs in TickerTAIP did not direcly cary out RAID updée protocals.
RAID updat protocols were exeauted by one storage node on behalf of the hos. Host failure,
therdore, wasnot a concern The protocols discussal in this dissertation gererdize the recvery
protocals of TickerTAIP to thecas where the RAID updatealgorithms involve bath the clientsard

the devices.

4.9 Summary

Shared storage arrays enalde thousands of storagedevices to be shared ard diredly accessed by
hostsover switchad storage-aeaneworks. In sud sygems,staage acessarnd managemern func-
tion are oftendistributedto erable concurrent aces®sfrom clierts and savers to thebase starace.
Conaurrert taskscan leadto incorsigercies for redundarcy codesandfor dataread by hods. This
chapterproposed anovel approachto congructingascdable distributed storage managemern system
that erables high conaurrercy betwveen accessand managemaent tasks while ersuiing correchess.
The proposedapproach bregks down the storage acess and managemert tasks performedby stor-

age controllersinto two-phasd operations (BSTs) suchthat corednessrequres ensuting only the

140 CHAPTER 4. SHARED STORAGE ARRAYS

seaializabiity of the component BSTs and not of the parert taks.

This chapter presented distributed protocols tha exploit tectology trends and BST proper
tiesto provide seializability for BSTs with high saalability, coming within a few percent of the
performarce of theideal zero-overheadpratocol. Theseprotocols use mesage batching and piggy-
backing to reduce BST latercies relative to centralized lock sever protocds. In particular, both
device-erved locking andtimestmpordeiing achieve up to 40% higher throughput thanserverard
cdlbacklocking for asmall (30 device) systan. Both distributed protocols exhibit superior saaling,
falli ng short of the idealprotocol’s throughput by only 5-10%.

The base pratocols assume that within the shared storage array, data blocks are cachedat the
storage devicesand not at the controllers. When conrollers are allowed to cacte dat and parity
blocks, the distributed protocols can be exterded to guarartee serializahli ty for reads and writes.
This chapter demastates that timestanp ordering with validation, a timestamp based protocol,
performs better than device-erved leasng egedally in the presence of contertion and random
acces workloads. In summay, the chapter corcludes that timestamp ordering basel on loosely
synchronizedclocks has robust performanceacmss low and high contention andin the preserce of
device-g9de or hog-side cadhing. At the sametime, timesampordering requres li mited stae at the

devicesand doesnot suffer from deadocks

Chapter 5

Adaptive and automatic function placement

The previous chaper presented an approac basdon light-weight transadions which allows stor-
ace controllersto be active concurrertly. Specifically, multiple controllerscanbe acessing shared
deviceswhile maragamenttasks are ongoing at other controllers. Peiformance resuts show thatthe
protocals usedto ersute correctness do scalewell with systemsize. The approach desciibed in the
previouschaper erabescontrollersto be acively migrating blocks acoss devicesand reconstruct
ing dataonfaileddeviceswhile acesstaksare ongoing. Thisenalesbdancing loadaaossdisk by
migrating starage without disabling access. Balancing load acioss disks improves the pefformance
of dataacessfor applicationsusing the starage systam.

Another issuethat affects the perfformane of storage-intensive applicaions hasto do with prop-
enly partitioning thar fundions betweenthe different nodesin the starage system. Judcious parti-
tioning canreduce the amaunt of data communicaied over bottleneckedlinks andavoid executing
function on overloaded nodes. Ragddly changing technologies causea single storage systemto be
composed of multiple starage devices and clients with disparae levels of CPU and memory re-
saurces Moreover, the interconnedion nework is rarely asimpe cros$a andis usualy quite het
erogeneous. The bandwidth available between pairs of nodesdependson the physcal link topology
betweenthetwo nodes This chapger demmstatesthat performarce canbe improved significantly
for starage manayement and daia-intersive applicationsby adapively partitioning function betwee
storagesenversandclients. Function canbejudiciously patitionedbasedon theavailability and dis-
tribution of reurces acrossnodesand basedonafew key workload charaderisticssuch asthebytes
maoved beween functional compnenss. This chapter demastratestha the information neessary
to dedde on placenentcanbe cadlectedat run-time via cortinuous monitoring.

Thischapteris orgarized asfollows. Sedion 5.1 highlightsthedifferent agectsof heterogeneity

in emeping storage systems, and statesthe assimpions mack by the discusgons that follow. Sec

141

142 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

tion 5.2 reviews the function placemen dedsionsof traditional filesystemsand how they evolved
to adaptto the underying hardware and to the driving applications Sedion 5.3 desaibesa pro-
grammingsygem, called ABAcus, which allows applicationsto be commseal of components that
can move betweenclient and severdynamicaly atruntime. Section 5.4 deseibesthe paformane
model usedby ABAcCUS to decide onthe bestplacemem of function and explainshow theinforma-
tion needed by the peformance mocel is trangarertly collected atruntime. Section 5.5 desciibes
a file systam which was designed and implemented on ABACUS. Section 5.6 reports on the per
formarce of thisfilesystam on ABAcus unde different synthetic workloads. Secton 5.7 desciibes
how ABAcCUS can be gereralized to enalde userlevel applicationsto bendit from adaptive client-
seaver function placemern. Section 5.8 evaluatesthe algorithmsusedby ABAcus to decide onthe
optimal function placemern under variationsin node and network load ard in workloadchaader
istics. Section 5.9 discusesthe advantages and limitations of the proposed approach. Sedion 5.10

discisesprevious related work. Sedion 5.11 summaiizes the chapter.

5.1 Emerging storagesystens: Active and Heterogeneous

Two of thekey characteristics of emeging and future starage systemsarethe general purposepro-
grammmability of their nodes and the hetaogeneity of resourcerichnessaaossthem. Hetaogereity
mardatesintelligent and dynamic partitioning of function to adapt to resaurce availabili ty, while the
programmalility of nodesenablesit. The increasng availahili ty of excesscyclesat on-device con
trollersis creaing an opportunity for devices and low-level starage severs to subsune more host
systam functions. One gquegion that arises from theincreagdflexibility enaled by starage device
programmalility is how filesygemfunction should be patitionedbetweea storage devicesand thar
clients. Improper function pattitioning betwee adive devices and clients canput pressire on over
loaded nodes and resut in excessve data trarsfers over bottleneckedor slow network links. The
heterogenaty in resaurce availability among seners, clients and nework links, and the variability

in workloadmixescaussoptimal partitioning to charge acrosssites andwith time.

5.11 Programmability: Active clientsand devices

Storage systems congst of storage devices, client machines and the network links that connect
them. Tradiionaly, storage devices have provided a basic block-level starage sevice while the

hostexecutedal of the filesystemcode. Moore’s law is making devicesincreasingly intdli gert ard

5.1 EMERGING STORAGE SYSTEMS: ACTIVE AND HETEROGENEOUS 143

trends sugges thatscon sameof the filesystemor evenapplicaion function canbesubsunedby the
device [Cobdt Networks, 1999 Seajate 1999.

Disk driveshave heavily exploited the increasing trarsigor densty in inexpensive ASIC tech
nology to both lower cog and increase performarce by developing sophisticated special purpose
functional units and integrating themonto a smal number of chips. For instane, Siemen’s TriCore
integrated micro-cortroller and ASIC chip contained a 100 MHz 3-way issuesuer-salar 32-bit
daa-pah with up to 2 megabytes of on-chip dynamic RAM and custamer definedlogic in 1998
[TriCore News Release 1997].

Regardess of whattechrology will prove mosg cog-effective to bring additiond computationa
power to staage devices(e.g anembealded PC with multiple attached disks or a programmabé
on-disk controller), the akili ty to exeaute code onrelatively resaurce-poor starage severs creaesan
opportunity which mug be carefully managed Although somefunction canberefit from executing
close to staage, storage devices can be easly overwhdmed Active storagedevicespresert the
storage-area-retwork filesystem dedgner with the addeal flexibility of executing function on the
client side or the device side. They also preent a risk of degraded peformane if function is

patitionedbady.

5.12 Heterogereity

Storage systemsconrsig of highly heterogeneous compments In patticular, there are two importart
ageds of this hetaogereity, the first is heterogenety in resourcelevels actossnodes and links and

the seond is the hetaogereity in nodetrug levels.

Heterogeneity in node resources

Storage systemsare characerized by awide range in theresaurcesavailable at the differentsystem
componens. Staage savers—singe disks, storageapplianes and savers—hare varied proces
Sar speeds, memoy cgpadties,and I/O bardwidths, Client systems—SMPsavers, deskiops, and
laptops—also have varied processa speeds memory capadties, network link speeds and levels of
trustworthiness

Somenodesmay have* specia” reourcesor cgoabilitieswhich canbe usedto accderae ceitain
kinds of compuations. Dataintersive applicaions perform different kinds of operations such as
XOR, enmding, deading and compresson. These functions can benefit from executing on nodes

that have special capailities to accderae these operations. Such capahblities can be hardware

144 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

acceleraors, corfigurable logic, or speciaized proces®ors

Heterogeneity in node trust levels

In a distributed systam, not all nodes areequaly trugedto perform a given function: a clientmay
nat be trusted to enforce the accesscontrol palicy thatthe server dictates or it may not be trusted
to maintain theintegrity of certain data structures For instance, cettain filesystem operations sut
asdirectory updates, canonly be sakly completed by truged enities, sincethey can potentially
compramisetheintegrity of thefilesystem itsdf. Wherea function executes therdore, hascrucial
implicationson wheterthe privacy and integrity of data can be maintained.

Tradtiondly, manyclientsever systtms[Howardet al., 1988] assumenon-trusworthy clierts
ard patition function between client and sewver such asthat all potentially senstive function is
maintained at the server. This assumption does not hold in the cae of mary emeping clustes,
whete clients and savers are equaly trusged Such consewative designs under-perform when the
resoucesof trused clients go underutilized Other sygems,like NFS [Sanderg etal., 1985] and
Vest [Corbet andFeitelsan, 1994, have assumedtrugedclierts. Suchsystans cansufer selious
security breacheswhen deployed in hogile or compramised ervironmens.

Filesydem desgna's do not know the trusworthines of the clients at design time and hence
are forcedto make either a consenative assumption, presiypposng al cliens to be untrustworthy,
or aliberd one, assumirg clients will behave aacording to pdicies In gereral, it is beneficial
to allow trust-sersitive functionsto be bourd to cluster nodesat run-time acarding to site-ecific
security pdliciesdefined by sydemadministratars. This way, thefilesystem/gplication designe can
avoid hard-coding assumptions abaut client trusworthiness Such flexibility enharcesfilesysem
configurahbility and allows asinglefilesystemimplemenation to sevein both paranoid and oblivious

environmerts.

5.13 Assumptions and systemdescri ption

This chapter doesnotassimea very specific storagesydemarchitedure. In fact, itsgoalis to arrive
at a framework and a se of algorithmswhich enale a filesystemto be auomatically optimized at
instdlation-time and at run-time to the particular hardware available in the environment. It follows,
therdore, that little should be assumedabaut the resource distribution or albout the workload Of
course,somebasic assunptions about the storage model and thekinds of ertitiesin the systemare

requiredto enable progress.

5.1 EMERGING STORAGE SYSTEMS: ACTIVE AND HETEROGENEOUS 145

Thediscussbnin this chapter is concemedwith the pattitioning of filesystemfundionsin active
storage systams. Active storage systemscorsig of programmable storage savers, programmabé
storageclientsand anetwork connecing them. This sulsection deseibesthes componentsin more
detail.

Programmable storage servers

A storageseaverin an actve starage sydemcanbe resaurcepoor or resouce-rich. It can beaNASD
device with a gererd purposeprocessa, a disk array with similar capahli ties, or a programmabé
file se'ver madiine. A “storage sever” refersto a node with a geneaal pumpaoseexecution erviron
mentthat is direcly attachedto storage. A starage sewer execues an integrated starage sewvice
that allows remote clients and local applications to acessthe starage devicesdirectly attached to
it. Theinterfaceto this bas storage sewice can be NFS, HTTP, NASD or any interface allowing
logical objects with mary blocks to be efficiently named The implemenation usedin the experi-
ment reportedin this chapieris built on abasestorage savicewhichimplementsthe NASD object
interface, but it will be clearfrom the discussion thatthe approach desribed in this chapter applies
equdly well to ary other object-like or file-like basestorage service.

Becaus all storagedevicesandfile seversareadycontainagenerd purposeprocessor capable
of exeauting geneal purpose programs, the specific meaning of “starage serverprogrammability”
in this particular context may not be clear. While storage devicesare endowed today with gererd
purposeproces®rs, the sdtware execued ontheseprocessors is totally written by the device man
ufacures. Similarly, while NFSfile servers are often general purpos workstations the function
that administretors allow to exeaute on the server is limited to little beyond file senice ard the
suwpporting sewicesit requres (e.g netwvorking, moritoring and administraion sevices.

Thischaper assumesthat programmalbe storegeserversallow gererd purposeclient extensions
to execute on their locd processas, possbly subject to certain searity and resouce alocaion
pdicies. Theseclient-provided functions can be downloaded at application runtime ard are not
known to the storageserveror device marufacurer aheadof time. Thesefunctions canbe part of
the filesystan tradiiondly executed on the cliert’s host system, or altermatively they can be patt
of userlevel applications All sud functions, however, may have to obey cerfain restrictions to
beable to execute on the programmeble server For example, they may be condrained to acassng
persistent storageandotherreurcesonthestarage sever throughaspeified setof interfaces The

interfacesexported by a programmalte storage server to client functions canrange from anertire

146 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

PCSIX-compliant UNIX environmert to alimited setof simple inteffaces
Thischaperassimestha programmalte storage seversexport aNASD interface. Client down-
loaded extersions can be executed on the sewver and canacesslocd staage through a NASD in-
terface. Clientfunctions can usethe sever's processa to perform computationsand can allocae a
bounded amount of memory They canaaces memoy in their own address space or make invoca-

tionsto other (local or remdae) senvices through remoteprocedure calls.

Storageclients

Storageclients repreen all nodesin the sydemthat are nat storage servers. Altermatively, starage
clients are network nodesthat have no storagedirectly attached to them. They acessstorageby
making request on starage servers. They alsohave a geneaal purposeexecution environmen. The
clients may or may not be trusted by the starage severs. Filesystem function that does not exe-
cute on the storage saver must execute on the client. Storageclients include desktops, application
savers, NASD file manaers, or web sewversconneded to storage severs through a storege-area

network.

5.2 Function placement in traditional fileg/stems

Currenty, distributed filesystems, like mod client-sever apgdications, are congructed via remade
procedue cals (RPC) [Birrell and Nelson 1984]. A sewner exports a set of sewices definal as
remote procedurecallsthatclients caninvoketo build apgications Distributedfilesystemsthereore
havetradtiondly dividedthar device-indegpendent fundionsstatically between client and sewer.

Changes in the relative performance of procesas and nework links andin the trust levels
of nodes across succes$ve hardware generations make it hard for “onedesgn-its-dl” function
partitioning decision to providerobustperformancein all cudomer corfigurations

Corsequently, distributedfilesygemshave histarically evolvedto adap to changesin the under
lying technologies ard tamgetworkloads Exampesinclude parllel filesydems local-area network
filesystem, wide-aeafilesystems,and active disk systems. The following section desclibes thee

differentsystemsand how they werespecialized to ther particulartarget ervironmert.

5.2 FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 147

Client (processor node) Storage server (I/0O node)
client/server interface

Striping / RAID
Y
Block Cache

Storage

private interconnect

Figure 5.1: Function placement in the Intel concurrent filesystem for the iPSC/2 hypercube multicomputer.
Both processor nodes and 1/O nodes use identical commodity x86 Intel processors with equal amount of local
memory. Up to four disks are connected to each I/O node. The processor and I/O nodes are connected in a
hypercube private interconnection network. Given the bandwidth of the private interconnect, CFS caches disk
blocks at the 1/0O nodes. To deliver high-bandwidth to applications running on clients, CFS delegates to the

client processor nodes the responsibility of striping and storage mapping.

5.21 Parallel filesygems

In orderto provide theneessry procesing horsepower for scienific apdicationsandortlinetrans
adion processng systams, pamllel multicompuers and masively pardlel processas were intro-
duced. Thesesygemscompriseda large numbe of processors interconneded via a highly reliable
high-bandwidth busor interconnedion network. To provide the processors with salable inpu and
output to and from se@ndary starage devices, multicomputer desgners developedtheir own propri-
etary filesydgems sud asthe Intel Corcurrent Filesystem (CFS) [Pierce, 1989] andthe IBM Vesta
[Corbet andFeitelson, 1994].

Storagedevices in multicomputers are usudly attached to procesors known as*®1/O nocdes’
(storagesavers), while “processa nodes” (clients) execue applicaion code and acessstorageby
making requedsto thel/O nodes. Multicompuer file systemsare not corcerned with secuity given
that all proces®rs are trusted and the interconred is private to the multicompuer. All processors
exeaute the sameoperaing systan and often the sameapplication, ard, therefore, areassumedto
mutually trust each other. Furthermoe, the network is internd to the multicomputer andis sake
from malicious attacks. In the Intel CFS filesystem for example, I/O nodes cachedisk blocks while
procesr nodes do not perform any caching. Client proces®r nodes, on the other hard, perform
storage mappng (stiping/aggregation) so that they canissuemultiple parallel requeststo severd
I/O nodes. Becaus thelatercy of alocd memay acessis compaalde to the latercy of anacces
to the memory of an I/O node, sever-side caching makessense sinceit avoidsthe comgexity ard
performarce overhead of ensuling the consistency of distributed cades. At the same time, client

sidestoragemapping allows applicaions exeauting ontheprocessornodesto obtan high-bandvidth

148 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Storage server (workstation
Client (user workstation) or custom box)

client/server interface

App
Cache
v
Cache
R/: D
Storage

Local area network

Figure 5.2: Function placement in most network filesystems. Because the network is traditionally a low band-
width shared bus, striping across devices is only applied at the server. Data is cached as close to the applica-

tion as possible (at the client) to avoid the slow network.

by striping acosslinks and I/ O server nodes. Figure 5.1 depicts atypical patitioning of functionin
paallel filesygems.

Parallel processor interannedion networks boast high reliability and bardwidth becalsethey
span short distances and are indalled in controlled ervironmens. Local area networks, sud as
Ethend, and wide area intemetworks have much lower bandwidth. Fil esystamsfor thes networks

have therefore chosena different function placemen thanpardlel filesygems

5.22 Local areanetwork filesystems

The NFS filesydem was designed to allow shaiing of filesin alocal area nework. NFS divides
machnesinto clientsand servers. Storage devicesareattachedto the server. Applications execute
ertirely on clients and accessthe server to readandwrite dataon the storege devices Serversim-
plemen al the file and storage maragementfunctions For exampk, file and starage managemer
functions (diredory maragement reliahili ty, and storage managemen) execue almost entirely on
the senver becawsethe serverhas sufficient resouces to manae the limited number of storege de-
vicesthat are attached to it. Becaisethe network has limited bandwidth, NFS supports the caching
of file and attribute information at the client. This caching redwces the need for over-the-network
tranders, and also reducessewner load Figure 5.2 depicts the partitioning of function in typical
localareaand wide-areanetwork filesystems.

To ohtain cost-effective salable bardwidth on alocal areanetwork, data mud be striped acoss
the network and acoss multiple severs. Swift [Calreraand Long, 1991] is anearly aray starage
systan that striped daa acrossmultiple starage sewversto provide high aggregaie 1/0 ratesto its
clients. Swift definesa storage mediator machne which resevesresaircesfrom commurication

and storage servers and plans the aggregatk trarsfer as an erncrypted coordinated sesson. Swift

5.2 FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 149

medatas also manae cate coherence using call-backs, and bandwidth resevation by sdecting
the appropriate stripe unit size. Swift delegates the storage maragementfunction to the servers (the

storage medators). Applicationsexecute ertirely on clients.

5.23 Wideareanetwork filesystems

The Andrew filesystem (AFS) wasdesigned to enalde shaiing of data amorg geographically dis-
tributed client systems[Howardet al., 1988]. AFS has traditionally se'ved an amabamaton of
widely distributed office and engineering ervironments, where shaiing is rare but important and
exhclientisanindependert system. Accordingly, the entire application executesat aclientand a
larger fraction of the client’s locd disk is resevedfor longtem caching of distributed filesystem
daa.

AFSisdesgnedfor wide areas where alocal disk accessis assumed muchfaderthanan aces
to the sewver. Consequently, local disk cadhing under AFS can improve performancedramatically.
Longterm local disk caching is very useiul in ervironments with mogly read-only sharing such
asinfrequertly updaed binariesof shared exeautables. Such caching redwces sever load eralling

relatively resaircepoa AFS serversto support alarge numberof distant clients.

5.24 Storagearea network filesystems

Traditionaly, the limited connedivity of peripherd storage networks (e.g. SCS) constraned the
number of devicestha can be attachedto the sever. Emerging switched netwvorks are expand-
ing the conredivity and bardwidth of peripheal starage networks and enading the atachmert
of thousands of starage devicesto the saver. As a resut, a single file sever madine — usu
ally a commodity workstaion or PC — cannot hande file and storage maragenentfor this large
numberof devices Conseajuertly, recert reseach on network-attached starage has proposed of-
floadng this fundion to “clients’, eliminating the legag/ sener, enaling striping across mul-
tiple servers, effectively replacing the server with a cluster of cooperaing clients. Several re-
saarchers have proposel scalabe storage systemsthat comprise clusters of commodity storage
savers[Andasm etal., 1996, Thekkath et al., 1997, Gibsan et al., 1998 Hartman etal., 1999] ard
clients, which largely offload filesystemfunctionality from seversto clientsto eralle the scalability
of thedistributed filesystem.

Frargipan [Thekkathet al., 1997] is acluser filesydemwhichis built on top of closely cooper

ating network-attached starage servers The storage savers export the abstadion of a set of virtud

150 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Storage server (intelligent
Client (host workstation) disk)

client/server interface

o
£
5]
<
Q.
o

<

App-part1
RAID
Storage

Local or storage
area network

Figure 5.3: Function placement in active disk systems. The server in this case is a smart disk drive capable
of executing general purpose application code. The client is a host machine. The data intensive function of
the application (part2) is explicitly moved to the disk. A vestigial merge function (partl) is left at the host to

coordinate multiple remotely executing functions which can be potentially executing on several active disks.

disks. Eachvirtual disk is block-addressbe, ard blocks are replicated acoss savers for reliabil-
ity. Frargipan distributes its filesystem function (alocaion, namepae maragemenj to a set of
cooperding clients, called“file managers:” The file managels coopemtively implementa UFS like
filesystemand syrnchronizevia asharedlock manager. Measiremens of Frangipani reporterhanced
saalability from distributed exeaution.

5.25 Activedisk sygems

A growing number of important apgications operae on large dat ses, seaching, comptuting sum-
maries,or looking for spedfic patterrs or rules, esentially “filtering” the dat. Filter-like applica-
tionsoften makeone or more sequertial scars of thedata[Riedel et al., 1998]. Applications execute
on the hog, with the storage devices sernving as block severs Prgponerts of acive disk systems
claim thatthe increasing levels of integration of on-disk controllers arecreaing “excess” compu-

ing cycleson the on-disk proces®r. Thes cycles canbe harnessed by dowvnloading “applicaion-

spedfic” dataintengve filters. Currertly, dataintersive apgdications exeaute ertirely on the host,
oftenbottlenecking on transferring data from the storagedevices(savers) to the hog (client in this

case) Figure 5.3 depictsthe partitioning of functionin anactive disk system.

Table 5.1 summarkesthe function placement choices for a represeatative distributed starage
systam in ead of the abo\e categories. For each sydem, the table shows where cacing aswell
asother filesystem functions such as aggregation/striping and namepace maragement are placed.
Thetable shows alsowhereapplicaion function is execued. Thetable summarizesthisinformation
highlighting thefact tha for each fundion, there is at least one sygemwhich choosesto placeit at

the client andatleastone systemwhich choosesto place atthe serer.

5.2 FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 151

For ead filesystam, the partitioning of function was heavily dictated by the topology of the
target environmern and the charaderistics of theimportart workloads. This makesead filesystem
applicade only within the boundariesof the ervironments thatfit its original design assimpions.
Function patitioning in distributed filesystemshas bea speidized in thee sydemsto the un-
delying technologies and target workloads. This spedalization of course came at the expense of
condderade developmenttime. Rewriting filesystamsto optimizefor ddails in theunderlying hard
wareisnot cog-effective in termsof development time. Moreover, rewriting filesystansto optimize
for more detdled charackrizaions of the undellying hardware still canrot adaptto changesin the

lif etime of a singe workload,or to interapplicaion compdition over sharedresaurces.

5.26 A motivating example

Consderthefollowing examgde demongrating how adaping function placemern betweenclient ard
saver canimprove filesystem performane. The previous chaper presented a shared starage array
architeadure compaosedof starage devicesard storagecontrollers In this chager' s termirology, the
storage devicesarethe starage servers and the starage controllers are the clients. Let's assume tha
the starage device procesas are limited compared to that of the storage cortrollers. Let's further
assumethat the starage network conneding the devicesto the controllersis relatively fast such tha
the timestaken by a locd anda remoteaccessbetwee the nodesare relatively indistinguishable.
In this case,when thearray is in degradedmode, it is advantageols to exeaute the recorstruct-Real
BSTs(XOR intersive operations needad to computetheconterts on the failed device) onthestorage
controller. The starage controller hasa fast CPU ard tranderring the data on the network does not
add obsevabe latercy.

Now consider the casewherethe starage devicesare upgraded such that executing XORson the
devicesis 5X faser. Then execuing the remngruct-Read BST on the device side will be5 times
fasta. If we alsoassimetha the network is of observable latency becawseof highly acive storage
controllers the peformarceimprovemen of device-side exeaution canbe evenhigher.

Traditiondly, the saver interface defineswha function executesat the server, everything else
exeautesattheclient Thisintefaceis dedded atsystan desgntime by severimplemertors. Client
programmersaveto alide by this division of labor. Sener interface desgnersfador in assumptions
about the relative availability of resaurcesat the client and the server, their relative levels of trust,
the performanceof the client-server network and the key chaaderistics of the expecied workload.

Thes assumptionsdo not match the realitiesof several systemsand workloads. The result is subop-

152 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Intel CMU Frangipani Active
CFS AFS disks
Component Assumption
Client node Trusted Not Not Trusted
trusted trusted
Network Private Wide area | Scalable switched Storage
interconnect | netvork network nework or LAN
Function Placement
Aggregaion atclient atsaver atserver atsaver
Namespace at sever atsaver atcliert atsaver
Applicaion atclient atclient atcliernt atsaver

Table 5.1: Function placement in distributed storage systems as a function of machine, workload and network
characteristics. The table shows only where striping/aggregation, namespace management, and user appli-
cations are placed. CFS is Intel's concurrent file system, AFS is the Andrew filesystem developed at Carnegie
Mellon, and Frangipani is the cluster filesystem developed at Compaq SRC. Active disks represent the re-
search prototypes described in the literature [Riedel et al., 1998, Keeton et al., 1998, Acharya et al., 1998].

timal andsomeimesdisastrouspeformance. The heterogenety in workload charecteristics, node
trustlevels, andin noderesource availahility in actual sysemsmake such assumpions“invalid” for
alarge numberof cases

Optimal partitioning of function depends on workload charecteristics as well as system char
aderistics. Both mustbe knowvn before the optimal partitioning is known. For instarce, consder
a streaming dataintersive applicaion executing on a staage sysem where the savers CPU is
much slowerthanthat of theclientand where the network betweenclient and sever hasareldaively
high-bandwidth. In this cas, “datashipping” and not “function shipping” is the optimal solution.
Tranderring the daa to the clientis inexpensve, and client-side processing will be much faste!
Evenif the severis powerful, it can beeasily overloaded with remdely execuedfunctionscausing

slow-downscortrary to the desred goaldSpalink et al., 1998].

5.3 OVERVIEW OF THE ABACUS SYSTEM 153
5.3 Overview of the ABACUS system

To demorstratethe bendits andthe feasbility of adagtive function placemen, this chapter reports
on the design and implemenation of a dynamic function placemen system and on a distributed
filesystembuilt onit. Theprototypeis caled ABAcCuUS becawsefunctionsas®dated with apatticular

daastream (file) canmove bad and forth betweaen the clientand the server.

5.31 Prototype desgn goals

ABAcUS is desgned primarily to support filesystems and stream-poocessng applicaions. Filesys
tems and stream-processng applications move, cache and process large amaunts of data. They
perform severd functions on the data-dream asit movesfrom the bas storageserver to the erd
conaumeratthe clientnode Intuitively, the purposeof ABACUS is to discover erough about the
resouce conaumpfon paterns of the functional componerts in the stream and abaut their mutud
communication to partition them optimally between the client and the sever. Compments tha
communicateheavily should be co-locaedon the samenode. At the sametime, the CPU ata node
should not be overloaded and loadshauld be bdancedacioss them. Sen#ive functions should be
exeauted on nodes marked trugsed ABAcus therefore seels to aubmateperformarce and cor-
figuration manayement ard simplify filesystan developmen by remaoving from the filesystem ard
applicaion programmner the burdenof load balancing and configuration. Particularly, the ABACUS
prototypeis designal to med two principal requirements to offer anintuitive programming modd
and to intdli gertly pattitionfunction without use involvement.

Intuitive programming model. The ABAcus-speific efforts experded by the programmer to
write a filesystem or application on ABAcUS should be limited relative to desgning a filesystem
or applicaton for atradtional fixedallocation of function. In principle, aubmaing function place
mentfrees the programmerfrom the burden of optimizing the applicaion for each combiration of
hardware and ervironment ABAcUS should makeit easyfor programmergo write applicaions so
that the effort saved by not developing system-specific optimizations is not replaced by the effort
takento codein ABACUS.

Flexible and intelligent partitioning. The systam should parition function sothat optimal per
formane is achieved In this resard, peformane is taken to be equivalent to “total execution
time” The system, therdore, shauld partition function so thd, in aggegae, apgdications shaild

take the minimal amount of exeautiontime.

1%4 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.32 Overview of the programming modd

ABAcuUSsS corsists of a progranming model and a run-time system. The ABACUS programming
model encouragesthe programmerto compaseapplicationsfrom small comporerts each perform-
ingafundiond step on adatastream. Therun-time systemcontinuously observeseachcommpnent’'s
behavior and sygemresaurce availahility, using theseto assign the componentto the beg network
node

Object-oriertedlanguagessuch asC++and javaarewidely used in building distributedanddata-
intersive applicafons. ABACUS choosesto monitor applicaion objects (run-time instantations of
clasgs)andwork to “place themin the most proper node.

Compaent objects in an ABACUS application can be declarad as either mobile or anchored
Mobile objects canbeadapively bound to client or to server at application start-time. They canalso
charge placement at run-time. Mobile objects provide methods that explicitly chedpoint to ard
restarethedr staefromabuffer. Thecheckpoi nt/ r est or e mettodsareimplementedassiming
the object is quiescant, that is, nat acively executing ary externdly exported method. Anchored
objects, onthe other hand, arefixedto alocaion deteminedby the designer at application design
time and never migrate.

When the sygemis running, theapplication is represented asa graph of commuricating mobile
objects Eadt objectembodies stateand providesaninterfaceto the externd methodswhich canbe
invokedto operate on that stae. The object graph canbethought of asrootedat the storage severs
by anchored (non-migrateble) starage objects and at the client by ananchored conle object The
storage objects provide persistent storage, while the consde object contains the part of the appli-
caion which must remain at the node wherethe application is started Usually, the console part is
nat data intensive. Instead it servesto interfacewith the user or the restof the systam at the stat
node. Objects makemethod invocationsto ead other, resttingin datamoving betweea them. The
daa-intersive assunptionimplies thattheapplication moves alargeamount of data among asubset

of thecompament objects

Component object-basal applications

The ABACUS prototype was developed to manage the partitioning of apgications writtenin C++.
While javawould have bean a more appropriate language becawseof its platform-independence its
limited peformarce on Linux during the time this research was corducted made it a badchoice.

However, the reacer will find out that the architecure of ABACuUS ard its resouce managemeth

5.3 OVERVIEW OF THE ABACUS SYSTEM 155

User application

/

/ open(), close(), read(), write()

VFSinterface, open file descriptors

C) Anchored object (NASD object, Console)
M obile object
. Private state: local (embedded object)

([Private state: referenceto external object

Figure 5.4: A filesystem composed of mobile and anchored objects. The open file table and VFS layer interface
code is encapsulated in the console object which does not migrate. Storage is provided by disk-resident
functions encapsulated in a base storage service exporting a NASD interface. The intermediate objects shown
in the figure perform compression, RAID and caching functions and are mobile. These can migrate back and

forth between client and server.

algorithms canbe equdly applied to ajava-basedapgication.

There are two kinds of “apgications” thatcanrun on ABACUS, filesystans anduser-level ap-
plications. In the caseof a filesystam, the conle object correspondsto the codein the operding
systam which marages open file tables and implemens VFS-laye fundions This layer doesnot
move from the client host. Filesydem objects (e.g. caching, RAID, compresson and diredory
manaement) do migrate back and forth between the client and the sever. Storage accessis im-
plemerted by a disk-resident function encapsuatedin a C++ “NASDObjed” class. This classis
instantiated on each starage sever. The instantiated C++ objectis anchoredto the server and does
not migrate Figure 5.4 shows a filesydgembuilt on ABAcuUs. This discussion will someimesrefer
to such afilesystem as a mobile filesystem.

In the case of a usea-level program, the console congsts of the mai n function in a C/C++ pro-
gram. This console pat initiatesinvocaionswhich are propagded by the ABACUS run-time to the
rest of the objeds in the graph The application can be composd of multiple mohile object per
forming data-intensive processng functions suchasdecaoding, filtering, counting and data mining.

From hereon, the discusson will focuson filesygems Suporting the migreion of userlevel

applicaion objects when such applications are layered atgp the filesystem requires making the

156 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

User application

Console

main() and rest of non-migratable codein app

count matching records

search for recordsthat match criteria

Filter? @)

open(), clos(), read(), write()

C) Anchored object (NASD object, Console)
@ M obile object
. Private state: local (embedded object)
0 Private state: referenceto external object

Figure 5.5: A user level application and its filesystem. Both are written such that their functions can migrate.
The console is the main function in the application that displays the results on the screen and interacts with
the local client. The file system is composed of layers that are encapsulated into migratable objects. The state
relevant to the process’ open files in the kernel is encapsulated into a migratable object (FileSys) that can
migrate to the server.

filesystem consde layer (encapsuated asa FileSysobjed in Figure 5.5) itself migratade. This
poses well- known complicationsbhe@usesomestate such asopen-file desriptors, canrot be easily
tranderredtramspaertly between nodes[Douglis, 1990]. Figure 5.5 depicts anapplication written
onABAcuUS. A discussion of how ABACUS canbe extendeal to support the migration of application
objectsisdeferredto Section 5.7.

As far asthe ABACUS run-time is concemed bath filesystems and use applications appear as
a graph of self-contaned objects that can be monitored as black-boxesandmoved back and forth
betweenthe client and the sever asappropriate. The only property tha the run-time caresabaut is
whether the objectcanbe movedor not (mobie or andored).

ABAcuUs applicationsperform dataprocessing by invoking methodsthat stat at the consde and
propagat through the object grgph. In gererd, an apgication such as a filesysten decomposes
its processing into a se of objects with each object providing a spedfic function. Theseobjects
can evenbe adatively bound on a perfile basisto provide differert sevices.For insane, cading,
reliability andenayption are functionsthatmay have to bepeformedon the sanefile. ABACUsen
ahlesfilesystemsand storage-intersive applicationsto be compasead of explicitly migrateble objeds,

providing storage senvices suchasaggregation, reliahili ty (RAID), cacheabllity, filters, aggregatas,

5.3 OVERVIEW OF THE ABACUS SYSTEM 157

or any other application-gpedfic processing. Eachobject embalies stateandprovidesan interface

to the extemal methodswhich can beinvoked to opemteon that state

Block-based processng

Dataintersive aplicafonsoften naturally processinput daaoneblock at atime, for sameapplication-
ddfinedblock size. Applications are implemertedto iteratively process input datablocks becaise
the algorithms they employusually consume memoryresources that grow with the input size. To
limit memow usage, applications often allocae a memorybuffer tha is large enough to proces
anapgication-definedblock of data, then iterate over the blocks in theinput file, reusing the same
memorybuffer, thereby avoiding excessve memay use. For exampk, a seach application like
gr ep seaching afile for a spedfic string works by allocating a fixed memoy buffer. File blocks
are suceessvely readfromthe filesydem,scamed for the string, then discardedand redacedby the
following block.

Dataintersive C++ object within an application usudly perform their processng by making
requeststo other objects. The amouwnt of datamoved in each invocaion is an application-speific,
relatively smal, block of data (i.e. not the whole file). Most often objects are organized into a
stack one per application or filesydemlaya. Thus, method invocaions propagde down and up the
stack processing one block at a time. Block-basel processng is an attribute of the programmirg
model tha is not mandated for correctness but for performarce. The ABACUS run-time system
builds statistics about inter-object communtaion. Thes statistics areupdated at procedure return
from an object. Thus, it isimportant that the application performs mary object invocations during

its lifetime to enable ABACUS to collectenough histay to guideit in its placemant decision.

5.33 Object model

ABAcCUS provides two abgractions to endale efficient implementation of object-basal storage
intersive applications: mabile objects and molile object maragers. Mobile object are the unit
of migration and placement. Mobile objectmanaers group the implementtion of multiple mobile
objeds of the sametype onagivennodeto improwe efficiency, share resources or otherwise imple-
menta function or erforce a policy that transcends the boundary of a single object For insiarce,
a function thd requires aaccessto more thanone objectis afile cache The file cache implemens
aglobd cache block redacementpdicy and therefore needs to control the cadhe blocks of al files

that it marages. Memoly cantherefore be redaimed from a file thatis not being accessel and

158 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

allocatad to another acive one.

Anchored objects

Because anchored objects arenot mobile, thatis, will at all timesremainat the node where they
are instantiated, ABAcuUS placeslittle restiction on their implemenation. Examples of anchored
objectsinclude NASD objects, which provide basic storage sevices and atomicity objects which
provide atomicty for multi-block writes. Both NASD ard atomicity object are anchored to a
storage server. Ontheother hand the console objectis anchared to the client node.
Storagesewnersare asumel to implemert a “NASD interfface”. Storageon a storage server is
acesd through a C++ object, referredto asa NASD archaed objed, instartiated at run-time,
ard implementng the “NASD interface” described in Chaper 3. ABAcUS doesnhot require that
storage acessfollows a NASD interface. The anchored C++ objedt providing storageacess can
just as easily export a block-level interface. While C++ objects commuricating with starage are
requiredto know the particular interface exportedby starage, ABACUS doesnat. ABACUS treatsall
invocations betweenobjects asmessiges tha transmit a certain amourt of bytes,without attertion

to semarics.

Mobile objects

A mobile objectin ABAcus is explicitly declared by the progranmer assuch. It consistsof a
state andthe metlods that manipulate that stae. A mobile objectis requred to implemen a few
metlods to enale the run-time systemto creae instantiations of it and migrateit. Mobile objects
are usually of large grandarity. Rarely are mohile objectssimple primitive typessuchas integer or
float They usually perform functionsof the size andcomplexity of afilesygemlayer, or adatebae
relational operaor, sud asfiltering, searching, caching, compression, parity computation, striping,
or transading betwea two dataformas.

Mobile objecs, like all C++ objects, have privatestae that is not accesible to outside objects,
except through the exported methods. Unlike C++ objects, mohile objects in ABAcuUS do not have
public datafieldsthatcanbe acces®ddirectly by de-referencing a pointer to the objects. Instead,
all acces®sto the objects stae mug occu through exportedmethods. This redriction simplifies the
ABAcCuUS run-time systan. Since all accesesto amobile objectoccu through its exportedmethods,
the run-time’s support for location transpaerncy can be focussedon forwarding method invocaions

to an object to the currentlocaion of the object.

5.3 OVERVIEW OF THE ABACUS SYSTEM 159

Theimplemertation of a mohile object is internd to that object and is opague to other mobile
objectsandto the ABACUS run-time system. The private stateconsigs of embealded primitive types
and indgartiations of embelded classes (i.e. not visible outsde the scqe of the currernt object’s
clas$ and referenesto exterral objects. The ABACUS progranming model makesarestriction tha
all exterral references must beto other mobile or anchored objects tha are known to the ABACUS
run-time system. Refaerncesto other externd resaircessuch assocketsand shared memay regions
are not legal.

ABAcus mainainsinformaton about thelocaionsof mobile andancharedobjectsthat it knows
about. It uses this information to forward method invocations to object asthey migrate betwea
client andsewer.

Of couse, amolile objectcanhave acaessto its local private stae through references that are
not redireded or known to the ABACUS run-time system. The molile object is regponsble for
savingthis privatestate however, whenit is requesedto do so by the system,through the Check-
poi nt () method. It is also regponsible for reinstting this stae (reinitializing itsef) when the
run-time system invokes the Rest or e() metlod. The Checkpoi nt () method savesthe state
to either anin-memoy buffer or to a NASD object. The Rest or e() method can reinsiate the
statefrom either place. The signauresfor theCheckpoi nt () and Rest or e() methods, which
ddfine the bas class from which al mobile objects are derived, are illustrated in Figure5.7. The
discwsgon will differeniate private embedled stae from mobile andanchored objects by referring
to mobile and anchored objects as “ ABACUS objects’, sincethey are the only objects known the

ABACUS run-time system.

Mobile objectmanagers

Mobile objedt manayers encapsilateprivatestae for a calection of mobile objects of a giventype.
Often, a saviceis better implemened using a single object manager that controls the reources
for a group of objecs of the sametype. Object marages thus aggregatke the implementaion of
multiple objects of the sane type. For example, afile sygem may wish to control thetotd amount
of phydcal memog devotedto caching, or the totd number of threadsavailable to cacdherequeds.
Mobile objectmanagers providean interfacethatis idertical to that of thetypesthey contain except
thatthey take an addti onal first amgument to eachmetlodinvocation, whichrepresertsareferenceto

theindividual object to be invokedfrom the collecion of objectsin theaggegated marager object.

160 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Client

|

RAID: 2

& management

transparent
invocation

R&equrc_e
monitoring

lgr| Location

Abacus run-time U (digests
of stats)

Storage Server

\
Storage: 3

transparent
invocation

monitoring
& management
<
Location

Resource

Figure 5.6: An illustration of an ABAcuUS object graph, the principal ABAcCUS subsystems, and their interactions.
This example shows a filter application accessing a striped file. Functionality is partitioned into objects. Inter-
object method invocations are transparently redirected by the location transparent invocation subsystem of the
ABAcUS run-time. This subsystem also updates the resource monitoring subsystem on each procedure call
and return from a mobile object (arrows labeled “U”). Clients periodically send digests of the statistics to the
server. Finally, resource managers at the server collect the relevant statistics and initiate migration decisions

(arrows labeled “M”).

5.34 Run-time system

Figure 5.6 represeris an overview of the ABACUS run-time system, which congsts of (i) a migra-
tionand location-trangparen invocation subsg/stem,or binding manager for short; and (ii) aresaurce
moritoring and management subsystem, resaurce manger for short. The first subsystem is repon
sible for the creaion of locdion-transparent referenesto mobie objects for the redrection of
metlod invocatonsin thefaceof object migrations,and for enacting objectmigrations. Finally, the
first subg/stemnatifies the second at eat procedure cdl and return from amabile objedt.

The resaurce manager usesthe natifications to collect statistics about bytes moved betwee
objectsandabout the reources used by active objects (e.g.,amourt of memoryallocaed number
instructions exeauted per byte proces®d). Moreover, this subsysten moritors the availability of
resoucesthroughout the cluste (node load, available bardwidth on network links). An andytic
model is usedto predict the paformane berefit of moving to an aternative placemen. The model
alsotakes into accourt the cog of migration— the time wagedto wait until the object is quiesceant,
chekpaint it, trarsfer its state to the target node and restare it on that node. Using this andytic

model, the subsystam arrivesat theplacemen with the beg netbenrefit. If this placanentis differert

5.3 OVERVIEW OF THE ABACUS SYSTEM 161

from the currentconfiguration, the subsydemeffects object migration(s).

The ABACUS rurttime systan hasmectansmsto find application objects and migrate them.
In geneal, when a function is moved, both the code for the function as well as its execution
state(locd and exterral referacesacessedby the function) must be mack accessble at the new
node [Julet al., 1983]. A mechanism to trarsfer this stae from one node to ancther is therefore
necesay to enable adgptive function placemer atrun-time.

Emerald [Jul etal., 1988] is a semind implementtion of a languageand run-time system sup-
porting the mobility of application objects. ABACUS uses similar medhanisms to thoseprovided by
Emerald to enact object mobility. The focus of the ABACUS prototype, however, wasnot on mo-
bility mechanismsbut rather on usng these mecarisms to improve dataintensive and filesystem
performarce through judicious and automatic placement of their object on the proper nodes. The
remainder of this section desciibesthemetansmsusedby the ABAcus to effect objectmigrations
and to find objects afterthey migrate. Thefollowing secion is devotedto descibing the algorithms

usedby the run-time sydemto achieve good placemer for apgication objects

Creating and invoking mobil e objects

The creaion of mohle objectsis donethrough the ABACUS runtime system. When thecreaion of
anewv ABACUS object is requestal, the rundime systan allocaesa network-wide unique run-time
identfier (r i d) for thenew object This idertifier isreturnedto the cdler and canbe usedto invoke
the new mokile object from ary node, regardless of the current location of the mohile object. After
allocating a network wide uniquer i d, therun-time sygem creates the actual object in memory by
invoking the object managger for that type. If no object manager exists oneis creaedfor that type.
Object marages mug implementaCr eat ebj () method which takes arguments speeifying any
initialization information ard returns a referernce tha identifies the new object within that object
manayer. This can be thought of as a virtud memay refererce to the creatd object, although the
object manayer is freeto construct this referencein the way it desres The object manayer creates
the “adud” objed, e.g., in C++, by invoking the new operatar, and then return a referenceto the
object to therun-time. Thisreference, cdled a“manage reference”, is usal to uniquely idertify the
object within the callection of objects managedby the marage.

The runtime system maintains tables maping each r i d to a (node, object.mareger, man
ager_reference) triplet. As mobile objects move beween nodes, this table is updaiedto reflect the

new node new object marager, and new marager reference. Mobile objects usether i d to invoke

162 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

other mohile objects sothattheir invocationsareredrected to thepropernode Therun-timesysem
convertsther i d to amemory referencewithin anobject managger on a givennetwork node.
Furthemore, typesmust registered with the ABACUS run-time systam, and be as®dated with
anobjectmarage class,sothat the run-time system candetemine wha objectmarager to crege
if none exists. Ead object type may export a different set of methods. Invocaions of ABACUS
objectsare compiled into statamentstha first invoke the ABACUS run-time system to maptheri d
onto a (nhode, objectmarager, marager_reference) triplet, thenforwardthe invocaion to the object
marage on the taget node where the object currenty reddes. The object managger is invoked
by passing it the marager_reference as the first agument followed by the adud aguments for
the method invocation. All ABAcUS object (mohile andanchored) definethar interface in IDL
(InterfaceDefinition Language[Shirley etal., 1994)), allowingthe ABACUS rurttimeto createstubs

and wrappers for ther methods.

Locating objects

Thete are two kinds nodesin an ABAcCUS cluste: clients ard sewers Servers arenodes on which
atleas onebas starage objed resdes. Clientsare nodes that acces starage objects on the servers.
A saver can therefore be a client of ancther storage server. Top-level invocations originate at
the console object, which, like ary ABACUS objedt, mayhold ri d referencesto other objeds in
the graph. Inter-object cdls are made indirecly via the runtime system. The ABACUS run-time
forwards inter-object calls appopriatdy. For objects in the sameaddress space, procedure cals
are usal and daa blocks are passal without copies. In other cases, remde procedure calls (RPCs)
are u=d. The node where the console objectrunsis called the “homenode’ for all the migratabe
objectsin the grapts reahable from it. ABACUS maintains the informaion necesay to perform
inter-object invocaionsin ABAcus locaion tables.Location takdes are hash tadesmaping ari d

to anode, object manager, manacer referercetriplet.

Moving objects

Eachobject mug conform to a smal set of rules to allow the ABACUS runtime to trarsparently
migrateit. Migraion of objects requires the transfer of stateof object from saurce to tamget node.
Corsider migrating a object from a client to a starage node. The algorithm proceed asfollows.
First, new callsto themigrating object are blockedto make it quiescert. Then,thebinding marager

waits until all invocationsthatareadive in the migrating object have drained (returned. Migraion

5.4 AUTOMATIC PLACEMENT 163

is canceldd if this step takes too long. Oncethe object is quiese@n, it is checkpointed, its state
trandferred andthe chedpoint restared to a newly creaed object of the sane type on the storage
node Then local ard remotelocation tablesare updated to refled thenew object placement. Next,
ary waiting invocatons are unblocked ard are redirededto the proper nodeby virtueof the updated
locaion talde. This algorithm extends to migrating whole subgraphs of objects
ABAcCuUS requres thateach mohle objectin thegraph implementa Checkpoi nt () andRe-

st or e() method which conclude ary badkground work and then mardhdl and unmashdl an
objed’s represntation into migratade forms. The mokility of code is ensured by having nodes
that do not have the code for an objectreadit from shaed storage The mohility of execution state
is enaded through apgdication spedfic checkpointing. A Checkpoi nt () messge is ser to the
object on migration. The object marsals its private state to a buffer and retunsit to the runtime
systan which passes it to the Rest or e() method at the target node. This method is invoked to

reinitialize the state of the object before ary invocations areallowed.

5.4 Automatic placement

This sedion de<ribesthe performarce modd and the algorithms used by the ABACUS run-time
systam to drive placemert dedsions. ABACUS resaurce managers gatter per-object resairce usage
and per-node resource availability statigics. The reource usage staistics areorganized as grgphs
of timed data flow amang objects. The resairce marager on a given server seeksto perform the
migrationsthat will resut in the minimal average application comgetion time aadoss al the appli-

caionsthatare acessng it. Thisamountsto figuring out what subset of object execuing currently

/1 the abstract nobile object class
/1 Nasdld: a unique identif
cl ass abacusMobi | eObj ect {
public: ier for a persisent base storage object

int Checkpoint(void **buffer, NasdlD nasdld, int *csize);
int Restore(void *buffer, Nasdld nasdld, int csize);

Figure 5.7: The interface of a base mobile object in the ABACuUS prototype. The interface consists of two
methods: Checkpoi nt () and Rest ore(). The type Nasdl d denotes the set of all NASD identifiers. The
notation is in C++. Hence, the “*” symbol denotes an argument that is passed by reference. csi ze represents

the size of the checkpoint created or passed in the buffer.

164 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

on clients canbenrefit most from compuing close to the data. Migrating an objectto the server
could potentally reducethe amouwnt of stdl time on the network, but it coud also extendthe time
the object spends computing if the sewer’s processa is overloaded.

Resarce managersat the sewversusean analytic modd to deermine which objects should be
migrated from the clients to the server and which objects, if any, should be migrated back from
the server to the clients The andytic model condders alternaive placement corfigurations and
sdects the one with the best net berefit, which is the difference between the berefit of moving to
that placementand the costof migratingto it.

A migration is adually enacted only if the server-side resource marager findsa new placemer
whose as®ciated net benefit exceedsa configurabe threshold, Brp.esp. This threshold value is
usedto avoid migraionsthat chasesmallimprovemerts, ard it canbe setto reflectthe confidence
in the accuragy of the measurementsand of the predctive performarce modé usedby the run-time
system.

While server-side resairce marageas can communicate with each other to coordinaie the best
global placemen decision, this would caus extra ovethead andcomplexity in configuring the stor-
ace severs Unde such ascheme,storageservers have to know about ead other and be organzed
into cooperding groups. The ABAcus implemeration foregoesthis extrabenefit of server-to-server
coordination for the sakeof robusgnessandscalability. ABACUS sewner-side resairce managers do
nat communicatewith one arnother to figure out the globally optimal placement A sever-side re-
saurce marager decideson the beg altemaive placementconsideiing only the application streams
thataacessit.

At ary point intime, the objectgrgphfor an applicaion is parttioned beweenclientandsewer.
For a saver-side resource manager to detamine the beg placanent dedsion, it must know the
communication and resource consumption paterns of the objects that are exeauting on the client.
Giveninformaion about the client-side aswell as locd subgraphs, and given statistics about node
load and network performance the resource manager should be alle to arrive at the most proper
placanent

This is implemented in ABACUS by having server-side resource managers receive per-object
measiremens from cliens. A server-side resource manager also receives statistics abou the client
proces®r speedand current load and collects similar measuemerts about the local system ard
locally exeauting objects. Given the data flow graph between objects, the measured stdl time of

client-side objects requeds for daa, andthe round-trip estmated latency of the client-sever nd-

5.4 AUTOMATIC PLACEMENT 165

work link, the modd egimatesthe change in stall time if an object changes locdion. Giventhe
instructions per byte and therelative load and speal of the clientsever procesas, it esimates the
chargein execuion timeif the objectis movedto anewv noce.

This simple modd would sufice if the severresairceswere not shared by many clients. How-
ever, thisisveryrarely thecag in practice. Underaredistic scenario, amigration of anobject from
a client to a sever may slow-down other objects This effect must be takeninto acount by the
ABAcus performancemodel.

In addition to the change in exeaution time for the migrated object, the model also estmates
the charge in exeaution time for the other objects execuing at the target node (asa reault of the
increasel load on the node's processon. Together, the changesin stall time and execuion time
amount to the berefit of the new placement. In computing this bendit, the andytic model assunes
that history will repeatitself over the next window of obsenation (the next H seconds). The cod
assodatedwith a placemert is egimated asthe sum of afixed cost (the time taken to wait until the
objed is quiescent) plusthetimeto transfer the object’s state betweensaurceand degination nodes.
This latter value is edimatedfrom the size of the chedpoint buffer and the bandwidth betweenthe

nodes.

5.41 Goals

There areseveral differert performarce gods that the ABACUS run-time system canpurswe. One
alterrative is to allocae sever resaurcesfairly among compeing client objects. Altermatively, the
systan can provide applicaions with performance guaranteesand allocae resaircesto med the
promisal guarantees Yetanother goalwould be to minimizethe utilization of the network. Finally,
one god is maximize a global metric assodated with usa-perceived performarce, such asaverage
completion time of apgications.

This chepter describes algorithms that pursue a performance goal which is widely sought in
pracice, namelythatof minimizing the average completion time of complete runs of applicaions.
This goal is widely used becaus it directly maps onto a userperceived notion of performarce.
The performarce modd in ABACUS is self-contaned, however, andcan be extended or modified
to implement different pdicies The run-time system makesdedsionsto adag the allocation of
seaver resaurcesto minimize avergye requestcompldion time. We assune herethat no explicit
information abaut the future behavior of apgicationsis disdosedto the sydem. Instead ABACUS

assumes tha thefuturebehavior of applicaionsis accurately predicted by their recent past

166 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Note tha the god of minimizing the number of bytes moved over the nework is not always
desirable. For examgde, consideraclientside cachethatis aggressively prefeching file blocksfrom
a sewer to hide nework latercy from applicaions. While the cache consumesa lot of network
bandwidth and movesa large numbe of bytes, it doessare cache misse and reducesapplication
stall time. Moreover, this goal presumestha moving bytes over the network has uniform cost.
In prectice, nat all communications are equally costy (at lead in termsof latercy) becaus the
available bandvidth of network links varies aadoss topoogies and with time as a function of the

amliedload

5.42 Overview of the performance model

The ABAcUS run-time mug idertify the assignmen of mobile objectsto netvork nodestha is best
in reducing the average completion time. This discusson corsiders a single sever casebut with
multiple clients accessng it. A cost-berefit performarce model is derived for this ca®. Servers
in ABACUS ad indeperdertly and do not coordinate resouce allocaion decisions. This design
requirement wasmace to limit complexity and improve robusiess.

An ABAcus clusteris compaseal of clients and savers. The mobile objects assodated with an
openfile start exeauting by default on their “home node”, the node where thefile wasopen. They
can migrateto one of the storage servers, wherethe NASD aobjects staring tha file redde. At any
point in time, the graph of mohile objects assaiated with a given file is partitioned between the
home node and those starage severs, referred to as the “basestorage severs”

Theseaveris sharad by mary clients andhosts anumbe of non-migrateble objectsthat provide
basic storage sevicesto end clients Becaise non-migrateble objects camat be executedataclient,
while “mobile” objects can, the ABACUS runtime systemis corcerned with allocating serverre-
saurcesbeyond whatis consumed by non-migraalde objects to “mobile” application objecs. The
ABACUS sener-side resouce manaer is responsble for allocating its resoucesto the proper mo-
bile object swch tha the performarce goal is maximized To estimate the average application
completion time given an object placemant, an analytic mode that edimates average application
exeaution time in termsof inherent or easly meaured systam and applicaion parameersis devel-
oped The discusgon first considers the case of a single apgication exectting by itself. Then, it
genaalizes themodel to hande the caseof concurrent applicaions.

Figure 5.8 shows asketd of an applicationsexeauting onaclient and acessng astoragesewer.

Filesystemand application objects areorganizedinto layers. The application’s consde makes iter-

5.4 AUTOMATIC PLACEMENT 167

Client 1 Client 2
= : — IE,(’) , | Console object (Og)
YA
- Object O,
D < Py > | Opjecto
AN L : 3
C_ Paw1 > | Storage Object (O4q)

Figure 5.8: This figure shows how mobile objects interact in a layered system. Most of the invocations start at
the topmost console object, trickling down the layers. An object servicing a request may invoke one or more
lower level mobile or NASD objects.

ative regeds tha trickle down the layeas, cawsing an amouwnt of data to be read from storage ard
procesed, andpassedup. At eachlaya someprocessng occurs, reducing or (seldom) expandng
the amouwnt of datareturnedbadk up to the uppe layer. Similarly, the applicaion can be writing
daato stade storage where dataflows downward through the laye's, ead laye performing same
processng and passing the data down. This layerad model of processng simdifies the andysis,
yet it is generd enough to capure a large classof filesydem anddataintensive applications. Mo-
bile objects perform two kinds of activities: computing (executing instruction on thelocd CPU) or
communicating (making a method invocaionsto another mobile or NASD object). One object may
invoke more thanoneobjectin alower layer.

To desclibe theamalytic modd in detil, afew defintionsandnotations are required. An object
O, is charackerizedby aninherent processng ratio, expressedin instructions/byte, denoted by #;.
This ratio cafdurestheinherert compute-intersivenes of the processng performed by the object on
eahbyte of daaandisindependent of the proces®r speal or the bandwidth available to the object.
It cantherefore be used in edimating the exeaution time (to processone block) of the object when
moved betwee nodes.

In this discussion, the raw processing rate of noce k£’s processa is dendedby Ry, expres&din
instructions per seond. The effecive processng rate of node k& asobservedby anexeauting object
O, onthat noce is deroted by r;. Thisis equal to the effecive procesing rate available from the
procesr’s node, dencted asry, and is less than the raw procesing rate of the processor becaise

multiple threads may be conterding on the procesor. Of course, the obviousinequality holdsat all

168 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

times, for all objects O; executing on nodek:

rj =Tk < Ry

5.43 Singlestack

Corsider the applicaion of Figure 5.8. Assume that each object is asciated with a single thread.
The thread awaits invocations, performs some processing then invokes one mohile object at the
lower layea. Thethreadblocks until theinvocaion retumns. A single NASD objecton asingle server
is accesedby theapplicaion. The bardwidth of read or write requessto aNASD object isderoted
by D. Thisis asumal to be indepencent of saver load, beausethe sever is assumedto seve
NASD requesst ata higher priority than remdely exeauting objects

Invocationsstat at the console object and trickle down objects O, throughO,,. The application
is observed overawindow of time H during which N consde requess areiniti ated and completed.
Let’'sdenote by b; thetotal number of bytesprocesed by object O; during the obsewation window.
Letp; denotethetime spent processing by object O;. Assume, without lossof generality, thatunder
the original placement, objects O; through Oy, execute on the clientand objeds Oy through O,,
exeaute on the sewver. The consoke is refarredto as Oy and the NASD norn-migrateble object is

denotedby O, 1. The elgpsed time for the applicaion in Figure 5.8 canbe writtenas:

n n
Tapp = ij + ZCJ (5].)
i=0 =0

where C; denatesthe communcaton “blocking” or “stdl” time beweenO; ard O;;. Comnu-
nicaion time is the time during which the cal thread blocks waiting for datato be sentor receved
to the invokedobject This does nat include processng time at the invoked object, but the time
truly spent blocking while the datais being trarsferred. Thatis, after the processng at the invoked
object hascompleted Equation 5.1 canbe rewritten in termsof inherent applicaion and sysem

parameers as follows:

n

hib; &
Topp = Z % + Z C; (5.2)
=0 7 j=0

Equation 5.2. expresses the processng time p; in terms of the instructions per byte exeauted
by the object, the number of bytesproces&d by the object during the obsewation window, ard the
effecive processng rate ;. The numerdor h;b; represents the number of ingructions exeauted

by the object during the obsavation window, and the derominatar is the virtud processa rate

5.4 AUTOMATIC PLACEMENT 169

asobsaved by the object. Let's further assumethat local commurication within one machne is
instantaneous i.e. anobject doesnat block whencommunicating with ancther object co-located on
the samenode anylonger than the comgetion time of tha lower lever object Then Equation5.2.

can bewrittenas:

Tapp,old = (Z h b)+ Ck + (Z M) (53)

=0 Tclient j=kt+1 T'server

If the objed placemen changessothat objects O; through O,_; execute on the client and ob-
jects Oy, through O,, execute on the server, thenthenew application execution time canbeexpresead

as

k— n hibs
Toppnew = Z L)+ G+ Q) (5.4)

=0 T client j=Fk = server

Let’s further assume, tha rj,cliem = Tjctient = Retient M 75 cpper = Tiserver = Rserver
becawse the application is not sharing the client or sewver processas with ary other concurrert
amlicaions, and becaus different objects in the application stadk process the data seially and

therdore do not conterd for the processa atthe same time. Then, Equation 5.4 can berewritten as

T = (3 29%) 4 Gy (30 240 (5.5)

j=0 client =k | server
In this simplistic case the optimal placement can be detemrmined by finding the & for which
Tappnew 1S Minimized For instence, let’s further assumethat the server and client processo rates
are the same(rient = Tserver), thenthe ideal &k would be the one which minimizes the stall time,
Cix_1. In this simple case, the equdion implies that the stack of objects shoud be partitioned
atthe level thatwould minimize the numberof bytestranderred acrassthe network (synchronous

communication), or the point of minimalcommunication beweentwo successve layersin the stadk.

5.44 Concurr ent stacks

The effective procesing rate of object O; at the saver before and after migration is denoted in

Equaions 5.3 and 5.4 by 7seryer and 7 regpedively. These processing rates can be related

server
to the raw procesing rate at the server ard the currentload on that server The effective server
processng rate canbe estimated asthe raw processng rate divided by the node load L(server).

Thisis simply theaveragenumber of proces®sin thereads queueat theserver Here,the” processa

170 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

sharing” assumption is macke sothat object O; receivesa procesing ratefrom the processo thatis

theratio of theraw rate to thecurrert load, or moreprecisely:

RSG’I’U@'I‘ (5 6)

'S =
server L(server)

In gererd, ary priority or procesor scheduing scheme can be suypported as long as ABACUS
has anadequatedesciption of it. However, a proces®r shaiing policy at equal priority was chosen
for theimplementation. L(server) at the sever canbe measured. The change in L(server) asa
result of arelocaion mug be esimated. Eachactive grapgh canbe thought of ascontributing aload
between0 and 1. Intuitively, theloadis interpreted asfollows. If the object graphis compuing all
the time, never blocking for I/O, thenits as®ciated load is 1. If the object graphis compuing only
1—10th of the time, then the load it contributes to the systemis 11—0 Thenodeloadisis simpy the sum

over all the adive sessons atthesaver of their contributedload or equivalently:

L' (server) = Z CL(a) (5.7)

a€ ActiveSessions

Theload contributed by a sesson, CL(a) canbe computed from the stdl and processing time

of theentire stack, or:

Z?:Ic-}-l Dj
CL(a) = n
Cy + Zj:() by
Equation 5.8computestheloadof active sesson a astheratio of theprocessngtimeatthe server

(5.8)

to thetotal (procesing ard stall time). The portion of thestad attheserveris pasive whenererthe
client part of the steck is acive, or whenever data is being communicaied over the nework. Thes
times aresummedover all the object in the sesson. The processng time for an object is simply
the ratio of the bytes processed by the effecive processng rate. Exparding the processng timein

termsof thes paametrs Equaion 5.8 becomes

Zn bjh;

— J=k+1 rserver

- k bjh; n bjh;
Ck + Zj:() Tclient + Zj:k'i'l Tserver

After object O, migratesto thesewer, thenew loadcan be compued by rewriting Equaion 5.9:

CL(a) (5.9)

bih;
Z;L:k T{sirvjer (5 10)
Ckfl + Ek—l bjh; + n bjh;

J=0 Teiient J=k Tserver

CL'(a) =

5.4 AUTOMATIC PLACEMENT 171

Equaion 5.10requires the new effective processing rate of the server’s proces®r. Theeffecive

processor rate is simply theraw rate dividedby the new node load L' (serer).

5.45 Cog-benefit model

If the sewver hasforeknowledge of all the application that will stat, then it can determire the beg
“schedule” for alocding its resources to minimize average compldion time. In theabsene of this
knowledge theserver hasto operae basal only on statistics abaut the pag behavior of apgdications
that have alread/ stated. The approach implemented in the ABACUS prototype is to allocae the
saver's resouces greedly to the currently known apgications, and then recorsider the decision
whenother applications start. The implementation of this approachis desciibed in this sedion.

Becais of theabsene of futureknowledge,the greeds algorithm may migrateanapplication to
the sever, ard thenshortly afterthat a moredaa-intensve application may start. Becausethe cod
of relocaiing objecs is nat neggligible, ABACuUS has to condder whether reallocaing the sewver’s
resoucesto themore “deseving’ apgicationisworth it.

A cod-bendit modd canbe usdal to drive such decisions. Each object relocaion inducesan
overheadand therefore addsto the application exection time. It, of course,could potertially result
in subgartial savingsin exeaution (stall) time. Cog-bendit aralysisstates tha arelocation decision
should betaken if the cod thatit inducesis offsetby thebendit thatit will bring about. Cost-berefit
aralysisrequiresfirst defining a common currency in which costand benefit canbe expres®d, and
devising algorithmsto estimate the benefit and the costin tems of this commoncurreng). ABACUS
usesapplication elapsed time measired in seconds as its commmon currency. The net berefit of a
migration R, By..(R), is compuiedasthe potertial application bendit, ATy, minusthe cost of
migration,C(R):

Buet(R) = ATupps — C(R) (5.11)

Thefirst term in the equéaion above accowntsfor thechangein the execuion timefor theaffected
amplicaions. For exampk, if afilter application object is moved from client to sewer, the affected
amlicaionsincludethefilter apdication andthe applicatons currenly executing onthe sever. The
firstterm of Equation 5.11isasum over all theaffected applications. It mayinclude postive terms,
in the casewhen a relocation speeds up an application, and negaive termswhen an application is
slowed down as areault of the new placemer, eitherbe@useof increasednetwork stall time, or due

to anincreasein the nodeloadon a shared procesor.

172 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Thesecord termof equation 5.11 accaunts for the migration penalty of waiting until the object
is quiescert, checlpainting it, transfarring its state, and restating it on the new node The cost of
migration, C(R), is a sum over al the applications tha needto be migrated The expectd time
waiting until the object is quiescant is predcted by a pernode histary of the time neededto make
anobjed quiescentin a particular grgph. Checkpoint and resbre are modeled with a fixed cost,
and the expected cog of the trander is the expected size of the marshalled stae divided by the
recertly obsavedbandvidth of the transfer medum. The expededsize of the marshdled statecan
beinferrad fromthe program’s data size, sincethatis likely to bea corsavative predictor. *

ABACUS treatssever memory asa hard constraint. Applicationsthatmigrate to the server are
nat to exhaus sever memoy. If servermemoy is exhawsted, mobile objects are evicted. Mobile
objectsmay be evicted bad to their homenodeswhen memoryis shat. This maybe neesary to
freeenough memay to alow a new object currertly running on a client to migrate to the sewer.
Thiswill happen of couse,only if ABACUS edimatestha the new relocaion is likely to maximize
the net berefit.

Recdl tha Equations 5.3 and 5.4 estmatethe execution time of an application before ard after
migration. Taking the differernce restts in the change of execuion of one apgdication. Summing
thatdifference overall apdicationsproducesan estmateof AT,,,,. Thisand Equation 5.11 canbe
used therdore, by the ABACUS reource maragersto esimatenet berefit.

Stal timeoverthenetwork beforeand aftermigration, Cy, andCy,_; in theexampk of Equaions
5.3and 5.4, must be estimated by the ABACUS run-time system. Because same commurncation is
ag/nchronous, and becaise mesagescanbeissiedin pardlel, estimating stdl time — evenbefore
migration — is not straightforward. So far, this secion has assumel tha the object that needs
to be migrated from a client is invoked by a single application. In general, a filesystem object
may be shared by several acive applications so thatits migration affects the performanceof all of
them. In latter gererd case, some aplication sharing an object may benefit from the migraion
while others may sufer. This, however, is natually accounted for because ATy, is estmated
by aggregating the difference of equation 5.3 ard 5.4 over all affected apgications, including all
amlications shaling aces to the migraed object. Similarly, Equation 5.11 can be very easily

extendedto hande the multiple object migration case.

1Inthe ABAcCUS prototype, interestedbjed maragerscanassisthesystenin estmating theamourt of datathatneeds
to be checkpointed by implementingan optioral Get Checkpoi nt Si ze() metthod. For instarce, a filesystem cace
may allocae alarge number of pagesbut theanourt of datathatneedsto be checkpointedon migrétion is proportional

to the dirty pageswhich mustbewrittenbackor transferredo thetametnode, whichis usually muchsmdler.

5.4 AUTOMATIC PLACEMENT 173

Client-sidealgorithm

Each ABAacus client-sideresoucemanagerperiodically computeslocd statisticsabout the inherert
processng ratios, bytes moved ard stall times. For each cardidate graph it idertifies source ard
sink storagenodes anditeratively condders“pushing upor down” objectsto thes nodes by sendng
the relevart statisticsto the tamget saver askng it to compue the netbendit of each relocaion using
the above desciibed mockel.

Server-side algorithm

Server-side repurce managers collect statistics from the clients that are adively accesshg them.
They estimate the net bendit for each alternative placament, B,,.;, and then initiate a migration to
the placemen that geneatesthe larges net benefit. The sewver can choosea differentvalue of &,
the point at which to sgit an object stack beéweenclientand sewer, for ead adivefile. It hasto
sdect the combination of k’s that geneatesthe smallest average remahing compleion time. For
each combiration of k's acoss the adive stacks, the saver-sideresarce marage computesthe net

bendit from moving to this aternaive placenent

5.46 Monitoring and measuremert

The previous section presenied ananalytic modd that predcts the net benefit from a given reloca
tion. The pefformance modd requiresinpus about object processng rate stdl time, and numbe
of bytes procesed over the observation window. Estimating the net benefit aggregaesthe differ-
erceof equaions 5.3 and5.4, which require valuesfor h;, b;. Thesevaluesare independent of the
particular object placemant, and depend only on algorithmic and input charmactristics of the appli-
cdion. Thesetwo values must be measuedor esimated from obsaved measuemers. In addition
to these two values, theseequation requires knowledge of thechangein stall time betwveendifferent
placanents C;, and the node load at the nodesunde each possble placanent, namely L;.,,; and
Lgerver. Furthemore, becatse ABACUS “bin-packs” objectsin the sewver subject to the amount of
memoryavailable at the sewer, the memory consumption of mohile objects must be moritoredard
recorded

Onasingle node threadscancrossthe bourdaries of multiple mohile objects by making method
invocaions tha propagatedown the stadk. The resouce manager must charge the time a thread
sperds computing or blockedto the appropriate object. Similarly, it must charge any allocated

memoryto the proper objed.

174 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

The benefit of judicious object placanentis egecially important for adive applicaions, those
amlicationsthatacively aces storage andprocessdata. Discovering and coreding animproper
partitioning for such applications trarslates into substantial performarce gairs. The observation
that this reseacch makes is tha it is exactly those applications that a monitoring system should
know the mog about. Applications that actively move and proces large amouwnts of daa expose
to ABAcUS valuabe ard recert information about their commurication and resouce consumption
paterns The ABAcCUS run-time collects the required statigics over a moving histay window,
cgpturing thoseactive applications that would berefit from a potental better placemer. Predsdy,
ABACUS mairtains statigics about the previous H seconds of execttion, a window referred to as

the obsewation window. This subsedion desaibe how someof thesestatisticsare callected.

Memory consumption

Tracking the memor consumption of mohile objects is problematic for two rea®ns. First, mobile
objects can dynamicaly allocateand freememory This requirestracking their dynamic memoy
allocation to know thar true memoryconsumption. Dynamic memory alocation canbe monitored
by providing wrappersaroundtheneward del et e operdors for apgicationsto use.

A more difficult problem is caused by object managers. Object maragers manaje resouces
on behalf of multiple mobile objects of the sametype. The implementaion of mobile objectsis
therdore opague to the run-time system. For example, the memay corsumed by a mobile “cache’
object depends on the number of pages owned by tha object within the “cache object manager”
Thisinformationis only known to the object marager.

Theappoachtakenby the run-time systemto monitor memory consumption is to require eat
object managerto implementa Get MemCons () metod. This method takes a manager _refaene
asafirstargumern, and returnsthe numbe of bytesconaumedby theobject ABACUS assumes that
object maragerson different nodes use similar implementations. Thus the memay consumption
of an object in onemarageris a goad predctor of its consumption on aremoteobjectmarager.

The ABAcus runtime does not reerve memory with the operating system. Instead, it assumes
that it is allocated an amount of memay by the operaing systen. ABACUS manayes the use of
this memoryby allocating it to the proper applicaion objects. ABACUS monitors the memoy cornt
sumption of application objects ard is ale to detectmemoy shortageby keeping trad of the total
amaunt of unalocated memory. Thisis updaedevery time amemay allocaion or de-allocion is

performedby anapgication object.

5.4 AUTOMATIC PLACEMENT 175

Bytes moved b;

The bandwidth consumpion of mohile object is monitored by obsewing the number of bytes
maovedbetveenmabile objedsin inter-objec invocations Mobile objectsinvokeeach otherthrough
the ABACUS run-time, which in turns serds a mesag to the local ABACUS resairce manajer,
specifying the network-wide unique object idertifier (ri d) of the source object and of the target,
aswell the number of bytes moved betweea them. Resaurce managers therefore accumulate a
timed daa flow graphwhose nodesrepreset mobile objectsand edges represent bytesmoved along
inter-object invocations. Thes dataflow graphs are of tradable size becausemostdata-intensve

amlicaions ard filesystemshave arelatively limited number of layersor objects

Inherent processng ratio: h;

Estimating CPU consumgion for a mobile objecton a given node is more problemafc than esti-
mating memory corsumption or the bytes moved between objects. Not only do object managers
hide the implemertation of objects, they cannd be askedfor assstancein estimding CPU time
conumedby each object. Estimates of the memoryconsumedby an object’s implementaion is
relatively eay to provide by an object marage. This is nat the casefor CPU consumption. The
objed marager caninset timestanpswhenever procesing stats on behalf of a given objectand
wherever it finishes. But thisis not sufficient since the execution of somestaements cancau the
whole processto block, which resultsin inflated edimates.

The opemating system maintains CPU consumption information on behalf of operating system
units of execution sud asprocesses or threads. SuchOS-level ertities may contan manyobject
manage's, each with seseral mohile objeds. ABAcuUs esimatestheinstructions per byte asfollows.
Recdl tha Asacus monitors the numberof bytes moved between objects by ingeding the argu-
ment on procedure cal and return from a mobile object. The numbe of bytes transferred between
two objecsisthenrecorded in atimeddataflow graph. Giventhe numbe of bytes procesedby an
objed, computing the instructions/byte amountsto monitoring the numbe of instructions execued
by the objectduring the obsevation window. Giventhe procesing rate on a node,this amourtsto
measiring the time spert compuing within an object. Because an OS scheduler allocatesthe CPU
to the different execution ertitiestrarsparently, acaraely accounting for the time spent executing
within an object requiresthe operating sygemto notify ABacus when schedding dedsions are
made

In the prototype implemertation, ABACUS is implemenied on a Pentium cluster running the

176 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Linux operding systan. In this ervironmen, ABACUS uses a combination of the Linux interval
timers and the Pertium cycle courter to keep track of the time spent processing within a mobile
object with alimitedlevel of opemating system support (albeit at the costof someinaccuragy in the
measiremensg). ABACUS uses two mechanismsto measue this time, interval timersand the Pen
tium cycle counter. Linux providesthree interval timers for eachthread Thel TI MER_.REAL timer
decremens in red time, | TI MER.VI RT decremens$ whenever the thread is active in use-mode,
ard | TI MER_.PROF decrements wherever the threal is active in user or system-moa. ABACUS
usesthe | TI MER.VI RT ard | TI MER_PROF timers to keeptrack of the time spentcompuing in
user/systan mock ard then chargethattime to the currently exeauting objectof athread.

The only complication is tha interval timers have a 10 ms resdution and many metod invo-
caionscomgetein ashorterperiod of time. To measire shortintervalsacaraely, ABACUS usesthe
Pentum cycle counterwhichisreadby invokingther dt sc instruction (usingtheasn(" r dt sc")
diredive within a C/C++ program). Using the cycle counter to time intervalsis accurateaslong as
no context switchhasoccurredwithin themeasuedinterval. Hene, ABACUS usesthecycle counter
to measure intervals of compuiation during which no context switchesoccur, otherwise, ABACUS
relies on thelessaccurateinterval timers. We deted thata context switch hasoccured by seeing if
the timereportedby | TI MER_.PROF/I TI MER_REAL andthe cycle cycle cowunter for the candidate
interval differ significantly.

While this schemerequres less operaing systam sugport and compexity, it is less accurate
then one in which the operding sysem scheduler notifies the ABACUS run-time systemwheneser

it makesa procesa scteduling decision.

Stall time

Measuring stall time at currert node. To edimate the amourt of time a threadsperds stdled in
an object, one needs more informaion than is currently provided by the POSIX system timers.
We extend thegetitiner/setitimer system calls to support a new type of timer, which is
denotedby | TI MER.BLOCKI NG. This timer decrements whenever a thread is blocked and is im-
plemened as follows. When the kemel updates the sygem, uset ard red timers for the acive
threal, it also updates the blocking timers of any threadsin the quaue thataremarked asblocked
(TASK_I NTERRUPTI BLE or TASK_UNI NTERRUPTI BLE).

Estimating new stdl time at new node. When an object has multiple threads, it can poten

tially overlap outstanding mesages with each other or with computation. Thus the network time

5.4 AUTOMATIC PLACEMENT 177

spent by mesages over the network does nat trarslate into “stall time”. To accourt for pardlelism,
ABAcuUs must differentiate among two typesof inte-module comnunicaion, syrchronous ard
asynchronous Synchronous calls block the application urtil they comgdete. Asynchronous calls
do not block the application, generally performing some form of backgrourd tas like prefetcing,
write-back or cdl-back.

ABACUS resource managers mustignore “asynchronous communicaion” becaiseit does nat
add to stdl time and therefore should not be accaunted for in calculating egimated bendit. Asyn-
chronous communication can be explicitly declared by an object as such. Othewise, it can in-
ferred whenever possble; any invocation that starts or completes (returns to the object) whenno
synchronous application request arein progress is conddered asynchronous The effects of ag/n-
chronous mesaesare indiredly accountedfor, however, becaus network bardwidthsand proces
sa speeds areobserved,not predicted.

Syndironauscommuncaions can also ocaur in pardlel with one andher ratherthanserially. In
this case although the numbe of bytesmoved by a pair of objectsis the same,the stdl time would
belower for the object making parallel tranders. In pracice, anobjectperforming setial mesagng
would bendit more from avoiding the network becatseit is blocking on the network more often.
Fortunatkly, thereource marager has informaton in its data flow graphabout the timings of when
communications wereperformed so it knows wha groupsof messigesare sert “simultareausly.”
The resouce managers coalescemesayesleaving an objectwithin a short window of timeinto a
single “round of messaging.” The “stdl time” canthenbe estmated from the numbe of roundsand
the meaaured bandwidth of the network links used.

Procesa load and available network bandwidth

ABAcUS measuestheloadon a givennode, definedasthe average numbe of threads in theready
quele over the obsevation window, H. This value is required to estmatethe procesing time for
anobject after migration to a new nodegiven the object’s instruction per byte and number of bytes
processed. Linux reports load averages for 1 min., 5 min., and15min. viathe/ pr oc/ | oadavg
pseuwdo-ile. Linux wasaugmented with an ABAcuUS spedfic load average which decaysover the
past H seondsandrepat this value asafourth valuein/ pr oc/ | oadavg.

ABACUS resairce managers monitor bandwidth availability on the nework periodically by
“pulling” a spedfied numbe of bytesfrom remde storage serversthatareactively being accessel,

deiving the fixed and per-byte cost of communication over a given link. Thesestorage savers

178 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

represen potertial candidateswhere mohile objects canmigrae to.

5.5 A mobilefilesysem

To help validatethat the utility of the ABAcCuUS programmirg modd and to demorstratethe effec-
tivenessof the ABACUS run-time, a protatypedistributed filesystem, ABACUSFS, was designed and
implemeriedonit. This secion presents anoverview of this mobile filesystem built on ABACUS.
Thenext sedion presats anevaluaion of theability of ABACUSFSto adag. It alsoincludesamore

detailed de<cription of the spexific filesystemcompmentsbeing evaluated.

5,51 Overview

Stadkabe and object-basd filesystams, sud as Spring ard Hurricane already demorstrate that
spedalizing filesystam functionson a perfile basisare possble, and canbeimplemented elegantly
with an object-like modd [Khalidi and Nelson 1993]. The following sedion desciibes in more
detail how a distributed filesystem wasdeveloped on ABACUS. The ABACUSFS filesystem serves
two purposes First, it is aseaiouscomplex application that tess the proposed programmirg mocel
and run-time system. Indeed, whendeveloping the filesystem, several shortcomingsin ABAcus had
to be fixed Second, thefilesystemis a prime exampk of a distributed applicaion that can benefit
from the adagive placement of its functions, in particular, the cache diredory maragementand
RAID functions. The ABACUSFS isdesciibed in detal, sinceit will be usel to drive the evaluation.

TheABAcCUSFS filesystean canbe accessal in two ways. First, apdications thatinclude mobile
objects candiredly append perfile mohile object graphs onto their apgdication object graphs for
eahfileopered Therun-time systemwill corvert method invocaions from application objects to
filesystemobjectinto local or remade RPC calls, asappropriate.

Secad, the ABACUSFS filesystem can be mourted as a standard filesystem, via VFS-layer
redirecion to auserlevel processimplementing theextended (ABACUSFS) filesystem. Unmodfied
amlications udng the stendard system calls canthus interact with the ABACUSFS filesystam via
standard POSX system calls. The filesystan processs VFS interaction code will interface with
per-file/diredory objectgraphs via a console object (in thefirst apgoach, the operating systam is
bypasseal.) Although it does not allow legagy apgication objecsto be migraed, this secand mech
anism does allow legag/ applications to berefit from the filesystem objects adgptively migraing
beneath them. Figure 5.9 represerts a sketch of the ABACUSFS prototype distributed filesystam.

5.5 AMOBILE FILESYSTEM 179

Client A

Console Client B Application interface

Console VFSlayer interface
FileSys
. Directory block
Cache FileSys Directory) cachingand updates
RAID Directory Cache File caching

RAID RAID (parity computation,
Networ k reconstruction)
Timestamp checks (on directory
updates)
Write-ahead logging
(atomicity for multi-block
writes)

Persistent storage
@Server C

(flat fileinterface)
(a) Typical object placement (b) Example filesystem objects

Figure 5.9: The prototype filesystem ABACUSFS and how it is decomposed into migratable component objects.
The figure shows only the filesystem and no user applications. The console object for the filesystem represents
the code that is a part of the operating system and that interfaces system calls to the VFS layer. This code is
not an object and is not a mobile object; it currently always executes on the node on which the parent operating
system executes. The FileSys object implements VFS layer functions to interface to the operating system as
well as functions allowing applications to link in the ABAcus filesystem directly into user-space. When an
application is written explicitly for ABACUS, it can bypass the the operating system and directly access the
FileSys object, which provides a system-call like interface for file access that can be directly invoked by the
application. In this case, the FileSys object is a mobile object.

The filesystem is decomposed into componert objects Some object are staic and are aways
bound to the starage servers. These include the NASD objects, theisolation and atomicity objecs
and the cache coherenceobjects The other objects, RAID, caching, and direciory maragenentare
migrateble and canbe locakedat arny hode in the network.

Per-file object stacks

The ABAcCUSFS filesystem providescoherert file anddirectory abstradionsatop aflat object space
exported by basestorage savers. The filesydem function is decommseal into different objects
performing different senvices such as: caching, RAID, cate coherernce,and NASD basc staage.
Often, the samefile is assaiatad with more than one service or function. For instance afile may

becathedle, striped and reliable. Filesystems canbe compsal by constucting objectsfrom other

180 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

objects, adding layersof sevice, asdemongrated by the stackable [Heidemann and Popek, 1994
and composable filesystems [Krieger andStumm, 1997] work, ard by the Spring object-oriented
operating system [Khalidi andNelson, 1993]. At eachlayer, a new object is congructed from one
or more object from lower layas. For exampe, the corstructor of a caceale object requres
a backing object to read from and write backto. The backing object can be a NASD objedt, a
mirrored object or evenandher cachealle object An object may have referances to more than one
object from alower layer. For example to constuct a mirrored object, two bas objects are used.

In order to enale filesto have different performance ard reliahility attributes, the prototype
filesystem enaldes eachfile to be assaiated with a potentially different steck of laye's of savice.
Thisflexibility is uselul becaus the creatars of specific files and direcioriesmay mardate different
reliability and performane requiremerts: infrequently writtenand frequenty writtenfiles,impor
tantandtemporaryfiles mayrequire differen striping andreliability guaranteegWilkes etal., 1996).
For example, using RAID storage makes writesmore expersive. It is usually a good tradeoff to
use nonredundant storage for temporary files used by compilersand other utilities beause per
formarce is moreimportant thanreliability. This section discusses object stacing, deferring the
discusson of the details of eachobject to the following sections

Eachfile or directory in ABAcCUS is as®dated with an inode which contains thefile or direc-
tory’s metalaa. Thes inodesareinitializedwhenthefile is created and are used to refer to the file
by the objects tha make up the filesysten. When afile or diredory is created, it is as®ciated with
a steck of types This steck represents atemplde, which is usel to instartiate the requisite objects
whenthefile is acessed When afile iscreded the condructors for the objects areinvokedto allo-
caeard initialize thestorage andmetadataneecdedto createthefile. Pregsdy, thecondructor of the
topmosg typeis invokedpassing it the templde. This congructor invokeslower-level constuctors
to allocateobjects thatare lower in the stack For example, a defadut file is assaiated with a stadk
congsting of a cacdhe,a RAID, anda NASD layer. The cache object kegps anindex of a particu-
lar objects blocks in the shared cache. The RAID level 5 object stripes and maintains parity for
individual filesaaoss set of storage servers The constructor of a cacheobject expect a badking
object. It creaesa backing objectof the type specified in the layer below it in the stack desciiptor.
In this case, a RAID level 5 abjectis creatad, which in turn creaespossibly severd NASD objects.

Onee afile is creatd, it canbe be accessal by opering it and issuing readand write cals.

When afile is opered an object of the type of the topmostlaye is instantated?. As part of this

2Instantiaton refersto the creatin of arun-time C++ objectof the propertype. Creation asuse in the previouspara-
graph, however, refersto the actiors takenwhenafile is created, and which oftenrequire theallocationand initialization

5.5 AMOBILE FILESYSTEM 181

instantiation, a reference to theinode for the file is pasedasan argumen. The file’s inode stores
persistent metadada on behalf of each layer of the stack which desaibesinformation required to
initialize the objecs in afile’s stack. For example, if afile is bound to a RAID layer, the RAID
level 5 object needs to know how thefile is striped,i.e. wha base NASD objectsit is mapedorto,
or whether storage must be allocaedfor the new file. This information is mairtainedin the inode,
which contans metalat on behalf of eachlayer. The RAID level 5 object inspects the inode’s
section for the RAID layer to detemine theidertity of the lowerlevel NASD objects that the file
is mappedonto. This information is writteninto the inode by the RAID level 5 object congructor
whenit allocates starage for thefile during file credion.

Accessto afile always starts at thetopdevel laya. A file is uswally as®dated with one object
of the top layer's type. That top-level objecthold referencesto other objects, and propagdesthe
acesdown after performing someprocessing. For exampe, afileis usudly assaiated with acache
objed, which may hold a reference to a backing RAID object, which in turn may hold referernces
to multiple base NASD objects. During an open, the topdevel object is instartiated and in turmn

instantiates all thelower level objects in the object graph

5.52 NASD object sewice

The dedgn of the protatype filesydgemmug accommodate the underlying NASD architecure In a
NASD cluste, storageseversexport aflat-file like interface,asshownin Table 3.1. A NASD object
manaer on each storagesever manaes the perdstert NASD objectspac. It providesreadwrite
aesesto arbitrary rarges within aNASD object. In particular, it implemerts thefollowing meth
ods: Creat e(bj (), Renovehj (), Witehj (), and ReadObj () . Further, ech marage
that is always reddent on a storage device can access a per-manager well-known object via the
Cet Vel | KnownObj () method. Objectmarages use the well-known object to store a reference
to root objects, write-ahedlogs or other objects that are nealed at startup.

Thedetails of theimportant partof theNASD interface areshowvn in Tabe 3.1. The talde shows
the input parametes, reaults parameers and return values for ead method. Nasdl d is the type of

the identifiersthat are assogatedwith a persigernt NASD objed.

of persistenstatebacking therun-timeobjed.

182 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT
5.6 Evaluation of filesystemadaptation

The experiments of this chaper show that performarce deperds on the appropriate placemern of
function. They include sereral berchmaks where ABAcuUSs discovers the best placemen automat-
ically at runtime evenin cases where it is hard or impossible to articipate at desgn-time. This
includes scenaios in which the bestlocaion for a function is based on hardware charaderistics,
amlication run-time parmametes, application data acces pdterns, and inter-apgication contertion
over shared data. This also indudes senaios tha stress adaptation under dynamic conditions:
phasesof apdication behavior and contertion by multiple applications

This section containsan evaluation of the berefitsof filesystemadaptation over ABACUS, while
Secton 5.8 reports on furtherevaluation of the dynamic behavior of the ABACUS run-time system.
The evaluaion approach considers several filesystan objects, and shows through synthetic work-
loads that the best object placement (client or sever) varies with workload and systan parametes.
In eat case the performarce of the workload under a fixed allocdion of function is compared
to performarce under ABACUS. The experiments show whether ABACUS can discover the best

placanentwhen the objedt stats on the wrong node and the overheadit induces.

5.61 Evaluation ernvironment

Theevaluation ervironmentusedcorsigs of eight clientsand four starageservers All twelvenodes
are stardard PCsrunning RedHat Linux 5.2and are equippedwith 300 MHz Pertium Il procesas
ard 128 MB of mainmemay. Each staage sewver contans a single Maxtor 84320D4 IDE disk
drive (4 GB, 10 ms average seek 5200 RPM, up to 14 MB/s medatrarsfer rate). Thereis no
heterogenaty in the hardware resouces aaoss the starage severs or clients. Such heteogereity
will be simuated by creating a baseworkload tha consune resources at certain nodes.

The nework, on the other hard, is heterogerecus Particularly, the evaluaion usedtwo net-
works,a 100 Mb/s Etherret, which is referred to as the SAN (storageareanetwork) and a shared
10 Mb/s segmen, which is referredto asthe LAN (local-areanetwork). All four storage serversare
diredly connededto the SAN, whereas four of the eight clients are connected to the SAN (cdled
SAN clients), and the other four clients resde onthe LAN (the LAN clients). The LAN isbridged
to the SAN via a 10 Mb/s link. Figure 5.10 graphically skethes of the evaluation ervironment.
While these networks are of low performanceby today s standads, their relative speedsaresimilar
to thoseseenin emeging high-performance SAN and LAN environments (Gb/s in the SAN ard
100 Mb/sin theLAN).

5.6 EVALUATION OF FILESYSTEM ADAPTATION 183

100Mb switched

Ethernﬁ/@ Storage servers
f (Pentium Il 300Mhz)

(Pentium 11 300Mhz2)

SAN Clients

10 Mb shared Ethernet

LAN clients

==
(Pentium Il 300Mhz)

Figure 5.10: Evaluation environment. The system consists of storage servers containing Pentium 11 300 Mhz
processors with 128 MB of RAM and a single Maxtor IDE disk drive. Each disk has a capacity of 4GB, an
average seek time of 10 ms and a sustained transfer rate of up to 14 MB/s. The clients have the same
processor and memory capacity. The network is heterogeneous. It consists of a switched 100 Mb/s Ethernet

bridged to a 10 Mb/s shared Ethernet segment.

5.6.2 Filecaching

Caching is an importart function of a distributedfilesystem. There aretwo kindsof caches,client
side and sewver-side cactes Client-side cachesusually yield dramatc reduction in storageacces
latercies because they avoid slow client networks, increa® the total amount of memory available
for cadhing relative to sewver-side caching only, ard reduce the load on the sewver by not needng
to forward the readto the sewer atall. A sever-side cacle can better capture reuse characteris-
tics aaoss clients, simgifies and avoids the cost of maintaining client cache condstengy, andalso
effectvely lowersdisk latendesespeialy with afast network.

The ABACUSFS protatypefilesystemcontains a caclte object that starts on the cliert by default,
and is movedto theserverif higher paformane mandatesthis migration. While client-side cacting
is usually effective, it cansametimescauseopposite performarce effects even with a slow network.
Consder an application that insets smal rerds into files stored on a starage saver. Thesein-
sats require a read of the much larger enclosing block from the saver (aninstallation read), the
insetions, andthen a write back of the endosing block Even when the original block is cached,
writing a small record in a block requres trandferring the enire conterts of the endosing block to
the server. Under such a workload, it is more advanageous to serd a de<ription of the update to
the sewer rather thanupdatethe block locally attheclient [O'Toole and Shrira, 1994].

Caching in ABACUSFS is providedby a cache object marager. The cache marage on a node

184 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

ClientA Client B

Cache

£

High reuse
workload
Client-server network

Figure 5.11: Function placement for objects in a file cache. Client A has a high reuse workload, such that

Cache

N\ Small-update

installations

N4

the amount of data moved between the application and the cache is higher than that moved between the
storage server and the cache. In this case, client caching is effective. In the case of client B, the workload
includes small update installations causing the cache to fetch a much larger block from the server, install the
small update, then write the larger block back to the server. Assuming no reuse, the amount of data moved
between the server and client B’'s cache is larger than that moved between its cache and the application (App

2), favoring server-side cache placement.

marages cache objects for all the files accessal on that node In addition to the ReadObj ()
ard Wi teCbj () methods, the cache providesmettods for cache coheernce In particular, the
BreakCal | back() methodisinvokedby aserverto natify the cadethatafile has beenupdated

ard the cached version is no longer valid.

CachePlacement: Adapting to data acces patterns

Client-side cachesin distributedfile and databasesystans often yield dramatt reduction in storage
acces latendes becausethey avoid slow client networks, increa® the total amount of memoy
available for cading, and reduce the load on the server. However, emalling client-side caching
can yield the opposite effectunder cettain acces patterns. This secion shows experimentdly that
ABACUS canappropriatdy migratethe perfile cathe object in regponseto dataaccesspaternsvia
geneaic moritoring without knowledge of objectsematrtics.

Experiment. Thefollowing expeiimen wascarried out to evaluate theimpada of adaptve cache
placanenton application performarceand to testthe ahili ty of ABAcus to discover the best place-
mert for the cade under different application acces patems. Using the evaluation environmert
desaibed ahove, the history window of ABAcCUS, H, wassd to one se@nd, and the threshold

bendit was setto 30%. In thefirst benchmark, table insat, the application inserts 1,500 128 byte

5.6 EVALUATION OF FILESYSTEM ADAPTATION 185

20.47,

N At client
Adaptive

20 B Atserve

Elapsed time (s)

Figure 5.12: This figure shows that client-side caching is essential for workloads exhibiting reuse (Scan), but
causes pathological performance when inserting small records (Insert). ABACUS automatically enables and
disables client caching in ABACUSFS by placing the cache object at the client or at the server.

recordsinto a192 KB file. An inseat writesa 128 byte record to arandom locaion in thefile. In the
secord benchmark table scan, the application readsthe 1,500 records bad, againin randbm order.
The cache, which uses a block size of 8 KB, is lamge enough for the working set of the application.
Before recording numbes, the experiment was run onceto warm the cacte.

Results As shown in Figure 5.12 fixing the locaton of the cacle at the sewer for the inset
benchmarkis 2.7X fader than at a client on the LAN, and1.5X fasta thanata client on the SAN.
ABAcuUs comeswithin 10%of the better for the LAN case and within 15%for the SAN case The
difference is due to the relative lengh of the experimens, causng the cacle to migraterelatively
late in the SAN cas (which runs for only a few multiples of the observation window). The table
sanbendmalk highlightstheberefit of client-side caching whentheapplicationworkloadexhibits
reuse In this case ABACUS leavesthe ABACUSFS cacheatthe client, cutiing exeaution time over

fixing the cacheat the serverby over 40X and 8X for the LAN and SAN teds respecively.

Cachecoherence

The cacle coherence object marager is respangble for ensuring data blocks of a lower layer's
stored object are cached coherertly in ead of the multiple client cactes. Files are magped onto
one or more underlying objects Whenfile daais cachedon aclient, daa from theseundelying
objecs s cached. A cachecoherenceobject is assaciated with eachunderlying object. The cache
cohererceobject is anchoredto the starage sever which hosts the underying object.

The cache coheernce object performs its function by intercepting ReadCbj () requess ard

186 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Client A Client B
App App
v 4
RAID

LAN (low-bandwidth network)

SAN (high-bandwidth network)

=0

Server C Server D

Figure 5.13: This figure illustrates how different ABAcuUSs clients may place function associated with the same
file in different locations. Clients A and B access the same file bound to a simple object stack. The file is
partitioned across devices C and D. The console object initiates requests that trickles down to an application

object (App), a RAID object, and finally a storage object.

instdling a callbad for the read block [Howardetal., 1988]. The object also interceptsW i t e-
bj () requeds and bregks any matching instlled callbadks. Cache coherene functions on a

storage server areimplemented by a cadhe coherenceobjectmaracer.

5.63 Striping and RAID

When the network consigs of switched high bardwidth links and files are comgetely stored on
a single storage server, the storage access bandwidth can be severely limited by the bandwidth
of the sever madiine. Striping data across multiple storage severs eliminaesthe single server
battlereck from the daa trander pah, enabling higher bandwidth to a single client, as well as
subdartially larger aggregae bandwidth to multi ple clierts. Several filesystems were proposedto
exploit the potenial of netwvork-striping. Exampksinclude Zelra[Hartman and Ouserhout, 1993],
Swift [Long etal., 1994], and the Cheops sysemof Chapter 3.

Large collecions of storege also commory emgdoy redundarcy codessuch RAID levels 1
through 5 trangparenty to applicaions, sothatsimple andcommonstarage saverfailures or outages
can be toleratedwithout invoking expensive higher-level failure and disaste recovery mectansms.

The prototype filesygemimplements striping and RAID acrossstarage sewvers through the RAID

5.6 EVALUATION OF FILESYSTEM ADAPTATION 187

class Figure 5.13 shavs atypical stack tha includesa RAID object. RAID objects canbe config-
uredto initially stat on the client or on the server. The chdce deperds on the network bandwidth
and the trustworthiness of the client. The RAID objectis layerad atop low level storage objeds.
Undelying starageobjectsareacaessble onthe starage serverswho may ad independently of each
other EachRAID object is invokedby theobjects higher in its steck to perform readsand writeson
behdf of theapplication.

RAID objecs performexactly four operdions, dividedinto acesstaks and maragementasls.
The accesstaks arereadsand writes(hostread andhaostwrite opaations as deseibedin Chaper 4).
These taks provide sematrtics esentially idertical to reading and writing a base starage object.
The manayement tasks arerecadruction and datamigration (recondruct and migrate operations
respectively). Ead high-level taskis mappedonto one or more low-level read and write requedsto
(contiguous) physical blocks on a single starage object (devread anddevwrite descibedin Chap-
ter 4). Depending on the striping and redundarcy padlicy, and whether a storage device has failed, a
haostread or hostwrite may maponto differentbase starage transacions (BSTSs).

Blocks within a RAID object are magped onto one or more physical storage objects. RAID
aces opetions(readandwrite) aswell as maragementoperdions(reconstruction and migration)
invoke one or more basc BSTs. Following the desgns of Chepter 3 and 4, the represeriation
of a RAID objed is desciibed by a stripe map which specifies how the objectis mapped, wha
redundancy schemeis used andwhat BSTs to use to read and write the object Stripe mays are
cachal by RAID object managers at a nock to allow direct acess storage from that node. The
RAID laye performsno caching of data or paiity blocks, learing the function of caching to the
other objects in the stack, such asthe cade object. RAID object maragersin ABACUSFS use
the timegamp ordering protocol descibed in Chapter 4 to ensure tha paity codes are updated
correctly andtha migraion ard recorstruction tasks are correctly synchronized with acesstasls.
Timestanp chedks atthestorageseavers are pefformed usingaRAID Isolation and Atomicity (RIA)
Obiject. Thisis implemerted as one objectmaragea oneeachstorageseaver. This managergroupsthe
implemertation of all local RIA objects on a givendevice andimplementsthe timesampordering

protocoal.

RAID Placement: Adapting to systemresurcedistribution

The proper placementof the RAID object largely depends on the performarce of the network con-

necting the client to the starage savers. Reall tha a RAID level 5 small write, asdescibedin

188 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

N Atclient !
Adaptive 7
= Atservel

a o)
=) =)
T T T

Elapsed time (s)

4.23
14.47
19.18

e

11.76

<
=
o

Write, Degraded read,
SAN SAN

Figure 5.14: This figure shows the results of the RAID benchmarks. Contention for the server's CPU resources
make client-based RAID more appropriate, except in the LAN case, where the network is the bottleneck.

Secton 2.3, invokesfour I/0s, two to pre+ea the old data and parity, and two to write the new daa
ard paity. Similarly, whena disk failure occurs, a block readrequres reading all the blocksin a
stripe and XORingthemtogether to recondruct failed data This canreault in subgartial network
traffic betveenthe RAID object ard the starage severs.

Two workloads were constructed to evaluate ABACUSFS RAID performarce with ABACUS
adapivity. Thefirst consigs of two clients writing two segparate4 MB files randamly. Two clierts
were usdl to attempt to seeif ABACUS malkes the propea trade-off between client-side execuion
of parity computations on the less loaded client proces®rs and betwea the network efficieng of
saverside parity compuation (which sastesmesagng). The stripesizeis 5 (4 data + paity) ard
the stripe unit is 32 KB. The second workload conssts of the two clients realing the files bad in
degradedmode (with one disk matkedfailed).

Results. As shown in Figure 5.14, executing the RAID object at the server improves RAID
smal write performarcein the LAN ca® by afactor of 2.6X over exeauting the object at the host.
Theperformarceof theexpeariment whenABAcus adatively placestheobject is within 10% of the
fastest. Conversdy, in the SAN cas, executing the RAID objectlocdly atthe cliert is 1.3X faster
becausethe clientis lessloadal andable to perform the RAID functionality more quickly. Here,
ABAcCUS comeswithin 1% of this faded value The advantage of clientbased RAID is slightly
more pronounced in the more CPU-intensve degraded read case in which the optimal locdion is
almost twice asfast as at the sever. Here, ABACUS comeswithin 30% of the better. In every

instance, ABACUS auomaically selectsthebed location for the RAID object.

5.6 EVALUATION OF FILESYSTEM ADAPTATION 189

LAN | SAN
Atclient || 65.47 | 4.60
Adapive || 4.33 | 3.33
Atsever || 3.02| 2.83

Table 5.2: Migrating bulk data movement. This table shows the time in seconds taken to copy a 16 MB file from
one storage server to another on both our LAN and SAN configurations. The table shows the copy function

statically placed at the client, adaptively located by ABacus, and statically placed at the storage node.

RAID: Copy BST placement

Experiment. Onetypica operdion in mamging large storagesystemsis datarecnfiguration, that
is, migrating dat blocks betwee devices to re-balance loador to effectively use the cepecity of
newly addeal devices. This canbedone by a UNIX userwithrdi st, rcp, ort ar if the system
doesnat provide automatic support for loadre-baancing. Copyapgications are ideal candidatesfor
migration from client to storagenodes, becausethey often overwhelm the client’s cacheand move
a lot more datathan necessay aaoss the ngwork. A migrateble version of the copy ta¥k, cdled
abacus_copy, wasimplemenedon ABACUSFS.

Results Table 5.2 showsthetime takento copy a 16 MB file from one starage node to ancther
usng abacus_copy. Running the copy object at the storage node is most bendicial when the
client is connected to the low-speedLAN. In this case, ABACUS migratesthe object to the storage
nodes andachieves within 43% of the optimal case in which the copy object begins at the storage
node. This optimal case is over 20X beter than the cag in which the objectexeautes at the client.
When thecopytak is started ona SAN client ABAcCUS doesnot initiate migration. Theexperiment
on this fast network runs so quickly that the cost of migration would be comparaively high. Nat-
urally, whenmoving enough more data, ABacus will also perform the migration evenin the SAN
configuration. Further, evenmore bendfit is obsewvedfrom migrating the copy whenthe souce ard

destinaion staragesnodesare the same(i.e., only one storage node is involved)

5.64 Directory managemet

The diredory object manager is multi-threaded and supports replicaion of diredory daa aaoss
multiple hosts Thedireciory module implemens a hierachical namespace as tha implementedby

UNIX filesystans. It enables direcbriesto be redicatal at severd nodes providing trusied hosts

190 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

with the ahility to locally cate ard parse direcory blocks It also syppats scdable diredory
maragament by using an optimistic concurrercy control protocol basd on timegamp ordering,
using timestamps derived from loosely synchronized reattime clocks guided by the algorithmsof
Chager 4.

Dir ectory concurrencycontrol

Races can occur betwean clients concurrertly operding on shared directories. As an example,
condder a directory update operation such asMkDi r () , which proceeals by scaming the parent
diredory for the nameto make sureit is nat already there, then updating one of thedirectory blocks
to inseat the new nameard the as®dated metada@ (inode number). Since blocks are cathed at
eah host, two haoststrying to insat two directoriesin the sameparent direciory can both scanthe
locally direciory cached block, pick the same free slot to insert the new directory and write the
parert diredory back to starage, reaulting only one diredory beng inserted.

Since direcries can be patertially cached and concurently acessedby multiple hoss, they
are bound to the following stadk: directory (implemening diredory parsng and updéae operations
siwchasCreat eFi | e(), RenoveFi | e(), etc), and a diredory isolation and atomicity object
(DIA) object. This discusson will descibe diredory objectsthat are not bound to a RAID object
(are not mirrored or parity protected). TheDIA object ernsuresthatconcurent directory operations
areisdatedfromone arother. It usesawrite-aheadlogto ensure consstency in the evert of failures
during operaions. The DIA object also maintans callbads sotha all cacdeddirectory blocks are
coheent. The cacle cohererce objectusedfor datafilesis not usedin this casebe@usecombining
timestamp checking with coherenceallows several peiformance optimizationswithout complicating
the reasaning about corredness

Thedirectory objectmanager provides POSIX-like directory cdls, using the shared cache dis-
cused above ard the underlying object calls. The DIA object marmage providessuppart for both
cache coherence and optimistic conaurrercy cortrol. The former is provided by interposng on
ReadOhj () andW it eCbj () cals,installing cal-backs on cachedblocksduring ReadObj ()
cdls, andbreaking relevant call-backs duringW i t eCbj () calls. Thelatte is providedby times-
tamping cacle blocks[Berngein andGoodman, 1980] and exporting aspecial Comi t Acti on()
metlod that cheds specified readSetsand writeSets. The readset (writeSet) corsids of the list of
blocks read (written) by theclient.

To illustrate how the direcbry manager interads with the DIA objedt manayer, let's take a

Client A

Client B

Console

(Con)
Directory Director 4 A

Console

.

5.6, EVALUATION OF FILESYSTEM ADAPTATION

Client A

Client B

(Console)

Console

Network (SAN or L&

191

. Serialization
Directory at server under
high contention
Cj/w iRy Cj/w
Logging
Server C Server C

Figure 5.15: Directory management in ABACUSFS. The directory object receives requests to operate on di-
rectories, for example to insert a name in a directory, or to list directory contents. While performing directory
management at the client is more scalable in general under low contention (left), it can lead to degraded per-
formance in the case of high contention. Under high contention, the distributed concurrency control and cache
coherence traffic among clients can induce enough overhead that a centralized server-side implementation
becomes favorable (right).

simple concrete exampk of a directory operation: anMDi r () . Whenthe operdion starts at the
diredory manayer, a new timestanp opt s is aqquired and an action is initialized. An action is
a daa structure which includesa readSet, a writeSet anda timesamp. The realSet(resgedively
writeSet) contain alist of namesof the blocks read (written) by the action ard their timestamps. As
the blocks of theparentdireciry are scamedfor the nameto be inseted their idenifiers ard their
timestamps are appendedto the readSet Assumirg thenamedoes not already exists, it is insertedin
afree dot. Theblock wherethe nameis insertedis addedto the writeSet. As scon asthe operaion
is readyto comgetelocdly, aCommi t Acti on() requestis sent down the stadk, with theadion
and thenew block contentsas argumerts. During thecommit, theblockis lockedlocaly soit is nat
acesed Thelock is releasedoncethe operation completes.

The DIA object manager perfarms timegamp cheds aganst recenly committed updatesin a
manrer very similar to the algorithmsof Chapter 4. Precisely, the checks edallish that the blocks

in the readSetre the mostrecert versons, andtha opt s excealsthert s andwt s for the blocks

3A blockis representedn areadsetor write setby the parentstorage objectit belongsto andits offsetinto that objed.

192 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

in the read and write sets Note that because clocks are loosdy synchronized a block’'s wt s and
r t s neal to be maintainedonly for ashat time window (T), after which they canbe discaded ard
logically replaced with the current time minus T. This may resut in rejecting same operations that
would otherwise be acceped but it will not resut in incorrect operation. If the checks succeeed the
new block contentsare committedto thelog andcallbadks arebrokento nodes caching thatblocks.
Othewise, argection is returnedto thehod, who refrestesits cacde andretries the insat fromthe

beginning.

Dir ectory placement. Adapting to contertion

The function placemer problem involves a fundamenal choice beween the scdabili ty of client-
side execution where CPU and memoy reources are more abundant and the potential network-
efficieng of server-side execttion. In paticular, it involvesa choice betweenregicating function
aaoss clients (which comesat the cost of higher synchronization overhead but which allows client
resoucesto be exploited) and certralizing it on afew nodes. The placemern of directay marage-
mert function exemplifiesthis trade-off and demastatestha transpaern monitoring can effectively
makethe proper trade-off in each cas.

Filesydemfunctiondity suchascaching or pahnamelookup, for example, is oftendistributed
to improve scdahbility [Howardetal., 1988, as arefunctionsof other large applications Synchro-
nizaion among parallel clientsis anoverheal which varies dependng on theamount of inter-client
contenion overshaeddata. Corsidertheexamge of afile cacte whichisdistributed acoss clients.
Filesarestoredon thesewerard cachedon cliens. Furthemmore, assumethat filesare kept cohaert
by the sever. Whena client readsa file, the serverreards the name of thefile and the client that
readit, promidng the client to notify it whenthe file is written Whenanother clientwritesafile,
the write is immediately propagatal to thesaver, which natifies the clientsthat have the file cached
that their verson is now stde (via a“calback”) The clients thenaccessthe saver to fetch the new
copy. Thisis how coherenceis achievedin AFS[Howard etal., 1988] for examge.

Now condder the casewhereclients are accesshg indeperdent files,ead write is propagated
to the sever anddoesnat generateary “callbads” becawsethe file being writtenis cached only
at the client thatis writing it. In this case excep for theinitial invalidation messige, thereis no
further coherernceinduced communication from the sewerto the clients Thus, placing the cache at
the client does nat induce ary more synchronizaion overhead than if it was placed atthe saver.

Ontheother hand considerthe casewhere theclients are all adively aaccessing, readng and/or

5.6 EVALUATION OF FILESYSTEM ADAPTATION 193

writing, thesame file. In this case, each write by a clientresultsin “callbacks” to the active clierts,
who in turn contect the serverto fetch the recertly written version of the block. Som after that,
the sameclientor another client writesthe block agan, causng a cdlbadk to be propagatal by the
saverto therestof the clients. The clientsthenre-fetch thenew copy of theblock thatwas updated.
Unde suchaworkload, placingthe cache atthe client calsesexcessive synchronization overheadin
the form of coherencetraffic (cdlbadks) and datare-fetching. To sum up, the placemer of function
under cettain workloads can have a dramaic impact on the amount of synchronization overheal,
and conequertly theamount of network messigng. The effect of this overhead must be weighed
aganst the berefit of wider scalereplication (pardlelization) of function.

Experiment. To validate this hypothess, a few experimerts were conducted. A workloadtha
peforms directory insets in a shared namespce was chosenasthe contention berchmark. This
benchmarkis more comgicated than in the distributed file cading cas ard therefore more chat
lengingto ABAcUS. Directoriesin ABACUS presert ahierarchical namespacelike all UNIX filesys
temsandareimplemenédusing theobject grgohshown in Figure 5.15. Whencliens accessdisjoint
pats of the direciory namespace(i.e., there are no concurrert conflicting aaccesses), the optimistic
schemein which concurency control checks are performed after the fact by the isolation (DIA)
object works well. Eachdirecry object at a client maintans a cache of the directories accesal
frequently by that client, making directory reads fast Moreover, directory updatesare chegp be
causeno metadda pre-readsare requred, andno lock mesagng is perforomed Further, offloadng
from theseverthebulk of thework resultsin better scalability and frees storagedevicesto execute
demanding workloads from compding clierts. When cortention is high, however, the number of
retries and cache invalidations seenby the directory object increases, patentially cawsing severd
round-trip latencies per operation. When contertion increases, the directory object should migrate
to the storage device. This would seialize client updatesthrough one object, thereby eliminaing
retries.

Two benchmarks were condructed to evaluate how ABACUS respands to different levels of
diredory contenfon. The first is a high contertion workload where four clients insat 200 files
eachin a shareddirectory. Thesecord is alow contention workload where four clients insat 200
fileseachin private(unique) directories.

Results As shown in Figure5.16, ABACUS cuts exeaution time for the high contention work-
load by migrating the directory object to the server In the LAN case ABACUS comeswithin 10%

of the best, which is 8X better thanlocaing the directory object atthehost. ABACUS comes within

1% CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

144.74

40 N Atclient| |

Adaptive| |
= Atserve

w
=]

Elapsed time (s)
S
11.58
11.80

S
8.27

™
Te}
©
—

LAN

Figure 5.16: This figure shows the time to execute our directory insert benchmark under different levels of

directory contention. ABACUS migrates the directory object in all but the fourth case.

LAN | SAN
At client 125 86
Adapive 7 27
At saver 0 0

Table 5.3: This table shows the number of retries (averaged over 5 runs) incurred by the optimistic concurrency
control scheme when inserting entries into a highly contended directory. Results are shown for the case where
the directory object is statically placed at the client, adaptively located by ABACUS, and statically placed at the
storage server.

25% of the bestfor the high contertion, SAN case(which is 2.5X belter thanthe worst ca®).
Notetheretry resuts summarizedin Talde 5.3. There arelower retiesunder ABAcuUs for the high
contenfon, LAN cas than for the high contertion, SAN configuration. In bath cases, ABACUS
obsavedrelaively high traffic between the direciory object and storage ABACUS edimates that
moving it closerto the isdation object would makeretries cheager (locd to the starage server).
It adapts morequickly in the LAN cas becalsethe esimated berefit is greata. ABACUS hadto
obsave far more retries and revalidation traffic on the SAN cas before deciding to migrate the
object.

Underlow contertion, ABAcCUS makedlifferert decisionsin theLAN and SAN cases, migrating
the directory object to the server in theformer and not migrating it in the latter. For these tests he
benchmark was stated from a cold cache, cawsing many installation reads. Herce in the low
contenion, LAN case ABACUS esimates that migrating the directory objectto the starage senr,

avoiding the nework, is worth it. However, in the SAN cas, the network is fag erough that the

5.7. SUPRORTING USER APPLICATIONS 195

200 T T T T

Migration times

150

Cumulative inserts __.-

100

Cumulative inserts/retries

50/~ Cun&ulative retries -

"""" N

5 10
Elapsed time (s)

Figure 5.17: This figure shows the cumulative inserts and retries of two clients operating on a highly contended
directory over the SAN. Client 1's curves are solid, while client 2's are dotted.

ABAcCUS cog-berefit modd edimatestheinstllation readnetwork cast to belimited. Indeed, the
results show that the stdic client and storagesever configurations for the SAN casediffer by less
than 30%, thethreshdd bendit for triggering migration.

Notethd clients neednat agreeto migrate the diredory objectsto the storagedevice atthe same
time. They candedde independertly, bagd on their migration berefit edimation. Corrednessis
ersued even if only someof the clients decide to move the objedt to the storage device becaise
all operations are velified to have occurred in timegamp order by the isolation objedt, which is
always presnton the starage severs. Figure 5.17 shows a time-line of two clients from the high
contention, SAN bernchmak. The graph shows the cumulative numbe of inseted filesand the
cumulative number of retries for two clierts. Oneclient experiencesa sharp increaein retriesand
its objectis movedto thesener first. The semnd hgppensto sufer from arelaively low, but steady
retry rate, which triggersits adaptation a little late. Thefirst client expeliencesa sharp increasein
the rate of progress soon after it migrates Thesecand experiences a subdartial, but lower, increag

in its rate of progressafter it migrates whichis expected asstorage senverloadincreags

5.7 Supporting user applications

While the ABAcus systemfocussedon adaptive function placemant in distributed filesygems the
approach thatit embalies can in fad berealily genealized to support adagive function placemen
for all stream-pocessng kinds of applications This secfon desaibessomeexample apgdications
that can benefit from adapive function placement over ABAcuUS. In particular, it desribesthecae

of adatafiltering application which wasportedto ABAcuUs. This sectionreports onits pefformance

19 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

and implementaion onthe ABAcuUS run-time. Thisdiscusgon clarifieshow function placemert can
be generalizedbeyond the ABAcus filesystem to userlevel applications, assuming the underlying

filesystemisitself mobile.

5.71 Example application scerarios

Thereis agrowing trendfor busines®sto acess a variety of servicesviathe weh Thereis atrerd
even to hosttradtionad dektop applicationson remok servers, at an“application savice provide™”
(ASP). This movesthe tasksof upgrade, maintenance andstarage management to the ASP, reducing
the coststo theclient. On the other hand streamirg of red-time multimedia content cusomizedto
the use’s interestsis becoming commonplace Sud applicationsbendit from adapive placemen
of their compmentsdueto thewide variahility in client-sever bandwidths on theinteme and dueto
the grea disparity in clientresources (PDAs to resaurceful workstations) andin server load Asin-
vegmertsin the Interret sinfragructure continue, bardwidth to the severimproves, and ASPsarnd
contentrich applicationsbecome increasngly attracive and widespread However, heteogereity

will remainamgor chalengefor application peformane manaement.

Distrib uted web applications

ASPscan provide morerobug performarce acoss workloadsandnetwork topologiesby partition-
ing function betweaen the client andthe saver dynamicdly at run-time. Suc a dynamic function
placanentcanstill mairtain the easeof maragemern of sener-side sdtware mainterance, while

opportunistically shipping function to the client whenpossble.

Customized multimedia reports

An increasing numbe of applicatons on the internet today compile multiple multimedia streams
of informaion, and custamize these streamsto the need of erd usess, thar langiage, intereds
ard background. Such applications aggregate contert from different sites, meige andfilter this
information together and ddiver it to the erd client The optimal placeto execue the differert
functions on the data set or stream depends on the kind of clientused e.g. a PDA or high-erd
workstation, the current load on the sewer, and on the peformane of the network betwveen the
client and the sewver. Dynamic partitioning of function baseal on blackbox montoring cansimplify
the configuration of such applications over wide area netwvorks and heterogeneous clientand server

pairs.

5.7. SUPRORTING USER APPLICATIONS 197

ClientA Client B

oo
Search

0.2MB 3

Q
=y

0.8 MB
e o e,
Search Ive filter Client-server network t r?iTtQEf
1MB 1MB
Storage Storage
- ~~
Server C Server C

(a (b) (0 (d)

Figure 5.18: The alternative placements of a filter object. Thicker arrows denote more larger data transfers. If
the filter is highly selective, returning a small portion of the data it reads, as in the case of client A, then it can
potentially benefit from executing at the server. This reduces the amount of data transferred over the network.
If the filter has low selectivity, as in the case of client B, passing through most of the data that it reads, then it
would not benefit much from server-side execution.

5.7.2 Casestudy: Filtering

Consder the example of a filtering application running on ABAacus. The aplicaion congsts of
a synthetic berchmark that simulatessearding. It filtersan input datasd, returning a pereentage
of the input data anddiscarding the red. This percentage can be specified to the program asan
agument The application program is composed of a console part (or a “main” program) tha
performsinitialization and input/out, and afilter object

Thefilter object aces®sthe filesystan to readthe input dataset In this simple exampk, the
filesystemis accesedvia remot procedure cdls to a “storage object” anchared to the sewver. For
simplicity, thefile accesed by thefilter wasnot bound to a realistic ABACUSFS stack (containing
caching and striping). This makesthe experimen simple and allows usto focus on the placemen
of thefilter object Datais not cached on the client side. Thefilter exports one important method,
namely Fi | t er Gbj ect (), which takestwo argumernts, the size of the block to filter. The per
centage of the datato filter out is spedfied to the filter when it is first instartiated The filter object
recordsits pogtionin theinput file. Whenit receivesaFi | t er Qbj ect invocaion, it procesesa
block of datafromits current postion, and returnsdatato the corsde in areault buffer.

The selectivity of afilter is defined astheratio of the datadiscaded to the totd amaunt of data

readfrom theinput file. Thus, afilter tha throws away 80% of the input datg and returnsa fifth of

198 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

80—

M73.07

%

N At client
Adaptive
= Atserve

o
o
T
|

Elapsed time (s)

s V2222772 3624

Loaded drive

Figure 5.19: The performance of the filter benchmark is shown in this figure. Executing the filter at the storage
server is advantageous in all but the third configuration, in which the filter is computationally expensive and

runs faster on the more resource-rich client.

it, hasa selectivity of 0.8. Filterswith high selectivity fit the intuition of being “highly sekcive”,
choosing only afew from alargesd. Precisely: selectivity = (1 — output/input). Applicaions
can exhibit dradically different behavior basedon runtime pammetes. This secion shows that
the sdectivity of the filter (which depends on the daa set and the patem being searched — a
programinput) deeminesthe appropriatelocationfor thefilterto run. For example, ther’'sadrastc
differene betweengr ep kernel Bi bl e.txt amdgrep kernel LinuxBible.txt.

Experiment. Asdatasetsin large-scale busnesg&scontinue to grow, an increasingly importart
userapplicationishigh-performarceseach, or datafiltering. Filtering is gererally ahighly sekcive
operation, corsuming a large amouwnt of data and producing a smalker fracion. A syntheic filter
object wascongructed that returns a configurabe percentage of the input data to the object above
it. Highly sdective filtersrepresen ided cardidate for execution close to the dat, so long as
compufation resaircesare available.

In this experiment, both thefilter’'s selectivity and CPU consumption were varied from low to
high. A filter labeledlow sekcivity outputs80% of the data thatit reads while afilter with high
sdectivity outputs only 20% of its input daa. A filter with low CPU corsumption doesthe mini-
mal amount of work to acheve this function, while a filter with high CPU consumpion simuates
traversing large data structures(e.g.,thefinite stae macdinesof atext seach program like gr ep).

Results. Thefiltering application starts exeauting with the corsde invoking the method Fi | -
t er hj ect (), exported by thefilter object. Asthe applicaion executes ddais transferredfrom

the storage object (the storageseaver) to the filter (the client node), and from the filter to the con

5.8 DYNAMIC EVALUATION OF ABACUS 199

IN
Q
<1
=1
T
|

30001—

Filter 1 move to client
—
20001~

Filter 1 moves
1000 to server

Cumulative # of blocks processed

] — Filter 1
Filter 2 moves toie;r\fler - Filter 2|

T R i R R
% 10 20 30 40 50 60 70
Elapsed time (s)

Figure 5.20: This figure plots the cumulative number of blocks searched by two filters versus elapsed time.
ABACUS's competition resolving algorithm successfully chooses the more selective Filter 2 over the Filter 1 for
execution at the storage server.

sde. The ABAcUS runtime system quickly accumuatesa histay of the amount of datamoved
betweenaobjects by recording the amouwnt of datamoved in and out of anobject These stdistics
are updated on procedure return from each object. Figure 5.18(a) and (c) illu strates the data flow
graphs condructed by ABACUS atrundimein the caseof two filters with different sekcivities
Figure 5.19shows theelapsedtimeto read andfilter a16 MB file in anumber of configurations.
In thefirst set of numbers ABAcus migraesthefilter from client to storageserver coming within
25% of thebestcas, whichis over5X betterthanfiltering atthe client. Similarly, ABACUS migrates
the filterin the secand set. While achieving better performancethan statically locating thefilter at
the client, ABAcUS reachesonly within 50% of the bed becawsethetime requiredfor ABACUS to
migratethe object is a bigger fradion of totd runtime. In thethird se, acompuationally expensve
filter was started. We simuate a loaded or slower starage sever by making the filter twice as
expersive to run on the storage saver. Here, thefilter executes1.8X fager ontheclient. ABACUS
correctly detectsthis ca® andkeegs thefilter ontheclient Findly, in the fourth setof numbers the

value of moving is toolow for ABAcus to deam it worthy of migration.

5.8 Dynamic evaluation of ABACUS

The previous secion demondrated the benefits of adgptive placenent andshowed through severd

microbenchmarks that ABAcus candiscover the best placenent automatically under relative static

200 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

workload and network corditions. This sedion evaluates the ahility of ABACUS to adap under

moredynamically varying conditions.

5.81 Adapting to competition over resources

Shaed storage saver resoucesarerarely dedcatedto seving oneworkload An additiond com-
plexity addressal by ABACUS is provisioning storageserver reourcesbetwee competing clients.
Toward reducing global application execuion time, ABACUS resdves competition among objects
that would exeaute morequickly atthesewer by favoring those objectstha would derive a greaer
bendit fromdoing so.

Experiment. In this experimert, two filter objects are started on two 32 MB files on our LAN.
The filters have different sekcivities, and hene derive differert bendits from executing at the
storage server. In ddail, Filter 1 produces60% of the data tha it consumes,while Filter 2, being
the more sdective filter, outputs only 30% of the daa it consunes. The storageserver's memogy
resourcesare redricted sothatit canonly suypport onefilter atatime.

Results. Figure 5.20 shows the cumulative progressof thefilters over their exeaution, andthe
migration dedsions madeby ABAcCUS. Thelessselective Filter 1 wasstated first. ABAcCuS shatly
migratal it to the storagesewner. Soon after, the more selective Filter 2 wasstarted Shotly after
the seond filter stated, ABACUS migratedthe highly selective Filter 2 to the server, kicking badk
the otherto its original node. The slopesof the curvesshow tha thefilter currently on the server
runsfagerthan whennat, but thatFilter 2 derivesmoreberefit sinceit ismoresekcive. Filtersare
migratad to the sever after anoticealle dday becaus in our current implementation, clientsdo not

periodicaly update the severwith reource statistics.

5.82 Adaptingto changesin the workload

Applications rarely exhibit the samebehavior or consume resaircesat the samerate throughou
their lifetimes Instead,anapgication may chargephases atanumbe of pointsduringits execuion
in respnseto input from a user or afile or as areault of algorithmic propeties. Such multiphasc
amlicationsmakea particularly compeling cas for the function relocaion tha ABACUS provides.

Experiment. Let’'s now revisit our file caching example but make it multiphast this time. This
cache bendhmak does an insert phase followed by a scanning phas, then aninserting phas, ard
finally anotherscanphase. Thegoalisto deeminewheher the berefit estimatesat the server will

ejectanapplicaion that changed its behavior after being movedto the sewver. Further, we wish to

5.8 DYNAMIC EVALUATION OF ABACUS 201

Inset | Scan | Inset | Scan | Total
Atclient || 2603 | 0.41| 28.33| 0.39 | 55.16
Adapive || 1169 | 7.22| 12.15| 3.46 | 34.52
At sewver 7.76 | 29.20| 7.74| 26.03 | 70.73
MIN 776 | 041| 7.74| 039 | 16.30

Table 5.4: This table shows the performance of a multiphasic application in the static placement cases and
under ABAcUS. The application goes through an insert phase, followed by a scan phase, back to an insert
phase, and concludes with a final scan phase. The table shows the completion time in seconds of each phase
when the application is fixed to the server for its entire lifetime (all phases), when it is fixed to the client, and
when it executes under ABACUS.

see whether ABACUS recovers from bad histary quickly enough to achieve adeptation that is useful
to an applicaion that exhibits multiple contrastng phases

Results Talde 5.4 shows that ABACUS migratesthe cache to the appropriate location basedon
the behavior of the apgication over time. First, ABACUS migrates the caceto the serverfor the
inset phase. Then ABACUS gjedts the cacle objectfrom the sever sewver whenthe serverdeects
thatthe cacheis being reusal by theclient Both static choiceslead to bad peformane with these
alterrmating phases. Corsequently, ABACUS outperformsboth static caes— by 1.6X compaedto
fixing function at the client, andby 2X compaied to fixing function at the server The“MIN” row
refers to the minimum exeaution time picked alterratively from the client and server cases Note
that ABACUS is approximately twice asslow asMIN, if it were achieved This is to be expected, as
this extremescenaiio changesphasesfairly rapidly. Figure 5.21 represeris a sketd of thetimeline
of thecaching apgication. The apdication charges phases at5, 10, and15 secands.

5.83 Systemoverhead

ABAcuUs inducesdired overhead on the systemin two ways. First, it alocakesspaceto store the
amlicaion andfilesystan object graphs and the assodated statistics. Seond, it consumesCPU
cyclesto crunc thesestdistics and dedde on the next best placanent.

In atypical openfile sesson, whenthefile is bound to three to five layers of mohile objeds,
ABAcCUS requires 20 KB to store the graph ard the stdistics for that open file sesson. A good
fraction of this overheal can probably be optimized awvay through a more cardul implementation.

Furthemmore, ABAcUS canlimit the amourt of spaceit consumes by carefully montoring only a

202 NCTION PLACEMENT

400 I
| |— Atclient| | _____
- - Adaptive
— At drive
300
9
]
S
o I
£ !
B 200 b
@
e
S i
S
(Al
100 |

‘ e——————
15 20

10
Elapsed time (s)

Figure 5.21: This figure plots the processing rate in number of records per second for three configurations. In
the first configuration, the cache is anchored to the client, in the second, it is anchored to the server, and in the
third it is allowed to migrate under ABACUS. Because progress is measured at discrete time intervals as the
cumulative number of records processed, this graph can not be used to infer the exact times at which ABAcuUs
performed a migration from one node to the other.

subset of the open file sessons, thosethat move a lot of data, for example. For the other sessions,
the systan can simply maintain summaryinformaton sud asthe totd amount of daa read from
the basestorageobjeds. This summaly information is neessry to discover open file sessons that
become data-intensive andpromote theminto a statewherethey are fully monitored.

The ABACUS run-time systemalso conaumesCPU cycleswhen the resairce marager analyzes
the collectedgraphsto find out if a better placanentexists In the albove experiments the ABACUS
resouce marager wasconfigured to wakeup once every 200 milli seonds ard insped the graphs.
Theamouwunt of overheadcan be configured by limiting thefrequengy of inspections. Theobsewvable
overheadwhile executing apgications in the above experimerts wasmastly within 10%. At worst,
it wasaslarge as 25% in the caseof short-lived programsfor which ABacus-relaedinitializaions

and statistics cdlectionswere nat amotizedover along enoughwindow of execution.

5.8 DYNAMIC EVALUATION OF ABACUS 203

Cost and benefit estimates for the synthetic filter
(cost, benefit, net benefit and threshold values vs. time)
2 — 77— ‘

[3—£1 Migration cost
(G—© Benefit estimate

15 /A Net benefit estimate

(seconds)

Cost/benefit estimate

Time (seconds)

Figure 5.22: Cost and benefit estimates versus time for the synthetic filter application.

5.84 Thresholdbeneft and history size

This section attempts to gain some indght into the dynamicsof the ABAcus cog-benrefit estima-
tions Conrsider the exampk of a highly sekcive filter applicaion procesing a 4 MB file, ard
returning 20% of the datait reads. The next expeiimert starts the filter at the clientand collecs
and logsthe cost andbendfit estmates compuedby ABACUS. ABACUS wasdiredednat to invoke
ary migrations although it continuedto comptte the requred estmates. The client-server 10 Mb
Ethernet network was meauredto ddiver an approximate end-to-end application readbandvidth
of 0.5 MB/s. Sincethefiltering application’s execution time wasdominated by severto client net
work trarsfers, filtering a 4 MB file on the client required approximately 8 secands. Performing
thefiltering on the sever would have requiredapproximately only 2 seonds (only 1 MB would be
tranderredto theclient). Thus,the berefit of server-sideexecution over clien-sideexecution for the
ertire duration of the apgication can beapproximatedas 6 seonds,or .75 seondsper eat seond
of execution.

Figure 5.22 shows the egimatesof costand benefit computed by the ABACUS run-time system
versustime as the application exeauted on the client. Notice that the berefit after an initial increa®
flattened at about 0.65 secords per seond of exeaution. ABACUS appoximated the berefit of
saversideexeautionto beareduction of execution time by .65 seondsoverthe observation history
window (of one second). This numbe correspndsto the value of AT,,,, computked by taking the

difference of Equations 5.4and 5.3. ABACUS obseaved thatthe output of thefilterwasonly 20% of

204 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

the size of thedatacurrenty being commuricated over the network. Using its egimatesof network
bandwidth, ABacus computed the berefit to be 2/3 of the history window. This berefit value is
relatively closeto thevalue expectedfrom theandysis of the previous paragaph, or 0.7.

Thefigure also plotsthe cost of migration overtime. The costof migration dependson the size
of the state that mustbe trangerred from the client to the server. As thefilter executed, its stae
increaseal and the cost accordingly increased. At same point (arcund ¢ = 3), the cost of migration
began to exceedthe berefit frommigration. Thisis becatseABACUS edimated thebendfit assiming
that the application will execute only for arnother H secands. Longer history windows would have
allowedfor the benefit to be higher, overcoming the onetime migration cod and reaulting in more
migrations. Longer history windows make the system slow to read to changesin the application,
however.

The figure also shows the net berefit from migration. The net bendit initially incressedand
then started decreasng as the cog of migration rose and the benefit remaned flat. Note also how
the threshold benefit values marked by the horizontal dastedlinesin the figure, are key to deciding
wheher or not a migration occus. In a setof migration expeliment, the threshold value was set
to: 0.1,0.3,0.5,0.7 and 0.9. With threshdd values of 0.5 and higher, no migrations ocaurred This
is explained by the plot of the netbenrefit esimatein the figure, which doesnat exceed 0.5, at any

time during execuion.

5.9 Discussion

This section discusses somespecific agpeds and limitations of the ABACUS prototype which were

nat already sufficiently addressel.

5.91 Programming model and run-time system

Themere existence of mechanismsto changethe placenentof components, and the development of
anapplication acwrding a givenprogrammingmodel doesnat always imply that rur-time mohility
will improve application performarce. The applicaion shauld still be designedwith the goal of
better performance through mohlity. Jus like theuse of amodular progranming language doesnot
imply a modular apgdication, the availability of maobility mechansmsdoesnat imply performane
gains. For instance, the rurn-time systan can be overwhdmed with huge object grapts if the pro-

grammerchoosesto makeevery bas type a migratable object. In this case the run-time sygem

5.9 DISCUSSION 205

mustmove large subgraphsto gererde any berefit and the overhead of the monitoring andplace
mentalgorithmscanbecmeexcessve. Tods that assig the programmersn properly decanposng
applicaions at the proper grarularity would be hdpful. For filesystems, the decompostion is rel-
atively straight-forward with eachlayer in a stackale filesystem being erncapsuatedin an object.
For usea applicatons, it is not aseasy.

Providing universalguidelinesfor thedesgn of applicationswhich canbendit fromthe adaptive
placament of their comporents is challenging. More work on this quegion is needed. However, it
is clear that developing atool that assstsprogrammers in understandng resource consumpfion ard
daa flow through ther programs can prove helpful in properly decomposing an apgication into
ABACUS objecs.

ABACUS sepaatesresource maragaenentfrom mornitoring andfrom method redrection mech
ansms. It is therefore relatively simge to implement a different resource manaement padlicy. The
ABAcCUS berefit edimates are basal on the artificial assumgion that the set of applications exe-
cuting during the obsevation window (of lengh H seonds) will execute exadly for another H
secornds. Equivalently, ABAcCUS assumes that history will reped itsef only for another H secords
longwindow. ABAcus discardshistay information beyond H secandsaga It alsodoes notattempt
to edimate the application remaning exeaution time from the size of the data set, for example The
algorithms used by ABACUS can beimproved by more accuratdy estimating the remahing appli-
cdion exeautiontime andby using old histary information rather thandiscardng it.

Thethreshold berefit test employed by ABACUS migration algorithms is importart becatseit
dampens oscilationsandhdps maskshort fluctuaionsin resairceavailabili ty. A low threshdd ben
efitwill makeABAcus chasesmallbenefitsthat may not mateialize. This canbe becaise ABACUS
adapted too quickly to a short perturbation in network performancefor instarce. In geneal, the
threshold bendit shaild be se such that it does not reactto meauremert or modding error. If the
threshold berefit exceedsthe tolerance allowed for measuement and modeling errors, migration

will mog oftenbe agood dedsion.

5.92 Sewrity

The ability of distributed applicationsto adaptively place their compments at the server opers the
potertial for secuity threds. Mechanismsto protect against these threats are necesar to make
applicaion andfilesystemrecafiguration possble. The threatsthatadaptive componert placemen

creaescan beorganiedinto four categories:

206

CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

e Applicationcompomising the server. Theapplicaion can malicioudy compromisethe server

by modifying its code, state or other resources thatthe applications shauld not access The
resaurcestha canbe aces®dby an applicaion are memory, filesystan, and the network.
The sakty of memay accesses can be controlled through Java, addessspaaes or interpre-
tation, for examge. Rightsin the filesystem canbe be enforced by ABACUSFS according to
its accesscontrol pdlicy, asthe severwould if the application was making requess fromits
homeclient. Accessto the network is made throughthe opemting sydem,and so in principle

doesnot poseary threasto thesewer (exceptfor derial of sewvicewhich is discussal below).

Servercompiomising the applicaion. The saver can also be malicious and compomise the
application, by charging its code or stae. This is a prablem in the gereral case where the
server is some untrused remoe node In the cortext of this thesis the saver machine is

truged andit should besinceit is storing andsewing the daato clients.

TheABAcuUS prototypeavoidsthe saketythreds as®datedwith migraing malicious or buggy
application componerts to a server by running themin a se@rateaddressspae. Filesydem
compmentsarelinked in with the filesystem processrunning atthe server Thecodeis guar
anteednat to betampered with becawseit is diredly readfromthefilesystam and notaccepted

fromaclient noce.

Applications compromising each other. One applicaion that is remotely execuing on the
server can accessstate of otherapgdications and may modfy it. The samemedarismsused
to protect the sewver’s resoucesfrom the application canbe usedto isdate applicationsfrom

eachother.

Derying server resaurces. An application canconsumeall the saver's resaurces rendering
it usekssto other applicaions. In ABAcCUS, this doesnaot compromise the availability of
the storage saver itself since the basic starage service runs at a higher priority then any
client-shipped code However, an apgdication might be desgned to corvince the run-time
systemto always select it for sever-side exeaution over other compeding applications This
is conceivable in ABACUS becausethe resaurce managemert policy works towards global

redwction of exeautiontime acrossclients andnot towards fairness

Althoughary mohile object canmigrate to thesewverard server consumeresources ABACUS
can,in principle, restict to which nodesa mobile object canmigrate through the useof urn-

derlying storage sewver aacesscontrol sud asNASD caplhilities NASD storagesewversmay

5.10. RELATED WORK 207

accept the migration of mohile objectsonly if they are authorized by somewell-known ard
trugedenity. ThisNASD managerenity canhand out unforgeable capalili tiesto themobile
objectsauthorizing themto useresoucesonagivenseaver. If the cgpability verification fails

in ary spedfic migraion, migraion is refused

5.10 Relatedwork

There exists a large base of excellentresarch and practical expetiencesrelaed to code mobility
and and function placemer in clugers The ideaof function migration was introduced over two
decacesagoasaway to baanceload acrossmultiple CPUs in a sydem [Stoneand Bokhaii, 1978,
Bokharn, 1979], and as a way to ensure continuous service availability in the presace of system

faults[Renrels, 1980]. This sedion briefly reviews this relatedwork.

5.10.1 Processamigration

Systems suich as DEMOS/MP [Powell and Mil ler, 1983], Sprite [Douglis ard Ousterhout, 1991],
System V [Theimer etal., 1985] and Condbr [Brickeret al., 1991] developed mectanismsto mi-
grateertire processes. Proess migration is comgdex becawse the enire state of a process, which
can be saattered throughout operating system data structures and the process own addressspace,
mustbe mack acessible to the proces onthe new node and the semattics of all opertionsshauld
bethe samebefore, during, and after the migrations. The processstateindudesthe contents of its
address spae (virtual memory), open files (open file enties and cached blocks), communcation
chamels, andthe processors state

Proessmigration can be enacted trarmsparently to the processor canoccu through a process
visible checkpoint/regore mediarism. Transparent process migraion hasbeen built using a com-
plete kerrel-sypparted migration medarism, or using only a userlevel padkage. Userlevel im-
plemertations tend to have limitedtransparency and applicahli ty, because they camot acheve full
trangparercy. As well, they canna make al the proces’ statethatis embedied in the operaing
systam on the souce node availalde on thetargetnode after migration.

Tranpaen kemeklsupported migration acioss hetaogereaus platformsis even more compli-
caedthanbeweenhomaereows machines. The conterts of the processvirtua memory canrot be
simply tranderred to target node becaisethe two madines may represent programs numbers or

characters differenty. Evenif an exeautable vergon of the code to be migratedis available for both

208 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

architedures,accurately reconstructing the contents of the proces’ address space in the abserce of
daatypeinformaton is acomplex and error pronetask[Chanchio and Sun,1998]. Most prior work

ard all thesystemsdesegibedhereassune homogeneausclustes.

DEMOS/MP

The DEMOS/MP distributed operating systam is one of the ealiestoperating systems to provide
kerrel-supported trangarert processmigraion [Powell and Mil ler, 1983]. The DEMOS operaing
systan uses the abstradion of linksto implemert communication betweenprocesesandbetweena
processand the operating system.

This nice abstradion enalesthe operating system to enact migraion elegantly. All comnu-
nicaion with a processoccurs through links. Thus, adding sypport for locaion transpreng is
focussal on making link behavior indepencent of the node. A link is attached to a process ard
nat to a node. Thus, after the processmigrates the communication subsystem corredly forwards
the mesagesto the new proces. Becauseall system calls use links, this medarism provides the

required transparency.

Sprite

Location transparercy is an original dedgn god of Spiite [Douglis and Ouderhou, 1991]. For ex-
amge, Sprite includesa highly location trarsparent network filesystem. Yet, transparent migretion
still proveddifficult eveninthecas of openfile statein this locaion-trarsparent netvork filesystem.

Open fileshave threekinds of stateassociated with them: cacheddatg afile position, andafile
referene. Becausethe state assaciatedwith anopenfile is copied from sourceto target, it is shared
aaoss hodes. This shaiing is the source of the problem. The Sprite file server has a policy where
it disables file caching whenalfile is openfor writing by more thanone node. In suchcass,writes
are propagded immedatdy andlessefficiently to the server. When a processis migraed its files
all appea to beopen by sourceand destnation, causing caching to bedisabled Alternaively, if the
file is first closed at the source node, it canbeincorrecly ddeted if it is atempaary file, which is
to be immedately removed on close. Thes issues were overcome but required Sprite to develop
complex madificationsto migration ard to the opemting system.

Sprite assodatesa home node with each processwhich is the machine where the proces was
started. Systan cdls thatdependon the location of a process areforwardedto the process’s home

node As long asthe number of thesesystem cdls is smadl, the impact of this forwardng on

5.10. RELATED WORK 209

performarce may be aceptibde. fork amd exec are exampks of expersive sygem cdls tha
mustbe forwardedto the home node.

Sysemslike theV kernd, DEMOS, andAccent[Richad Rashd, 1986], where all interactions
with a process including OS systan cadls, occurred through a uniform communtcaion abgradion,
can elegartly enact migration by making the endpoints of ther commurication channels locaion
transparern. Messajeswere forwardedto thenew locaion aftermigration. Spiite, ontheother hard,
allowed proces®sto interad with the operating systemthrough traditional system calls which re-
quired lesselegart, abeit often more efficient, operating systemsupport. However, both approaces
require someform of rebinding after migraion. For example if a processwarts direct accessto a
hardware reurce onthe nodeit is running on, itsreques canrot beforwardedto its homenode. It

is sometimes hard to know which nodethe programmerwarts a systemcall to effect

Condor

While kernel-supported processmigration canbetrarspaen to use processes, it hasnot achieved
widespreadacceptancein comnercial opaating systems.| bdieve the complexity of kerrel-supported
migration and the lack of strong demand for it so far hasdiscouraged its commercial inclusion.
Whilethere is significant demands for process migration for the purposeof exploiting idle worksta
tion resourcesin clustes, this demarl is sdisfied by simpler use-level migration implemenations
sweh as Condor and the Load Sharing Facility [Brickeret al., 1991, Zhou et al., 1992], or through
applicaion-spedfic mechanisms[Noble etal., 1997].

Theapproach to processmigration that gainedcommerdal successis theless transparentuser
level implemertation, of which Cordor is a good example [Brickeret al., 1991]. Condr empbys
three principle mechanisms to provide the load balancing in a cluster: Classified Advertisemerts,
RemoteSystan Calls, and JobChedpointing. Classified Ads are the medanism that Condor uses
to pair up Resouce Requestsand Resurce Offers. Remote systam cdls redired the system calls
of the new copy of the processto a shacbw proces running on the user’s local workstation. The
systan cdls are executed on the local workstaion by the shadbw, and the resuts are sent back to
the applicaion on the remoteworkstaion. This ernables Cordor to migrate a process to a remoe
workstaion that doesnot have all the capabiities of the original workstaion. For exampk, the
remote workstation may have ampk CPU cycles but no accessto a nework filesystem tha the
applicaion usesto storefiles.In this cas, after migration, thefile accesssystan cals are sert bad

to be savicedatthe original node by the shadow (vestgial) process.

210 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Checkpointing in Condor is performed through chedpointing and restat libraries linked to
with the process. Whena process is to be migrated, Condor serds a signal which is cagured by
the checlpoainting library. This library cortains code that saves the virtual memay contents of
the processto be usedto reinitialize the nenv proces on the tamget node. Becaus Condbr is a
totally use-level implemenation, it is much less transpaert than kernel supported approactes. For
instance, forking ard processgroupsare not supported.

Theresarc descaibedin this chaper addesses the problem of migrating applicaion objects
that are ustally of finer grarularity than ertire processes. Rathe than focusng on the migraion
meclansm, ABAcUS asks for the hdp of the programmer in abiding to a programming discipline
that simplifies migraton. The focusin ABAcCUS is indeadon where to place componerts and how

to dynamically adjud this placemaent.

5.102 Programming systemssupporting object mobility

Mobile object systems areprogrammirg sydemswhere objects can move betwveen nodestranspar
ently to the applicaion programner. A semiral implemenation of object mohility is demorstrated
by Emerald[Jul et al., 1988].

Emerald is a distributed progranming languageand systan which supports fine-grained object
modhility [Jul etal., 1988]. Emerald providesauniform object model, where everything in theappli-
caion is anobject Built-in types(integers, float9, aswell asarrays ard structs are objects. Object
invocation is location transparent and hasthe same semantics in both local andremote cases An
Emerald object congsts of a name, which uniquely idertifies the object, a represertation, which —
except for the case of primitive types— corsids of refererces to other objects a set of operations
(an interfae), and an optional process which is stated after the object is creaed and execuesin
parallel to invocations on the object. Emerdd doesnot support inheritance. Objects in Emerald are
derived from abstrect data types canbe either pasive or active and can be passd as algumeris
to method invocatons. Active objects are as®dated with a processthat is started after the object
is creded and exeautes concurrertly to the invocdions performed on the object. To ernsure proper
synchronizaion between conaurrent invocaionsand the intemal, active process,Emerald offersits
programmersmonitorsand condition variakles.

Emerald implementsdata migraion through acombiration of by-copy, by-move and by-netvork-
referenemecdanisms. Locd referencesare charged to nework referenceswhenanobjec migrates.

For immutalde objects however, Emerald uses data migration by copy. Theobjects canbedeclared

5.10. RELATED WORK 211

as“immutable” by the programner (i.e. the values of the fields in the object do not change over
time), in which case they arefredy copied acrossthe nework simglify ing sharing. An object of a
built-in type thatis pas®das anargumert to aremoteobjectmethod is also copied.

Othe objects aresen asnetwork references. Since an invocation to a remoge object can pas
several other local objects as aguments, performarce candegrack if the argument objects are not
moved to the target node. Emerald suypports call-by-move semartics where argumernt objects are
migrated to the targe node hoging the invoked object This can be speified by the programrmer
using spedal keywords. Whenanobject is moved its assodated methods and state mug be moved
with it.

ABACUS uses similar mechanismsto thoseproposedin Emerdd to find mobile objectsat run-
time. While Emerald enalles objectmohility betweennodes,ABAcCUS focuses on the comgdimen-

tary problem of deciding where to locae objectswithin a cluste.

5.10.3 Mobileagert systems

Recent work in mobile agents has proposed a different programming model to support explicit
applicaion-supported migration [Dale, 1997, Grayet al., 1996, Chesetal., 1997, Knabe 1995].
The growth of the intemet has recently catdyzedresach onlanguagesandrun-time systemssup-
porting “mobile agent” applicaions where anagent “roamsaround’ the nework, maving from one
site to andher pefforming same compuation at eachsite. An example of a mobile agent is a pro-
gramthat seaches for the cheapestairfare betweea two citiesby crawvling from oneairline’s site to
the next. Mobile agernts areattracive in thatthey cansupport “ spontaneots electronic commerce’
[Chessetal., 1997], electronic commercetransacionstha do not requre the prior agreement or co-
operdion of thesitesinvolved Computaionscanroamthe network choosng their path dynamically
ard freely. Mobile agents raise seairity issuessincea server is usually nervous abaut accepting an
agen without knowing its intentions.

Theelegarceand wide range of the potertial apgdications of mobile agerts have reaultedin sev-
eral mobileagert progranming sysems[Dale, 1997, Gray, 1996, Hylton et al., 1996, Streeretal., 1996,
Achayaetal., 1997, Bhaatard Carcelli, 1997]. Most systemsareobjectbasedalthough someare
saipting languageswith support for migration.

Mobile agentss, like ABACUS, use explicit checkpoi nt/ r est or e methods to save andre-
store their state whenthey migrate However, while molile agerts are responsble for deciding

whetle they shauld execute and whenthey should move from onenodeto another, mobile objectsin

212 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

ABAcuUs delegatethatrespmnsibili ty to the ABACUS run-time sygem.

5.104 Remoteevaluation

Traditiond distributed applications statically partition functon betweenclient and sewer. Applica-
tion programmers decide on this function patitioning at desgn-time by fixing the “programming
interface” to the sever. The list of remok procedure cdls (RPC) implemerted by the sewer is
therdore fixed at desgn-time. Clients build applications by building on the sewicesprovided by
the savers. Applicationsthat arenot well-matdhedwith this division of labor betweenclient and
saver sufferfrom inefficientperformance

Corsider the example of a distributed filesystem. The server provides procedues to insat a
new file and delete anexisting file fromahierarchical tree-like namegace. It also providesalookup
procedue which returnsthecontentsof adiredory (all thefilesthat existin thatdiredory). Thenew
file nameanrd the parent direcbory are specified asargumeris to theinseat procedure. The file name
of the existing file andthe parent direcory are specified asarguments of the delete procedure. A
lookup procedure call takesthe parent directay asanargument andreturnsits contentsasarestit.
Now corsideraclient tha desiresto deleteall fileswith a“.tmp” extersion in the namegace. This
client is requiredto issuea large numberof suceessve RPCs, to lookup all the diredoriesin the
namesf@aceand thento ddete, oneRPCatatime, thematding files. In such ascenario, it would be
moreefficient to send the“deletesubtre€’ programto the serverand exeauteit there and avoid this
excessive client-server communication.

Remot evaluaion [Stamosand Gifford, 1990] is a more gererd mechanismto program dis-
tributed systems. It allows a node to send a request to andher nodein the form of a “program”.
The degination node executes the program andreturns the results to the souce node. While with
remote procedure cdls, sever computers are desgnedto offer a fixed setof services, remotk eval-
uation allows savers to be dynamially extended. Remot evaluation can usethe sameargumert
passng semartics asRPCs, and maslks computer and communication failluresin the sameway. It
can aso provide for a static cheding framavork to identify “programs”thatcannat be sert to a
givennodefor execution, althoughin geneal thisis very hard to do without significant restrictions
ontheprogramming model.

Stamos Remote Evaluation allows flexibility in the placemen of function (execuion of ser
viceg in a fashion similar to ABACUS. However, it doesnot provide an algorithm or suggest a

framevork which allows this placemert to be auomaically dedded. The progranmer deddes

5.10. RELATED WORK 213

whento invokeasenvice locdly and whento ship it to aremot node. A filesystan built on Remot
Evaluation would recuire the filesystem programmer to think abou whento do locd versusremoge

exeaution.

5.10.5 Activedisks

A growing numbe of important applications operae on large datases, searching, compuing sum-
maries,or looking for specffic patterns or rules, essertially “filtering” the data. Filter-like applica
tionsoftenmakeoneor more seqtertial scars of thedaa[Riedel etal., 1998]. Applicationsexecute
onthe hog, with the starage device seving asblock servers Active disk systemsclaim thatthein-
creasng levels of integraion of on-disk controllers arecreating “excess computing cycleson the
on-disk proces®r. Thesecyclescanbeharnes&dby downloading “application-speific” datainten
sive filters. Currertly, dataintersive applications execute ertirely on the host, often bottlenecking
ontrarsferring datafrom the starage devices(servers) to the host (client in this ca®).

Recantly, condderable intered has been devoted to the “remote execution” of applicaion-
specific codeon on-disk proces®rs. Sereral systans have been proposed sud as active and in-
telligert disks [Riedd etal., 1998, Keetan etal., 1998, Achalyaet al., 1998]. Remde exeautionis
egedally appealing for dataintersive apgdications that sdectively filter, mine, or sort large data
sds. Active disksthus proposeexecuing the daa intensive function of an application on the on-
disk processr.

Acharyaetal. [Acharyaetal., 1998] proposea stream-kasal programming model, where user
downloaded functions operate on datablocks asthey “streamby” from the disk. One problem with
this stream-tasel model is cohererce of daa cathed by applicationsexecuting on the hast. Singe
daa canpotentially beregicated in the hostard in the on-disk memay, consstency problemscan
anise Moreover, this programmirg model is quite restrictive. For instance, to limit the amount
of reources conaumedby downloaded functions, userdownloaded functions are disallowed from
dynamically allocating memay.

Active disks delggae to the programner the tak of partitioning the applicaion. In the beg
possble case,thequey optimizer-like engineis used to patition functionsbetweenhod and acive
disk [Riedel, 1999]. While query optimizers use a-priori knowledge abaut the function being im-
plemertedto edimate what partitioningis best, ABACUS usesblack-box montoring which is more

generally applicalde albeit atthe costof higher run-time overhead.

214 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.106 Application object partiti oning

Coign [Hunt and Scot, 1999] is a sygem which optimizes the partitioning of objects in a multi-
object application execuing overacluster of nodes. It traces thecommuncations of the application
during someinitial exeautions and usesthisto decidewhere eat object should live. Coign doesnct
allow objects to move after the application starts. Whentheapplicaion starts, objectsareanchored
to ther locaions. Coign relievesthe programrmer from allocating resaircesand deciding object
placanentat desgn time. Coign employs saerario-basal prdfiling and graph-cutting algorithms
to partition application objectsin a distributed compment application between nodesof a cluger.
Coign focuseson finding the proper initial placement of objects atinstllation time. It usesbinaly
rewriting techiques to collectstatistics about inter-object communtaion when atypical workload
is appliedto the systam which arethenusedto dedde onthe proper placement of compment objects
giventhe availability of CPU andnetwork resaurces

Coign doesnot perform run-time monitoring or preemptve migration of comporert objects Its
placanentalgorithmsare execued off-line and therefore have relatively forgiving regponse time re-
guiremens. Onthe other hand, Coign emablesoptimization of function placemen atthe grarularity
of an object, and not the grandarity of entire proces®s. In the preserce of a “ty pical scerario”,
Coign canbe velry effective in improving performance However, when the proper placemern de-
pends on invocdion-time paametes or on dynamic changesin resaurce availability, this approach
can besuboptimal.

River [Arpad-Dusseal etal., 1999 is a dataflow programmingervironment and I/O subdrate
for clusiersof compuers. It is designed with the goal of providing maxmum performarcein the
common casedespite underlying heteragereity in node resoucesand despite otherglitchesand non
uniformitiestha might affect node performance River badances load acrossconsumersof a daa
sd usng a distributed-quete. River effectively bdancesload by allocaing work to consumersto
matd their currentdatacorsumption rates This ensuresloadbalandng acrossmulti ple consumes
performing the sane tak. This reseach comgemerts River by addressing the case of multiple
concurrenttasls.

The closed previous system to the approach takenby this dissetation is Equanimity. Equa-
nimity dynamically rebalanessewice beweena client and its server[Herrin, Il and Finkel, 1993],
using heuristics basedon the amount of data communicated betveenfunction. Equanimity did not
condder theimpact of function placemert on load imbalanceandusedonly simple communcaion-

basal heuristics to partitioning the graph of function betweea a cliert andits server.

5.10. RELATED WORK 215

This resarch builds on Equanimity by conddering sewice rebalandng in more realstic en
vironmens which exhibit client compdition, dataintensive applications layered atop filesystems,

heterogeneus resourcedistributions and shared data compuing.

5.10.7 Database systems

Datebae maragemern systans mug often provide stringent guaranteeson transacion throughput
and maximum latercy. Databasemanaement systemsinclude a query optimizer which compiles
a quety in a structured high-level language onto an exeaution plan which is carefuly sekeckedto
maximize a given performance goal. Query optimizers decide what part of the query to execute on
which nodeby conaulting arule-basel systam or apredictive performancemodel. Theseapproades
amly effectively to relational quelies beausethereis a limited number of query operaors and the
operaors are known to the optimizer aheadof time.

Traditiond relational daabasesystan are basal on a “function shipping” appoach Clients
stbmit entire queriesto the serverswhich execue the query and return thereaults. Object-oriented
daabas systemare oftenbasedona“datshipping” approachtha makeshemsimilarto distributed
filesystems.Dataistransferredfromtheserversto theclient whereit is cached. Queriesare execued
onthis datalocdly at theclient. While datashipping is more scdable in principle becauseit uses
client reurces, network efficieng oftenmardatesafundion shipping approacd.

Hybrid shipping [Frarklin etal., 1996] is a technique proposedto dynamicadly distribute query
processng load between clients and serversof a daabasemanagemert system. This technique
usesa priori knowledge of the algorithms implemerted by the query operaors to edimate the beg
partitioning of work betweenclients and severs. Instead ABACUS appliesto awiderclassof apli-
caionsby relying only on black-box moritoring to makeplacemert decisions, without knowledge
of thesemanics or algorithms implemented by the application companerts.

Onewaytoview ABAcUSreeachisthatit atemptso bridgethe ggp betweendaabasesystems
and filesystemsby bringing the berefits automatic resource managemei capailities of database
query optimizersto the applicationsthat use filesydemsand other object stares Unlike database
query optimizers ABACUS uses a gereric medanism based on monitoring inter-object communi

caion and object resource consumgiion to helpit predict the optimal placemert.

216 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.108 Parallel programming sydems

Many programminglanguagesand systemshave recently investgated ways to improve the locality
of ddaacessedor pardlel applicationsincluding [Amarasngheand Lam, 1993, Hsieh etal., 1993
Chardraetal., 1993, Carlisleand Rogers, 1995]. For exampk, Olden[Carlisle and Rogers 1995
and Prelude [Hsiehetal., 1993] attempt to improve locdity by migraing compuationsto the daa.
A computationacessing dataon aremote nodemay be moved to that node. COOL [Chardraetal., 1993
is a pamallel language with a scheduling algorithm that attemps to erharcethelocdity of the com-
putation while bdancing the load. COOL providesan affinity construct that programmersuseto
provide hints tha drive thetaskscheduling algorithm.

Theresard in this chapter builds on this previous work by applying such techriguesto the
caseof storage-intersive applicaions. Storage-intersive aplicaions canbe effectively modded by
atimed dataflow graph which canbe usedto malke effective placemen decisions. Moreover, suc
amlicationsmove a largeamount of data allowing a run-time sysemto learn valuable information
about inter-object communication and object reurce consumpgion quickly, and judiciously use
it to sdedt the best placemert possble. Furthemore, this resard is the first, to the bestof our
knowledge, to apdy thesetechniquesto the caseof a patticular and important sysem application,

namely adistributedfilesystem.

5.11 Summary

Emerging active storage systemspromise dramatic heterogereity. Active storage severs—sngle
disks, storage appliancesand serners—have varied proces®r speeds, memory capadties, and1/O
bandwidths. Client systems—SMP savers, dektops and lapops—ako have varied processao
speads, memay capacities, network link speed and levels of trustwvorthiness Application tasks
vary their loadovertime becaus of algorithmic or run-time parameters. Mostimportantly, dynami-
cdly varyingapplication mixesreault fromindependent and stochadic proces®satdifferentclients.
Thes dispaiities make it hard for any desgn-time “onesystem-fis-dl” function placemert ded-
sionto provide robustperforman. In contrast, a dynamicfunction placemen scheme can achieve
better paformane by adapting to applicaion behavior and resaurce availahlit y.

Previous systems demamstrated differert function placement decisions, acentuaing the fun-
damentl trade-off betwee the scdabhility of client-side execution and the network efficieng of

saurcekink-side computing. However, due to the variability in application resouce consunption,

5.11. SUMMARY 217

in applicaion mixes andin cluste resaurce availabili ty, thetension beweenscalability and source-
sink compuing camat be easly resdved untl run-time. This chgpter preseris an ovewiew ard
evaluation of ABACUS, an expelimental prototype system used to demondrate the feasihility of
adaptive runtime function placemen betweenclients and sewversfor filesystem functions aswell
asstrean-processing type of applications. ABACUS uses an algorithm that cortinuoudy monitors
resouce availability aswell asfunction resource consumgion and inter-function commurication
and usesthis knowledge to intelligenty partition function beweenclient and saver.

This chapter desciibes a distributed filesystem, ABACUSFS, portedto the ABACUS systemard
reports on its ability to adagt. Microberchmarks demongrate that ABACUS and ABACUSFS can
effecively adat to vanations in network topology, applicaion cade accesspatiern application
daareduction (filter sdedtivity), cortention over shareddata, significant changes in applicaion be-
havior atrun-time, aswell as dynamiccompdition from corcurrent applications over shared server
resouces. Microbenchmark reaults arequite promising; ABACUS often improved applicaion exe-
cution time by afactor of 6 or more. Under all experimentsin this chager, ABACUS sdedsthebed
placanentfor eachfunction, “correcing” placeanentif fundion wasinitially stated onthe“wrong’
node. Under more complex scerarios, ABACUS outperforms expeliments in which function was
statically placed atinvocaion time, converging to within 70% of the maxmum achevable perfor-
mane. Furthermae, ABACUS adapt placenentwithout knowledge of the semanticsimplemened
by the objects. The adaptationis basel only on black-box monitoring of the object and the numbe

of bytesmoved between objects.

218 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Chapter 6

Condusionsand future work

This chagpter condudesthis dissertaion by summariang the main contributions and descibing di-
rectionsfor futurework. It isorgarized asfollows: Section 6.1 summairizesthe resachreportedon
in this dissetation. Section 6.2 highlights the main contributions. Sedion 6.3 discussesdirections

for futurework.

6.1 Dissertation summary

6.11 Network-attachedstorage

Storage bandwidth requiremerts continue to grow due to rapdly increasng client performarce,
new, richer content data types such as video, anddata intersive apgications such asdaa mining.
This problem hasbeenrecanized for at leas a deade [Long et al., 19, Patteron et al., 1988,
Hartman and Ousterhout, 1993]. All storagesystem solutionsto datk incur a high overhead cog
for providing bardwidth due to existing starage architedures’ reliance on file serversas a bridge
betweenstorageand client neworks. Sud staage sygemsdo not scale becaus they rely on a
central controller to marageandmediate accessto the physical storagedevices. Requestsfromthe
applicaion al passthroughthestoragecontroller, which then forwardsthemto the starage devices,
storing and copying daathrough it on every acess. Starage systemsadmiristratorsexpand storage
cgpadty by usng multiple undetying disk arrays, and pattitioning the daia s marudly betwee
the arrays. Unfortunatdy, even if load balanang wasagood use of time, the systemadministratar is
rarely well equipped with thedynamic information to perform bdancingin atimely and saisfadory
manrer.

Storagearchitectures are realy to change asa reault of the synergy from four overriding fac

tors: increasing object sizesand daa ratesin many applicaions, new attachmen technology, the

219

220 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

convergence of peripheral ard interprocessa switched neworks, and an excessof on-drive tran
sistars. Network-Attached Seaire Disks (NASD) [Gibsm etal., 1997b, Gibsonetal., 199§] is an
architecure that enables cost-effective bandwidth scding. NASD eliminatesthe sewer bottlened
by maodifying starage devicessothey can transfer daa diredly to clients. Further, NASD repart-
tionstradtional file sever functiondity betweenthe NASD drive, cliert andsewer.

NASD does not advocat tha all functions of the tradtional file serverneedto be or should
be migrated into storage devices NASD devicesdo not perform the highest levels of distributed
file system function — global naming, acces control, concurrercy control, and cache coherercy
— which define sematicsthat vary significantly acoss distributedfile systams and to which client
amlications and operating systemstightly bind. Instead, the resdual file system, which is cdled
the file manager, continues to define and mamagethesehigh level policies while NASD devices
implemert simde storage primitivesefficiertly and operate asindepaendenty of thefile manageras
thesepdiciesallow. Thelow cost of starage is due to the large marketfor massproduced disks.
This mass production requires a standard interface that must be simple, efficient, and flexible to
support awide range of file system semairtics acrossmultiple tecmology generations.

NASD emables clients to perform parallel dat trarsfersto and from the storage devices. This
dissetation de<cribesastorageseavice,Cheops, which implemeris suchfunction. Real applicaions
running on top of a Cheops/NASD protatypereceive salable dataaccessbandwidths tha increas
linealy with sysemsize. For a Cheoys client to conduct pardlel tranders directly to and from
the NASD devices it must cade the stripe maps ard capbilities requred to resolve a file-level
acces and mapit onto accesesto the physcal NASD objects. The Cheops approachis to virtualize
storage layout in order to makestorage look more maragealle to higha-level filesystems. Cheops
avoidsreinlisting saversto synchronoudy relvethe virtud to physical mappng by decompasing
and distributingits accessfunctionsand maragemer functions such thatacessfunctionis exeauted
atthe clientwhere the reques is initiated Che@s maragersare regorsible for authorization ard

oversight operations sothatthe participating clients always do theright thing.

6.12 Sharedstoragearrays

For the s&ke of salability, Cheopsallows cliens to acessshared devices direcly. Thisfundamen
tally makeseach storage client a storagecontroller on belalf of theapplicaions running onit. Eath
storage controller can seve clients and manage storage. Unfortunately, such shared storage arrays

lack a central paint to effect coordinaion. Becauise datais striped acossseveral devicesard often

6.1 DISSERTATION SUMMARY 221

Switched
Client Client Network
s St Clients
. orage
Cl
tent Controller lient
Client
Client Client StOrage
SCSI bus Controllers
(/10 bus)
(8) Traditional storage systems (b) Scalable storage arrays

Figure 6.1: Traditional storage systems (a) use a single controller. Shared arrays (b) use parallel cooperating
controllers to access and manage storage.

stored redurdantly, a single logical 1/0 operation initiated by an application may involve sendng
requeststo several devices Unless proper concurrency control provisions are taken,thesel/Os can
become interleaved sothathods see incorsigen daa or corupt the redundarcy codes.

This dissetation proposesandevaluaesan architecture that enables the controllersto conaur-
rently acess shaed devices, migrate data betweendevices, and recandruct dataon failed devices
while ensuring correctness and recovering propedy fromfailures Thedifficult asgectof thistaskis
to ensue that the solution is scdable, thereby ddivering the salability of the NASD architecture.
The proposedapproach is to avoid certral globd entitiesand opt for distributing cortrol overhead
instead. Both concurrency control and recovery protocols are distributed. Speeificaly, theapproad
proposes breaking starage accessand maragemer tasks into two-phasedlight-weight transcions,
cdled bas storagetransadions (BSTs). Distributed protocds are used to ensire conaurrerncy cor-
trol and recovery. The protocols do not suffer from a certral bottleneck Moreover, they exploit
the two-phasel nature of BSTs to piggy back cortrol mesagesover daal/Os, hiding cortrol mes
saying latercy in thecomnmon case

The bas protocols assume that within the shared storage array, data blocks are cached at the
NASD devices and not at the controllers. When controllers are allowed to cache dataand parity
blocks, the distributed protocols can be exterded to guarartee serializahility for reads and writes.
This dissertation demorstrates tha timesampordering with validaion peformsbeterthan device-
savedleasing in thepresernce of contertion, false sharing and random acessworkloads all typical

of clustered storage systems. In summary, it concludes that timesamp ordering based on loosely

222 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Data servers (sources)
SAN Client

lnll

- File servers (A) |:| CPU

l Available memory

D Storage access bandwidth
(to server B’'s data)

- Clustered Server (B)

- Smart Storage (D)

- Sensors/Cameras (C)

Figure 6.2: Emerging systems include programmable clients and servers. However, the clients and the servers
vary in their computational and memory resources. The optimal partitioning of function between client and
server varies based on run-time characteristics such as node load, network bandwidth, and amount of com-
munication between application components. This figure shows the available CPU and memory resources
on some of the nodes. The available access bandwidth between a node and the storage on server B is
also graphed. Assume a generic computation over a data set streaming out of server B, where should the
computation be performed (client or server?).

synchronizedclocks has robust performarce acrosslow andhigh contertion levels in the preene
of device-sde or host-side cachng. At the sametime, timedampordering requireslimited stae at
the devicesanddoes not require thedevicesto perform anyextramessaying on behalf of hosts(sut

aslea® revocation).

6.13 Dynamic and automatic function placement

Anothe chalenging aspect of storage managemaent corcerns the proper partitioning of function
betweenthe different nodes in the storage system. The partitioning of function between client ard
saver has a direct impact on how load is bdanced amorg a sewver and its clients and on how
much dda is trarsferred betweenclient and sever. Naive placemerh can cause reources to go
underutili zedandloadto be imbdancedor large amounts of datato be tranderred (unnecessaily)
over bottleneded links.

Currertly, the partitioning of filesystem function between cliert and server is dedded by the
amlication programrer at design time. Filesystans desgnersdedde on function patitioning after

caeful consideraion of amultitude of factors including therelative amourts of resouces asumed

6.2 CONTRIBUTIONS 223

to beattheclient andthestoragedevice, the performanceof the network connecting them, thetrust
worthiness of the clients, and the characteristics of the target workloads. New hardwaregenerations
chargethe performarceratios amang the system components, invalidating the design assumptions
predicaing the original placemen. To cope with this, applicaions are often tuned for each new
environmert andfor eachhardwaregererdion.

In gererd, dynamic variations in resaurce distribution and in workload characteristics during
the lif etime of an application’s exeaution often mardae a changein function placemen. Even
for applicaions that have a relatively constant behavior during ther execution, concurreng/ and
contention on reources anddata amongapplicationsoften induce dynamicchanges that cannot be
anticipated beforehand.

This dissertation research obsewnes that the prope patitioning of function is crudal to per-
formane. It invesigates algorithms that optimize applicaion peformane by intelligently and
adapively partitioning the applicaion’s procesing betweaen the client andthe sewver. The findings
swggestanautomatc andtranspaert technique tha enables the* effective bandvidth” seenby data
intensive applications to beincreasal by moving daa-intensve functions closerto the dat sources
(storageserverg or sinks (clients) based on the availability of processng power and the amount
time spert communicating between nodes.

In patticular, the findings estidish tha dynamicplacemaent of functionsat run-time is superior
to static onetime placemen. Furthe, it shows that dynamic placenent can be effectively per-
formedbasel only on black-box monitoring of application compmentsandof resairce availability
throughout the cluster. It proposesa programmirg mocdel to compase apgications from explicitly
migrateble molile objecs. A runtime system observes the reourcescorsuned by mobile objeds,
and thar intercommurication andemploys on-line analytic modds to evaluate alternative placemen

configurations and adaptaccordingly.

6.2 Contributions

This dissetation makesseveral contributions; somein the form of fundamernal scienific results,

ard others in theform of attifacts andprototypeswhich support further investgations.

224 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.21 Results

¢ Anapproach based onspeializedtransadionsto structuring starageaccessand managemer

in a RAID array with muliple concurrentcontrollers.

¢ Distributed device-based protocds to ensire correctness in a shared RAID array with mult-
ple conaurrentcortrollers. The protocols offer good scalahility and limitedload and state at

thenodes.

¢ Experimental data shonvingthe potertial importance of dynamic fundion placement for data
intensiveapplicationsand the feasihili ty of deciding best placement basead on black-boxmon

itoring.

6.22 Artifacts

e Cheops prototype Cheqpsis a striping library for network-attached secure disks. Cheors
provides a “virtual’ NASD interface atgp physcal NASD objects. It allows clientsto cache

virtualto physical magpingsand therefore have direct pardlel accessto the starage devices.

e ABAcCUS and ABACUSFS. The ABACUS prototype canbe usedto experimert with dynamic
fundion placemert in clusters. ABACUSFS is acomposbe object-baedfilesydemenalding

adapive function placementbetweenclient and sever.

6.3 Futurework

More expelience with the ABACUS programming model would be valuable. Applying the tech
niquesof continuous monitoring and adagive placement to streaming applications over thewebis
promidng. Stream-pocessng applicaion functions canbe automaticaly distributedbetweenclient,
saverard proxy. Thealgorithmsusedby ABAcus should beextendedto hardle the placement over
multiple intermediate nodes. Also,to work well in geographically wide areas,themeauremer and
statistics collection techndogy mustbe macde more robust to wild perturbationsand fluctuationsin
performarce, a typical chaaderistic of wide area networks. ABAcCuUS can berefit from using Java
instead of C++ asits baseprogrammirg language. Javais platform-indeperdent and therefore can
erable migration acrossheteogeneols architedures.

Theintelligence of the ABACUS rurttime systan canbe exterdedin severd directionsto im-

proveitsperformance Currertly, it readsonly to recert clusteracivity. Oneapproadisto augmert

6.3 FUTURE WORK 225

the system with the ability to maintain long-term pastprofiles (on the grandarity of a day, week,
or month) to make more intdligert migration dedsions. Similarly, applicaion hints about their
future aces®scan be integrated to improve function placemen decisions. A further useof his-
tory canimprove the bendit egimation for the cod/berefit amalysis. It is not worth migrating an
object tha will teminate shortly. Remainng time for apgdications canbe egimated usng heuis-

tics [Harchad-Balter and Downey, 1995 or by conaulting adatabaseof past profiles

226

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[Acharyaetal., 1997] Achawa, A., Rargarathan M., and Saltz J. (1997). Sumatra: A language
for reurce-aware mobile programs. In Mobile Object Systems. Towards the Programmnable

Internet, pages 111-130. SpringerVerlag. Lecture Notesin Computer ScienceNo. 1222,

[Acharyaetal., 1998] Achawya, A., Uysal, M., and Saltz, J. (1998). Active disks Progammirg
mockl, algorithmsandevaluation. In Proceedngs of the 8th International Corferenceon Archi-
tectural Sypport for ProgrammingLanguagesand Operating Sysems pages 81-91, San Jcse,
CA.

[Adyaetal., 1995 Adya, A., Gruber, R., Liskov, B., and Mahedwairi, U. (1995). Efficiert op-
timistic concurrerncy control using loosdy synctronized clocks. In Cary, M. J. and Schneider,
D. A., edtors, Proceadingsof the 1995 ACM SIGMOD Intemational Conferenceon Managemeh
of Data, pages23-34, SanJose CA.

[Agrawal andSchafer, 199 Agrawal, R. and Schder, J. (1996). Pardlel mining of asscciation
rules In IEEE Transadionson Knowledgeand Data Engneering, volume8, pages 962—969.

[Agrawal andSrikant, 1994] Agrawal, R. and Srikant R. (1994). Fastalgorithmsfor mining as
scciation rules. In Bocca J. B., Jarke, M., and Zanolo, C., editors Procealings of the 20th
International Confererce on \ery Large Data Bass(VLDB), pages 487-499, Santiagq Chile.

MorganKaufmam.

[Amarasinghe andLam, 193] Amarasinghe, S. and Lam, M. (1993). Comnunicaion optimiza-
tion and code gererdion for distributed memory machnes. In Proceedngsof SIGPLAN Corfer-
ence on ProgramLanguage Design and |mplemertation, Albuquerque, NM.

[Amiri etal., 2000] Amiri, K., Gibsan, G., and Golding, R. (2000. Highly concurrert sharedstor-
ace. In Procedalings of the 20th International Conference on Distributed Computing Sysems
Taipel, Taiwan Republic of China.

227

228 BIBLIOGRAPHY

[Andersonet al., 1996] Anderon, T. E., Dahlin, M. D., Neefe, J. M., Patteron, D. A., Rosdli,
D. S.,andWang, R. Y. (1996). Sewnerlessnatwork file systans. ACM Transactions on Computer
Systams, 14(1):41-79.

[ANSI, 1986] ANSI (1986). Snall Compuer Systam Interface (SCSI) Spedfication. ANSI
X3.131.

[ANSI, 1993] ANSI (199). Smal Compuier Sydem Interfae (SCSI) Spedfication 2. ANSI
X3T9.2B379D.

[ArpaciDussauetal., 1999 ArpaciDus®ay, R. H., Andersan, E., Treuhdt, N., Culler, D. E.,
Hellergein, J. M., Patteron, D., andYelick, K. (1999). Cluste I/O with River. Making the fast
casecommon In Proceedngs of the Sixth Workshop on Input’Output in Parallel and Distributed
Systams, pages10-22, Atlanta, GA.

[Bakeret al., 1991] Baker, M., Hartman, J., Kupfer, M., Shirriff, K., and Ougerhou, J. (1991).
Measuremens of a distributed file systam. In Proceedings of the 13th ACM Symposum on
Opemating SysemsPrinciples pages198-212, Peacific Grave, CA, USA.

[Benner, 1996] Bemer, A. F. (1996). Fibre Channel: Gigabit Comnunications and /O for Com-
puter Networks. McGraw Hill, New York.

[Bemstkinand Goodman, 1980] Berrstan, P. A. and Goadman N. (1980). Timestamp-baseal al-
gorithms for concurrercy control in distributed database systems. In Proce=dngs of the 6th
Corferenceon Very Large Databases(VLDB), pages285-300, Montreal, Canala

[Bharatand Cardelli, 1997] Bhaat, K. and Carcelli, L. (1997). Migratory apgications. In Mobile
Object Systems: Towards the Programmabe Internet, pages131-149 Springer-Vedag. Ledure
Notesin Computer Science No. 1222,

[Birrel and Neecham, 1980] Birrel, A. D. and Needham,R. M. (1980). A universalfile sever. In

IEEE transactionson software engineeling, volume 6, pages 450453

[Birrell and Nelson 1984] Birrell, A. D. and Nelson, B. J.(1984). Implementing remoteprocedure
cdls. ACM Transactionson Compuer Sysems 2(1):39-59.

[Blaumet al., 1994] Blaum, M., Brady, J., Bruck, J., and Menon, J.(1994). EVENODD: An opti-
mal schemefor tolerating doube disk failuresin RAID ardhitedures. In Proceedings of the 21st

Annual Internationd Symposum on Computer Architecture, pages245-254, Chicagq IL.

BIBLIOGRAPHY 229

[Bodenet al., 1995] Boden, N. J., Colen D., Feldeeman, R. E., Kulawik, A. E., Seitz, C. L.,
Seizovic, J.N., ard Su, W.-K. (1995). Myrinet—a Gigalet-per-secand local-area nework. IEEE
Micro, 15(1):29-36.

[Bokhari, 1979] Bokhai, S. H. (1979). Dud procesor scheduling with dynamic reassgnemnt.
IEEE Transactions on Software Engineering, 5(4):341-349.

[Bolosky etal., 1996] Bolosy, W. J.,lll, J.S. B., Draves,R. P, Fitzgerald, R. P, Gibsn, G. A.,
and Jones, M. B. (199%). Thetiger video fileserver. In Procealings of the Sxth International
Workshop on Netwok and Opeating SysemSupport for Digital Audio and Video, Zushi, Japan.

[Bricker etal., 1991] Bricker, A., Litzkow, M., and Livny, M. (1991). Condor technica summaty.
Tedhnical Report 1069, University of Wisconsin—Madison, Compuer Science Depatmert.

[Buzzad etal., 1996] Buzzad, G., Jacobsm, D., Mackey, M., Marovich, S, ard Wilkes, J. (1996).
An implemenation of the Hamlyn sendermanagedinterface architecture. In Proceedings of the

2nd Symposum on Operating SysemsDesign and | mplemenation, pages245-250.

[CabreraandLong, 1991] Cabrera,L.-F. ard Long, D. D. E. (1991). Swift: Using distributed disk
striping to provide high I/O datarates. In Compuing Systems, Fall, 1991, pages405-43%.

[Caoetal.,199] Caqg P, Lim, S.B., Verkataraman, S., andWilkes, J. (199%4). The TickerTAIP
parallel RAID architecture. ACM Transections on Computer Systams, 12(3):236-260.

[Caregy etal., 1994] Cary, M. J., DeWitt, D. J., Frarklin, M. J., Hall, N. E., McAuliffe, M. L.,
Naugton, J. F., Schih, D. T., Solomon, M. H., Tan, C. K., Tsaalos, O. G., White, S. J., ard
Zwilling, M. J.(199%). Shaing up persigen apgications. In Procealings of the International
Contererce on Managememof Data (SIGMOD), pages383-394, Minneapdis MN (USA).

[Carlisle ard Rogers, 195] Catlisle,M. and Rogers, A. (1995). Software cacing and compttation
migration in olden. In Proceedngs of the Fifth ACM SIGPLAN Sympasium on Principles and
Practice of Parallel Programning, Sant Barbara, CA.

[Chanchio and Sun 1998] Charchio, K. andSun X. H. (1998. Memoly spacerepesntation for
heterogeneus network processmigration. In Proceedngs of the 12th International Parallel

Processng Sympsium, pages 801-805. IEEE Compuer Sodety Press Los Alamitos CA.

230 BIBLIOGRAPHY

[Chandraetal., 1993] Chardra R., Gupta A., and Hennesy, J. (1993). Datalocality and load
baancingin cool. In Procealingsof the Fourth ACM SIGPLAN Sympasium on Principlesand
Practice of Parallel Programning, SanDiego, CA.

[Chao etdl., 1992 Chag, C.,English R.,Ja®bsa, D., Stefarov, A., andWilkes,J. (1992). Mime:
A high performane parallel storage device with strong recovery guarantees. Hewlett-Padkard
LabaratoriesTechnical Repat HPL-SSP-92-9.

[Chen ard Bershad 1993] Chen, J. B. ard Bershad, B. N. (1993). The impact of operating sys-
tem structure on memory systemperformance In Proceedngs of the 14th ACM Sympgsium on

Opemting SysemsPrinciples pages120-133.

[Chesset al., 1997] Ches,D., Harrison, C., andKerdherbaum, A. (1997). Mobile agent: Are they
agood idea? — update. In Mohile Object Sysems: Towards the Programmnable Internet, pages
46-48. Springer-Verlag LectureNotesin Computer ScienceNo. 1222,

[Cobalt Networks, 1999] Colalt Networks (1999). Cobatt networks delivers network-attachedstor-
age sdution with the new NASRaQ. Pres relea®, http://www.cobaltnet.com/compary/presg-
pres82.html.

[Corbet ard Feitelson, 19H] Corbett, P. and Feitelsan, D. (1994). Design and performance of
the Vest paallel file system. In Proceedngs of the Salable High-Performane Compuing
Corference pages 63-70, Knoxville, TN, USA.

[Corbet etal., 1996] Corbett, P, Prost, J.-R, Demetiou, C., Gibson G., Riedel, E., Zelenka, J.,
Chen Y., Felten E., Li, K., Hartman, J., Petesm, L., Bershad, B., Wolman, A., and Aydt, R.
(1996). Praposal for a commonparallel file systemprogramning interface. Technical Report
CMU-CS-96193, School of Computer Science, Carregie Mellon University, Pittsbrugh, PA.

[Courtright, 1997] Courtright, W. (1997). Atransactional approach to redundant disk array imple-
menttion. PhD thess, Department of Electical and Compuer Engneeing, Carregie Mellon
University, Pittskurgh, PA.

[Dahlin, 1995] Dahlin, M. (1995). SeverlessNetwok File Systams. PhD thesis, Compuer Sciene
Division, Department of Electrical Engnneringand Computer Sciene, Universty of Calif ornia,
Berkelg/, CA.

BIBLIOGRAPHY 231

[Dale, 1997] Dale, J. (197). A Mobhile Agent Architecture for Distributed Information Manage-
ment PhDthesis University of Soithampton.

[deJongeetal.,, 193] deJonge, W., Kaashoek, M., ard Hsieh, W. (1993). The logical disk: A new
approach to improving file systems. In Proceedngs of the 14th ACM Symposium on Operating
Systams Principles, pages15-28, Asheville, NC, USA.

[Dewitt and Hawthorn, 1981] Dewitt, D. and Hawthorn, P. (1981). A peformarce evaluation of
daabas machine architectures In Procealings of the 7th International Conference on Very
Large Data Bases (VLDB).

[Douglis, 1990] Douglis,F. (1990). Transparent ProcessMigrationin the Sprite Operating System.
PhD thess, Universty of California, Berkeley, CA. Available as Techrical Report UCB/CSD
90/598.

[Douglis and Ousterhout, 1991] Douglis, F. and Ousterhout, J. (1991). Trangarert processmi-
gration: Dedgn alternatives andthe Sprite implemengtion. Software—Prctice & Experience,
21(8):757-785.

[Drapeau etd., 1994] Drapeau,A. L., Shirif, K. W., Hartman, J.H., Miller, E. L., Seslan S.,Katz,
R.H., Lutz, K., Pattersan, D. A., Lee,E. K., Chen, P. H., and Gibson, G. A. (199%). RAID-1I: A
high-bandwidth network file server In Procealingsof the 214 Anrual International Symposum
on Computer Architecture, pages234-244.

[Emanuel, 197] Emanel, S. (1997). Staage growth fuels admin woes.
http://www.idg.ne/crd_data 87572.itml.

[Endlish and Stepharov, 1992] Endish, R. and Stephanaov, A. (1992). Loge: a sef-organizing disk
controller. In Proceedngs of the USENIXWnter 1992 Technical Confererce, pages 237-251,
San Frarsisco, CA, USA.

[EnStor 1997] EnStor(1997). The staage challenge http://www.engor.com.authallenge.him,
Feb 2000.

[Eswaran etal., 1976] Eswaran K., Gray, J., Lorie, R., and Traiger, L. (1976). The notions of
congstency ard predicatelocks in a daabasesystem. Comnunications of the ACM, 9(11):624-
623.

232 BIBLIOGRAPHY

[Faloutsns,1996] Faloutsos C. (1996). Searching Multimedia Databases by Cortert. Kluwer

Aacademic PublishesInc.

[Fayyad 1998] Fayyad U. (1998). Tamingthe giantsand themorsteas: Mining large datebasesfor
nuggetsof knowledge. In Database Programning and Desgn.

[Forum, 195] Forum, T. M. (1995). The MPI messa@gepassng interface stardard.

http://www.mcs.al.gov/mli/standard htm.

[Frarklin etal., 1996] FranKin, M. J., Jonsan, B. T., and Kossnann D. (1996). Performane
tradeoffs for client-server query processng. In Proceedngs of the 1996 ACM SIGMOD In-
ternational Conkrence on Managemehn of Data, volume 25 of ACM SGMOD Reord, pages
149-160, New York, NY.

[Gibsonetal., 1997a] Gibsm, G., Nagle, D. F., Amiri, K., Chang, F. W., Gobioff, H., Riecel, E.,
Roclhbeg, D., andZelenka, J.(19979. Filesystemsfor network-attachedsecure disks. Techrical
Repat CMU-CS-97-118, Schod of Compuer Science, Carregie Mellon University, Pittstrugh,
PA.

[Gibson 1992] Gibson, G. A. (1992). Redurdant Disk Arrays: Reliable, Parallel Secandary Stor-
age. MIT Pres.

[Gibsonetal., 1998] Gibsan, G. A., Nagk, D. F., Amiri, K., Butler, J.,Chang, F. W., Gohioff, H.,
Hardn, C., Riedd, E., Rochberg, D., ard Zelerka, J. (1998). A costeffecive, high-bardwidth
storage architecure. In Proceadings of the 8th Corferene on Architedural Support for Pro-
gramming Languagesand Opeaating Sysems(ASPLOS98), pages92-103, SanJosg, CA.

[Gibsonetal., 1997b] Gibson, G. A., Nagle, D. F., Amiri, K., Chang F. W., Feinberg, E. M., Go-
bioff, H., Lee, C., Ozcel, B., Riedd, E., Rochberg, D., and Zelerka, J. (1997b). File server
saling with network-attached secure disks. In Proceedings of the 1997 ACM Internationd
Corference on Measurementand Modeling of Compuer Sysems(ACM SGMETRICS) pages
272284, Seattle, WA.

[Gibsonetal., 1999] Gibsan, G. A., Nagle, D. F,, Coutright, W., Lanza, N., Mazaitis, P, Unangst,
M., andZelenka, J. (1999). NASD scdable starage sydems.In Proceedings of the USENIX '99
Extreme Linux Worksh@, Montergy, CA.

BIBLIOGRAPHY 233

[GibsonandWilkes, 1996] Gibsm, G. A. and Wilkes, J.(1996). Selfmamging neéwork-atached
storage. In ACM Compuing Surveys, volume 28,4es, page 209.

[GigahtEtherret, 1999 GigabitEthemet (199). Gigabt Etherret overview - updaed May 1999.
http://www.gigabtethemet.org/techmology/whitepaperdgige_0698/paper<98_toc.himl.

[Gobioff, 1999] Gobioff, H. (1999). Searity for a High Pefaomance Commadity Sorage Subsys
tem. PhD thess, Depaitmentof Compuer Science, Camegie Mellon University, Pittsburgh, PA.

[Golding etal., 1995 Golding, R., Shriver, E., Sullivan, T., and Wilkes, J. (1995). Attribute-
manaed staage. In Workshop on Modeling and Spedfication of I/O, SanAntonio, TX.

[Golding ard Borowsky, 199] Golding, R. A. andBorowsky, E. (1999). Faut-tolerant replication
management in large-scale distributed storagesystems. In Procealings of the 18th Symposum
on Reliable Distributed Sysems pages144-155, Lausanre, Switzerland.

[Gong, 1989] Gorg, L. (1989). A secure indertity-based capability system. In Proceedings of the
IEEE Sympgiumon Security and Privacy, pages56-63, Oaldand, CA.

[Gray andCheriton, 1989] Gray, C. ard Cheiton, D. (1989). Leases: An efficientfault-tolerarnt
mechanism for distributedfile cacte congsteng/. In Proceedngs of the 12th ACM Symposum
on Operating SysemsPrinciples, pages202-210, Litchfield Park AZ USA. ACM.

[Gray, 1997] Gray, J. (1997). Whathappers whenprocessas are infinitely fastand starageis free?
Keynate SpeechattheFifth Workshg on I/O in Pardlel and Distributed Systems, San Jose, CA.

[Grayetal., 1975 Gray, J.,Lorie, R, Putailo, G., and Traiger, I. (1975). Grarularity of locks ard
dayrees of considercy in ashaeddatebase. IBM Resarch Report R1I1654.

[Gray andReuter, 1993] Gray, J. and Reuer, A. (1993). Transadion Processng: Concept and

Tedhnigues MorganKaufmann

[Grayetal., 1996] Gray, R., Kotz, D., Nog, S., Rus D., ard Cybenko,G. (1996). Mobile agents
for mohile compuing. Technical Report PCSTR96-285, Dept. of Computer Science, Dartmouth
College.

[Gray, 1996] Gray, R. S. (1996). Agent Tcl: A flexible and secue mohile agent system. In Pro-
ceedings of the 4th Annual Tcl/Tk Workshop, pages 9-23, Monterey, CA.

234 BIBLIOGRAPHY

[Grochawski, 2000] Grochowski, E. (2000). Staage price projedions.
http://www.storageibm com/tectnolo/grochows/g05.itm.

[Grochawski and Hoyt, 1996] Grochowski, E. G. andHoyt, R. F. (1996). Futuretrendsin harddisk

drives In IEEE Transadionson Magneics, volume32.

[Haerder and Reuter, 1983] Haeder, T. and Reuter, A. (1983). Principles of transadion-oriented
database recmvery. ACM Computing Surveys 15(4):287-317.

[Harchd-Balter and Downey, 1995] Harchol-Balter, M. and Downey, A. B. (1995. Exploiting lif e-
time distributions for dynamicload bdancing. Operating Systems Review, 29(5):236.

[Hartmanand Ouderhout, 1998] Hartman, J.andOugerhout, J.(1993). The Zebrastriped network
file system. In Procealingsof the 14th ACM Sympasium on Operating Systems Principles pages
29-43, Asheville,NC, USA.

[Hartmanetal., 1999] Hartman J. H., Murdock, ., and Spdink, T. (1999). The Swamm scalabe
storage systan. In Procealings of the 19th IEEE International Corferenceon Distributed Com-
puting Sysems(ICDCS’99).

[Heidemam and Popek, 1994] Heidemann,J.S.and Pogek, G.J.(1994). File-yystemdevelopmert
with stadkable layas. ACM Transactions on Computer Systems, 12(1):58-89.

[Herrin, Il and Finkel, 1993] Herrin, I, E. H. ard Finkel, R. A. (1993). Servicerehalancing. Tech
nical Report CS-235-93, Department of Compute Science, University of Kentucky.

[Hitz etal., 1990] Hitz, D., Harris, G., Lau, J.K., andSchwartz, A. M. (1990). Using UNIX asone
comporent of alightweight distributed kerrel for multiprocesso file severs. In Procealings of
the 1990 Winter USENIX Corferenc, pages285-295.

[Hitz etal., 1994] Hitz, D., Lau, J.,and Malcolm, M. (1994). File system design for an NFS file
saver apgdiance. In Procealings of the USENIX Winter 1994 Technical Corference, pages235-
246, San Frarmsisco, CA, USA.

[Holland etdl., 1994 Holland, M., Gibsm, G. A., andSiewiorek, D. P. (1994). Architectures ard
algorithms for on-line failure recovery in redundant disk arays. Journal of Distributed and
Parallel Databases, 2(3):295-335.

BIBLIOGRAPHY 23

[Hollebeek 1997] Hollebeek,R. (1997). Spurring ecaromic development with large scde informa-
tioninfrastructure In Procealingsof the 4th Inernational Corferenceon Compuational Physics

Singegpore.
[Horst, 1995] Horst, R. (1995). TNet: A reliable systemarea network. |EEE Micro, 15(1):37-45.

[Howardetal., 1988] Howard, J.,Kaza, M. L., MeneesS. G.,Nichds, D. A., Satyamarayanan M.,
Sidebotham, R. N., ard West M. J. (1988). Scde and performancein a distributed file system.
ACM Transactions on Computer Systamns, 6(1):51-81.

[Hsieh etal., 1993] Hsieh, W., Wang, P., and Weihl, W. (1993). Computaion migration: Enhandng
locality for distributedmemoy parallel systams. In Proceedngs of the Fourth ACM SIGPLAN
Symposum on Principles and Practice of Parallel Programmng, San Diego, CA.

[Hunt ard Scott, 1999 Hunt, G. C. and Scott, M. L. (1999. The Coign automatic distributed par
titioning system. In Proceedings of the 3rd Sympaium on Opeaating Systems Desgnand Imple-

menation, pages 187-200, New Orlears, Louisiana.

[Hyltonet al., 1996] Hylton, J., Manhemer, K., Drake, Jr., F. L., Warsaw, B., Mas®, R., ard van
Rossim, G. (1996). Knowbot programming: System support for mohile agents In Proceedings
of the Fifth International Workshgo on Object Orientation in Opefating Systams, pages 8-13,
Seattle, WA.

[Intel, 1995] Intel (1995). Virtud interface(VI1) architecure http://www.viarch.ag/.

[Jones, 1998] Jones, A. (1998). Creaing and suskining competitive advaniage. http://www.one-

everts.com/sides/dratuy.

[Juletal., 1983] Ju, E., Levy, H., Hutchinsm, N., and Black A. (1988). Fine-grainedmohility in
the Emerald system. ACM Transactionson Compuer Sysems 6(1):109-133.

[Keebnet al., 1998] Keetm, K., Patterson D., andHellerstan, J. (1998). A casefor intdligert
disks (IDISKs). SIGMCD Recad (ACM Spedal Interest Group on Managemen of Data),
27(3):42-22.

[Khalidi andNelson, 1993] Khalidi, Y. and Nelson M. (1993). Extersibe file systemsin Spring.
In Procealingsof the 14th ACM Symposum on Opeating SysemsPrinciples pages 1-14.

236 BIBLIOGRAPHY

[Kim, 1986] Kim, M. Y. (1986). Synchronizeddisk interleaving. In IEEE Transactions on compu-
ers number 11, pages978-983.

[Knabe, 1995 Knabe F. C. (1995). Language Support for Mobile Agens. PhD thesk, Camegie
MellonUniversity, Pittsburgh, PA. Alsoavailade asCarrgie Mellon School of Compuer Sciene
Techrical Reprt CMU-CS-95223 and EuropeanComputer Industry Centre Technical Report
ECRC-95-36.

[Kriegerand Stumm, 1997] Krieger, O. and Stumm, M. (1997). HFS: A perfformane-ariented flex-
ible file systembasedon building-block compasitions. ACM Transactions on Computer Sysems
15(3):286-321.

[KungandRobinsan, 1981] Kung, H. T. and Rokinson, J. T. (1981). On optimistic methods for
concurreng cortrol. ACM Transactions on DatabaseSysems 6(2):213-226.

[Lambetal., 1991] Lamb, C., Landis, G., Orerstdn, J., andWeinreb,D. (1991). The ObjectStae
database systan. Communications of the ACM, 34(10):50-63.

[Leeand Thekkath, 1996 Lee, E. K. and Thekkath, C. A. (1996). Petal: Distributed virtud disks.
In Proceedngs of the 7th International Corference on Architectural Sypport for Programming
Languages and Opefating Sysems pages84—-2, Cambridge Massachusets.

[Long etal., 1994 Long, D. D. E., Montague, B. R., and Cabrera, L.-F. (1994). Swift/RAID: A
distibuted RAID system. Computing Sysems 7(3):333-359.

[Lycos,1999] Lycos (1999). Squeezing it al into top-shdf storageRising starage
demang drive firms to capacity planring and managmert. http://www.zdnet.-
org/eweekllstoriesfereral/011011 389633 00.html.

[M. Livny ard Boral, 1987] M. Livny, S.K. and Boral, H. (1987). Multi-disk maragemert algo-
rithms.In Proceedngsofthe 1987 ACM Conferenceon Measuemetiand Modeling of Computer
Systems (ACM SIGMETRICS), pages69-77.

[Maedaand Bershal, 1993] Maeda C. and Bershad B. (1993). Protocd service decomposition
for high-performane networking. In Procealings of the 14th ACM Symposum on Operating
Systems Prindples pages244-255.

[McKusck et al., 1984] McKusick, M., Joy, W., Leffler, S, andFalry, R. (1984). A fastfile sygem
for UNIX. ACM Transactionson Compuer Sysgems 2(3):181-197.

BIBLIOGRAPHY 237

[McKusick et al., 1996] McKusick, M. K., Bostic, K., Kards, M. J.,and Quateman, J. S. (1996).
The Design and Implementation of the 4.4BSDOperating Sysem Addison-Wedey Pubishing

Company, Inc.

[McVoy ard Kleiman, 1991] McVoy, L. and Kleiman, S. (1991). Extent-like performance from a
UNIX file system. In Proceedings of the USENX Winte 1991 Technical Corference, pages
33-43, Ddllas, TX, USA.

[Metcalfe and Boggs,1976] Metcdfe, R. M. and Boggs D. R. (1976). Ethemet Distributedpadet
switching for local compuer networks. Communtationsof the ACM, 19(7):395-404.

[Mil Is, 1988] Mills, D. L. (1988). Network time protocd: spedfication and implementation.
DARPA-interngt RFC 1059.

[Mullender etal., 1990] Mullende, S. J.,van Rossun, G., Tanerbaum, A. S., van Reresg, R., ard
vanStaveren H. (1990). Amoeha: A distributedoperating sygemfor the1990s IEEE Computer
Magazing, 23(5):44-54.

[Muntz and Lui, 1990] Muntz, R. and Lui, J. (1990). Performarce aralysis of disk arrays under
failure. In Procealings of the 16th Corference on \ery Large Data Bases(VLDB), pages162—
173, Brisbane, Queersland, Australia.

[Neuman ard Ts'o, 1994] Neuman B. C. and Ts’o, T. (199). Kerbercs: An authentication sewice

for computer networks. In IEEE Commurications, volume 32, pages 33-33.

[News,1998] News, I. (1998). Price Waterhouse predcts explosive e-commece growth.
http://www.intemenews.can/ecrews/aticle/0,1087,4.26631,00.1ml.

[NIST, 1994] NIST (1994). Digital signature stancard NIST FIPS Pub 186.

[Noble etal., 1997] Noble, B. D., Satyanaayaman, M., Narayaran, D., Tilton, J. E., Flinn, J., ard
Walker, K. R. (1997). Agile applicaion-aware adgtation for mobility. In Proceedngs of the
16th ACM Sympasium on Operating Systans Principles, pages276-287, Saint Malo, Frane.

[0S Standad, 1986] OSI Stardard (1986). OSI Trarsport Protocol Spedfication. Tecmical Re-
port ISO-8073, 1SO.

[O'Toole andShrira, 1994] O’ Todle, J. and Shrira, L. (1994). Opportunistic log: Efficient instdla-
tionreadsin areliable storagesewner. In Procealingsofthe 1stUSENIX Symmsiumon Operating

238 BIBLIOGRAPHY

Systems Design and Implementation (OSDI): Novemler 14-17, 1994, Monterey, CA, USA, pages
39-48.

[Ouderhout, 1990] Ouderhout, J. K. (1990. Why aren’t operating systemsgetting faste asfastas
hardware? In Procealings of the Summer 1990 USENIXConf, pages247-256, Anahem, CA
(USA).

[Ougerhout etal., 1985] Oustehout, J. K., Coda, H. D., Harrison, D., Kunze J. A., Kupfer, M.,
and Thompsan, J. G. (1985. A tracedriven andysis of the Unix 4.2 BSD file system. In
Proceedngs of the 10th ACM Symposum on Opeating SysemsPrinciples, pages15-24, Orces
Island, WA.

[Papadimitriou, 1979] Papadmitriou, C. H. (1979). The seializability of concurrentdatebaseup-
daes Journal of the ACM, 26(4):631-663.

[Pattersan etal., 1988] Patterson, D., Gibson G., and Katz, R. (1988). A casefor redundant ar
rays of inexpensve disks (RAID). In Procealings of the 1988 ACM SSGMOD Internationd
Corferenceon Managememof Data, pages109-116, Washington, DC, USA.

[Pattersan etadl., 1995] Patteron, R. H., Gibsan, G. A., Ginting, E., Stoddsky, D., and Zelenka,
J. (1995). Informedprefetching and caching. In Procealings of the 15th ACM Sympasium on
Opermating SysemsPrinciples pages79-95, Copper Mountain Resat, CO.

[Pierce,1989] Pierce P.(1989). A concurentfile systemfor ahighly pardlel mass storage systam.
In Procealings of the 4th Confererce on Hypeacube Concurrert Computers and Applications
pages 155-160, Monterey, CA.

[Powell and Mil ler, 1983] Powell, M. L. and Miller, B. P. (1983). Proess migrdion in DE-
MOS/MP. In Procealings of the 9th Symposum on Operating System Principles, pages110-
119.

[Ramhus,2000] Ramhus (2000). Ramlus for smal, high peformance memory sysems http://-

www.ramlus.com/developer/downloadgValue_Proposttion_Networking.html.

[Remds, 1980] Remels, D. A. (1980). Distributed fault-tolerant computer systems. IEEE Com-
puter, 13(3):39-46.

BIBLIOGRAPHY 239

[Richard Rashid, 1986] Richard Rashid (1986). From RIG to Accent to Mach: The evolution of
a network operating sydem. In Proceedngs of the ACM/IEEE Computer Society Fall Joint
Compter Corference, pages1128-37.

[Riedel, 1999 Riedd, E. (199). Active Disks- Remog Exeation for Network-Attached Staage
PhD thess, Depatmert of Eledrical Engnnering, Carregie Mellon University, Pittsturgh, PA.

[Riedel et al., 1998] Riedel, E., Gibsm, G., ard Faloutscs, C. (1998). Active storagefor large-<ale
daamining and multimeda. In Proceadings of the 24th International Corference on \ery Large
Databases(VLDB), pages62—73, New York, NY.

[Rosendum, 1995] Roserblum, M. (1995). The Design and Implementation of a Log-structured
File Systan. Kluwer AcademicPublishers, Norwell, MA, USA.

[Sardbeg etal., 1985] Sardbery, R., Goldbery, D., Kleiman, S., Walsh, D., andLyon, B. (1985).
The design and implementation of the Sun network filesystem. In Proceedngs of the USENX
Summer 1985 Technical Confererce pages119-130.

[Satyararayaran 1990] Satyanarayanan, M. (1990). Scahble, seare and highly available distr
buted file acess. IEEE Compuer, 23(5):9-21.

[Schulzeetal., 1989 Schulze,M., Gibson, G, Katz, R., and Pattersan, D. (1989). How reliableis
aRAID? InIntellecual leverage, COMPCON Spring 89, pages 118-123 SanFrandsco (USA).
IEEE.

[Seag#e, 1999] Seayate(1999). Jini: A pathway for intelligent network starage. Pressrelease,
http://Amww.seagae.can:80/hewsinfo/newsroom/papers/D2cl.himl.

[Shirley et al., 1994] Shirley, J., Hu, W., ard Magid, D. (1994). Guide to Writing DCE Applica-
tions O'Reilly & Assodates,Inc., Sebatgpd, CA 95472, secand edition.

[Spdink etal., 1998] Spdink, T., Hartman, J., ard Gibson, G. (1998). The effect of mohile code
onfile senvice. Technical Reprt TR98-12, The Depaitmentof Computer Sciene, University of

Arizona

[Stame andGifford, 1990] Stamos J. W. ard Gifford, D. K. (1990). Remote evaluaton. ACM
Transactionson Programmng Languagesand Sysems 12(4):537-565.

240 BIBLIOGRAPHY

[Stoneand Bokhaii, 1978] Store,H. S. and Bokhari, S. H. (1978). Cortrol of distributed proces®s.
IEEE Computer, (7):97-106.

[Straeretal., 1996] Strae, M., Baumann, J.,andHohl, F. (1996). Mole —aJava basad mobile agert
systam. In Procealings of the 2nd ECOOP Workshop on Mobile Object Systars, pages 28-35,

Linz, Austria.

[Tanenbaum,1992] Tanenbaum, A. S. (1992). Modern Opeaating Systans. Prentice Hall, New
Jasey.

[Techndogy, 1998] Techndogy, S. (1998). Cheetah: IndudrylLeading Performarce for the Most
Demarding Application. World Wide Web, http://www.seagae.camn/.

[Theimeretal., 1985] Theimet M., Lantz, K., and Cheriton, D. (1985). Preemptdle remote exe-
cution faciliti esfor the V-Sysem. In Proceedings of the 10th Sympasium on Opeating Systam
Principles pages 2-12.

[Thekkathet al., 1997] Thekkath, C. A., Mann, T., and Leg, E. K. (1997). Frangipani: A scalabe
distibuted file sygem. In Proceedings of the 16th Symmsiumon Opemting Systans Principles
(SOSP-97), pages224-237, Saint Malo, France.

[TPC,1998] TPC (1998). TPC-CandTPGD exeautive summaiies. http://www.tpc.omg/.

[TriCore News Release 1997] TriCore News Release(1997). Siemens’ new 32-bit embedled chip
architedure emaldes next level of performarce in real-time electronics design. http://www.tri-

core.aom/.

[University of AntwerpInformaion Sewice,2000] University of Antwerp Information Service

(2000). Campuscomectivity statusmap http://www.uia.acbektciinterret.itml.

[VanMeteret al., 1996] Van Meter, R., Finn, G., andHotz, S. (1996). Derived virtud devices A
secure distributed file system medarism. In Proc. Fifth NASA Goddard Corference on Mass
Sorage Sygemsand Techndogies, pages95-97, College Park, MD.

[Vetter, 1995] Vetter, R. J. (1995). ATM concepts, architedures,and protocols. Comnunications
of the ACM, 38(2):30-38.

[vonEicken etal., 195] von Eicken T., Bady, A., Buch, V., and Vogds, W. (1995). U-Net: A
userlevel nework interface for parallel ard distributed compuing. In Proceedings of the 15th

BIBLIOGRAPHY 241

Symposumon Opeating Systams Principles(SOSP-95), pages40-53, Coppea Mountain Resat,
Coloradb.

[Waton and Coyne 1995] Watsan, R. andCoyne, R. (1995). The parallel 1/0 architedure of the
high-performane staage systen (HPSS). In Procesdngs of the 14th IEEE Symposum on Mass
Sorage Sysems pages27-44.

[Wilkes, 1995] Wilkes, J. (1995). The Partheonstorage-system simuator. Hewlett-Packard Labo-
ratories Technical Report HPL-SSP-%5-114.

[Wilkesetal., 1996 Wilkes, J., Golding, R., Staein, C., and Sullivan, T. (1996). The HP Au-
toRAID hierarchical storage sydem. ACM Transactions on Compuer Sysems 14(1):108-136.

[Wong ard Wilkes 2000] Wong, T. and Wilkes, J.(2000). My cadeor yours? In preparation.

[Yeeand Tygar, 1995] Yee, B. S. ard Tygar, J. D. (1995). Seaure coprocessas in electronic com-
merce applications. In Procealingsof the 1995 USENIX Electronic Comnerce Workshop, pages
166-170, New York, NY (USA).

[Zhou etdl., 192] Zhou, S, Wang J.,Zheng, X., and Delisle, P. (1992). Utopia: A loadsharing
facility for large, heterogeneous distributed computing systems. Tedhnical Reprt CSRI-257,

University of Toronto.

