

4.5. SERIALIZABILITY PROTOCOLS FOR BSTS 99

Host latency Throughput Messages

(msec) (ops/sec) per operation

Centralizedlocking 63.8 800 12.6

Callbacklocking 57.0 800 11.2

Device-served locking 51.8 800 14.8

Timestampordering 51.6 800 10

Zero-overhead protocol 48.7 800 8.6

Table 4.3: Summary performance results of the various protocols under the baseline workload. The zero-

overhead protocol does not perform any control work, simply issuing I/Os to the devices and, hence, it does

not provide any correctness guarantees.

delivery latency is alsobounded, adeviceneednot accept a requesttimestampedwith avaluemuch

smaller than its current time. Hence, per-block timestampinformation older than
�

seconds, for

some value to
�

, can be discardedand a value of ����� � �
used instead (where NOW stands

for current time). Moreover, if a device is re-initiated after a “crash” or power cycle, it can simply

wait time
�

after its clock is synchronizedbeforeaccepting requests, or record its initial synchro-

nizedtimeandrejectall requestswith earlier timestamps. Therefore, timestampsonly need volatile

storage,and only enoughto record a few secondsof activity.

In our implementation, a devicedoes not maintain a pair of timestamps for each block on the

device. Instead, it maintains per-block read and write timestampsonly for those blocks that have

beenaccessed in thepast
�

seconds. Theserecentper-block timestampsaremaintained in a data

structure, known asthe timestamp log. Periodically, every
�

seconds,the devicetruncatesthe log

such that only timestampsthat are within
�

seconds of current time are maintained.
�

is known

asthe log truncation window. If an access is received to a block but the block’s timestamp is not

maintainedin thelog, theblock is assumed to haveatimestamp of ���	�
� � , where ����� stands

for current time.

To understand why log truncation does not result in unnecessary rejections, recall that host

clocks are loosely synchronizedto within tensof milliseconds and message latency is bounded, so

a new requestarriving to a device will have a timestampthat is within tensof milli secondsof the

device’s notion of current time. Thedevice rejects a request if its timestamp ø�÷Rï�ð doesnot exceed

the maintainedvalues of î2ï�ð and ñ ï�ð . In particular, thedevicewill unnecessaril y reject the request

when ø�÷dï�ð exceeds the“real” readandwrite timestamps, î�����,î�ï�ð and î������,ñòï�ð , but when ø³÷xï�ð fails

100 CHAPTER 4. SHARED STORAGE ARRAYS

30µ 40µ 50µ 60µ 70µ 80µ
90µ

read fraction (%)�

00

5

10

15

16.26

m
es

sa
ge

s
pe

r
op

er
at

io
n

à
device-served locks
á
server locking·
callback lockling¸
timestamp ordering
â
zero-overhead protocolã

Figure 4.19: The effect of (read/write) workload composition on messaging overhead for the various proto-

cols. Under read-intensive workloads, timestamp ordering comes close to the zero-overhead protocol. Its

messaging overhead increases as the fraction of writes increases. However, it still performs the least amount

of messaging across the range of workloads.

to exceedthe truncated values usedby thedevice, î�ï�ð and ñòï�ð . Considering only î2ï�ð , this means

that:

î������,îwï�ð��ûø�÷Rï�ð�� î�ï�ð

Replacing îwï�ð by its truncatedvalueof ������� �
, the inequationbecomes:

î�����,î�ï�ð��ûø�÷Rï�ð���������� �

Thus,for arequestto berejectedunnecessarily, it mustbetimestampedwith avalue ø�÷Rï�ð thatis

morethan
�

secondsin thepast, where
�

isthelog truncation window. Thiscanbemadeimpossible

in practiceby selecting avalueof
�

that is many multiplesof theclockskew window augmentedby

thenetwork latency. A
�

of afew secondslargely satisfiesthis need. This minimizesthechancethat

a requestwil l be receivedand rejected becauseof aggressive reduction of thenumber of accurately

maintained timestampskept in thedevicecache.

In addition to being highly scalableasil lustratedin Figure4.18,anotheradvantageof timestamp

ordering is that it uses thesmallestamount of messaging compared to all the other protocols (Fig-

ure4.19). It hasno messaging overheadon reads, and with thepiggy-backing optimization applied,

4.5. SERIALIZABILITY PROTOCOLS FOR BSTS 101

0.5
5
�

10µ 15
�

16�
message latency window (msec)�

0.0002708

0.001

0.01

0.1

0.2738

fr
ac

tio
n

of
 o

ps
 d

el
ay

ed
� callback lockling¸

server locking·
device-served locks
á
timestamp ordering
â

Figure 4.20: The effect of the variability in network message latencies on the fraction of operation delayed

or retried for the various protocols. Message latency is varied uniformly between 500 microseconds and a

maximum value, called the window size. This is the window of variability in network message latencies. Higher

window sizes model a network that has highly unpredictable (variable) message latencies. The graph plots the

fraction of operation delayed or retried against the size of the variability window size.

it canalsoeliminatethemessaging overhead associatedwith read-modify-writeoperations.

4.5.6 Sensitivity analysis

This sectionreportson theperformanceof theprotocols over unpredictable network latencies(caus-

ing interleavedmessagedeliveries) and using fasterdisks.

Sensitivit y to network variabili ty

When several operations attempt to accessa conflicting range, the succeeding operations are de-

layeduntil thefirst onecompletes. The probabilit y of delay depends on the level of contention in

the workload. But evenfor a fixedworkload, theconcurrency control protocol and environmental

factors (e.g. network reorderingof messages)can result in different delay behavior for thedifferent

protocols. As shown in Figure 4.20and Figure 4.21, the fraction of operationsdelayed is highest

for callback locking becauseit has thehighest window of vulnerability to conflict (lock hold time).

Moreover, its lock hold time is independent of message timevariability because it is based on lease

hold time.

102 CHAPTER 4. SHARED STORAGE ARRAYS

0.5
5
�

10µ 15
�

16�
message latency window (msec)�

00

50

100

118.4

la
te

nc
y

(m
se

c)

server locking·
callback lockling¸
device-served locks
á
timestamp ordering
â

Figure 4.21: The effect of the variability in network message latencies on host latency for the various protocols.

Message latency is varied uniformly between 500 microseconds and a maximum window size. The graph plots

latency against the size of the variability window size.

Distributeddevice-basedprotocols both do better thancallback locking and server locking be-

causethey exploit piggy-backingof lock/ordering requestsontheI/Os,thereby avoiding thelatency

of communicating with the lock server before starting the I/O and shortening the window of vul-

nerabili ty to conflict. Both device-basedprotocols, however, are potentially moresensitive to the

messagetransport layer, or moreprecisely, to messagearrival skew. Messagearrival skew can cause

deadlocksandrestarts for device-served locks,and rejectionsandretriesfor timestampordering be-

causeconcurrentmulti -devicerequestsareservicedin adifferentorderat different devices.Restarts

and retriesarealso countedasdelaysand arethereforeaccountedfor in Figure4.20.

To investigatethe effect of messageskew on the delay and latency behavior of the protocols,

an experiment was conducted wheremessagelatency variabili ty was changedand the effects on

performancemeasured. Message latency wasmodeled as a uniformly distributedrandom variable

over a given window size, extending from � to ws milli seconds. A larger window size implies

highly variable messagelatenciesand leadsto a higher probabili ty of out-of-order messagearrival.

Figures4.20and4.21graph thefraction of operationsdelayedand host end-to-end latency against

thenetwork delay variabili ty window sizews. All schemessuffer fromincreasedvariability because

it also increasesthemeanmessage delivery time. However, timestampordering and device-based

locking slow down li ttle morethanthezero-overheadprotocol. But high messagevariabilit y plagues

4.5. SERIALIZABILITY PROTOCOLS FOR BSTS 103

0µ 500µ 1000µ
1350
�

total throughput (ops/sec)¶

00

10

20

30

40

50

60

62.27

la
te

nc
y

(m
se

c)
server locking·
callback locking¸
device-served locks
á
timestamp ordering
â
zero-overhead protocolã

Figure 4.22: The scalability of callback locking, device-served locking and timestamp ordering under a 40%

disk cache hit rate. The bottom-most line represents the performance of the zero-overhead protocol. While

timestamp ordering and device-served locking continue to approximate ideal performance at higher hit rates,

callback locking bottlenecks at a fraction of the achievable throughput.

thecentralizedlocking variantssignificantly moresincethey performmorepre-I/O messaging.

Sensitivit y to faster disks

Finally, oneexperiment wascarried out to try to anticipate the performanceof theprotocols when

faster disks are used. Disk drive accessperformance is expected to keep growing asa result of

evolutionary hardware technology improvements (e.g. higher densities leading to higher transfer

rates), theintroductionof new technologies(e.g.solid-statedisksleading to reducedaccesstimes) or

deviceeconomics(droppingmemory pricesandincreaseddevicefunctionality [Gibson etal., 1998]

leading to larger on-diskcachememorysizesand thereby reduced access times).

To simulatetheeffect of faster disks,an experiment wascarriedout wherethehit rateof thedisk

cachewasincreased andscalability of theprotocols under theseseemingly faster disks measured.

As shown in Figure4.22, callback locking doesnot keepup with thethroughput of the faster disk

drives. Device-served locks andtimestampordering, on the other hand, continue to approximate

idealscaling behavior.

104 CHAPTER 4. SHARED STORAGE ARRAYS

4.6 Caching storagecontrollers

In thediscussion sofar, we assumed that data caching is performed on thedevice side. The client-

side controllers did not cache data or parity blocks. This design implies that a read by a BST

executing at a storage controller invokesa message to the device storing that data. The device

servicesthereadand returnsthe data to the requesting controller. The controller passes this datato

thehostor usesit to computethenew parity, but in eithercasesdiscards it after theBST completes.

Sucha cache-lesscontroller design is acceptable when the storage network connecting de-

vicesand controllers has relatively high-bandwidth and low latency. In such a case, the time

taken by a controller to read a block from a device’s cache is comparable to a local read from

the controller’s own memory. If this holds, there is benefit from avoiding double-caching the

data blocks at thestorage controller. Controller-sidecaching is wasteful of memory since a block

would be soon replicated in the device’s cache and in the controller’s cache. It also induces un-

necessary coherence traffic when blocks arecached at multiple controllers have to be kept up-to-

date [Howard etal., 1988, Lamb etal., 1991, Carey etal., 1994]. This coherencetraffic canhave a

negativeeffect onperformanceunderhigh contention.

False sharing occurs when higher level software is writing to objects that are smaller than the

block-size of thecontroller’s cache, called the “cacheblock size.” In this case,two applicationsor

application threadsrunning on two clientscanbewriting to two objects which happento fall in the

same “storage block.” Such a scenario induces coherence traffic between the controllers to keep

their copiesof the block up-to-date even though theremay be no overlapping accesses. Another

kind of false sharing arises from contention over parity blocks when two controllers write to the

same stripe. Becausefalse sharing is expected at the storage layer, it is generally undesirable to

cacheat theparallel controller or hostunlessthenetwork is substantially slower thanlocal accesses.

Another reason against caching is the fact that higher level system software, e.g. filesystems and

databases,have their own caches,which will absorb “ locality induced” reads. Replicating these

blocks in thehost’s filesystembuffer cacheand in thecontroller’s cache is wasteful of memory.

So, if thefilesystem or database cache absorbs most application reads, when is caching at the

parallel controller useful atall? Caching at thecontroller canyieldperformancebenefitsin anumber

of situations. First, caching at thecontroller avoids thenetwork andreducesthe loadon thedevices.

When the network is slow, this can translate into dramatic benefits. Furthermore, offloading the

devices improve scaling. For example, controller-side caching caneliminate the “ read phase” in

two-phased BSTs. Many BSTs described in Section 4.3 pre-reada data or a parity block before

4.6. CACHING STORAGE CONTROLLERS 105

N
ü

etwork
S
�

witched

 ����

..

C
�

C
�

C
�

C
�

C
�

.

S
�

torage devices

hostread/hostwrite

reply

 ����

�

�

�

 ����

!#"%$'&("')#!
!#)#*+)

hostread/hostwrite

reply

hostread/hostwrite

reply

c
	
ache s

�
torage deviec

Figure 4.23: In a caching storage array, parallel storage controllers receive host requests and coordinate

access to the shared storage devices. Data blocks are cached at the device where they are stored and also

on the storage controllers. Consequently, some reads in a BST are serviced from the cache on the controller,

avoiding a network message to the device.

writing it. Caching theseblocks on the controller sidecanavoid network transfers from the device

caches. This cantranslateinto dramatic reductionsin latency whenthe network is overloaded, and

when there is litt le write contention acrosscontrollers for blocks. Low contention increases the

chancethata block cachedat controller A is not updated by another controller beforecontroller A

accessesthesameblockagain, making caching it worthwhile.

Caching at theparallel controller can alsoprove useful when the application working setdoes

not fit in the filesystem cache. In this case, the controller’s cache can be used to cache blocks

that have been evicted from higher-level caches (the filesystem buffer cache for example). The

controller in this casemust coordinate its cache replacement policy with the higher level cache.

Recent work has shown that such an approach can yield sizeable benefits for certain applica-

tions[WongandWilkes,2000].

Figure4.23depictsasharedarraywheredatablocksarecachedattheparallel storagecontrollers

aswell at thestoragedevices. When a storage controller caches data andparity blocks, pre-reads

can besatisfied from its local cache. Precisely, a read by a BST executing locally can beserviced

from thelocal cache.

The distributedserializabilit y protocols discussed in the previous section do not readily apply

to this architecture. Both device-served locks and timestamp ordering rely on the storage device

106 CHAPTER 4. SHARED STORAGE ARRAYS

receiving requeststoperformconcurrency control checksbeforeservicing them.Going to thedevice

for serializability checks when thecontroller has the datain its cache seemsto defeat thepurpose

of client-side caching. This section focuses on the two distributedprotocols which were shown in

the previous sectionsto have nicescaling properties.It outlineshow they can be extendedto allow

effective controller-side caches. We assume that for both protocols, storagecontrollers cache data

blocks in a local cache, called the controller cache. A devwrite writesdata through the cacheto

the storage device, updating both the local copy andthestoragedevice. A devread is servicedby

checking thecache first. If a valid copy exists, the block is read locally, otherwisea it is retrieved

fromthestoragedevice.

4.6.1 Device-served leases

As in device-served locking in Section 4.5.4, locks areacquired from the devices. The protocol

is also two-phase, guaranteeing serializability: All locks needed for the execution of a BST are

acquired before any of them is released. The key differencebetween device-served locking and

device-served leasesis that in the latter, the locks are not released immediately after they areac-

quired in thefirst phase.Instead, locksarecachedat thehost. Consequently, bothablock’scontents

and the associated lock are cachedby the controller. A devread is serviced exclusively from the

controller’s localcache if both theblock and a lock for it are found in thecontroller’s cache.

Like thecallback locking approach of Section 4.5.2,locks expire after a specified time period,

hence thename“ lease”. This time period is known asthe lease duration. A lock is valid until the

leasedurationexpiresor until it is explicitl y revokedby thedevicein a revokeLeasemessage(which

is analogousto a callback). When a lease expires or is revokedby the device that granted it, the

block in thecacheis consideredinvalid and is logically discarded from thecache. A BST devread

would then have to be forwarded to the device. The devread is piggy-backed with a lock request

asin device-servedlocking. Thecontroller sends a lock-and-devread messageto the device,which

respondswith thedataafter thelockcanbegrantedto the requestingcontroller.

Figure 4.24 depicts how these BSTs break down into basic operations. The piggy-backing

optimization is stil l applied. If a block is not found in the cache, a lock-and-devreadrequest is sent

to the device where the block is stored. However, locks are not released in the post-readphase, but

are instead cached locally. On the device-side, requests to lock, readand write are serviced asin

device-served locking,except for onedifference. In device-servedlocking, locksarenot cachedand

are released immediately after the BST completes. Thusa device that can not grant a lock due to

4.6. CACHING STORAGE CONTROLLERS 107

b
º
egin hostwrite

b
º
egin hostread

t
È
wo-phase wr ite s

Ï
ingle phase r e

Ð
ad

b
º
egin hostwrite

s
Ï
ingle phase wr ite

L
×

R LR LR

W
Ú

 W
Ú

 W
Ú

L L
×

 L
×

W
Ú

 W
Ú

 W
Ú

LR LR LR

e
»
nd hostread

e
»
nd hostwritee

»
nd hostwrite

C
Ü

C
Ü

C
Ü

A

A

Figure 4.24: The breakdown of a host operation with device-served leasing with piggy-backing. An ‘L’ node

represents a lock operation, ‘LR’ represent the lock-and-devreadoperation, while ‘W’ stands for devwrite. A lock

(’L’) request is satisfied locally if the lock is cached and the lease has not yet expired. A ‘LR’ is satisfied locally

if the block is in the cache and the associated lease is valid. If the lease is invalid, then a message is sent to

the device to refresh the lock (‘L’ request) or to refresh the lock and read the block (‘LR’ request). The edges

between the nodes represent control dependencies. A ‘C’ node represents a synchronization point at the host

as before.

a conflicting outstanding lock queues the request until theconflicting locks are released. However,

in device-served leasing, the device does not wait for the controller to releasethe lock, since the

controller is caching it and will not spontaneously releaseit. Thus, the device explicitly revokesall

valid conflicting locksgranted(locksthathavenot expired) by sending revokeLeasemessagesto the

cachingcontrollers.

To simplify recovery, it is requiredthatacontroller not updateany block until thecommit point,

whenall needed locks have beensuccessfully acquired. However, in device-served leasing, locks

can eventually expire leading to some tricky complications. It is possible that a controller acquires

thefirst lock, but waits to acquiretheremaining locksso longthatthefirst lock becomesinvalid (the

leaseperiod passes). In this case,the first lock is re-acquired. The commit point is reached only

afterall the lockshavebeen acquiredandareall valid.

On recovery from a soft fault (e.g. power-fail), the device can not grant a lock to a controller

if a valid conflicting lock exists at another. If information about outstanding leasesat thedevice is

maintainedin volatile memory, the device must wait until a safe period after restart before it can

grantlocksagain. Thissafe period can beasshort as theleaseperiod but not shorter.

Therecoveryprotocols discussed in Section 4.7require,for performancereasons,thatthedevice

108 CHAPTER 4. SHARED STORAGE ARRAYS

beable to identify theset of leasesthat maybevalid and outstanding at the controllersat theevent

of a failure. This identification doesnot have to beaccurate and canover-approximate this set, as

longas it is a relatively small fractionof theblockson thedisk.

4.6.2 Timestampordering with validation

Device-servedleasing distributescontrol work acrossthedevicesand hosts. It doesnot havea cen-

tral scalabili ty bottleneck. Nevertheless, it hastwo serious disadvantages. First, it cansuffer from

degradedperformanceundercontention. Lock acquisitioncanhavesubstantial latency due to revo-

cation messaging. Furthermore,spuriousrestartsunder contention cancausedegradedperformance.

Second, it is relatively complex to implement. Timestamp ordering has thescalability advantages

of device-served leasing without the vulnerabili ty to contention or to spurious restarts (since it is

deadlock-free). Timestamp ordering, however, doesnot readily support caching and it hasno locks

which can beeasily overloadedto ensurecachecoherence.

To extend timestamp ordering to support controller-sidecaching in a straight-forwardmanner,

we wil l replacecache hits with version test messagesto thedevices.This will only have a negative

on read hit latency if all data needing to be read is in the controller’s local cache. The controller

cachesdata blocks together with their write timestamps, ñ ï�ð . Each block in a controller’s cacheis

associatedwith an ñòï�ð , which is the write timestamppublicized by the device for that block when

the controller readthe block into its cache. Intuitively, this ñòï�ð canbe thought of as a version

number. If another controller writes its copyof theblock, the ñ ï�ð for thatblock is updatedon the

device, logically making theversion cachedby othercontrollersinvalid. It suffices to compare the

local ñ ï�ð in thecontrollercachewith thatmaintainedat thedevice to verify whether thedeviceand

controller blocksare thesame.

Thecontrollersand devicesbehaveasin thebasic timestampordering, except for thereadphase

of a single or two-phase BST. In this case, the controller services the readfrom its local cache if

a local block exists. To validate that the local version of theblock is not stale and thereby is safe

to read, a readIfInvalid 1 messageis sent to the device for eachblock. This messagecontains the

timestamp of theBST, ø³÷xï�ð , and thewrite timestamp of theblock readfrom thecache, ñ ï�ð . If the

ñ ï�ð of thecachedblockmatchesthe ñ ï�ð maintainedby thedevice, thentheread performed by the
1This means readif the local copycachedat thehost is invalid. Thedevice either returnsanOK response validating

thatthe localcopycached at thehost is valid, or, if thevalidation fails, returnsthenew contentsof the blockand the new

associated,.-(/ .

4.6. CACHING STORAGE CONTROLLERS 109

b
0

egin hostwrite

b
0

egin hostread

two-phase wr ite single phase r ead

b
0

egin hostwrite

single phase wr ite

RP R
1

IIP RIIP

W
2

 W
2

 W
2

P P P
3

W
4

 W
4

 W
4

R R
5

II R
5

end hostread

end hostwriteend hostwrite

C
6

 C
7

r8 estart
restart

Figure 4.25: The composition of host operations in the TSOV protocol. devread, devwrite, and prewrite requests

are denoted by ‘R’, ‘W’ and ‘P’ nodes respectively. A ‘RII’ denotes a readIfInvalid request which is issued in

lieu of a read if the block is found in the cache. This request includes the wtsof the cached block and instructs

the device to read and return the block only if the cached version is invalid. If the cache block is valid, the rts

is updated at the device and a positive reply is returned. A ‘RP’ denotes a read-and-prewrite request. An ‘RP’

request is issued if the block is not in the cache. If the block is found in the cache, a readIfInvalid-and-prewrite

(‘RIIP’) is issued. A ‘C’ node represents a synchronization barrier at the host as before.

controller from its own cacheis valid. In this case, the device updates the îwï�ð of the block to ø�÷Rï�ð
and returnsanOK response. If the ñòï�ð of the cachedblock is different from that maintained at the

device, thenthereadis not valid. In this case, two things can happen. If ø�÷Rï�ðõù ñ ï�ð , the block is

returnedand î2ï�ð is updated to be ø³÷xï�ð if ø³÷xï�ð exceeds îwï�ð . If ø�÷Rï�ð9� ñòï�ð , the request is rejected

and the client will retry with a higher timestamp. This protocol is called timestampordering with

validation (TSOV).

Figure 4.25 depicts how BSTs breakdown into basic device operations. In TSOV, the device

checksprewritesandwritesasin thebasicTSOprotocol. Readsarehandleddifferently asexplained

above. In thecaseof a two-phaseBST, the read-and-prewrite becomesa read-and-prewrite if the

blockis not found in thecacheor areadIfInvalid-and-prewriterequest if it is. If validation succeeds,

no data is returned by thedeviceand theblock in the local cache is used.

Thedevice maintains its timestamplog by rounding up all ñòï�ð ’s that aremore than
�

seconds

in the past to the value of ���	� � �
. As explained in Section 4.5.5,this does not compromise

the correctness of basic timestampordering. In the caseof TSOV, the effect of this rounding up

can result, however, in readIfInvalid requests failingvalidation despite thefact that thecached copy

at thehost is valid. Whenthewrite timestampassociated with a block is truncated, i.e. increased,

the next readIfInvalid request from a host will fail because the ñ ï�ð maintainedby thehost will be

110 CHAPTER 4. SHARED STORAGE ARRAYS

0µ 100µ 200µ 300µ 400µ
412.6

total throughput (ops/sec)¶

00

20

40

60

80

92.29

la
te

nc
y

(m
se

c)

device-served locks
á
device-served leases
á
timestamp validation
â

Figure 4.26: The scalability of device-served leases and timestamp ordering with validation. The storage

controllers have a local cache that is big enough such that no blocks are evicted because of limited cache

capacity. The lease duration is 240 seconds, and the timestamp log truncation window is 300 seconds. The

graph also shows the performance of device-served locking (which is also representative of that of basic

timestamp ordering) when the controllers do not cache any blocks.

smaller thanthe truncatedvaluemaintainedby the device. This inducesanunnecessary readof the

data from the device. Therefore, in TSOV, the timestamplog truncation window must be longer

thanafew seconds. For theimplementation evaluated in thissection, avalueof 5 minuteswasused.

The following subsections compare and contrast the performance of the cache coherent dis-

tributed protocols. In particular, the evaluation criteria are takento bethe latency of completing a

BST, theamount of network messaging performed,the fraction of operations delayed or blocked,

thesizeof device-sidestate,and theimplementationcomplexity of theprotocols (both atthedevices

and at thecontrollers).

4.6.3 Latency and scaling

Recall thata caching storage controller forwardsdevwritesto thedeviceunder both protocols. De-

vreads, however, arehandled differently. Under TSOV, a control messageis sent to the device to

validatea locally cached block and local contents are readif the validation succeeds. If the vali-

dation fails, the device returns the new contents of the block or the request is rejected (dueto an

unacceptable timestamp). Consider the case of low contention, where blocks cached at one con-

4.6. CACHING STORAGE CONTROLLERS 111

troller arenot soonwrittenby another. In thiscase,thevalidationwill often succeed. Thedifference

betweenTSO andTSOV is that the latter convertsthe pre-reads or readsin case of a cache hit to

a control messageexchange with the device. Device-servedleasing (DLE) completely eliminates

messaging in caseof acachehit. Theblock isread fromthecacheif thelocally cached leaseisvalid.

However, whena lock is not cachedlocally at the host, one must beacquired from thedevice. The

device must recall all the conflicting and outstanding leasescachedby all hosts beforeresponding

to therequesting host. This induceslatency whenan exclusive lock is requestedby a controller for

ablock that hasbeencachedat many hostsin shared mode.

Themajor vulnerabili ty of device-servedleasingis that this work is performed by thedeviceand

not by the controller which can load the device in large systems. Under timestampordering with

validation, ahostA writes to thedevicesby sending aprewritemessagein afirst phasefollowed by

a write messagein a second phase. Other hosts that have a cachedcopy of the block written to by

host A are not notified. They wil l discover that theblock hasbeenupdated when and if they try to

validate thereadlater. Thework to keepthe caches coherent is delayeduntil (and if) an accessis

performed.

When eachhost accessesa different part of the device, leasing works well. However, when

controllersshare accessto thesamedevicesand objects, device-served leasing can be expected to

suffer becauseof increasedmessaging and device load. Sharedarraysarenot characterizedby sep-

aratelocality ateach controller, however. First, becauseclusterapplications running on topof them

oftenbalanceloaddynamically acrossthehostsresulting in blocksbeing accessed by multiplehosts

within ashort period of time. Second, even if applicationshave locality in thelogical addressspace,

RAID can maptwo logically different objects to thesame stripe set. This inducescontention not

only on the parity blocks but also on thedata blocks themselvesdue to RAID write optimizations

which sometimesrequire reading blocks that arenot being updated. Under highcontention, valida-

tion messagesof TSOV will oftenfail, andthedevicewill thenreturn thenew contentsof theblock.

TSOV thus reducesin this caseto basic timestamporderingwith no caching. DLE under highcon-

tention also generatesa lot of lease revocationswhich also makeit perform asbasic device-served

locking. The revokeleasemessage in DLE is theequivalent of theunlock messagein device-served

locking. However, adevice underDLE is expectedto suffer from blocking longerbecauseits locks

are distributed acrosshosts and revocations will tend to be queued and wait for service at more

nodes. More importantly, DLE is more vulnerable to deadlocks than basic device-served locking

because longer blocking timescause more spuriousdeadlock detection time-outs, each initiating

112 CHAPTER 4. SHARED STORAGE ARRAYS

99.98
200µ 300µ 400µ 500µ

550.1µ
throughput (ops/sec)ß

00

5

10

15

15.75

m
es

sa
ge

s
pe

r
op

er
at

io
n

à device-served locks
á
device-served leases
á
timestamp validation
â

Figure 4.27: The messaging overhead of device-served leases and timestamp ordering with validation, com-

pared to that of device-served locking. The latter assumes no controller-side caches. Note that under high

load, device-served leasing (DLE) induces more messging than device-served locking. This is because the

fraction of operations retried (to avoid a likely deadlock) under high load is larger under DLE than under

device-served locking. Deadlock-induced timeouts are more likely under DLE because lock hold times are

longer under DLE (lease duration) than under device-served locking (duration of the operation).

restartswhich further loads thedevices.

The baseline workload and simulation parametersdescribedin Table 4.2 are used to evaluate

the caching protocols, except for the system being third as large (10 devicesand 8 hosts). Simu-

lating the more complex caching protocols requires moreresources making large scalesimulations

impractical. All thegraphs in Section 4.6and latercorrespond to 8 hostsand10 devices.

Figure 4.26plots latency versus throughput of TSOV, DLE anddevice-served locks. Device-

servedlocking corresponds to theperformancein theabsenceof host-sidecaching. Suprisingly, the

graphsshows thattimestamp ordering exhibits lower latenciesthan DLE. Both TSOV and DLE re-

ducelatenciescompared to device-servedlocking without host-side caching. However, thecaching

benefit of DLE is somewhat offset by the increasedload on the devices for leasemanagement and

recall aswell asby theincreased messaging leasesinduce when hosts contend for a sharedstorage

space.

4.6. CACHING STORAGE CONTROLLERS 113

4.6.4 Network messaging

TSOV doesnot reducethe number of messages sent on thenetwork over TSOalthough it converts

somedatatransfersto control messages, reducing thetotal number of bytestransferred. DLE,onthe

otherhand, eliminatespre-reads and reads altogetherwhena requesthits in thecachebut requires

revocation messaging whendata is shared. Figure4.27plots the averagenumber of messagesper

operation (thatis,per BST) for eachprotocol. TSOV hasa relatively constant number of messages

per BST, and equal to that of basic TSO. Similarly, device-served locking hasa relatively constant

messaging overhead. DLE starts with the lowest messaging overhead when the number of hosts

is limited(2) and few lease revocationsoccur. As thenumber of hosts in thesystem increases, the

amount of messaging requiredto revokeleasesincreases. At thesametime, leasesarerevokedmore

often, requiring hoststo re-acquire themmore frequently. Underhigh throughput, this degrades to

worse than the performanceof device-served locking becauseof the large number of operations

retried under DLE. This is due to the fact that DLE is morevulnerable to the deadlock detection

time-outs.

WhenaBSTisstartedatahost, it oftenpartially hits in thecachesuchthatsomeblocksand their

leases are found in the cachewhile someothersare not. Theblocks that are not in thecacheor for

which no valid leasesare cachedmust bere-fetchedfrom the device. This hold-and-wait condition

of holding some locks locally and attempting to acquire the rest (from multiple devices) opens

the possibili ty of deadlocks. Both device-served locking and DLE have a similar time-out based

deadlock detection mechanism at the devices. However, DLE suffers much moretimeout-induced

restarts. This is becauseDLE holdslockslongerby cachingthemand thereforeismorevulnerable to

deadlockswith many moreBSTsthatstartwhile the locksarelocally cached. Furthermore, because

the leaserevocation work at somedevicescantake considerably long, deadlockeddetection time-

outscanoftenexpire in themeantime.

4.6.5 Read/write composition and locality

Under a predominantly read workload, where blocks are rarely invalidated by writes from other

hosts, device-served leasing yieldssimilar latenciesto timestamp ordering with validationasshown

in Figure4.28. Figure4.29graphsthemessaging overheadof theprotocols asafunction of theread

traffic ratio in the baseline workload. Under a predominantly readworkload, device-served leases

induceslower messaging overheaddue to the large fraction of local cache hits. However, asthe

fraction of writes increase,and becausehosts accessa sharedstoragespaceuniformly randomly in

114 CHAPTER 4. SHARED STORAGE ARRAYS

10µ 20µ 40µ 60µ 80µ
90µ

read fraction (%)�

00

50

100

150

194.1

la
te

nc
y

(m
se

c)

device-served leases
á
timestamp ordering with validation
â

Figure 4.28: The effect of the read/write workload mix on host latency for device-served leases and timestamp

ordering with validation.

this workload, the numberof callbacks increase. This makes the messaging overhead of device-

servedleaseshigherthan that of timestampordering.

When eachhosthasits own “working set” of blocks that no other hostscanaccess, thenacquir-

ing a lock and caching it becomesmore appealing. Under such a workload, DLE should of course

exhibit lower latenciesthanTSOV becauseit eliminatesmany readmessageswhile TSOV converts

theminto control messages. While such a workloadis not typical of clusters and of sharedarrays,

it is valuable to quantify and bound thebenefit of DLE over TSOV. Under baseline parametersand

perfect locality (no revocations from other hosts), DLE wasfound to exhibit 20% lower latencies

thanTSOV.

In the reported experiments, the leasetime was 240 seconds, this lease time wasconfigured

to give device-served leasing the bestperformance for this workload. Nevertheless,under such a

shared uniformly randomworkload, timestampordering with validation is still preferrableandmore

robust to changes in contention, read/write composition and network message latency variabili ty.

Thesensitivity of DLE to leaseduration is explored below.

4.6.6 Sensitivity to leaseduration

Lease duration impacts both theconcurrency control and recovery protocols. Shorter leases make

recovery faster as discussed in Section 4.7. The duration of the lease canbe good or badfor the

4.6. CACHING STORAGE CONTROLLERS 115

10µ 20µ 40µ 60µ 80µ
90µ

read fraction (%)�

00

5

10

15

19.7

m
es

sa
ge

s
pe

r
op

er
at

io
n

à device-served leases
á
timestamp ordering with validation
â

Figure 4.29: The effect of the read/write workload mix on messaging overhead for device-served leases and

timestamp ordering with validation. Messaging overhead for both protocols decreases as the ratio of reads

increases. When write traffic dominates, timestamp ordering with validation induces a lower messaging over-

head than device-served leasing, which suffers from revocation messaging and time-out induced retries.

15
� 100µ 200µ 300µ

360�
Lease duration (sec)¹

0.2705

0.316228

0.398107

0.501187

0.6269

bl
oc

ke
d

or
 r

et
rie

d
op

er
at

io
ns

 (
pe

r
op

)

�
device-served leases
á

Figure 4.30: The effect of lease duration on the fraction of operation delayed under device-served leases.

The longer the lease duration, the higher the likelihood that an operation is delayed at the device waiting for

conflicting granted leases to be revoked.

116 CHAPTER 4. SHARED STORAGE ARRAYS

15
� 100µ 200µ 300µ

360�
Lease duration (sec)¹

00

5

10

13.63

m
es

sa
ge

s
pe

r
op

er
at

io
n

à device-served leases
á

Figure 4.31: The effect of lease duration on the messaging overhead for device-served leases. Shorter leases

result in lower lock cache hit rates at the controllers, but reduce the amount of revocation messaging needed

when sharing occurs. Longer leases, on the other hand, reduce the need to refresh, but increase the likeli-

hood of revocation messaging when sharing occurs. Their combined effect shows that the overall messaging

overhead is minimized with shorter leases, although the difference is not daramtic.

performance of the concurrency control, depending on the workload. If the workload has high

locality and low contention, then longer leasesare better because they allow one read to satisfy

more accesses before the lease is refreshed. Under high-contention, however, shorter leases are

better because they minimize delays due to revocations. When a short lease is requested from a

device,agood fractionof thepreviously acquiredleasesby other hostswould havealready expired

and so few revocations would result. This further reduces messaging overheadand device load

contributing to observably lower latencies.

To investigatethe effect of lease duration on DLE, theend-to-end latency, messaging overhead

and thefractionof operationsdelayed weremeasuredunderdifferent leasedurationsfor thebaseline

configuration (8 hostsand 10 devices). Figure4.31 shows theeffect of leaseduration on messaging

overhead. Short leases require lessrevocations but also must berefreshed more often. Long leases

inducemorerevocationsbut donot requirerefreshesunlessthey arerevoked. Medium-length leases

are theworst under thebaseline workloadbecausethe sumof both effects is larger for them. Fig-

ure4.30 demonstratesthat longer leasescauseoperationsto bedelayed moreoftenwhile conflicting

outstanding leasesare being revoked. Figure 4.32 summarizesthe net effect of leaseduration on

4.6. CACHING STORAGE CONTROLLERS 117

0µ 100µ 200µ 300µ
360�

Lease duration (sec)¹

00

10

20

30

40

48.46

la
te

nc
y

(m
se

c)
device-served leases
á

Figure 4.32: The effect of lease duration on host latency. Very short leases result in relatively higher latencies.

Increasing lease durations beyond 240 seconds does not result in noticeably lower latencies.

end-to-endlatency. It showsthatunderthebaselinerandom workload, which hasmoderateloadand

contention, a leaseexceeding few minutes is advisable.

4.6.7 Timestamplog trun cation

Under timestamp ordering, devicesmaintain a log of recently modified read and write timestamps

for the recently accessedblocks. To bound space overhead, the deviceperiodically executesa log

truncation algorithm. This truncation algorithm deletesall timestamps older than
�

, measured in

seconds, which is thelog sizeparameter. All blocksfor which no timestamps(îwï�ð or ñ ï�ð) arefound

in thelogareassumedto havean î�ï�ð;: ñòï�ð<:=�����>� � by thetimestampverificationalgorithms.

For basic TSO, the log can be very small, holding only the last few seconds of timestampsas

described before.

The timestamp log must be stored on non-volatile storage to support the recovery protocols

discussed in Section 4.7. Becausethe timestamplog must be stored on non-volatile storage (e.g.

NVRAM), it must betruncated frequently to maintain it at asmall size. Section 4.5.5arguedthat a

very smalllog size is sufficient for basic timestamporderingbecauseclock skew and messagedelay

are bounded. For TSOV, the log cannot be very small because cachevalidation requests would be

morelikely to fail. If the log is truncatedevery few secondsthena hostissuing a validation (RII or

RIIP) several seconds after reading a block will have its validation failed, forcing thedevice to re-

118 CHAPTER 4. SHARED STORAGE ARRAYS

0µ 100µ 200µ 300µ
360�

Log size (sec)?

00

10

20

30

40

48.71

la
te

nc
y

(m
se

c)

timestamp validation
â

Figure 4.33: The effect of timestamp log size on host latency for timestamp ordering with validation. The

log size is measured in seconds of activity. A log size of 200 seconds implies that the device truncates all

timestamps older than 200 seconds ago to “current time - 200 seconds”. The graph shows that a timestamp

log of a few minutes is sufficient to achieve good performance for the baseline workload.

transfer theblock to thehost. Naturally, thetimestampcache “hit rate” (the fraction of accessesfor

which validations succeed) increases for TSOV with larger timestamp logs, or equivalently bigger

valuesof
�

.

For the graphs in this section, the timestamplog size at each device wassetto accomodate5

minutes of timestamprecords. To estimate the size of this log, recall that a typical disk device

servicesa maximum of �#@�@ disk operationsper second, or AB@@�@@ ops in 5 minutes.That assumes

that all requests missin the device’s cache and are therefore servicedfrom theplatters. If 32 bytes

are used to store the (block, timestamp) pair in a log datastructure, this five minute log needs to

960 KB. Smaller log sizesoffer good performancealso. Notethat if the cache hit rateis high, then

the traffic is likely to havemore locality. In this case, a more localizedworkingset is likely to need

a smaller number of timestamprecords. Figure4.33 supports theargument that small log sizesare

sufficient, showing that a logsizeof only 200secondsissufficient to providegoodperformance for

the random workloadof Table4.2.

4.6. CACHING STORAGE CONTROLLERS 119

TSO DLOCK TSOV DLE

Storagedevice 1942 1629 1975 1749

(Linesof code)

Caching support atdevice — — 33 120

(Linesof code) (=1975-1942) (=1749-1629)

Storagecontroller 1821 1810 2008 2852

(Linesof code)

Caching support at controller — — 187 1042

(Linesof code) (=2008-1821) (=2852-1810)

Table 4.4: Simulation prototype implementation complexity in lines of code. The numbers concern the basic

concurrency protocols excluding the recovery part, which is largely shared across all protocols. The second

and fourth rows of the table show the additional lines of code added to the device and to the storage controller

to support block caching in each case. This is simply the additional lines of code added to TSO to make it

TSOV and added to device-served locking (DLOCK) to make it DLE.

4.6.8 Implementation complexity

Although device-served leasing and timestampordering have similar performance, device-served

leasing is relatively more complex to implement. Table 4.4 shows the lines of code needed to

implement each of theprotocols in detailed simulation. Except for more robust error handling, the

protocols can be readily transplanted into a running prototype. The linesof code may therefore

berepresentative of their real comparable implementation complexity. The table shows that while

timestamp ordering and device-servedlocking areof relativecomplexity, their cachingcounterparts

arequite different. While it took only 180 linesto addcaching support for timestamporderingat the

storagecontroller, a thousandlinesof codewereneededto do thesamefor device-servedlocking.

Thereasonbehindthisdifferencein complexity is that DLE dealswith theadditional complexity

of leaseexpiration and leaserenewal, deadlock handling code, and leasereclamation logic. A lease

held by ahost canbereclaimed while anaccessis concurrently trying to acquire thelocks. A lease

from onedevice can expire becausea lock request to anotherdevice touchedby thesame hostwrite

wasqueued for a long time. All of theseconcerns areabsent from the implementation timestamp

ordering with validation. In thelatter, only thewrite timestamp of theblock in thecacheis recorded

and sent in a validation messageto the device. No deadlockscanoccur, no leases canexpire, and

no callbacksarereceivedfromthedevice.

120 CHAPTER 4. SHARED STORAGE ARRAYS

4.7 Recovery for BSTs

Variouskindsof failurescanoccur in asharedstoragearray. Devicesand controllerscancrashdue

to non-hard softwareor hardware bugs or due to loss of power. Correctnessmustbe maintained

in the event of such failures. This section discusses how a shared array can recover from such

untimely failures. In particular, it describestheprotocols thatensure the consistency property for

BSTs,discussed in Section 4.4.

4.7.1 Failuremodel and assumptions

A shared storagearray consists of four components: storage controllers, storage devices, storage

managers and network links. From the perspective of this discussion, failures canbeexperienced

by all four components. Network failuresinclude operator, hardware or software faults that cause

links to be unavailable, that is incapable of transmitting messagesbetween nodes. This discussion

assumes thatall network failuresare transient. Moreover, it assumesthat a reliable transport proto-

col, capable of masking transient link failures, is used. This discussion also makes the simplif ying

assumption thatastoragemanager failure isalways transient andmasked. That is, thestorageman-

agerwill eventually becomeavailable suchthatacommunication with it wil l alwayssucceed. Other

work describesatechniqueto implement this in practice[Golding andBorowsky, 1999]. Therefore,

this discussion will focusonly on failures in clientsanddevices.

A devicecan undergo a permanent failure resulting in the loss of all data storedon it. A device

can also undergo a transient failure, or outage, causing it to lose all thestate stored in its volatile

memory. Similarly, a controller canundergo a permanent failure which it doesnot recover from. It

can alsoundergoatransient failure, or outage, after which it eventually restartsbut causingit to lose

all state in its volatile memory. For the rest of the discussion, a failure of a device or a controller

will designateapermanent failurewhileanoutage wil l designatea transient failure.

Figure4.34showstheprotocolsusedin ashared storagearray. ThestoragecontrollersuseBST-

based accessprotocolsto read andwritevirtual storageobjects. Accessprotocols involvecontrollers

and devices. The layout mapsusedby the access protocols arefetchedby the controller from the

storage manager. Layout mapsare associated with leases specify ing the period of time during

which they arevalid. After this lease period expires, the controller mustrefresh the layout map by

contacting the storagemanager. A storagemanager can invalidate a layout mapby contacting the

storagecontroller caching thatmap.

Thestoragemanagerchanges a virtual object’s modeor layout maponly whenno storagecon-

4.7. RECOVERY FORBSTS 121

..

C

C

C

C

.

Storage devices

CEDGFIH JKDML L NOJ

Storage
manager (s)

access
pP rotocol
 (BSTs)

layout map
pP rotocol

Clients (storage
controllers)

N
Q

etwork
and Storage managers

device failure

device
recovery
pP rotocol

nR otication
pP rotocol

Figure 4.34: A shared storage array consists of devices, storage controllers, and storage managers. Storage

controllers execute BSTs to access the devices. The BSTs require the controller to know the object’s layout

across the devices. A layout map protocol between the storage controller and storage manager allows con-

trollers to cache valid layout maps locally. If a storage controller discovers a device failure, it takes appropriate

local actions to complete any active BSTs then notifies the storage manager through the device failure notifi-

cation protocol. Similarly, a device may encounter a controller failure after a BST has started but before it is

finished. Such a device notifies the storage manager. This latter executes the proper recovery actions (device

recovery protocol).

trollersareactively accessingthat object. Precisely, astoragemanager mustmakesurenocontroller

has a valid layout map in its cachewhen it performsa change to thelayout map. Layout mapsare

stored (replicated) on stable storage. A storagemanager synchronously updatesall replicasof a

layout map whenit switchesa virtual object to a different mode or whenit changeswhere storage

for theobject is allocated.This is acceptable giventhatvirtual object mapsarechanged infrequently

whenobjectsaremigratedor whendevicesfail.

For example, to switch a virtual object from fault-f reemode to a migrating mode, thestorage

manager canwait until all outstanding leasesexpire. Alternatively, it can send explicit messagesto

invalidatetheoutstanding layout mapscachedby storagecontrollers. At theendof this invalidation

phase, thecontroller is assured that no storage controller is accessing storage since no valid layout

mapsarecached anywhere. At this time, the storage manager can switch the layout mapof the

virtual object and move it to amigrating mode. After this, thenew mapcanbeservedto thestorage

controllerswhich wil l useBSTsspecified in themapandcorresponding to themigrating mode.

A storage controller candiscover a failed device or can experiencea device outageafter a BST

has started and before it has completed. Such exceptional conditions oftenrequire manager action

122 CHAPTER 4. SHARED STORAGE ARRAYS

I
S
nactive Blocking

rT st phase UWV XZY [\V+] ^ X
D
_

one

rT eceived, ACCEPT
sent back to controller

rst phase request
received, REJECT
sent back to controller

second phase[\VK] ^ X
received, storage

R
`

ecovering

Storage manger
na otied, recovery
algorithm completed

U
b

pdated

uc pdated
ACK reply sent
b
d

ack to controller

t
e
ime-out period

ef xpires while
i
g
n Blocking state

Second phasehji(k(hjXMl
received

1 2

1

2

Figure 4.35: The states of a device during the processing of a BST. The device starts in the Inactive state.

The transition to the Blocking state occurs with the receipt and the successful processing of a first phase

prewrite request from a storage controller. If a second phase write message is received confirming the prewrite,

the device updates storage and transitions to the Updated state. A reply is sent to the controller and a final

transition to the Donestate from the Updated state is performed. If the second phase message is a cancel, the

device discards the prewrite and transitions to the Done state. If a time-out period passes while the device is

in the Blocking state and without the receipt of any message, the device transitions to the Recovering state.

The arrows labeled with a “1” (“2”) refer to transitions that are caused by the receipt and processing of a first

(second) phase message from the controller.

to restore consistency and properly complete theBST. A controller-managerprotocol allows con-

trollersto report such failure conditions to thestoragemanager(Figure 4.34). Similarly, a storage

device can block in the middle of executing a BST waiting for a controller messagethat never ar-

rives. The controller mayhave failed or restartedand lost all its state asa result. In this case, the

device must notify the storage manager to properly completethe BST and ensure consistency. A

device-managerprotocol (Figure4.34) is definedto allow devicesto report incompleteBSTs to the

storagemanager.

4.7.2 An overview of recovery for BSTs

Thediscussion assumesthat all storage manager failuresand network failuresaremasked, leaving

four remaining kinds of failuresof interest: device failures, deviceoutages, controller failuresand

controller outages. The amount of work required to recover properly from a failure or outage de-

pends largely on whentheeventoccurs. Figure4.35shows thestatesof adevice involved in aBST.

Thedevice starts in the Inactive state. This discussion assumesa timestampordering protocol, but

4.7. RECOVERY FORBSTS 123

the case of device-servedlocking is quite similar. Both protocols essentially export a lock to the

datablockafter thefirstphaserequest isacceptedat thedevice. Thisexclusive lock is releasedonly

after the second phase message is received. In the Inactive state, the device receives a first phase

request,a prewrite or a read-and-prewrite request. If therequest is rejected, a reply is sent backto

the controller and theoperation completesat thedevice and the device moves to theDone state. A

new operation mustbe initiated by thecontroller to retry theBST.

If the request is accepted, the device transitions to the Blocking state. In this state, the block

is locked and no access is allowed to it until a second phase message is received. The second

phase message can be a cancel message or a write message containing the new contents of the

block. If a cancel messageis received, thedevice discardstheprewrite and transitions to the Done

state. If a write message is receivedconfirming the prewrite, thedevice transitionsto the Updated

stateoncethedata is transferredsuccessfully to stable storage. The device thenformulatesa reply

acknowledging thesuccessof thewriteand sendsit to thecontroller. Oncethemessageis sent out,

thedevice transitions to theDonestateand theBST completes.

If atime-out period passesandnosecond phasemessageis received, thedevicetransitionsto the

Recovering state. From this state, the devicenotifies the storage managerof the incompleteBST

and awaits the manager’s actions. The manager restores the array’s consistency before allowing

the device to resumeservicing requeststo thevirtual object. Similarly, if thedevice experiencesa

failure in themidst of processing a write messagesuch that storage is partially updated, the device

transitionsto theRecovering stateandnotifies thestoragemanager.

Figure 4.37 shows the statesof a controller executing a BST. The figure shows a write BST.

In the first phase, prewrite messages possibly combined with reads are sentout. Thesemessages,

markedwith a “1” in Figure 4.35, causethedevice to transition from the Inactive to theBlocking

stateif theprewrite is acceptedor to theDonestateif theprewrite is rejected. Onceall therepliesto

thesefirst phase messages are collected by the controller, a second phaseround of message is sent

out to confirm the write or to cancel it. Thesemessages,markedby a “2” in Figure 4.35, causethe

device to transition from Blocking to Done (in caseof a cancel) or from Blocking to Updated (in

caseof asuccessfully processed write).

The statediagram of Figure 4.35 is helpful in understanding the implications of a device or

controller failure or outagewhile a BST is in progress. A controller failure or outage before any

phase 1 messagesare sent out is benign, that is, it doesnot require the involvement of thestorage

manager to ensure recovery. Recovery can beachievedby local actions at the nodes. In this case,

124 CHAPTER 4. SHARED STORAGE ARRAYS

F
m

ault-Free

R
n

econstructingDegraded

U
o

navailable

Data loss

pp ermanent device failure

(active)

replacement
allocated

pp ermanent device failure
cq ritical controller/device outage

cq ritical device outage
cq ritical controller outage

rr ecovery completed

pp ermanent device failure
cq ritical controller/device outage

b
s

enign device/controller outage

b
s

enign
d
t

evice/controller
ou utage

pp ermanent device failure

b
s

enign
d
t

evice/controller
ou utage

b
s

enign device
ou r controller outage

rr econstruction completed

Figure 4.36: The modes of a virtual object and the events that trigger modal transitions. Benign failures and

outages do not cause the object to switch modes. Critical device outages, device failures, and critical controller

failures and outages cause the object to switch modes. A second critical failure while the object is in degraded,

reconstructing or recovering modes is catastrophic and results in data unavailability.

upon restart, thecontroller must simply re-fetch the layout maps to begin accessto storage. In this

case,nodevicehastransitionedto theBlocking stateandnolocksareheldby theBST. If acontroller

experiencesa failure or outage after all the second phasemessagesare sent out and successfully

received by the devices, then thedeviceswill update theblocks on persistentstorageand complete

theBST. Thedeviceswill transition from theBlocking to theUpdatedand unilaterally to theDone

state. Such a failure is also benign. However, a controller failure or outageafter at least onedevice

has transitioned to theBlocking state andbeforeall the second phase messages are sent out to the

devicesis considered critical; that is, will require special action by the storagemanager to restore

thearray’sconsistency and/or to ensureprogress.

Similarly, a device failure or outage before any device has reached the Updated state can be

handled easily by thecontroller. Since no storagehas beenupdatedanywhere, a storagecontroller

facing apermanent devicefailureor adeviceoutage(inaccessibledevice) can simply abort theBST

by multicasting acancel messagein thesecondphaseto all thesurviving devices.Thedevicefailure

or outagecan beconsidered to haveoccurred beforetheBSTstarted. Thestoragecontroller notifies

thestoragemanager of theproblemand thestoragemanager movestheobject to thepropermode.

However, if a device failure or outage occurs after some devices have received and processed

4.7. RECOVERY FORBSTS 125

thesecond phasemessageandtransitionedfromtheBlocking to Updatedstate,recovery is slightly

morecomplicated. Thestoragecontroller completesthesecondphaseby writing to all thesurviving

devices.This failureis consideredcritical becauseit requiresspecial action by thestoragemanager

on recovery. The managermust establish whether thedevice haspermanently failed or has expe-

rienced an outage (restart). If the device haspermanently failed, the failure can be considered to

have occurredright after the device wasupdated. TheBST is considered to havesucceededbut the

virtual object must bemovedto adegraded modeand reconstruction on a replacement device must

besoon started. If the device has experiencedanoutage, the device should not be madeaccessible

immediately upon restart sinceit still containstheold contents of theblocks. Thestorage manager

mustensure that the datathat the BST intended to write to the device is on stable storage before

re-enabling access. This datacanbe reconstructedfrom theredundant copywrittenby theBST.

A virtual object canbe in oneof several modes: Fault-Free,Migrating, Degraded, Reconstruct-

ing, Unavailable or Data-loss.Thefirst four modeswerealready introduced. The lasttwo were not

becausethey do not pertain to theconcurrency control discussion. In thelasttwo states(Unavailable

and Data-loss),hostaccessesto thevirtual object arenot allowed. In theData-lossmode, theobject

is not accessible at all. In the Unavailable mode, the storagemanager is theonly entity which can

access theobject. In thismode,thestoragemanager restores theconsistency of thearray. Oncethe

array is consistent, the manager movesthe object to an accessmode andre-enables access to the

object.

Figure 4.36 represents a sketch of the different modes of a virtual object. The object starts

out in Fault-Free mode. A permanent device failure causes a transition to the Degraded mode.

The allocation of a replacement device inducesa transition to the Reconstructing mode from the

Degradedmode. A second device failureor a critical outage (of a device or controller in the midst

of a BST) while theobject is in degradedor reconstructing modesresults in dataloss. The object

transitionsto theData-lossmodeand itsdata isno longeravailable. Critical outagesof controlleror

device while the object is in Fault-Free mode cause a transition to theUnavailable modewhere the

object is not accessible until thearray’s consistency is restored. In this mode,no storagecontroller

can accessthe object because no new leasesare issued and previous leases have expired. The

storage manager consults a table of actions which specifies what recovery procedure to take for

each kind of failure andBST. A compensating BST is executed to achieve parity consistency, the

object is potentially switched to a new mode, and then new leasescan be issued. Benign failures

and outages,on the other hand, do not causetheobject to changemodes. They do not require any

126 CHAPTER 4. SHARED STORAGE ARRAYS

recovery work besidespossibly a localactionby thenodeexperiencing theoutageupon restart.

4.7.3 Recovery in fault- fr eeand migrati ng modes

Under Fault-Free and Migrating modes,all devicesareoperational. The discussion wil l focus on a

single failureor outage occurring at a time. The pseudo-code executed by thedevicesis given in

Section 4.7.6.

Controller outage/failure. Controller failures and outagesareessentially similar. A permanent

controller failure can beregardedas a long outage. Because a storage controller losesall its state

during anoutage, it makesnodifferenceto thestoragesystem whether thecontroller restartsor not.

Any recovery work required to restorethearray’sconsistency mustproceedwithout theassistanceof

thefailed storagecontroller. A controller outageamountsto losing all the layout mapscachedat the

client. After restart, thestoragecontroller must re-fetch new layout mapsfrom thestoragemanager

to accessvirtualobjects. Uponrestart, no special recovery work is performedby thecontroller.

When thevirtual object is in Fault-Free/Migrating modeand the storage controller experiences

anoutagewhileno BSTsareactive,theoutage isbenign. Thevirtual object doesnot changemodes

asa result of thecontroller failureor outage. Upon restart of the storage controller, accessto the

virtual object can begin immediately.

Critical controller failuresand outages canoccur in the midst of a BST’s execution. Thecon-

troller can crashafter some deviceshave accepted its prewrite request. These deviceswill move

to the Blocking stateand wait for a second-phasemessage. This second phasemessage will never

comebecausethecontroller hascrashed. A storagedeviceassociatesa time-out with eachaccepted

prewrite request. If thecorresponding second phasemessage(cancel or write) is not received within

the timeout period, thestoragemanager is notified.

The storage manager mustrestore the consistency of the array becauseit may have been cor-

rupted asa result of the controller updating somebut not all of thedevices. Thestoragemanager

restoresthe consistency by recomputing parity. The storage manager does not guarantee that the

dataon thedevicesreflect thedatathecontroller intendedto write. To completethewrite,theappli-

cation mustre-submit thewrite. This is correct sincethesemantics of a hostwrite, like a write to a

diskdrive today, is not guaranteed to havecompletedand reached stablestorageuntil thecontroller

responds with a positive reply. In this case,the controller did not survive until theend of theBST

and could not have respondedto theapplicationwith apositivecompletion reply.

Deviceoutage.A device outage whenthedeviceis in the Inactive state doesnot require much

4.7. RECOVERY FORBSTS 127

PW PW PW

W
v

 W
v

 W
v

C
w

ommit

Roll-back BST,x retry using a (possibly different) BST

R
y

oll-forward BST,x complete all the writes that can be completed

1

2

1 r ez plies

2 r ez plies

P
{

W P
{

W P
{

W

C
|

an C
|

an C
|

an

A
}

bort

1

2

1 r~ ez plies

2 r~ ez plies

I
�
nactive Inactive

D
�

oneDone

Figure 4.37: The algorithm followed by the controller when executing a BST. Ovals correspond to the state of

the BST at the controller. Circles correspond to the processing of a message at the device. An arrow from an

oval to a circle is a message from a controller to the device. An arrow from a circle to an oval is a reply from the

device to the controller. The controller starts in the inactive state, issues a first round of prewrite messages,

and once the replies are collected decides to commit or abort the BST. Once a decision is reached, second

phase messages are sent out to the devices. Once the replies are received, the BST completes. The point

right before sending out second phase write messages is called the commit point. The controller experiencing

a device failure or outage before the commit point decides to Abort the BST. If all devices accept the prewrite,

the BST is committed and writes are sent out to the devices that remain available. All failures in the second

phase are simply reported to the storage manager.

recovery work besidescareful initialization proceduresupon restart from theoutage. Under times-

tamp ordering, thedevicemustwait period of � secondsuponrestartbeforestarting to servicenew

requests. Thedevicecanestablish thatno BSTs werein progressduring theoutage by inspecting

its queueof accepted prewrites stored in NVRAM. If the queueis empty, the device waits for �
seconds and starts accepting requests. If the queue contains some entries, the device enters the

Recovering modeand notifies thestoragemanager.

Notice that all BSTs usedin a sharedstorage array are representedas directed acyclic graphs

(Figure4.37), in which it is possible to ensure that nodevicewritebeginsuntil afterall devicereads

are complete [Courtright, 1997]. This point, right before the storagecontroller sends out second

phasewrite requestsis called thecommit point. A storagecontroller may encounteradeviceoutage

before the commit point, that is before any second phase messagesaresent out. In this case,the

storage controller notifies the storage manager that it suspects a device failure, after canceling its

firstphaserequestsat theotherdevicesthat have responded to it during thefirst phase. In any case,

recovery is simply enacted by retrying the BST later when the device is back on-line. No special

recovery work is requiredat thedeviceor storagemanager.

128 CHAPTER 4. SHARED STORAGE ARRAYS

If the storage controller hascrossedthe commit point but did not complete the writesevery-

where,then thesurviving deviceswill updatestorage(moveto theUpdated andDonestates) while

the device experiencing theoutage will not. This device hasacceptedtheprewrite but is not avail-

able to processthecorresponding write. In this case,recovery proceedsas follows. Upon restart,

thedeviceinspects its queueof acceptedprewritesstoredin NVRAM and discoversthat it hasfailed

afteraccepting aprewrite andbeforeprocessing thecorresponding write. Suchadevicenotifies the

storagemanager to perform recovery.

Devicefailure.A permanent device failurecan occur (or bediscovered) when thesystem is idle

or whenaBST is active. If thefailureoccursduringan idle period, thestoragemanager is notified.

The storage manager revokesall leases to the virtual objects that have been allocated storage on

that device. The virtual objects are moved to the degraded or reconstructing mode, marking the

deviceasfailed.Theobject is moved to areconstructing modeif thestoragemanager can reallocate

storagespaceona functional device to replace thespaceon thefaileddevice.Giventhatthedevice

is no longer available, datastored on thedevice must be reconstructedfrom redundantcopies.The

storage manager changes the layout map to reflect the new allocation andmoves the object to a

reconstructing mode. A task to reconstruct the contents of the failed device and write it to the

replacement space is started. If there is no spaceavailable to allocate asa replacement, the object

is moved to a degradedmode. In degradedmode, writesaddressedto the failed deviceare reflected

in the parity. In any case, storage controllers that fetch the new map wil l be required to usethe

degradedmodeor thereconstructingmodeBSTs asspecified in themap.

A permanent device failurecanalso bediscoveredafter aBSThasstarted. In thiscase, thestor-

age controller must becareful in how to completetheBST. Before reaching the commit point, any

BST encountering a permanent device failure (during a read) simply terminates, and its parent task

reissuesa new BST in degradedmode. This occursasfollows. The storagecontroller discovering

the permanent failure aborts the current BST, discardsthecurrent layout mapandnotifies thestor-

age manager of thefailure. Thestoragemanager verifies that thedevicehasfailed andthenmoves

the virtual objectsto degraded or reconstructing mode. Thestorage controller fetchesthenew map

and restarts theaccessusing adegradedmodeBST.

After the commit point, a BST canencounter a permanent device failure. A storagecontroller

encountering a single device failure after one or more writes aresent to the devicessimply com-

pletes. This is correct because an observer cannot distinguish betweena single failure occurring

after the commit point and the failure of that device immediately after the BST completes. The

4.7. RECOVERY FORBSTS 129

recovery protocol proceeds as follows. After the write completes, thestorage manager is notified

of the failed device. Thestoragemanager movestheobject to a degradedor reconstructing mode

before re-enabling accessto theobject.

Leaseexpiration. A storage controller can experiencea special kind of outage dueto theexpi-

ration of a lease. Note thata leasecanexpire whentheclient is in themiddleof executing aBST. If

theexpiration occursbeforethecommitpoint, thenthesecondphaseis not started. Instead, requests

are sent to the devices to cancel the first phaseand releasethelocks. The map is thenrefreshedby

contacting theappropriate storagemanager effectively extending the lease. Theaccess protocol at

the storage controller checksthe leaseexpiration time before starting thesecond phase to establish

that the leasewill remain valid for theduration of thesecondphase.Becauseall lock requestshave

beenacquiredin thefirst phase,thesecondphasewill not lastfor a longtime. Onceall replieshave

beenreceivedfromthedevices, theBST is consideredto havecompletedsuccessfully.

A storagemanager may enter an object into a recovery mode during this second phase. This

occurs if the second phase lasts for a long enough time that the leaseexpires. Since no client

accessesareaccepted in recovery mode and all locks are reset, the storagedevice will respond to

thecontroller’ssecondphasemessagewith aerror code. TheBST isconsideredfailedby thestorage

controller andthe write must be retried to make sure that the contents of storage reflectthevalues

in thewritebuffer.

4.7.4 Recovery in degradedand reconstructing modes

Under this mode, a device has failed in the array and therefore the array is not fault-tolerant. A

second device failureor an untimely outagecan result in data loss.

Controller outage/failure.As in theFault-FreeandMigratingmodes, acontroller outageamounts

to losing all the layout maps cached at theclient. After restart, thestoragecontroller mustre-fetch

new layout maps from the storage manager to accessvirtual objects. Benign failures that occur

whenno BST is active or in the issuing stateof a BST are straightforwardto handle. Upon restart

of thecrashedcontroller, accesscanbegin immediately also.

Controller failures and outagesthat occur in the midst of a BST can often lead to data loss

becausethey corrupt the parity code making the dataon the faileddevice irreconstructible. If the

outageoccursbefore thecommitpoint but after somedeviceshavereachedtheBlocking state,then

no devicehas been updated. Thedeviceswill eventually time-out and notify thestoragemanager.

The storage manager, however, may not be able to ascertain whether thecontroller did or did not

130 CHAPTER 4. SHARED STORAGE ARRAYS

crossthecommit point and must in this caseassumethe controller may have partially updated the

stripeand consequently declaredataloss. Under a few fortunatecases, thestoragemanager will be

able to establish thatnodevicehasbeenupdatedand cancel (roll-back) theBST without moving the

object to theData-lossstate.

If the storage manager finds that all the devicesparticipating in the BST started by the failed

controller are in the Blocking state, then it can concludethat no device hasupdated storage. In

this case,thestoragemanager can cancel theprewritesand re-enable accessto theobject. If on the

other hand, thestoragemanagerfindsthat at leastonedevicehasaccepted aprewrite or write with a

higher timestampthan that of theincompleteBST, it cannot establishwhether that devicerejected

the prewrite of the incomplete BST or whether it accepted it. It is possible that this device has

accepted theprewrite. Thestoragecontroller could havesent awritemessageto thedeviceand then

crashedbeforeupdating theremaining devices. In thiscase,thedevice would haveupdatedstorage

and completed theBST locally. It could have later acceptedanotherprewriteor write with a higher

timestamp. In this case, the storagemanager must assumethe conservative option and declare that

theBST updated somedevicesbut not all of them declaringdataloss.

In order for the storagemanager to accurately determine the fateof the incompleteBST at all

the devices, it must have accessto thehistory of writesserviced in the past. This canbe achieved

if the device maintains in NVRAM not only the accepted prewritesbut also the recently serviced

writes to theblock.

Deviceoutage.A critical device outageoccurs whena deviceparticipatesin thefirst phaseof

a BST and then experiences an outage before receiving the second phasemessage. In this case,

recovery depends on when the outage is discovered. If the outage occurs during the Issuing or

Blocked states, the storage controller will fail to contact the device and will therefore cancel the

requestsaccepted at theotherdevicesand inform thestoragemanager of thedevice’sinaccessibili ty.

In this case, theaccessis simply retried later whenthedevice is back on-line. No special recovery

work is requiredat thedevice or storagemanager.

If the storage controller haswritten to the storagedevicesit intended to update except for a

device that experienced the outage after responding to the first phase message, then the storage

controller completesthe write to thesurviving devices andwritesthe dataintended for the crashed

device to a designatedscratch space. Then, it notifies the storage manager. The storage manager

revokesall leasesand movesthe objectto the recovery mode. Whenthe device restarts, the data is

copiedfromthescratch spaceto thedeviceand accessis re-enabled. If theoutagewasexperienced

4.7. RECOVERY FORBSTS 131

by thereplacement device,thenthe incomplete BST is compensatedfor by copying thedata which

wassuccessfully writtento thedegraded array to thereplacement device. In this case,thecontroller

neednot write to ascratchspacesinceit is already storedin thedegradedarray.

Device failure.A permanent device failure in degraded modeamounts to data loss. Theobject

is moved to theUnavailable modeandits dataisno longeraccessible.

4.7.5 Storagemanageractionsin the recovering mode

The storagemanager receives notifications of device outages and failures from controllers. The

storagemanagertakesasimple sequenceof actionsuponthereceipt of suchnotifications. It revokes

all leasesfor thevirtual objectbeing updated, thenexecutestheproper compensating BST to restore

thearray’sconsistency then movestheobjectto adifferent modeif necessary andfinally re-enables

access to thevirtual object.

Upon ageneral power failure,all thedevicesand clientsexperiencea transient failureandmust

restart fresh,losing all thestate in their volatile memory. In thiscase, there is no surviving entity to

notify thestoragemanagerof theoutage.All thedevicesandcontrollersexperienceasimultaneous

outage. Controllers have no state and upon restart can not assist the storage manager in restoring

the array’s consistency. They cannot tell thestorage manager what BSTs werein progressduring

theoutage.

Thestoragemanagerreliesonthedevicesto efficiently perform recovery afterageneral outage.

Upon a restart, a device notifies the storagemanager(s) that allocated space on it so that storage

managers can carry out any recovery work before the device is allowed to start servicing client

requests. The storage manager must determine whether and which nodes experienced a critical

outage; thatis,wereactively processing aBST during theoutage. This isachievedasfollows. Upon

restart from anoutage, a storagedevice inspects its queue of accepted prewrites. This information

is stored in NVRAM on the device and therefore survives transient outages. If the queues are

found empty, thedevice is madeaccessible to serve requests to thestoragecontrollers. If thequeue

contains outstanding prewrites, thenthestorage manager knows that a BST wasin progressduring

theoutage. It canthenexecute thepropercompensating action.

Table4.5summarizestherecovery actionstakenby thestoragemanageruponacriticaloutageor

failure. Thetable shows thecompensating transactionexecuted by thestoragemanager to complete

theBST to achieveconsistency. It also shows thenew mode that theobjectwil l transition to (from

theUnavailablemode) after recovery is completed.

132 CHAPTER 4. SHARED STORAGE ARRAYS

ActiveBST Object mode Typeof failur e Compensating Newobjectmode

Write Fault-Free Critical outage Rebuild-Range Fault-Free

Write Fault-Free Devicefailure None Degraded

Multi-Write Migrating Critical outage Rebuild-Range Migrating

Multi-Write Migrating Devicefailure Rebuild-Range Migrating

(degradedarray)

Multi-Write Migrating Replacement Rebuild-Range Migrating

devicefailure

Copy-Range Migrating Critical outage Copy-Range Migrating

Copy-Range Migrating Devicefailure Copy-Range Degraded

(degradedarray)

Copy-Range Migrating Replacement Restart copy Migrating

devicefailure taskonnew device

Write Degraded Critical outage None DataLoss

Write Degraded Devicefailure None DataLoss

Write Reconstructing Critical outage None DataLoss

Write Reconstructing Devicefailure None DataLoss

(degradedarray)

Write Reconstructing Replacement Restart recon Reconstructing

devicefailure taskonnew device

Rebuild- Reconstructing Critical outage Rebuild-Range Reconstructing

Range

Rebuild- Reconstructing Devicefailure None DataLoss

Range (degradedarray)

Rebuild- Reconstructing Replacementdevice Restart recon Reconstructing

Range failure taskonnew device

Table 4.5: The recovery actions taken upon a failure or outage. The table shows for each critical outage or

failure the compensating BST executed by the storage manager to restore the BST’s consistency as well as

the new mode that the object is moved to after recovery is completed by the storage manager. “Write” is used

to refer to all the write BSTs available in the specified mode.

4.7. RECOVERY FORBSTS 133

Compensating storage transactions in degraded and reconstructing modes

In degraded mode, one of the data disks has already failed. A second disk or client failure in

the middle of an access task before the dataon the first disk is reconstructed is considered fatal.

Similarly, in the reconstructing mode, one of the data disks has already failed. A second disk or

client failure in the middle of an accesstaskbefore the dataon the first disk is reconstructed is

considered fatal. However, if the failure occurs in the middle of a reconstruct task (the Rebuild-

Range BST), then the BST can be simply restarted. The degraded array is not corrupted by the

failure, although the replacement block being written to may have been only partially updated.

The BST can be restarted and the value of the failed data block recomputed and written to the

replacement device.

Compensating transactionsin Fault-Fr eeand Migrating modes

Oncethe failed BST is detected andreported to the storage manager, the storage manager waits

until all leases to the virtual object expire andthen executes a compensating transaction to restore

the array’s consistency. Onceconsistency is restored, the mode of the virtual object is updated if

necessary andaccessre-enabled by granting layout maps to the requesting controllers. Each BST

has a compensating BST which is executedexclusively by thestorage manager in recovery mode

wheneveraBST fails.

Under fault-f reemode, once the suspect ranges are identified, consistency can be effectively

re-establishedby recomputing theparity block from thestripe of data blocks. Under this mode, all

devicesareoperational, so theRebuild-RangeBST canbeusedto recompute theparity block.

In migratingmode, aBST is invokedeitherby anaccesstask or by amigratetask. For BSTsthat

are invoked by hostwrite tasks, the compensating transactionsare similar to the onesin Fault-Free

mode. In the caseof a copyBST that is invokedby a migrate task, thecompensating transaction is

the transaction itself. Thatis, thestoragemanagersimply reissuesthecopy transaction.

4.7.6 The recovery protocols

This section presents thepseudo-codefor the actions takenby thedevices and storage controllers.

Storage controllers are relatively simpler. They arestateless,do not have to execute any special

algorithms on restart or recovery from an outage. The important task implementedby the storage

controller is the execution of a BST. Thepseudo-codeon the following pageshows the algorithm

abstracting the details of the concurrency control algorithm andfocusing on the recovery actions

134 CHAPTER 4. SHARED STORAGE ARRAYS

taken by thecontrollerwhile in themidstof executing aBST. Thestoragecontroller canexperience

a device outage or failure of simply a device that is not responding. Upon encountering such an

event, the storage controller cancels the BST if it did not cross the commit point. Otherwise, it

completestheBST. As soon as theBST is completed or canceled, thestoragecontroller reports the

problemto thestoragemanagerwhich in turns takestherecoveryactionsdescribed above.

Storagedevicesaremorecomplicated,becausethey maintain stateacrossoutagesand restartsof

controllersand of their own. Upon recovery, storagedevicesexecutethefunction InitUponRestart().

During normal operation, requestsarehandled by invoking the HandleRequest function. If a time-

out is reachedwhileasecondphasemessageisnotreceived, theHandleTimeoutfunction is invoked.

Thepseudo-codereflectsthestepsalready discussedfor device recovery and time-out handling.

//Device Actions

01 /* Device-side pseudo-code: Handle request req from controller contr */

02 HandleRequest (req, contr)

03 if (req.type == read)

04 resp = checktimestamp(req.opts, req.blockid);

05 if (resp==OK)

06 send (data[req.blockid], OK) to contr;

07 else

08 send (REJECT) to contr;

09 endif

10 if (req.type == prewrite or read-and-prewrite)

11 resp = checktimestamp(req.opts, req.blockid);

12 if (resp == OK)

13 enqueue (req, NOW + TIMEOUT) to timeoutq;

14 send (OK, data) to contr;

15 else

16 send (REJECT) to contr;

17 endif

18 endif

19 if (req.type == write)

20 /* discard request with timestamp opts from queue */

21 write req.buf to req.blockid on stable storage;

22 timeoutq.discard(req.opts);

23 send (OK) to contr;

24 endif

4.7. RECOVERY FORBSTS 135

01 /* Device-side pseudo-code to handle a timeout */

02 HandleTimeout (req)

03 send (req, BST_NOT_COMPLETED) to storage manager;

04 end

01 /* Device-side pseudo-code to execute after restart from an outage */

02 InitUponRestart()

03 if (prewriteq is empty)

04 wait T seconds;

05 return (OK); /* upon return, requests can be accepted */

06 else

07 send(NULL, BST_NOT_COMPLETED) to storage manager

08 return (RECOVERING);

09 endif

10 end

// Controller actions

01 /* Execute a two phase write bst to object with map objmap */

02 ExecuteTwoPhaseBST (bst, objmap)

03 for dev = 1 to bst.numdevices

04 send (bst.device[i]);

05 endfor

06 deadline = NOW + TIMEOUT;

07 while (replies < numdevices and time < deadline)

08 receive(resp);

09 replies ++;

10 endwhile /* continued on next page ...*/

136 CHAPTER 4. SHARED STORAGE ARRAYS

11 if (replies < numdevices)

12 /* some devices did not respond */

13 for dev = 1 to bst.numdevices

14 send (CANCEL) to bst.device[i];

15 endfor;

16 /* notify manager of the not-responding devices */

17 for each dev not in replies

18 send (dev, NOT_RESPONDING) to storage manager;

19 endfor;

20 Discard(objmap); /* discard layout map, must be re-fetched later */

21 return (DEVICE_OUTAGE_OR_FAILURE);

22 else if (numoks in replies < numdevices)

23 /* rejection at one or more devices, send CANCELs */

24 for dev = 1 to bst.numdevices

26 send (CANCEL) to bst.device[i];

26 endfor;

27 return (RETRY);

28 else if (numoks in replies == numdevices)

29 for dev = 1 to bst.numdevices

30 send (OK, bst.data[i] to bst.device[i])

31 endfor

32 replies = 0; deadline = NOW + TIMEOUT;

33 while (replies < numdevices and time < deadline)

34 receive (resp);

35 endwhile

36 if (replies < numdevices) /* some devices did not respond */

38 slist = null; /* list of devices suspected of failure */

37 for dev = 1 to bst.numdevices

38 if (dev did not respond)

39 add dev to slist;

40 /* notify manager of the not-responding devices */

42 send (bst, BST_NOT_COMPLETED, slist) to storage manager;

44 Discard(objmap);

45 return (DEVICE_OUTAGE_OR_FAILURE);

46 endif

47 endif

4.8. DISCUSSION 137

4.8 Discussion

The discussion so far focussed on protocols that ensure serializability for all executing BSTs.Seri-

alizability is a “sufficient” guarantee sinceit makesa sharedarray behave like a centralizedone,in

which asinglecontroller receivesBSTsfromall clientsand executes them oneata time. This guar-

antee, however, canbe too strong if certain assumptionshold regarding thesemanticsand structure

of high-level software. Furthermore, thediscussion hasfocussedonRAID level 5 layouts. However,

a largenumberof disk arrayarchitectureshavebeenproposedin theliterature.

Thissectionhighlightsthegenerality of thepresentedprotocolsby showinghow they can readily

generalizedto adapt to and exploit different application semantics and underlying data layouts. It

alsoincludesadiscussion of the recovery protocols.

4.8.1 Relaxing read semantics

Many applicationsdo not sendaconcurrent hostreadandhostwrite to thesameblock. For example,

many filesystemssuch asthe Unix Fast File System [McKusick etal., 1996], do not send a write

to thestorage system unlessan exclusive lock is acquired to that block, which prohibits any other

client or thread from initiating areador write to thatblock until thewrite completes. Consequently,

it neveroccurs thata readis initiatedwhile awrite is in progressto thatblock.

This property of many applications precludes the need to ensure the serializabilit y of reads

becausethey neveroccur concurrently with writes. In fault-freeoperation, where readsdo notneed

to accessparity blocks,ahostreadaccessesonly datablocks thehigherlevel filesystemhasalready

acquired (filesystem-level) locks for. It follows that the only concurrent writes to the samestripe

mustbeupdating other data blocks besidesthe ones being accessedby thehostread. It is therefore

unnecessary to acquirea lock to thedatablock beforea read.

Recall that in fault-free mode, only hostread and hostwrite tasks are allowed. Thus, if the

higher-level filesystemensuresnoread/writeconflicts, hostreadscan simply bemapped onto direct

devreadswith no timestamp checksor lockacquire/releasework. This canspeed up theprocessing

at thedevicesand reducetheamount of messaging on thenetwork. Note that this readoptimization

can not be applied in degraded mode. Serializabili ty checking is required in degraded mode and

reconstructing modesbecausecontention can occur over the samedata block even if thehosts do

not issueconcurrent hostread and hostwrites to thesameblock. Theperformanceevaluation results

and conclusions do not change much even if concurrency control is not performed on fault-free

modereads. In this case,all theprotocolswill not performany control messaging onbehalf of reads

138 CHAPTER 4. SHARED STORAGE ARRAYS

and thereforehave theminimal latency possible for hostreads. Concurrency control isstil l required

for hostwriteswhichcanconflict onparity aswell asdatablocks.

Note that regardlessof what the higher-level software is doing, concurrency control mustbe

ensured for two concurrentwritesto the same stripe. This is becausetwo writesto different data

blockscan contendover thesamedataor parity blocks, something that is totally invisible to higher-

level software (consider, for example, a Read-Modify-Write BST and a Reconstruct-Write BST,

both shown in Figure 4.5, occurring concurrently in Fault-freemode). Serializability of such write

BSTs is essential so that parity is not corrupted. Similarly, the serializabili ty of copy BSTs with

ongoing writesis also requiredfor correctnessregardlessof what thesynchronization protocol used

by higher-level software.

Finally, thedeadlock problem associated with device-served locking variantscan beeliminated

by requiring clients to acquire locks on entire stripes. This breaks the “hold and wait” condition

becauseclients do not have to acquire multiple locks per stripe. Only a single lock is acquired.

Stripe locking substantially reduces concurrency, however, especially with largestripe sizes. This

in turn degradesI/O throughput and increasesaccesslatenciesfor applicationsthat perform a lot of

small writes to sharedlargestripes.

4.8.2 Extension to other RAID levels

Theapproachdiscussedin thischapter can beextendedin astraightforwardmannerto otherRAID

levels, including double-fault tolerating architectures. The reason is that all the readand write

operations in all of the RAID architectures known to the author at the time of the writing of this

dissertation [Blaum etal., 1994, Hollandet al., 1994] consisteitherof asingle(reador write) phase

or of a read phase followed by a write phase. Thus, the piggy-backing and timestampvalidation

approach described in theprevioussectionsapply directly to thesearchitecturesaswell.

4.8.3 Recovery

Multiple component failurescaneasily lead to anobjectending in theUnavailable state. In practice,

apoorly designedsystemcan bevulnerable to thecorrelatedfailuresandoutagesof several compo-

nents. For example,if diskssharethesamepowersourceor cooling support, then multiplediskscan

experiencefaultsat thesame time. The likelihoodof more thanasingle failurecanbesubstantially

reducedby designing support equipment sothatit is not shared by thesamedisksin thesamestripe

group [Schulzeet al., 1989]. Anotherscheme is to use uninterruptible power supplies (UPS). Mul-

4.9. SUMMARY 139

tiple or successive failures cancauseseveral transitions betweenmodes. Thefollowing discussion

will focusonasingle failureor transition ata time.

While the concurrency control protocol work is largely distributed, the recovery work heavily

relieson thestoragemanager. This is not a seriousproblem because recovery isnot supposedto be

common. Furthermore,thereneed not beasinglestoragemanager in thesystem.Therecanbemany

storagemanagersaslong as,atany given time,there is auniquemanager serving the layout mapfor

a givenvirtual object. Thus, the storagemanager’s load can be easily distributedand parallelized

acrossmany nodes.

When a manager fails, however, another storage manager must take over the virtual objects

that it was responsible for. Other work hasinvestigated how storage managers can be decided

dynamically by thestoragedevicesuponafailuresothat nostatic assignmentof managersto devices

is necessary[Golding and Borowsky, 1999]. This work is complementary to thesolutionsdiscussed

in this dissertations and solvesa complementary problem of ensuring fast parallel recovery when

thesystemrestartsafter ageneral failure. Theprotocolsdescribedin [GoldingandBorowsky, 1999]

handle network partitionsaswell asdeviceand manageroutages.

TickerTAIP [Cao etal., 1994] is aparallel disk array architecturethatdistributedthefunction of

the disk array controller to thestorage nodes in the array. Oneof the design goals of TickerTAIP

wasto toleratenodefaults. Hosts in TickerTAIP did not directly carry out RAID update protocols.

RAID update protocols were executed by one storage node on behalf of the host. Host failure,

therefore, wasnot a concern. The protocols discussed in this dissertation generalize the recovery

protocols of TickerTAIP to thecasewhere theRAID updatealgorithms involveboth theclientsand

thedevices.

4.9 Summary

Shared storage arrays enable thousands of storagedevices to be shared and directly accessed by

hostsover switched storage-areanetworks. In such systems,storage accessand management func-

tion areoftendistributedto enable concurrent accessesfromclientsand servers to thebasestorage.

Concurrent taskscan leadto inconsistencies for redundancy codesandfor dataread by hosts. This

chapterproposedanovelapproachtoconstructingascalabledistributedstoragemanagement system

that enableshigh concurrency between accessand management tasks while ensuring correctness.

The proposedapproach breaks down thestorageaccess and management tasks performedby stor-

age controllersinto two-phasedoperations (BSTs) suchthat correctnessrequires ensuring only the

140 CHAPTER 4. SHARED STORAGE ARRAYS

serializability of thecomponent BSTsandnot of theparent tasks.

This chapter presented distributed protocols that exploit technology trends and BST proper-

ties to provide serializability for BSTs with high scalability, coming within a few percent of the

performanceof theideal zero-overheadprotocol. Theseprotocolsusemessagebatching andpiggy-

backing to reduce BST latencies relative to centralized lock server protocols. In particular, both

device-served lockingandtimestampordering achieveup to 40%higher throughput thanserverand

callbacklocking for asmall(30device) system. Bothdistributedprotocolsexhibit superior scaling,

falli ngshort of the idealprotocol’s throughput by only 5-10%.

The baseprotocols assume that within the shared storage array, data blocks are cachedat the

storage devicesand not at the controllers. When controllers areallowed to cache data and parity

blocks, the distributed protocols can be extended to guaranteeserializabili ty for reads and writes.

This chapter demonstrates that timestamp ordering with validation, a timestamp basedprotocol,

performs better than device-served leasing especially in the presence of contention and random

access workloads. In summary, the chapter concludes that timestamp ordering based on loosely

synchronizedclocks has robust performanceacross low and high contention andin thepresenceof

device-side or host-side caching. At thesametime, timestampordering requires limitedstateat the

devicesand doesnot suffer from deadlocks.

Chapter 5

Adaptiveand automatic function placement

The previouschapter presented anapproach basedon light-weight transactionswhich allows stor-

age controllersto beactive concurrently. Specifically, multiple controllerscanbe accessing shared

deviceswhile managementtasksareongoing at other controllers. Performanceresults show that the

protocols usedto ensure correctness do scalewell with systemsize. Theapproach described in the

previouschapterenablescontrollers to beactively migrating blocksacrossdevicesandreconstruct-

ing dataonfaileddeviceswhileaccesstasksareongoing. Thisenablesbalancing loadacrossdiskby

migrating storage without disabling access.Balancing loadacross disks improves theperformance

of dataaccessfor applicationsusing thestoragesystem.

Another issuethataffects theperformanceof storage-intensiveapplicationshasto do with prop-

erly partitioning their functionsbetweenthedifferent nodesin thestorage system. Judicious parti-

tioning canreduce the amount of data communicatedover bottleneckedlinks andavoid executing

function on overloadednodes. Rapidly changing technologiescausea single storagesystemto be

composed of multiple storage devices and clients with disparate levels of CPU and memory re-

sources. Moreover, the interconnection network is rarely asimple crossbar andisusually quitehet-

erogeneous. Thebandwidthavailablebetween pairsof nodesdependsonthephysical link topology

betweenthetwo nodes. This chapter demonstratesthat performancecanbe improvedsignificantly

for storagemanagement and data-intensiveapplicationsby adaptively partitioning functionbetween

storageserversandclients. Function canbejudiciously partitionedbasedon theavailability and dis-

tribution of resourcesacrossnodesand basedonafew key workloadcharacteristicssuchasthebytes

movedbetween functional components. This chapter demonstratesthat the information necessary

to decideon placementcanbecollectedat run-timeviacontinuousmonitoring.

Thischapteris organizedasfollows. Section5.1 highlightsthedifferent aspectsof heterogeneity

in emerging storage systems, and statestheassumptions made by the discussions that follow. Sec-

141

142 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

tion 5.2 reviews the function placement decisionsof traditional filesystemsand how they evolved

to adapt to the underlying hardwareand to the driving applications. Section 5.3 describesa pro-

grammingsystem,called ABACUS, which allows applicationsto becomposed of components that

can movebetweenclient and serverdynamically at run-time. Section 5.4describestheperformance

model usedby ABACUS to decideon thebestplacement of function and explainshow theinforma-

tion needed by the performance model is transparently collected at run-time. Section 5.5describes

a file system which wasdesignedand implemented on ABACUS. Section 5.6 reports on the per-

formanceof this filesystem on ABACUS under different synthetic workloads. Section 5.7describes

how ABACUS can be generalized to enable user-level applications to benefit from adaptive client-

server function placement. Section 5.8evaluatesthe algorithmsusedby ABACUS to decideon the

optimal function placement under variations in nodeand network loadand in workloadcharacter-

istics. Section 5.9 discussestheadvantages and limitationsof the proposedapproach. Section 5.10

discussesprevious related work. Section 5.11 summarizes thechapter.

5.1 Emerging storagesystems: Activeand Heterogeneous

Two of thekey characteristics of emerging and future storage systemsarethegeneral purposepro-

grammability of their nodes and the heterogeneity of resourcerichnessacrossthem. Heterogeneity

mandatesintelligent anddynamic partitioning of function to adapt to resourceavailabili ty, whilethe

programmabilit y of nodesenables it. The increasing availabili ty of excesscyclesat on-device con-

trollersis creating an opportunity for devices and low-level storage servers to subsume morehost

system functions. One question that arises from theincreasedflexibility enabled by storagedevice

programmabilit y is how filesystemfunction should bepartitionedbetween storagedevicesandtheir

clients. Improper function partitioning between activedevicesand clientscanput pressureon over-

loaded nodes and result in excessive data transfers over bottleneckedor slow network links. The

heterogeneity in resourceavailability among servers, clientsand network links, and the variabilit y

in workloadmixescausesoptimal partitioning to changeacrosssitesandwith time.

5.1.1 Programmability: Activeclientsand devices

Storagesystems consist of storage devices, client machines and the network links that connect

them. Traditionally, storage deviceshave provided a basic block-level storage service while the

hostexecutedall of thefilesystemcode. Moore’s law is making devicesincreasingly intelli gent and

5.1. EMERGING STORAGE SYSTEMS: ACTIVE AND HETEROGENEOUS 143

trendssuggest thatsoonsomeof thefilesystemor evenapplication function canbesubsumedby the

device [Cobalt Networks, 1999, Seagate, 1999].

Disk driveshave heavily exploited the increasing transistor density in inexpensive ASIC tech-

nology to both lower cost and increaseperformance by developing sophisticated special purpose

functional unitsand integrating themonto asmall numberof chips. For instance,Siemen’sTriCore

integrated micro-controller andASIC chip contained a 100 MHz 3-way issuesuper-scalar 32-bit

data-path with up to 2 megabytes of on-chip dynamic RAM and customer definedlogic in 1998

[TriCoreNews Release, 1997].

Regardlessof what technologywill provemost cost-effective to bringadditional computational

power to storage devices(e.g. an embedded PC with multiple attached disks or a programmable

on-disk controller), theabili ty to executecodeonrelatively resource-poor storageserverscreatesan

opportunity which must becarefully managed. Although somefunction canbenefit from executing

closer to storage, storage devices can be easily overwhelmed. Active storagedevicespresent the

storage-area-network filesystem designer with the added flexibilit y of executing function on the

client side or the device side. They also present a risk of degraded performance if function is

partitionedbadly.

5.1.2 Heterogeneity

Storagesystemsconsist of highly heterogeneouscomponents. In particular, thereare two important

aspects of thisheterogeneity, thefirst is heterogeneity in resourcelevels acrossnodesand links and

thesecond is theheterogeneity in nodetrust levels.

Heterogeneity in node resources

Storagesystemsarecharacterizedby awide range in theresourcesavailableat thedifferentsystem

components. Storage servers—single disks, storageappliancesandservers—have varied proces-

sor speeds, memory capacities,and I/O bandwidths. Client systems—SMPservers, desktops, and

laptops—also have varied processor speeds, memory capacities, network link speeds and levels of

trustworthiness.

Somenodesmay have“special” resourcesor capabilitieswhichcanbeusedto acceleratecertain

kinds of computations. Data-intensive applications perform different kindsof operations such as

XOR, encoding, decoding and compression. These functionscanbenefit from executing on nodes

that have special capabilities to accelerate these operations. Such capabilit ies can be hardware

144 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

accelerators,configurable logic, or specializedprocessors.

Heterogeneity in node trust levels

In a distributed system, not all nodes areequally trustedto perform a givenfunction: a clientmay

not be trusted to enforce theaccesscontrol policy that theserver dictates, or it maynot be trusted

to maintain theintegrity of certain data structures. For instance,certain filesystem operations, such

asdirectory updates, canonly be safely completed by trusted entities, sincethey can potentially

compromisetheintegrity of thefilesystem itself. Wherea function executes, therefore, hascrucial

implicationson whethertheprivacy and integrity of datacan bemaintained.

Traditionally, manyclient-server systems[Howardet al., 1988] assumenon-trustworthy clients

and partition function between client and server such as that all potentially sensitive function is

maintained at the server. This assumption does not hold in the case of many emerging clusters,

where clients and servers are equally trusted. Such conservative designs under-perform when the

resourcesof trusted clients go underutilized. Other systems,like NFS [Sandberg etal., 1985] and

Vesta [Corbett andFeitelson, 1994], have assumedtrustedclients. Suchsystems cansuffer serious

security breacheswhen deployed in hostileor compromised environments.

Filesystem designers do not know the trustworthiness of the clients at design time and hence

are forcedto make either a conservative assumption, presupposing all clients to be untrustworthy,

or a liberal one, assuming clients wil l behave according to policies. In general, it is beneficial

to allow trust-sensitive functionsto be bound to cluster nodesat run-time according to site-specific

security policiesdefinedby systemadministrators. Thisway, thefilesystem/applicationdesigner can

avoid hard-coding assumptions about client trustworthiness. Such flexibility enhancesfilesystem

configurabili ty andallowsasinglefilesystemimplementation toservein bothparanoidandoblivious

environments.

5.1.3 Assumptions and systemdescri ption

Thischapter doesnotassumeavery specific storagesystemarchitecture. In fact, itsgoal is to arrive

at a framework and a set of algorithmswhich enable a filesystemto be automatically optimizedat

installation-timeandat run-time to theparticularhardwareavailable in theenvironment. It follows,

therefore, that lit tle should be assumedabout the resource distribution or about the workload. Of

course,somebasic assumptionsabout the storage model and thekindsof entitiesin the systemare

required to enable progress.

5.1. EMERGING STORAGE SYSTEMS: ACTIVE AND HETEROGENEOUS 145

Thediscussionin this chapter isconcernedwith thepartitioning of filesystemfunctionsin active

storage systems. Active storage systemsconsist of programmable storage servers, programmable

storageclientsandanetwork connecting them. Thissubsectiondescribesthesecomponents in more

detail.

Programmablestorageservers

A storageserverin an activestoragesystemcanberesource-poor or resource-rich. It can beaNASD

device with a general purposeprocessor, a disk array with similar capabili ties, or a programmable

file server machine. A “storage server” refersto a nodewith a general purposeexecution environ-

ment that is directly attached to storage. A storage server executes an integrated storage service

that allows remote clients and local applications to accessthe storage devicesdirectly attached to

it. The interface to this base storage service can be NFS, HTTP, NASD or any interface allowing

logical objects with many blocks to beefficiently named. The implementation usedin theexperi-

ments reportedin thischapter isbuilt onabasestorageservicewhich implementstheNASD object

interface,but it wil l beclearfrom thediscussion thattheapproach described in this chapterapplies

equally well to any otherobject-like or file-like basestorageservice.

Becauseall storagedevicesandfileserversalreadycontainageneral purposeprocessor capable

of executing general purpose programs, the specific meaning of “storage serverprogrammability”

in this particular context may not be clear. While storagedevicesare endowedtodaywith general

purposeprocessors, thesoftware executed on theseprocessors is totally written by the device man-

ufacturers. Similarly, while NFS file servers are often general purpose workstations, the function

that administrators allow to execute on the server is limited to li ttle beyond file service and the

supporting servicesit requires (e.g. networking, monitoring and administration services).

Thischapter assumesthatprogrammable storageserversallow general purposeclient extensions

to execute on their local processors, possibly subject to certain security and resource allocation

policies. Theseclient-provided functions can be downloaded at application run-time and are not

known to thestorageserveror devicemanufacturer aheadof time. Thesefunctions canbepart of

the filesystem traditionally executed on the client’s host system, or alternatively they can be part

of user-level applications. All such functions, however, may have to obey certain restrictions to

beable to execute on the programmableserver. For example, they may beconstrained to accessing

persistent storageandotherresourcesonthestorageserver throughaspecifiedsetof interfaces. The

interfacesexported by a programmable storage server to client functionscanrange from anentire

146 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

POSIX-compliant UNIX environment to a limited setof simple interfaces.

Thischapterassumesthat programmable storageserversexport aNASD interface. Client down-

loadedextensionscan beexecutedon the server and canaccesslocal storage through a NASD in-

terface. Clientfunctionscan usetheserver’s processor to perform computationsand can allocate a

bounded amount of memory. They canaccess memory in their own address space or make invoca-

tionsto other (localor remote)services throughremoteprocedurecalls.

Storageclients

Storageclients represent all nodesin thesystemthat are not storageservers. Alternatively, storage

clients arenetwork nodesthat have no storagedirectly attached to them. They accessstorageby

making requests on storage servers. They alsohave a general purposeexecution environment. The

clients may or may not be trusted by the storage servers. Filesystem function that doesnot exe-

cute on thestorage server must execute on theclient. Storageclients includedesktops,application

servers, NASD file managers, or web serversconnected to storage servers through a storage-area

network.

5.2 Function placement in tradi tional filesystems

Currently, distributed filesystems, li ke most client-server applications, are constructed via remote

procedure calls (RPC) [Birrell andNelson, 1984]. A server exports a set of services defined as

remoteprocedurecallsthatclientscaninvoketo build applications. Distributedfilesystemstherefore

have traditionally dividedtheir device-independent functionsstatically between client and server.

Changes in the relative performance of processors and network links and in the trust levels

of nodes across successive hardware generations make it hard for “one-design-fits-all” function

partitioning decision to providerobustperformancein all customer configurations.

Consequently, distributedfilesystemshavehistorically evolvedto adapt to changesin theunder-

lying technologiesand targetworkloads. Examplesincludeparallel filesystems, local-areanetwork

filesystem,wide-areafilesystems,and active disk systems. The following section describes these

differentsystemsand how they werespecialized to their particular targetenvironment.

5.2. FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 147

�'� ��� �O�O�B�G��� �����G��� � ���O�O�O�O���� � �O�O�O� ��� �O�j�O�G�j�����O�O�O�O�

� ��

c� lient/server interface

S
to

ra
g

e

p� rivate interconnect

 ¡ ¢£
¤¥ ¦£
§ ¨

© ª «¬ �
¬ ®
¯°
�±²

Figure 5.1: Function placement in the Intel concurrent filesystem for the iPSC/2 hypercube multicomputer.

Both processor nodes and I/O nodes use identical commodity x86 Intel processors with equal amount of local

memory. Up to four disks are connected to each I/O node. The processor and I/O nodes are connected in a

hypercube private interconnection network. Given the bandwidth of the private interconnect, CFS caches disk

blocks at the I/O nodes. To deliver high-bandwidth to applications running on clients, CFS delegates to the

client processor nodes the responsibility of striping and storage mapping.

5.2.1 Parallel filesystems

In orderto providethenecessaryprocessing horsepower for scientific applicationsandon-linetrans-

action processing systems, parallel multicomputers and massively parallel processors were intro-

duced. Thesesystemscompriseda largenumber of processors interconnectedvia a highly reliable

high-bandwidth busor interconnection network. To provide theprocessors with scalable input and

output to and from secondary storagedevices,multicomputer designersdevelopedtheir own propri-

etary filesystems, such astheIntel Concurrent Filesystem(CFS) [Pierce,1989] andtheIBM Vesta

[Corbett andFeitelson, 1994].

Storagedevices in multicomputers are usually attached to processors known as “ I/O nodes”

(storageservers),while “processor nodes” (clients) execute application codeand accessstorageby

makingrequests to theI/O nodes. Multicomputer file systemsarenot concerned with security given

that all processorsare trusted and the interconnect is private to the multicomputer. All processors

execute thesameoperating system and often the sameapplication, and, therefore, areassumedto

mutually trust each other. Furthermore, the network is internal to the multicomputer andis safe

from maliciousattacks. In theIntel CFS filesystem for example, I/O nodescachedisk blockswhile

processor nodes do not perform any caching. Client processor nodes, on theother hand, perform

storage mapping (striping/aggregation) so that they can issuemultiple parallel requeststo several

I/O nodes.Because thelatency of a local memory accessis comparable to thelatency of anaccess

to the memory of an I/O node, server-sidecaching makessense sinceit avoidsthe complexity and

performanceoverhead of ensuring the consistency of distributed caches. At thesame time, client-

sidestoragemapping allowsapplicationsexecutingontheprocessornodestoobtain high-bandwidth

148 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

�'� ��� �O�O�E�j��� ������� ³���� ´j�G� �O� � �O��µ� � �O�O�O� ¶O�G���G³���� ´G�j� �O� � �O�O�

� ��

Local area network

c� lient/server interface

S
to

ra
g

e

¥ ¦£
§ ¨

°
�±²

�����j¶O�G� �O·¹¸O�»ºj�

¥ ¦£
§ ¨

Figure 5.2: Function placement in most network filesystems. Because the network is traditionally a low band-

width shared bus, striping across devices is only applied at the server. Data is cached as close to the applica-

tion as possible (at the client) to avoid the slow network.

by striping across linksandI/O servernodes.Figure5.1depictsa typical partitioning of function in

parallel filesystems.

Parallel processor interconnection networks boast high reliabili ty and bandwidth becausethey

span short distances andare installed in controlled environments. Local area networks, such as

Ethernet, andwidearea internetworkshavemuch lower bandwidth. Filesystemsfor thesenetworks

have thereforechosenadifferent function placement thanparallel filesystems.

5.2.2 Local areanetwork filesystems

The NFS filesystem was designed to allow sharing of files in a local area network. NFS divides

machinesinto clientsand servers. Storagedevicesareattachedto the server. Applications execute

entirely on clients and accesstheserver to readandwrite dataon the storagedevices. Servers im-

plement all the file and storagemanagementfunctions. For example, file and storage management

functions (directory management, reliabili ty, and storagemanagement) execute almost entirely on

the server becausethe serverhas sufficient resources to managethe limited number of storagede-

vicesthat areattached to it. Becausethe network has limited bandwidth, NFSsupports thecaching

of file and attribute information at theclient. This caching reduces the need for over-the-network

transfers, and also reducesserver load. Figure 5.2 depicts the partitioning of function in typical

local-areaand wide-areanetwork filesystems.

To obtain cost-effectivescalablebandwidth on a local areanetwork, datamust bestriped across

the network and across multiple servers. Swift [Cabreraand Long, 1991] is anearly array storage

system that striped data acrossmultiple storage serversto provide high aggregate I/O ratesto its

clients. Swift definesa storage mediator machine which reservesresourcesfrom communication

and storage servers andplans the aggregate transfer as an encrypted coordinated session. Swift

5.2. FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 149

mediators also manage cache coherence using call-backs, and bandwidth reservation by selecting

theappropriatestripeunit size. Swift delegates thestoragemanagementfunction to theservers (the

storagemediators). Applicationsexecuteentirely on clients.

5.2.3 Wideareanetwork filesystems

The Andrew filesystem (AFS) wasdesigned to enable sharing of data among geographically dis-

tributed client systems[Howardet al., 1988]. AFS has traditionally served an amalgamation of

widely distributed office and engineering environments, where sharing is rarebut important and

each client is anindependent system. Accordingly, the entire application executesat a client and a

larger fraction of theclient’s local disk is reserved for long-term caching of distributedfilesystem

data.

AFSisdesignedfor wideareaswherea local diskaccessis assumed muchfaster thanan access

to theserver. Consequently, local disk caching under AFS can improve performancedramatically.

Long-term local disk caching is very useful in environments with mostly read-only sharing such

asinfrequently updatedbinariesof sharedexecutables. Such caching reduces server loadenabling

relatively resource-poor AFSservers to support a largenumberof distant clients.

5.2.4 Storagearea network filesystems

Traditionally, the limited connectivity of peripheral storage networks (e.g. SCSI) constrained the

number of devices that can be attached to the server. Emerging switched networks are expand-

ing the connectivity and bandwidth of peripheral storage networks and enabling the attachment

of thousands of storage devices to the server. As a result, a single file server machine – usu-

ally a commodity workstation or PC – cannot handle file and storage management for this large

numberof devices. Consequently, recent research on network-attached storage has proposed of-

floading this function to “clients”, eliminating the legacy server, enabling striping acrossmul-

tiple servers, effectively replacing the server with a cluster of cooperating clients. Several re-

searchers have proposed scalable storage systems that comprise clusters of commodity storage

servers[Anderson etal., 1996, Thekkath et al., 1997, Gibson etal., 1998, Hartman etal., 1999] and

clients,which largely offload filesystemfunctionality fromserversto clientsto enable thescalability

of thedistributed filesystem.

Frangipani [Thekkathet al., 1997] is aclusterfilesystemwhich is built on topof closely cooper-

ating network-attached storageservers. Thestorageserversexport theabstraction of asetof virtual

150 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

�'� ��� �O�O�B�G��� �����G� � �(� �O� � � �O�O�O��µ� � �O�O�O� ¼O�O�j�O³W��� ´j�G� �O� � �O�O�

Local or storage

c� lient/server interface

S
to

ra
g

e

¥ ¦£
§ ¨

°
�±²

�O� �j´G�

� �� ½
�¦«
ª¾

� �� ½
�¦«
ª¿

aÀ rea network

Figure 5.3: Function placement in active disk systems. The server in this case is a smart disk drive capable

of executing general purpose application code. The client is a host machine. The data intensive function of

the application (part2) is explicitly moved to the disk. A vestigial merge function (part1) is left at the host to

coordinate multiple remotely executing functions which can be potentially executing on several active disks.

disks. Eachvirtual disk is block-addressable, and blocks are replicatedacross servers for reliabil-

ity. Frangipani distributes its filesystem function (allocation, namespace management) to a set of

cooperating clients, called“file managers.” The file managers cooperatively implementa UFS-like

filesystemand synchronizeviaasharedlock manager. Measurementsof Frangipani report enhanced

scalability fromdistributed execution.

5.2.5 Activedisk systems

A growing numberof important applicationsoperateon largedatasets,searching, computing sum-

maries,or looking for specific patterns or rules, essentially “fi ltering” the data. Filter-li ke applica-

tionsoften makeoneor moresequential scansof thedata[Riedel et al., 1998]. Applicationsexecute

on the host, with the storage devices serving as block servers. Proponents of active disk systems

claim that the increasing levels of integration of on-disk controllers arecreating “excess” comput-

ing cycleson theon-disk processor. These cycles canbeharnessedby downloading “application-

specific” dataintensive filters. Currently, data-intensive applications execute entirely on the host,

oftenbottlenecking on transferring data from thestoragedevices(servers) to thehost (client in this

case). Figure5.3depictsthepartitioningof function in anactive disk system.

Table 5.1 summarizesthe function placement choices for a representative distributed storage

system in each of the above categories. For each system, the table shows wherecaching aswell

asother filesystemfunctions such as aggregation/striping and namespace management are placed.

Thetableshowsalsowhereapplication function is executed. Thetablesummarizesthis information

highlighting thefact that for each function, there is at least onesystemwhich choosesto place it at

theclient andat leastonesystemwhich choosesto placeat theserver.

5.2. FUNCTION PLACEMENT IN TRADITIONAL FILESYSTEMS 151

For each filesystem, the partitioning of function was heavily dictated by the topology of the

target environment and thecharacteristics of the important workloads. This makeseach filesystem

applicable only within the boundariesof the environments thatfit its original design assumptions.

Function partitioning in distributed filesystemshas been specialized in these systemsto the un-

derlying technologiesand target workloads. This specialization of course came at the expenseof

considerable developmenttime. Rewriting filesystemsto optimizefor details in theunderlying hard-

wareisnot cost-effectivein termsof development time. Moreover, rewriting filesystemsto optimize

for more detailed characterizations of theunderlying hardware stil l cannot adapt to changesin the

lif etimeof asingle workload,or to inter-application competition oversharedresources.

5.2.6 A motivating example

Considerthefollowing example demonstrating how adapting functionplacement betweenclient and

server canimprove filesystemperformance. Theprevious chapter presented a sharedstorage array

architecturecomposedof storagedevicesand storagecontrollers. In this chapter’s terminology, the

storagedevicesarethestorageservers and thestoragecontrollers are the clients. Let’s assume that

the storage device processors are limited compared to thatof thestorage controllers. Let’s further

assumethat thestoragenetwork connecting thedevicesto thecontrollersis relatively fast such that

the timestaken by a local anda remoteaccessbetween thenodesare relatively indistinguishable.

In thiscase,when thearray is in degradedmode,it is advantageous to execute thereconstruct-Read

BSTs(XOR intensiveoperationsneeded to computethecontentson thefailed device) onthestorage

controller. Thestorage controller hasa fastCPUand transferring the data on thenetwork does not

add observable latency.

Now consider thecasewherethestoragedevicesareupgradedsuch thatexecuting XORson the

devicesis 5X faster. Then, executing thereconstruct-ReadBST on thedevice side will be5 times

faster. If we alsoassumethat thenetwork is of observable latency becauseof highly active storage

controllers, theperformanceimprovement of device-sideexecutioncanbeevenhigher.

Traditionally, theserver interfacedefineswhat function executesat theserver, everything else

executesattheclient. Thisinterfaceis decided atsystem designtimeby serverimplementors. Client

programmershaveto abideby thisdivisionof labor. Server interfacedesignersfactor in assumptions

about the relative availability of resourcesat the client and theserver, their relative levels of trust,

the performanceof theclient-server network and thekey characteristics of the expectedworkload.

Theseassumptionsdonot matchtherealitiesof several systemsandworkloads.Theresult is subop-

152 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Intel CMU Frangipani Active

CFS AFS disks

Component Assumption

Client node Trusted Not Not Trusted

trusted trusted

Network Private Widearea Scalableswitched Storage

interconnect network network network or LAN

Function Placement

Aggregation atclient at server at server at server

Namespace at server at server at client at server

Application atclient at client at client at server

Table 5.1: Function placement in distributed storage systems as a function of machine, workload and network

characteristics. The table shows only where striping/aggregation, namespace management, and user appli-

cations are placed. CFS is Intel’s concurrent file system, AFS is the Andrew filesystem developed at Carnegie

Mellon, and Frangipani is the cluster filesystem developed at Compaq SRC. Active disks represent the re-

search prototypes described in the literature [Riedel et al., 1998, Keeton et al., 1998, Acharya et al., 1998].

timal andsometimesdisastrousperformance. The heterogeneity in workload characteristics, node

trustlevels, andin noderesourceavailabilit y in actual systemsmakesuchassumptions“invalid” for

a largenumberof cases.

Optimal partitioning of function depends on workload characteristics as well as system char-

acteristics. Both mustbe known before theoptimal partitioning is known. For instance, consider

a streaming data-intensive application executing on a storage system where the server’s CPU is

much slower thanthatof theclientand where thenetwork betweenclient andserverhasarelatively

high-bandwidth. In this case, “datashipping” and not “function shipping” is the optimal solution.

Transferring the data to the client is inexpensive, and client-side processing will be much faster!

Evenif theserver is powerful, it can beeasily overloaded with remotely executedfunctionscausing

slow-downscontrary to thedesired goals[Spalink et al., 1998].

5.3. OVERVIEW OF THE ABACUS SYSTEM 153

5.3 Overview of the ABACUS system

To demonstratethebenefits andthefeasibility of adaptive function placement, this chapter reports

on the design and implementation of a dynamic function placement system and on a distributed

filesystembuilt on it. Theprototypeis calledABACUS becausefunctionsassociatedwith aparticular

datastream (file) canmove back and forth between theclientand theserver.

5.3.1 Prototypedesign goals

ABACUS is designedprimarily to support filesystems and stream-processing applications. Filesys-

tems and stream-processing applications move, cache and process large amounts of data. They

perform several functions on the data-stream asit movesfrom the base storageserver to the end

consumerat the client node. Intuitively, the purposeof ABACUS is to discover enough about the

resource consumption patterns of the functional components in the stream and about their mutual

communication to partition them optimally between the client and the server. Components that

communicateheavily should beco-locatedon the samenode. At thesametime, the CPU at a node

should not be overloaded and loadshould bebalancedacross them. Sensitive functions should be

executed on nodes marked trusted. ABACUS therefore seeks to automateperformance and con-

figuration management and simplify filesystem development by removing from the filesystem and

application programmer the burdenof load balancing and configuration. Particularly, theABACUS

prototypeis designed to meet two principal requirements: to offer anintuitive programming model

and to intelli gently partition function without user involvement.

Intuitive programming model. The ABACUS-specific efforts expended by the programmer to

write a filesystem or application on ABACUS should be limited relative to designing a filesystem

or application for a traditional fixedallocation of function. In principle, automating function place-

mentfrees theprogrammerfrom theburdenof optimizing the application for each combination of

hardwareand environment. ABACUS should makeit easyfor programmersto write applicationsso

that the effort saved by not developing system-specific optimizations is not replaced by theeffort

takento codein ABACUS.

Flexible and intelligent partitioning. The system should partition function sothat optimal per-

formance is achieved. In this research, performance is taken to be equivalent to “total execution

time.” The system, therefore, should partition function so that, in aggregate, applications should

take theminimal amount of execution time.

154 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.3.2 Overview of theprogramming model

ABACUS consists of a programming model anda run-time system. The ABACUS programming

model encouragestheprogrammerto composeapplicationsfrom small components each perform-

ingafunctional steponadatastream.Therun-timesystemcontinuouslyobserveseachcomponent’s

behavior and systemresource availabilit y, using theseto assign thecomponent to thebest network

node.

Object-orientedlanguagessuchasC++and javaarewidelyused in buildingdistributedanddata-

intensive applications. ABACUS choosesto monitor application objects (run-time instantiations of

classes)andwork to “place” themin themostpropernode.

Component objects in an ABACUS application can be declared aseither mobile or anchored.

Mobile objectscanbeadaptively bound to client or to server at application start-time. They canalso

change placement at run-time. Mobile objects provide methods that explicitly checkpoint to and

restoretheir statefromabuffer. Thecheckpoint/restoremethodsareimplementedassuming

the object is quiescent, that is, not actively executing any externally exported method. Anchored

objects, on theother hand, arefixedto a location determinedby the designer at application design

timeandnevermigrate.

When thesystemis running, theapplication is represented asagraph of communicating mobile

objects. Each objectembodiesstateandprovidesaninterfaceto theexternal methodswhich canbe

invokedto operateon that state. Theobject graph canbethought of as rootedat thestorageservers

by anchored(non-migratable) storageobjects and at theclient by ananchoredconsole object. The

storage objects provide persistent storage, while the console object contains the part of the appli-

cation which must remainat thenode wheretheapplication is started. Usually, theconsole part is

not data intensive. Instead, it servesto interfacewith the user or therestof the system at thestart

node. Objectsmakemethod invocationsto each other, resulting in datamoving between them.The

data-intensiveassumption implies that theapplicationmovesa largeamount of dataamongasubset

of thecomponent objects.

Component object-based applications

The ABACUS prototype was developed to manage thepartitioning of applications written in C++.

While javawould have been amoreappropriate languagebecauseof its platform-independence, its

limited performance on Linux during the time this research was conducted made it a badchoice.

However, the reader will find out that the architecture of ABACUS and its resource management

5.3. OVERVIEW OF THE ABACUS SYSTEM 155

C
Á

onsole

C
Á

ache

R
Â

AID

A
Ã

nchor eÄ d object (NASD object, Console)

P
Å

r ivate state: local (embedded object)

Pr ivate state: r eÄ fer eÄ nce to external object

N
Æ

ASD N
Æ

ASD

U
Ç

ser application

oÈ pen(), close(), r eÄ ad(), wr ite()

C
Á

ompression

Mobile object

V
É

FS inter face, open file descr iptors

Figure 5.4: A filesystem composed of mobile and anchored objects. The open file table and VFS layer interface

code is encapsulated in the console object which does not migrate. Storage is provided by disk-resident

functions encapsulated in a base storage service exporting a NASD interface. The intermediate objects shown

in the figure perform compression, RAID and caching functions and are mobile. These can migrate back and

forth between client and server.

algorithms canbeequally applied to a java-basedapplication.

There are two kindsof “applications” thatcanrun on ABACUS, filesystems anduser-level ap-

plications. In the caseof a filesystem, the console object corresponds to the codein theoperating

system which manages open file tables and implements VFS-layer functions. This layer doesnot

move from the client host. Filesystem objects (e.g. caching, RAID, compression and directory

management) do migrate back and forth between the client and the server. Storage accessis im-

plemented by a disk-resident function encapsulated in a C++ “NASDObject” class. This classis

instantiated on each storage server. The instantiated C++ object is anchoredto theserver and does

not migrate. Figure5.4shows a filesystembuilt on ABACUS. This discussion will sometimesrefer

to such afilesystem asamobile filesystem.

In thecase of a user-level program, theconsole consistsof themain function in a C/C++ pro-

gram. This console part initiatesinvocationswhich are propagatedby theABACUS run-time to the

rest of the objects in the graph. Theapplication can becomposedof multiple mobile objects per-

forming data-intensiveprocessing functionssuchasdecoding, filtering, counting and datamining.

Fromhereon, the discussion will focuson filesystems. Supporting themigration of user-level

application objects when such applications are layered atop the filesystem requires making the

156 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

FileSys

C
Á

ache

Anchor eÄ d object (NASD object, Console)

P
Å

r ivate state: local (embedded object)

Pr ivate state: r eÄ fer eÄ nce to external objectN
Æ

ASD

U
Ç

ser application

oÈ pen(), close(), r eÄ ad(), wr ite()

M
Ê

obile object

C
Á

onsole

C
Á

ount

F
Ë

ilter

main() and r eÄ st of non-migratable code in app

cÌ ount matching r eÄ cords

sÍ ear cÌ h for r eÄ cords that match cr iter ia

Figure 5.5: A user level application and its filesystem. Both are written such that their functions can migrate.

The console is the main function in the application that displays the results on the screen and interacts with

the local client. The file system is composed of layers that are encapsulated into migratable objects. The state

relevant to the process’ open files in the kernel is encapsulated into a migratable object (FileSys) that can

migrate to the server.

filesystem console layer (encapsulated asa FileSysobject in Figure 5.5) itself migratable. This

poseswell-known complicationsbecausesomestate, such asopen-file descriptors,cannot beeasily

transferredtransparently between nodes[Douglis, 1990]. Figure 5.5depicts anapplication written

on ABACUS. A discussionof how ABACUS canbeextended to support themigration of application

objectsisdeferredto Section 5.7.

As far astheABACUS run-time is concerned, both filesystems and user applicationsappear as

a graph of self-containedobjects thatcanbe monitoredas black-boxesandmoved back and forth

betweenthe client and the server asappropriate. The only property that the run-time caresabout is

whether theobjectcanbemovedor not (mobile or anchored).

ABACUS applicationsperform dataprocessingby invoking methodsthatstart at theconsole and

propagate through the object graph. In general, an application such asa filesystem decomposes

its processing into a set of objects, with each object providing a specific function. Theseobjects

can evenbeadaptively boundon aperfile basisto providedifferent services.For instance,caching,

reliability andencryption arefunctionsthatmay haveto beperformedon thesamefile. ABACUS en-

ablesfilesystemsandstorage-intensiveapplicationsto becomposed of explicitly migratableobjects,

providing storageservicessuchasaggregation,reliabili ty (RAID), cacheabili ty, filters,aggregators,

5.3. OVERVIEW OF THE ABACUS SYSTEM 157

or any other application-specific processing. Eachobject embodies stateandprovidesan interface

to theexternalmethodswhichcan beinvoked to operateon thatstate.

Block-basedprocessing

Data-intensiveapplicationsoftennaturally processinputdataoneblock at atime, for someapplication-

definedblock size. Applicationsare implemented to iteratively process input datablocks because

the algorithms they employusually consume memoryresources that grow with the input size. To

limit memory usage, applicationsoften allocate a memorybuffer that is large enough to process

anapplication-definedblock of data, then iterate over theblocks in theinput file, reusing thesame

memorybuffer, thereby avoiding excessive memory use. For example, a search application like

grep searching a file for a specific string works by allocating a fixedmemory buffer. File blocks

aresuccessively readfromthefilesystem,scanned for thestring, then discardedand replacedby the

following block.

Data-intensive C++ objects within an application usually perform their processing by making

requeststo other objects. The amount of datamoved in each invocation is anapplication-specific,

relatively small, block of data (i.e. not the whole file). Most often, objects areorganized into a

stack, oneperapplication or filesystemlayer. Thus, method invocationspropagatedown andup the

stack, processing one block at a time. Block-based processing is anattribute of the programming

model that is not mandated for correctness, but for performance. The ABACUS run-time system

buildsstatistics about inter-object communication. These statisticsareupdatedat procedurereturn

from an object. Thus, it is important that theapplication performsmany object invocations during

its lifetime to enable ABACUS to collectenough history to guideit in itsplacement decision.

5.3.3 Object model

ABACUS provides two abstractions to enable efficient implementation of object-based storage-

intensive applications: mobile objects andmobile object managers. Mobile objects are the unit

of migration and placement. Mobileobjectmanagers group the implementation of multiplemobile

objectsof thesametypeonagivennodeto improveefficiency, share resourcesor otherwise imple-

menta function or enforce a policy that transcends theboundary of a single object. For instance,

a function that requires accessto more thanone object is a file cache. The file cache implements

a global cache block replacementpolicy and thereforeneeds to control the cacheblocks of all files

that it manages. Memory can therefore be reclaimed from a file that is not being accessed and

158 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

allocated to another activeone.

Anchored objects

Because anchored objects arenot mobile, that is, will at all timesremainat the node where they

are instantiated, ABACUS placeslit tle restriction on their implementation. Examples of anchored

objects include NASD objects, which provide basic storage services, and atomicity objects which

provide atomicity for multi -block writes. Both NASD and atomicity objects are anchored to a

storageserver. On theotherhand, theconsole objectisanchored to theclient node.

Storageserversare assumed to implement a “NASD interface”. Storageon a storageserver is

accessed through a C++ object, referred to asa NASD anchored object, instantiated at run-time,

and implementing the “NASD interface” described in Chapter 3. ABACUS doesnot require that

storage accessfollows a NASD interface. The anchored C++ object providing storageaccess can

just as easily export a block-level interface. While C++ objects communicating with storage are

requiredto know theparticular interfaceexportedby storage,ABACUS doesnot. ABACUS treatsall

invocationsbetweenobjectsasmessages that transmit a certain amount of bytes,without attention

to semantics.

Mobile objects

A mobile object in ABACUS is explici tly declared by the programmer as such. It consists of a

stateandthe methods that manipulate that state. A mobile object is required to implement a few

methods to enable therun-time systemto create instantiationsof it and migrateit. Mobile objects

are usually of large granularity. Rarely are mobile objectssimple primitive typessuchas integer or

float. They usually performfunctionsof thesizeandcomplexity of afilesystemlayer, or adatabase

relational operator, such asfiltering, searching, caching, compression, parity computation, striping,

or transcodingbetween two dataformats.

Mobile objects, like all C++ objects,have privatestate that is not accessible to outside objects,

except through theexportedmethods. Unlike C++ objects, mobile objects in ABACUS do not have

public datafields thatcanbeaccesseddirectly by de-referencing a pointer to the objects. Instead,

all accessesto theobjectsstatemust occur throughexportedmethods.This restriction simplifies the

ABACUS run-timesystem. Sinceall accessesto amobileobjectoccur through its exportedmethods,

the run-time’ssupport for location transparency can be focussedon forwarding method invocations

to an object to thecurrentlocation of theobject.

5.3. OVERVIEW OF THE ABACUS SYSTEM 159

The implementation of a mobile object is internal to that object and is opaque to other mobile

objectsandto theABACUS run-timesystem. Theprivatestateconsistsof embeddedprimitive types

and instantiations of embedded classes (i.e. not visible outside the scope of the current object’s

class) and referencesto external objects. TheABACUS programming model makesarestriction that

all external references must beto other mobile or anchoredobjects that are known to the ABACUS

run-timesystem.Referencesto other external resourcessuchassocketsand shared memory regions

arenot legal.

ABACUS maintainsinformation about thelocationsof mobileandanchoredobjectsthat it knows

about. It uses this information to forward method invocations to objects asthey migrate between

client andserver.

Of course, a mobile objectcanhave accessto its local private state through references that are

not redirected or known to the ABACUS run-time system. The mobile object is responsible for

saving thisprivatestate, however, whenit is requestedto do so by thesystem,through theCheck-

point() method. It is also responsible for reinstating this state (reinitializing itself) when the

run-time system invokes the Restore() method. TheCheckpoint() method savesthestate

to either an in-memory buffer or to a NASD object. TheRestore() method can reinstate the

statefromeitherplace. Thesignaturesfor theCheckpoint() and Restore() methods,which

define the base class from which all mobile objects are derived, are illustrated in Figure5.7. The

discussion will differentiate private embedded state from mobile andanchoredobjects by referring

to mobile and anchored objects as “ ABACUS objects”, since they are the only objects known the

ABACUS run-timesystem.

Mobile objectmanagers

Mobile object managersencapsulateprivatestate for acollection of mobileobjectsof agiventype.

Often, a service is better implemented using a single object manager that controls the resources

for a group of objects of the sametype. Object managers thus aggregate the implementation of

multiple objects of thesame type. For example, a file systemmay wish to control thetotal amount

of physical memory devotedto caching, or the total number of threadsavailable to cacherequests.

Mobile objectmanagersprovidean interfacethatis identical to thatof thetypesthey contain except

thatthey takean additional first argument to eachmethodinvocation,whichrepresentsareferenceto

the individual object to be invokedfrom thecollection of objectsin theaggregatedmanagerobject.

160 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

C
Î

onsole: 0

R
Ï

AID: 2

S
Ð

torage: 3

F
Ñ

ilter: 1

RAID: 2

ÒMÓ ÔOÕ+ÖO×OØ�ÒMØGÕ+Ù�ØGÕ

ÚMÛ Ü ØGÝMÓ

Þ
Þ ß

L
oc

at
io

n
tr

an
sp

ar
en

t
in

vo
ca

tio
n

L
oc

at
io

n
tr

an
sp

ar
en

t
in

vo
ca

tio
n

R
es

ou
rc

e
m

on
ito

ri
ng

&

 m
an

ag
em

en
t

R
es

ou
rc

e
m

on
ito

ri
ng

&

 m
an

ag
em

en
t

A
à

bacus run-time

U
á

M

U
á

M
â

M
U
á

 (digests
oã f stats)

Figure 5.6: An illustration of an ABACUS object graph, the principal ABACUS subsystems, and their interactions.

This example shows a filter application accessing a striped file. Functionality is partitioned into objects. Inter-

object method invocations are transparently redirected by the location transparent invocation subsystem of the

ABACUS run-time. This subsystem also updates the resource monitoring subsystem on each procedure call

and return from a mobile object (arrows labeled “U”). Clients periodically send digests of the statistics to the

server. Finally, resource managers at the server collect the relevant statistics and initiate migration decisions

(arrows labeled “M”).

5.3.4 Run-time system

Figure 5.6 represents an overview of the ABACUS run-time system, which consists of (i) a migra-

tionand location-transparent invocationsubsystem,or binding manager for short; and (ii) aresource

monitoring and management subsystem,resource manger for short. The first subsystem is respon-

sible for the creation of location-transparent references to mobile objects, for the redirection of

method invocations in thefaceof object migrations,and for enactingobjectmigrations. Finally, the

first subsystemnotifies thesecondat each procedurecall and return from amobileobject.

The resource manager usesthe notifications to collect statistics about bytes moved between

objectsandabout theresources usedby active objects (e.g.,amount of memoryallocated, number

instructions executed per byte processed). Moreover, this subsystem monitors the availability of

resourcesthroughout the cluster (node load, available bandwidth on network links). An analytic

model isusedto predict theperformancebenefit of moving to an alternative placement. Themodel

alsotakes into account thecost of migration— the timewastedto wait until theobject is quiescent,

checkpoint it, transfer its state to the target node and restore it on that node. Using this analytic

model, thesubsystem arrivesat theplacement with thebest netbenefit. If this placementis different

5.3. OVERVIEW OF THE ABACUS SYSTEM 161

from thecurrentconfiguration, thesubsystemeffectsobject migration(s).

The ABACUS run-time system hasmechanismsto find application objects and migrate them.

In general, when a function is moved, both the code for the function as well as its execution

state(local and external referencesaccessedby the function) must be made accessible at the new

node [Julet al., 1988]. A mechanism to transfer this state from one node to another is therefore

necessary to enableadaptive functionplacement at run-time.

Emerald [Jul etal., 1988] is a seminal implementation of a languageand run-time systemsup-

porting themobility of application objects. ABACUS usessimilar mechanisms to thoseprovidedby

Emerald to enact object mobility. The focus of the ABACUS prototype, however, wasnot on mo-

bility mechanismsbut rather on using thesemechanisms to improve data-intensive and filesystem

performancethrough judicious and automatic placement of their objects on the proper nodes. The

remainderof this sectiondescribesthemechanismsusedby theABACUS to effect objectmigrations

and to find objectsafter they migrate. Thefollowingsection is devotedto describing thealgorithms

usedby the run-time systemto achievegoodplacement for applicationobjects.

Creating and invoking mobileobjects

Thecreation of mobile objects isdonethrough theABACUS run-timesystem. When thecreation of

a new ABACUS object is requested, the run-time system allocatesa network-wide uniquerun-time

identifier (rid) for thenew object. This identifier is returnedto thecaller andcanbeusedto invoke

thenew mobile object from any node,regardlessof thecurrent location of themobile object. After

allocating a network wideuniquerid, therun-time systemcreates theactual object in memory by

invoking the object manager for that type. If no object manager exists, oneis createdfor that type.

Object managersmust implementaCreateObj() method which takesargumentsspecifying any

initialization information and returns a reference that identifies the new object within that object

manager. This can be thought of as a virtual memory referenceto thecreatedobject, although the

object manager is freeto construct this referencein the way it desires. The object manager creates

the “actual” object, e.g., in C++, by invoking thenew operator, and then return a reference to the

object to therun-time. This reference,called a“manager reference”, is used to uniquely identify the

object within thecollection of objectsmanagedby themanager.

The run-time system maintains tables mapping each rid to a (node, object manager, man-

ager reference) triplet. As mobile objects move betweennodes, this table is updatedto reflect the

new node, new object manager, and new manager reference. Mobile objects usetherid to invoke

162 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

other mobile objects, sothattheir invocationsareredirected to thepropernode. Therun-timesystem

converts therid to amemory referencewithin anobject manageron agivennetwork node.

Furthermore, typesmust registeredwith theABACUS run-time system, and beassociatedwith

anobjectmanager class,so that the run-time systemcandeterminewhat objectmanager to create

if none exists. Each object type may export a different set of methods. Invocations of ABACUS

objectsarecompiled into statementsthat first invoke theABACUS run-timesystem to maptherid

onto a (node,object manager, manager reference) triplet, thenforwardtheinvocation to the object

manager on the target node where the object currently resides. The object manager is invoked

by passing it the manager referenceas the first argument, followed by the actual arguments for

the method invocation. All ABACUS objects (mobile andanchored) definetheir interface in IDL

(InterfaceDefinitionLanguage[Shirley etal., 1994]), allowingtheABACUS run-timeto createstubs

and wrappers for their methods.

Locating objects

There are two kinds nodesin an ABACUS cluster: clients and servers. Servers arenodes on which

at least onebasestorageobject resides. Clientsarenodes thataccessstorageobjectson theservers.

A server can therefore be a client of another storage server. Top-level invocations originate at

the console object, which, like any ABACUS object, may hold rid referencesto other objects in

the graph. Inter-object calls are made indirectly via the run-time system. The ABACUS run-time

forwards inter-object calls appropriately. For objects in the sameaddressspace, procedure calls

are used and data blocks arepassed without copies. In other cases, remote procedure calls (RPCs)

are used. The nodewhere the console objectruns is called the “homenode” for all themigratable

objects in thegraphs reachable from it. ABACUS maintains the information necessary to perform

inter-object invocationsin ABACUS location tables.Location tablesarehash tablesmapping arid

to a node,object manager, manager referencetriplet.

Moving objects

Eachobject must conform to a small set of rules to allow the ABACUS run-time to transparently

migrateit. Migration of objects requires the transfer of stateof object from source to target node.

Consider migrating a object from a client to a storage node. The algorithm proceeds asfollows.

First, new calls to themigrating object areblockedto make it quiescent. Then,thebinding manager

waitsuntil all invocations thatareactive in themigrating object have drained(returned). Migration

5.4. AUTOMATIC PLACEMENT 163

is canceled if this step takes too long. Oncethe object is quiescent, it is checkpointed, its state

transferred andthe checkpoint restored to a newly created object of the same type on the storage

node. Then, local and remotelocation tablesareupdated to reflect thenew object placement. Next,

any waiting invocationsareunblocked and areredirectedto theproper nodeby virtueof theupdated

location table. This algorithmextends to migrating wholesubgraphsof objects.

ABACUS requires thateachmobile object in thegraph implementaCheckpoint() andRe-

store() method which conclude any background work and then marshall and unmarshall an

object’s representation into migratable forms. The mobili ty of code is ensured by having nodes

that do not have the code for an objectreadit from sharedstorage. Themobilit y of execution state

is enacted through application specific checkpointing. A Checkpoint() message is sent to the

object on migration. Theobject marshalls its private state to a buffer and returns it to the runtime

system which passes it to the Restore() method at the target node. This method is invoked to

reinitialize thestateof theobject beforeany invocationsareallowed.

5.4 Automatic placement

This section describes the performance model and the algorithms used by the ABACUS run-time

system to drive placement decisions. ABACUS resource managers gather per-object resourceusage

and per-node resourceavailabili ty statistics. The resourceusage statistics areorganizedas graphs

of timed data flow among objects. The resource manager on a given server seeksto perform the

migrationsthat will result in the minimal average application completion time across all theappli-

cationsthatareaccessing it. Thisamountsto figuringout whatsubsetof objectsexecuting currently

// the abstract mobile object class

// N
ä
asdId: a unique identif

ier for a på ersisent base storage object
cæ lass abacusMobileObject {

pç ublic:
int Checkpoint(void **buffer, NasdID nasdId, int *csize);

int Restore(void *buffer, NasdId nasdId, int csize);

};

Figure 5.7: The interface of a base mobile object in the ABACUS prototype. The interface consists of two

methods: Checkpoint() and Restore(). The type NasdId denotes the set of all NASD identifiers. The

notation is in C++. Hence, the “*” symbol denotes an argument that is passed by reference. csize represents

the size of the checkpoint created or passed in the buffer.

164 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

on clients canbenefit most from computing closer to the data. Migrating an object to the server

could potentially reducethe amount of stall time on thenetwork, but it could alsoextendthe time

theobject spendscomputing if theserver’sprocessor is overloaded.

Resourcemanagersat theserversuseananalytic model to determine which objectsshould be

migrated from the clients to the server and which objects, if any, should be migrated back from

the server to the clients. The analytic model considers alternative placement configurations and

selects the one with thebest net benefit, which is the differencebetween the benefit of moving to

thatplacementand thecostof migrating to it.

A migration is actually enacted only if theserver-side resourcemanager findsa new placement

whoseassociated net benefit exceedsa configurable threshold, èêéìë�íZî%ïðë . This threshold value is

usedto avoid migrationsthat chasesmall improvements, and it canbeset to reflectthe confidence

in theaccuracy of themeasurementsand of thepredictiveperformancemodel usedby the run-time

system.

While server-side resource managers can communicate with each other to coordinate the best

global placement decision, this would causeextra overheadandcomplexity in configuring thestor-

age servers. Under such ascheme,storageservers have to know about each other and beorganized

intocooperatinggroups.TheABACUS implementation foregoesthisextrabenefitof server-to-server

coordination for the sakeof robustnessandscalability. ABACUS server-side resourcemanagers do

not communicatewith one another to figure out the globally optimal placement. A server-sidere-

sourcemanager decideson thebest alternative placementconsidering only theapplication streams

thataccessit.

At any point in time, theobjectgraphfor an application is partitioned betweenclientandserver.

For a server-side resource manager to determine the best placement decision, it must know the

communication and resource consumption patterns of theobjects thatare executing on theclient.

Given information about the client-side aswell as local subgraphs, and given statisticsabout node

load and network performance, the resource manager should be able to arrive at the mostproper

placement.

This is implemented in ABACUS by having server-side resource managers receive per-object

measurements from clients. A server-side resourcemanageralso receives statisticsabout the client

processor speedand current load and collects similar measurements about the local system and

locally executing objects. Given the data flow graph between objects, the measured stall time of

client-side objects’ requests for data, andthe round-trip estimated latency of the client-server net-

5.4. AUTOMATIC PLACEMENT 165

work link, the model estimatesthe change in stall time if an object changes location. Given the

instructions per byte and therelative load and speed of theclient/server processors, it estimates the

changein execution time if theobjectismovedto anew node.

Thissimplemodel would suffice if theserver resourceswerenot shared by many clients. How-

ever, this isveryrarely thecase in practice.Underarealistic scenario, amigration of anobject from

a client to a server may slow-down other objects. This effect must be takeninto account by the

ABACUS performancemodel.

In addition to the change in execution time for the migrated object, the model also estimates

the change in execution time for the other objects executing at the target node (asa result of the

increased load on the node’s processor). Together, the changes in stall time and execution time

amount to the benefit of the new placement. In computing this benefit, the analytic model assumes

that history will repeatitself over thenext window of observation (thenext ñ seconds). Thecost

associatedwith a placement is estimatedasthesum of a fixedcost (the time taken to wait until the

object is quiescent) plusthetimeto transfer theobject’sstatebetweensourceand destinationnodes.

This latter value is estimatedfrom thesize of thecheckpoint buffer and thebandwidthbetweenthe

nodes.

5.4.1 Goals

There areseveral different performancegoals that the ABACUS run-time system canpursue. One

alternative is to allocate server resourcesfairly among competing client objects. Alternatively, the

system can provide applications with performance guaranteesandallocate resourcesto meet the

promised guarantees. Yetanothergoalwould be to minimizetheutilizationof thenetwork. Finally,

one goal is maximizea global metric associatedwith user-perceived performance,such asaverage

completion timeof applications.

This chapter describes algorithms that pursue a performancegoal which is widely sought in

practice, namelythatof minimizing theaverage completion time of complete runs of applications.

This goal is widely used because it directly maps onto a user-perceived notion of performance.

The performance model in ABACUS is self-contained,however, andcan be extendedor modified

to implement different policies. The run-time system makesdecisions to adapt the allocation of

server resources to minimize average requestcompletion time. We assume here that no explici t

information about the future behavior of applications is disclosedto the system. Instead, ABACUS

assumes that thefuturebehavior of applications is accurately predictedby their recent past.

166 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Note that the goal of minimizing the number of bytesmoved over the network is not always

desirable. For example, consideraclient-sidecachethat is aggressively prefetching file blocksfrom

a server to hide network latency from applications. While the cacheconsumesa lot of network

bandwidth and movesa large number of bytes, it doessave cache misses and reducesapplication

stall time. Moreover, this goal presumesthat moving bytes over the network has uniform cost.

In practice, not all communications are equally costly (at least in termsof latency) because the

available bandwidth of network links varies across topologies and with time as a function of the

applied load.

5.4.2 Overview of theperformancemodel

TheABACUS run-timemust identify theassignment of mobile objectsto network nodesthat is best

in reducing the average completion time. This discussion considers a single server casebut with

multiple clients accessing it. A cost-benefit performance model is derived for this case. Servers

in ABACUS act independently and do not coordinate resource allocation decisions. This design

requirement wasmade to limit complexity and improve robustness.

An ABACUS cluster is composed of clients and servers. The mobile objects associatedwith an

openfile start executing by default on their “homenode”, the node where thefile wasopen. They

can migrateto one of the storageservers, wheretheNASD objectsstoring that file reside. At any

point in time, the graph of mobile objects associated with a given file is partitioned between the

homenodeand thosestorageservers, referred to as the “basestorageservers.”

Theserver is shared by many clientsandhostsanumber of non-migratableobjectsthatprovide

basicstorageservicesto end clients. Becausenon-migratableobjectscannot beexecutedataclient,

while “mobile” objects can, the ABACUS run-time system is concerned with allocating serverre-

sourcesbeyond what is consumed by non-migratable objects to “mobile” application objects. The

ABACUS server-side resource manager is responsible for allocating its resourcesto theproper mo-

bile objects such that the performance goal is maximized. To estimate the average application

completion time given an object placement, an analytic model that estimatesaverage application

execution time in termsof inherent or easily measuredsystem and application parametersis devel-

oped. The discussion first considers the caseof a single application executing by itself. Then, it

generalizes themodel to handle thecaseof concurrent applications.

Figure5.8showsasketch of an applicationsexecuting onaclient and accessing astorageserver.

Filesystemand application objects areorganizedinto layers. Theapplication’s console makes iter-

5.4. AUTOMATIC PLACEMENT 167

ò\ó ôöõø÷IùWú

Network

ûIõ�ü%ý(õ�ü

P0þ

Cÿ

P2�
P3�

Storage Object (On� +1)

P1

ò\ó ôöõø÷Iù��
Console object (O0þ)
Object O1

Object O2

Object O3�
Pn� +1

Figure 5.8: This figure shows how mobile objects interact in a layered system. Most of the invocations start at

the topmost console object, trickling down the layers. An object servicing a request may invoke one or more

lower level mobile or NASD objects.

ative requests that trickle down the layers, causing anamount of data to be read from storageand

processed,andpassedup. At eachlayer someprocessing occurs, reducing or (seldom) expanding

the amount of datareturnedback up to the upper layer. Similarly, the application can be writing

data to stable storage, where dataflows downward through the layers, each layer performing some

processing andpassing the data down. This layered model of processing simplifies the analysis,

yet it is general enough to capture a largeclassof filesystemanddata-intensive applications. Mo-

bile objects perform two kindsof activities:computing (executing instruction on thelocal CPU) or

communicating(making amethod invocationsto another mobileor NASD object). Oneobject may

invokemore thanoneobjectin a lower layer.

To describe theanalytic model in detail, a few definitionsandnotationsare required. An object���
is characterizedby an inherent processing ratio, expressed in instructions/byte, denotedby � � .

This ratio capturesthe inherent compute-intensivenessof theprocessing performed by theobject on

eachbyteof dataandis independent of theprocessor speed or thebandwidth available to theobject.

It canthereforebeused in estimating theexecution time (to processone block) of the object when

movedbetween nodes.

In this discussion, the raw processing rateof node 	 ’s processor is denotedby
�� , expressedin

instructionsper second. Theeffectiveprocessing rate of node 	 asobservedby anexecuting object� �
on that node is denoted by � . This is equal to the effective processing rateavailable from the

processor’s node,denotedas �� , and is less than the raw processing rate of theprocessorbecause

multiple threadsmay becontending on theprocessor. Of course, theobviousinequality holdsat all

168 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

times,for all objects
� �

executing on node 	 :

 ��� �����
��
5.4.3 Singlestack

Consider theapplication of Figure 5.8. Assume that each object is associated with a single thread.

The thread awaits invocations, performs some processing then invokes one mobile object at the

lower layer. Thethreadblocksuntil theinvocation returns.A singleNASD objecton asingleserver

is accessedby theapplication. Thebandwidth of read or writerequests to aNASDobject isdenoted

by � . This is assumed to be independent of server load, becausethe server is assumedto serve

NASD requestsatahigherpriority than remotely executingobjects.

Invocationsstart at theconsoleobject and trickle down objects
���

through
���

. Theapplication

is observed overawindow of time ñ during which � console requestsareinitiated and completed.

Let’sdenoteby � � thetotal numberof bytesprocessed by object
� �

during theobservationwindow.

Let � � denotethetimespent processing by object
���

. Assume, without lossof generality, thatunder

the original placement, objects
� �

through
� � execute on the clientand objects

� ��� � through
� �

execute on the server. The console is referred to as
���

and the NASD non-migratable object is

denotedby
� � � � . Theelapsed time for theapplication in Figure5.8 canbewrittenas:

 "!$#%# �
�&�(' � � �*)

�&�+' �-, � .�/103254

where ,76 denotesthecommunication “blocking” or “stall” timebetween
� 6 and

� 6 � � . Commu-

nication time is the time during which the call thread blocks waiting for data to be sentor received

to the invokedobject. This does not include processing time at the invoked object, but the time

truly spent blocking while the data is being transferred. That is, after theprocessing at the invoked

object hascompleted. Equation 5.1 canbe rewritten in termsof inherent application and system

parameters, as follows:

 "!$#%# �
�&
�8' � �

� � �
 �

)
�&
�+' � , � .�/10:9;4

Equation 5.2. expresses the processing time � � in terms of the instructions per byte executed

by theobject, thenumber of bytesprocessedby the object during the observation window, and the

effective processing rate � . The numerator � � � � represents the numberof instructions executed

by the object during the observation window, and the denominator is the virtual processor rate

5.4. AUTOMATIC PLACEMENT 169

asobserved by the object. Let’s further assumethat local communication within one machine is

instantaneous, i.e. anobject doesnot blockwhencommunicatingwith another object co-located on

the samenode anylonger than thecompletion time of that lower lever object. Then, Equation 5.2.

can bewrittenas:

 !<#=#5> ?A@:B � . �&�+' � � � � �
�C @ 6 î ��D

4E) , �)F.
�&

�8' ��� �
� � � �
 ïMîðí$G�îMí

4 .�/10:HI4

If theobject placement changessothat objects
� �

through
� �KJ � execute on the client and ob-

jects
� � through

� �
executeon theserver, thenthenew application execution timecanbeexpressed

as:

 !$#%#L> � î<M � . �KJ
�&�8' � � � � �
5NC @ 6 î �5D

4E) , �KJ �)F.
�&
�+' �

� � � �
 NïðîðíAG�îðí

4 .�/10PO14

Let’s further assume, that N� > C @ 6 î �KD � � > C @ 6 î �5D �
�C @ 6 î �KD and N� > ïðîMí<Gµîðí � � > ïðîMíAGWîMí �
 ïMîðíAGWîMí
because the application is not sharing the client or server processors with any other concurrent

applications, and because different objects in the application stack process the data serially and

thereforedonot contend for theprocessor at thesame time. Then, Equation5.4 can berewritten as:

 !$#%#L> � î<M � . �KJ
�&�8' � � � � �
 C @ 6 î �5D

4E) , �KJ �)F.
�&
�+' �

� � � �
 ïðîðíAG�îðí

4 .�/10:/I4

In this simplistic case, the optimal placement can be determinedby finding the 	 for which !<#=#L> � îQM is minimized. For instance, let’s further assumethat theserver and client processor rates

are thesame(�C @ 6 î �5D � �ïðîðíAG�îMí), thenthe ideal 	 would be theonewhich minimizes thestall time,

, �RJ � . In this simple case, the equation implies that the stack of objects should be partitioned

at the level thatwould minimize thenumberof bytestransferredacrossthe network (synchronous

communication), or thepoint of minimalcommunicationbetweentwo successivelayersin thestack.

5.4.4 Concurr ent stacks

The effective processing rate of object
� �

at the server before and after migration is denoted in

Equations 5.3 and 5.4 by ïøîMíAG�îøí and NïðîðíAGµîøí respectively. Theseprocessing ratescan be related

to the raw processing rateat the server and the current load on that server. The effective server

processing ratecanbe estimated asthe raw processing rate divided by the node load S .UT5V LW V 4 .
This is simply theaveragenumberof processesin theready queueat theserver. Here,the“processor

170 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

sharing” assumption is made sothat object
� �

receivesa processing ratefrom theprocessor that is

the ratio of theraw rate to thecurrent load, or moreprecisely:

�ïMîøíAG�îMí �
 ïMîMí<Gµîðí
S .UT5V LW V 4

.�/10:X;4
In general, any priority or processorscheduling scheme canbe supportedas long asABACUS

has anadequatedescription of it. However, a processor sharing policy at equal priority was chosen

for the implementation. S .UTKV LW V 4 at theserver canbemeasured. Thechange in S .�TKV LW V 4 asa

result of a relocation must be estimated. Eachactive graph canbe thought of ascontributing a load

between Y and
2
. Intuitively, theloadis interpretedasfollows. If the object graph is computing all

the time,never blocking for I/O, thenits associated load is
2
. If theobject graphis computing only�� � th of the time, then the load it contributes to thesystemis
�� � . Thenodeloadis is simply thesum

over all theactivesessionsat theserver of their contributedload, or equivalently:

S N .�TKV LW V 4 � &
!�ZL[C D 6 Gµî$\�îZïZï 6 ? � ï ,

S .U]^4 .�/10`_I4

The load contributedby a session, , S .U]^4 canbe computedfrom thestall and processing time

of theentirestack, or:

, S .a]^4 � b
��+' �c� � � �

, �) b
��8' � � �

.�/10:d;4
Equation5.8computestheloadof activesession

]
astheratio of theprocessing timeattheserver

to thetotal (processing and stall time). Theportion of thestack at theserveris passivewheneverthe

client part of thestack is active,or whenever data is being communicatedover the network. These

times aresummedover all theobjects in thesession. The processing time for anobject is simply

the ratio of the bytes processedby the effective processing rate. Expanding the processing time in

termsof theseparameters, Equation 5.8becomes

, S .U]e4 � b
��8' ��� �gf3h ë hí<iajak�l$jak

, �) b ��(' � f3h ë híQmonPp jaq(r) b
��+' �c� �sfth ë hí iajUkUl<jUk

.�/10:u;4

After object
� � migratesto theserver, thenew loadcan becomputed by rewritingEquation 5.9:

, S N .a]e4 � b
��(' � foh ë hí$viUjwkUl$jUk

, ��J �) b ��J ��8' � f h ë híQmonPp jaq(r) b
��+' � f h ë hí$iajUkUl<jak

.U/^032 Y 4

5.4. AUTOMATIC PLACEMENT 171

Equation 5.10requires thenew effectiveprocessing rateof theserver’sprocessor. Theeffective

processor rate is simply theraw ratedividedby thenew node load S N .�T�V V 4 .
5.4.5 Cost-benefit model

If the server hasforeknowledge of all theapplication that will start, then it can determine the best

“schedule” for allocating its resources to minimize average completion time. In theabsence of this

knowledge, theserver has to operatebased only onstatisticsabout thepast behavior of applications

that have already started. The approach implemented in the ABACUS prototype is to allocate the

server’s resources greedily to the currently known applications, and then reconsider the decision

whenotherapplicationsstart. The implementation of thisapproachis described in this section.

Becauseof theabsenceof futureknowledge,thegreedy algorithm may migrateanapplication to

theserver, and thenshortly after that, a moredata-intensiveapplication maystart. Becausethecost

of relocating objects is not negligible, ABACUS has to consider whether reallocating the server’s

resources to themore “deserving” application isworth it.

A cost-benefit model canbe used to drive such decisions. Each object relocation inducesan

overheadand thereforeaddsto theapplication execution time. It, of course,could potentially result

in substantial savings in execution(stall) time. Cost-benefit analysisstates that arelocationdecision

should betaken if thecost thatit induces is offsetby thebenefit that it will bring about. Cost-benefit

analysisrequiresfirst defining a common currency in which cost and benefit canbeexpressed, and

devising algorithmsto estimate thebenefit and thecost in termsof this commoncurrency. ABACUS

usesapplication elapsed time measured in seconds as its common currency. The net benefit of a

migration
 , è � î D .
 4 , is computedasthepotential application benefit, x !<#%# ï , minus thecost of

migration, y .
 4 :

è � î D%.
 4 � x -!Q#=# ï{z y .
 4 .U/^032|2K4
Thefirst term in theequationaboveaccountsfor thechangein theexecution timefor theaffected

applications. For example, if a filter application object is movedfrom client to server, the affected

applicationsincludethefilterapplicationandtheapplicationscurrently executing ontheserver. The

first term of Equation5.11isasum overall theaffected applications. It mayincludepositive terms,

in thecasewhena relocation speeds up an application, and negative termswhen an application is

slowed down asaresult of thenew placement, eitherbecauseof increasednetwork stall time,or due

to an increasein thenodeloadon asharedprocessor.

172 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Thesecond termof equation 5.11 accounts for the migration penalty of waiting until theobject

is quiescent, checkpointing it, transferring its state, and restarting it on the new node. The cost of

migration, y .
 4 , is a sum over all the applications that needto be migrated. The expected time

waiting until theobject is quiescent is predicted by a per-nodehistory of the time neededto make

an object quiescent in a particular graph. Checkpoint and restore aremodeled with a fixed cost,

and the expected cost of the transfer is the expected size of the marshalled state divided by the

recently observedbandwidthof the transfer medium. Theexpectedsize of themarshalled statecan

beinferred fromtheprogram’sdatasize,sincethat is likely to beaconservativepredictor. 1

ABACUS treatsserver memory asa hard constraint. Applicationsthatmigrate to theserver are

not to exhaust server memory. If servermemory is exhausted,mobile objectsare evicted. Mobile

objectsmaybe evictedback to their homenodeswhen memoryis short. This maybe necessary to

freeenough memory to allow a new object currently running on a client to migrate to the server.

Thiswill happen, of course,only if ABACUS estimatesthat thenew relocation is likely to maximize

thenet benefit.

Recall that Equations5.3 and 5.4estimatetheexecution timeof an application beforeand after

migration. Taking thedifference results in the change of execution of one application. Summing

thatdifferenceoverall applicationsproducesan estimateof x !$#%# ï . ThisandEquation 5.11 canbe

used, therefore,by theABACUS resourcemanagersto estimatenetbenefit.

Stall timeoverthenetwork beforeandaftermigration, , � and , �KJ � in theexampleof Equations

5.3and 5.4, must beestimatedby the ABACUS run-time system. Becausesome communication is

asynchronous,and becausemessagescanbeissuedin parallel, estimating stall time — evenbefore

migration — is not straightforward. So far, this section has assumed that the object that needs

to be migrated from a client is invoked by a single application. In general, a filesystem object

maybesharedby several active applicationsso that its migration affects the performanceof all of

them. In latter general case,someapplication sharing an object may benefit from the migration

while others may suffer. This, however, is naturally accounted for because x !<#%# ï is estimated

by aggregating the difference of equation 5.3 and 5.4 over all affected applications, including all

applications sharing access to the migrated object. Similarly, Equation 5.11 can be very easily

extendedto handle themultipleobject migration case.
1In theABACUSprototype,interestedobject managerscanassistthesystemin estimating theamount of datathatneeds

to becheckpointedby implementinganoptional GetCheckpointSize() method. For instance,a filesystem cache

mayallocate a large number of pages,but theamount of datathatneedsto becheckpointedon migration is proportional

to thedirty pageswhich mustbewrittenbackor transferredto thetargetnode,which is usually muchsmaller.

5.4. AUTOMATIC PLACEMENT 173

Client-sidealgorithm

EachABACUS client-sideresourcemanagerperiodically computeslocal statisticsabout theinherent

processing ratios, bytes moved and stall times. For each candidate graph, it identifies source and

sink storagenodesanditeratively considers“pushing upor down” objectsto thesenodes, by sending

therelevant statisticsto thetargetserver asking it to computethenetbenefit of eachrelocation using

theabovedescribed model.

Server-side algorithm

Server-side resource managerscollect statistics from the clients that are actively accessing them.

They estimate thenet benefit for each alternative placement, è � î D , and then initiate a migration to

the placement thatgeneratesthe largest net benefit. The server can choosea different value of 	 ,

the point at which to split an object stackbetweenclientand server, for each active file. It hasto

select the combination of k’s that generatesthe smallest average remaining completion time. For

eachcombination of k’sacross theactivestacks, theserver-sideresourcemanager computesthenet

benefit from moving to this alternativeplacement.

5.4.6 Monitoring and measurement

The previoussection presentedananalytic model thatpredicts thenet benefit from a given reloca-

tion. Theperformancemodel requiresinputs about object processing rate, stall time, and number

of bytes processed over the observation window. Estimating thenet benefit aggregatesthe differ-

enceof equations 5.3 and5.4,which require valuesfor � 6 , � 6 . Thesevaluesare independent of the

particular object placement, and depend only on algorithmic and input characteristicsof theappli-

cation. Thesetwo values must bemeasuredor estimated from observedmeasurements. In addition

to these two values, theseequation requiresknowledgeof thechangein stall timebetweendifferent

placements , 6 , and thenode load at thenodesunder each possible placement, namely S{C @ 6 î �KD and

S ïðîðíAG�îðí . Furthermore, becauseABACUS “bin-packs” objects in theserver subject to theamount of

memoryavailableat theserver, thememory consumption of mobile objectsmustbemonitoredand

recorded.

Onasingle node, threadscancrosstheboundariesof multiple mobile objectsby makingmethod

invocations that propagatedown the stack. The resource manager must charge the time a thread

spends computing or blockedto the appropriate object. Similarly, it must charge any allocated

memoryto theproperobject.

174 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Thebenefit of judicious objectplacementis especially important for active applications, those

applicationsthatactively access storageandprocessdata. Discovering and correcting animproper

partitioning for such applications translates into substantial performance gains. The observation

that this research makes is that it is exactly those applications that a monitoring system should

know the most about. Applications that actively move and process large amounts of data expose

to ABACUS valuable and recent information about their communication and resourceconsumption

patterns. The ABACUS run-time collects the required statistics over a moving history window,

capturing thoseactive applicationsthat would benefit from a potential better placement. Precisely,

ABACUS maintains statistics about theprevious ñ seconds of execution, a window referred to as

theobservation window. Thissubsection describehow someof thesestatisticsarecollected.

Memory consumption

Tracking the memory consumption of mobile objects is problematic for two reasons. First, mobile

objects can dynamically allocateand freememory. This requirestracking their dynamic memory

allocation to know their truememoryconsumption. Dynamic memory allocation canbemonitored

by providing wrappersaroundthenew and delete operators for applications to use.

A more difficult problem is caused by object managers. Object managersmanage resources

on behalf of multiple mobile objects of the sametype. The implementation of mobile objects is

thereforeopaque to therun-timesystem.For example, thememory consumed by a mobile “cache”

object depends on the numberof pages owned by that object within the “cacheobject manager.”

This information isonly known to theobject manager.

Theapproachtakenby the run-time systemto monitor memory consumption is to require each

object managerto implementaGetMemCons() method. This method takes a manager reference

asafirstargument, and returnsthenumber of bytesconsumedby theobject. ABACUS assumes that

object managerson different nodes usesimilar implementations. Thus, the memory consumption

of an object in onemanager is a good predictor of its consumption ona remoteobjectmanager.

TheABACUS run-timedoesnot reserve memory with theoperating system. Instead,it assumes

that it is allocated an amount of memory by the operating system. ABACUS manages the useof

this memoryby allocating it to theproper application objects. ABACUS monitors thememory con-

sumption of application objects and is able to detectmemory shortageby keeping track of the total

amountof unallocated memory. This is updatedevery time amemory allocation or de-allocation is

performedby anapplicationobject.

5.4. AUTOMATIC PLACEMENT 175

Bytesmoved: � 6
The bandwidth consumption of mobile objects is monitored by observing the number of bytes

movedbetweenmobileobjectsin inter-object invocations. Mobile objectsinvokeeachotherthrough

the ABACUS run-time, which in turns sends a message to the local ABACUS resource manager,

specifying the network-wide unique object identifier (rid) of the source object and of the target,

as well the number of bytes moved between them. Resource managers therefore accumulate a

timed dataflow graphwhosenodesrepresent mobile objectsand edgesrepresent bytesmoved along

inter-object invocations. These dataflow graphs areof tractable size becausemostdata-intensive

applicationsand filesystemshavea relatively limited numberof layersor objects.

Inherent processing rat io: � 6
Estimating CPU consumption for a mobile object on a given node is moreproblematic than esti-

mating memory consumption or the bytesmoved between objects. Not only do object managers

hide the implementation of objects, they cannot be askedfor assistance in estimating CPU time

consumedby each object. Estimates of the memoryconsumedby an object’s implementation is

relatively easy to provide by an object manager. This is not the casefor CPU consumption. The

object manager caninsert timestampswhenever processing starts on behalf of a given object and

whenever it finishes.But this is not sufficient sincetheexecution of somestatementscancause the

wholeprocessto block, which results in inflated estimates.

Theoperating systemmaintains CPU consumption information on behalf of operating system

units of execution such asprocesses or threads. SuchOS-level entities may contain manyobject

managers,eachwith several mobile objects. ABACUS estimatestheinstructionsperbyteasfollows.

Recall that ABACUS monitors thenumberof bytes moved between objects by inspecting theargu-

mentson procedurecall and return from a mobile object.Thenumber of bytes transferredbetween

two objects is thenrecorded in a timeddataflow graph. Giventhenumber of bytesprocessedby an

object, computing the instructions/byte amountsto monitoring thenumber of instructions executed

by theobjectduring theobservation window. Giventheprocessing rate on a node,this amounts to

measuring the time spent computing within an object. Because an OSscheduler allocatesthe CPU

to thedifferent execution entitiestransparently, accurately accounting for the time spent executing

within an object requires the operating system to notify ABACUS when scheduling decisions are

made.

In the prototype implementation, ABACUS is implemented on a Pentium cluster running the

176 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Linux operating system. In this environment, ABACUS uses a combination of the Linux interval

timers and the Pentium cycle counter to keep track of the time spent processing within a mobile

object with a limitedlevel of operating systemsupport (albeit at thecostof someinaccuracy in the

measurements). ABACUS uses two mechanismsto measure this time, interval timersand the Pen-

tium cyclecounter. Linuxprovidesthree interval timers for eachthread. TheITIMER REAL timer

decrements in real time, ITIMER VIRT decrements whenever the thread is active in user-mode,

and ITIMER PROF decrements whenever the thread is active in user or system-mode. ABACUS

usesthe ITIMER VIRT and ITIMER PROF timers to keeptrackof the time spent computing in

user/system modeand then chargethattime to thecurrently executing objectof a thread.

The only complication is that interval timers have a
2 Y{}�~ resolution andmany method invo-

cationscompletein ashorterperiodof time. Tomeasureshort intervalsaccurately, ABACUS usesthe

Pentiumcyclecounterwhich isreadby invoking therdtsc instruction(using theasm("rdtsc")

directive within a C/C++ program). Using thecycle counter to time intervalsis accurateaslong as

nocontext switchhasoccurredwithin themeasuredinterval. Hence,ABACUS usesthecycle counter

to measure intervals of computation during which no context switchesoccur, otherwise, ABACUS

relieson thelessaccurateinterval timers. We detect thata context switch hasoccurred by seeing if

the time reportedby ITIMER PROF/ITIMER REAL andthecycle cycle counter for thecandidate

interval differ significantly.

While this schemerequires less operating system support and complexity, it is lessaccurate

thenone in which theoperating systemscheduler notifies the ABACUS run-time systemwhenever

it makesaprocessor schedulingdecision.

Stall time

Measuring stall time at current node. To estimate the amount of time a threadspends stalled in

an object, one needs more information than is currently provided by the POSIX system timers.

We extend thegetitimer/setitimer system calls to support a new type of timer, which is

denotedby ITIMER BLOCKING. This timer decrementswhenever a thread is blocked and is im-

plemented as follows: When the kernel updates the system, user, and real timers for the active

thread, it also updates the blocking timers of any threads in thequeue thataremarked asblocked

(TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE).

Estimating new stall time at new node. When an object has multiple threads, it can poten-

tially overlapoutstanding messages with each other or with computation. Thus, thenetwork time

5.4. AUTOMATIC PLACEMENT 177

spent by messagesover thenetwork doesnot translate into “stall time”. To account for parallelism,

ABACUS must differentiate among two typesof inter-module communication, synchronous and

asynchronous. Synchronous calls block the application until they complete. Asynchronous calls

do not block the application,generally performing some form of background task like prefetching,

write-back or call-back.

ABACUS resource managers must ignore “asynchronous communication” becauseit does not

add to stall time and therefore should not beaccountedfor in calculating estimatedbenefit. Asyn-

chronous communication can be explicitly declared by an object as such. Otherwise, it can in-

ferred whenever possible; any invocation that starts or completes(returns to the object) whenno

synchronousapplication requests arein progress is consideredasynchronous. The effectsof asyn-

chronousmessagesare indirectly accountedfor, however, becausenetwork bandwidthsand proces-

sor speedsareobserved,not predicted.

Synchronouscommunicationscan also occur in parallel with oneanotherratherthanserially. In

this case, although thenumber of bytesmoved by apair of objectsis thesame,thestall time would

belower for theobject making parallel transfers. In practice, anobjectperforming serial messaging

would benefit more from avoiding the network becauseit is blocking on the network moreoften.

Fortunately, theresourcemanager has information in its data flow graphabout the timingsof when

communications wereperformed, so it knows what groupsof messagesare sent “simultaneously.”

The resource managers coalescemessagesleaving an object within a short window of time into a

single“ roundof messaging.” The“stall time” canthenbeestimated fromthenumber of roundsand

themeasured bandwidth of thenetwork linksused.

Processor load and available network bandwidth

ABACUS measurestheloadon a givennode,definedasthe averagenumber of threads in theready

queue over the observation window, � . This value is required to estimatetheprocessing time for

anobject after migration to a new nodegiven the object’s instruction per byte and number of bytes

processed. Linux reports loadaverages for 1 min., 5 min., and15 min. via the/proc/loadavg

pseudo-file. Linux wasaugmented with an ABACUS specific loadaverage which decaysover the

past � secondsandreport this value asa fourth value in /proc/loadavg.

ABACUS resource managers monitor bandwidth availabili ty on the network periodically by

“pulling” a specified number of bytesfrom remote storageserversthatareactively being accessed,

deriving the fixed and per-byte cost of communication over a given link. Thesestorage servers

178 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

represent potential candidateswheremobile objectscanmigrate to.

5.5 A mobilefilesystem

To help validatethat the utility of the ABACUS programming model and to demonstratethe effec-

tivenessof theABACUS run-time,aprototypedistributed filesystem,ABACUSFS, wasdesigned and

implementedon it. This section presentsanoverview of this mobile filesystembuilt on ABACUS.

Thenext section presentsanevaluation of theability of ABACUSFSto adapt. It also includesamore

detailed descriptionof thespecific filesystemcomponentsbeingevaluated.

5.5.1 Overview

Stackable and object-based filesystems, such as Spring and Hurricane, already demonstrate that

specializing filesystem functionson a per-file basisare possible, and canbeimplemented elegantly

with an object-like model [Khalidi andNelson, 1993]. The following section describes in more

detail how a distributedfilesystem wasdeveloped on ABACUS. The ABACUSFS filesystemserves

two purposes. First, it is a seriouscomplex application that tests the proposed programming model

and run-timesystem.Indeed,whendeveloping thefilesystem,several shortcomingsin ABACUS had

to be fixed. Second, thefilesystemis a prime example of a distributedapplication thatcan benefit

from the adaptive placement of its functions, in particular, the cache, directory managementand

RAID functions. The ABACUSFS isdescribed in detail, sinceit will beused to drive theevaluation.

TheABACUSFS filesystem canbeaccessed in two ways. First,applications that includemobile

objects can directly append per-file mobile object graphs onto their application object graphs for

each file opened. Therun-time systemwill convert method invocations from application objects to

filesystemobjects into localor remoteRPC calls, asappropriate.

Second, the ABACUSFS filesystem can be mounted as a standard filesystem, via VFS-layer

redirection to auser-level processimplementing theextended(ABACUSFS) filesystem. Unmodified

applications using the standard system calls canthus interact with the ABACUSFS filesystem via

standard POSIX system calls. The filesystem process’s VFS interaction code will interface with

per-file/directory object graphs via a console object (in thefirst approach, the operating system is

bypassed.) Although it doesnot allow legacy application objects to bemigrated, this second mech-

anism does allow legacy applications to benefit from the filesystem objects adaptively migrating

beneath them. Figure 5.9 represents a sketch of the ABACUSFS prototype distributed filesystem.

5.5. A MOBILE FILESYSTEM 179

Client A

Server C

Client B

N
�

etwork

Isolation
A
�

tomicity

A
�

pplication inter face

Storage

Cache

Dir ectory

F
�

il
�
eSys

RAID

Dir e� ctory block

F
�

ile caching

RAID (par ity computation,

Timestamp checks (on dir e� ctory

W
�

r� ite-ahead logging

P
�

ersistent storage

V
�

FS layer inter face

c� aching and updates

r� e� construction)

(
�
atomicity for multi-block
w� r ites)

(
�
flat file inter face)

u� pdates)

(a) Ty� pical object placement (b) Example filesystem objects

Isolation
Atomicity

Storage

D
�

ir ectory

F
�

il
�
eSys

ConsoleFileSys

Console

Cache

RAID

RAID
Isolation
A
�

tomicity

D
�

IR

Isolation
A
�

tomicity

D
�

IR

Figure 5.9: The prototype filesystem ABACUSFS and how it is decomposed into migratable component objects.

The figure shows only the filesystem and no user applications. The console object for the filesystem represents

the code that is a part of the operating system and that interfaces system calls to the VFS layer. This code is

not an object and is not a mobile object; it currently always executes on the node on which the parent operating

system executes. The FileSys object implements VFS layer functions to interface to the operating system as

well as functions allowing applications to link in the ABACUS filesystem directly into user-space. When an

application is written explicitly for ABACUS, it can bypass the the operating system and directly access the

FileSys object, which provides a system-call like interface for file access that can be directly invoked by the

application. In this case, the FileSys object is a mobile object.

The filesystem is decomposed into component objects. Some objects are static and are always

bound to thestorageservers. These includetheNASD objects, the isolation and atomicity objects

and thecachecoherenceobjects. Theother objects,RAID, caching, and directory managementare

migratableandcanbe locatedat any node in thenetwork.

Per-file object stacks

The ABACUSFS filesystemprovidescoherent fileanddirectory abstractionsatopaflat object space

exported by basestorage servers. The filesystem function is decomposed into different objects

performing different services such as: caching, RAID, cachecoherence,and NASD basic storage.

Often, thesamefile is associated with more thanoneservice or function. For instance, a file may

becacheable,striped and reliable. Filesystemscanbecomposed by constructing objectsfrom other

180 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

objects, adding layersof service, asdemonstratedby the stackable [HeidemannandPopek, 1994]

and composable filesystems [Krieger andStumm, 1997] work, and by the Spring object-oriented

operating system [Khalidi andNelson, 1993]. At eachlayer, a new object is constructed from one

or more object from lower layers. For example, the constructor of a cacheable object requires

a backing object to read from and write back to. The backing object can be a NASD object, a

mirrored object or evenanother cacheable object. An object mayhave references to more than one

object from a lower layer. For example, to construct amirroredobject, two baseobjectsareused.

In order to enable files to have different performanceand reliabilit y attributes, the prototype

filesystemenableseachfile to be associatedwith a potentially different stack of layers of service.

This flexibilit y isuseful because thecreators of specific filesand directoriesmay mandatedifferent

reliability and performance requirements: infrequently writtenand frequently writtenfiles,impor-

tantandtemporaryfilesmayrequiredifferent stripingandreliability guarantees[Wilkesetal., 1996].

For example, using RAID storage makes writesmore expensive. It is usually a good tradeoff to

use non-redundant storage for temporary files used by compilersand other utilit ies, becauseper-

formance is moreimportant thanreliability. This section discusses object stacking, deferring the

discussion of thedetails of eachobject to the following sections.

Eachfile or directory in ABACUS is associatedwith an inodewhich contains thefile or direc-

tory’smetadata. These inodesare initializedwhenthefile is created and areused to refer to thefile

by theobjects that make up the filesystem. When a file or directory is created, it is associated with

a stack of types. This stack represents a template, which is used to instantiate therequisite objects

whenthefile is accessed. When afile iscreated, theconstructors for theobjectsareinvokedto allo-

cateand initializethestorageandmetadataneededto createthefile. Precisely, theconstructor of the

topmost type is invokedpassing it the template. This constructor invokeslower-level constructors

to allocateobjects thatare lower in thestack. For example, a default file is associatedwith a stack

consisting of a cache,a RAID, anda NASD layer. The cache object keeps an index of a particu-

lar object’s blocks in the shared cache. The RAID level 5 object stripesand maintains parity for

individual filesacross sets of storage servers. The constructor of a cacheobject expects a backing

object. It createsa backing objectof the type specified in thelayer below it in the stack descriptor.

In this case,a RAID level 5 objectis created, which in turn createspossibly several NASD objects.

Once a file is created, it can be be accessed by opening it and issuing readand write calls.

When a file is opened, an object of the typeof the topmostlayer is instantiated 2. As part of this
2Instantiation refersto thecreation of arun-timeC++objectof thepropertype.Creation, asused in thepreviouspara-

graph, however, refersto theactions takenwhena file is created, and whichoftenrequire theallocationand initialization

5.5. A MOBILE FILESYSTEM 181

instantiation, a reference to the inodefor thefile is passedasan argument. The file’s inode stores

persistent metadata on behalf of each layer of the stack which describes information required to

initialize the objects in a file’s stack. For example, if a file is bound to a RAID layer, the RAID

level 5 object needs to know how thefile isstriped,i.e. what baseNASD objectsit is mappedonto,

or whetherstoragemust beallocatedfor thenew file. This information is maintainedin the inode,

which contains metadata on behalf of each layer. The RAID level 5 object inspects the inode’s

section for the RAID layer to determine the identity of the lower-level NASD objects that the file

is mappedonto. This information is written into the inode by theRAID level 5 object constructor

whenit allocatesstorage for thefile duringfile creation.

Accessto a file always starts at thetop-level layer. A file is usually associatedwith one object

of the top layer’s type. That top-level object hold referencesto other objects, andpropagatesthe

accessdown after performingsomeprocessing. For example,afileisusually associatedwithacache

object, which mayhold a reference to a backing RAID object, which in turn mayhold references

to multiple base NASD objects. During an open, the top-level object is instantiated, and in turn

instantiatesall thelower level objects in theobject graph.

5.5.2 NASD object service

The design of theprototype filesystemmust accommodate the underlying NASD architecture. In a

NASD cluster, storageseversexport aflat-file li ke interface,asshown in Table3.1.A NASD object

manager on each storageserver manages thepersistent NASD objectspace. It providesread/write

accessesto arbitrary rangeswithin aNASD object. In particular, it implements thefollowingmeth-

ods: CreateObj(), RemoveObj(), WriteObj(), and ReadObj(). Further, each manager

that is always resident on a storage device can access a per-manager well-known object via the

GetWellKnownObj() method. Objectmanagers use thewell-known object to storea reference

to root objects,write-aheadlogsor other objects thatareneeded atstartup.

Thedetails of theimportant partof theNASDinterfaceareshown in Table 3.1.Thetable shows

the input parameters, resultsparameters, and return values for each method. NasdId is the typeof

the identifiers thatareassociatedwith apersistent NASD object.

of persistentstatebacking therun-timeobject.

182 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.6 Evaluation of filesystemadaptation

The experiments of this chapter show that performance depends on the appropriate placement of

function. They includeseveral benchmarks whereABACUS discovers the best placement automat-

ically at run-time even in cases where it is hard or impossible to anticipate at design-time. This

includes scenarios in which the best location for a function is based on hardwarecharacteristics,

application run-time parameters, application data access patterns, and inter-application contention

over shared data. This also includes scenarios that stress adaptation under dynamic conditions:

phasesof applicationbehavior andcontention by multiple applications.

Thissection containsan evaluationof thebenefitsof filesystemadaptationover ABACUS, while

Section 5.8 reports on furtherevaluation of thedynamic behavior of the ABACUS run-time system.

The evaluation approach considers several filesystem objects, and shows through synthetic work-

loads that thebest objectplacement (client or server) varies with workload and system parameters.

In each case, the performance of the workloadunder a fixed allocation of function is compared

to performance under ABACUS. The experiments show whether ABACUS can discover the best

placementwhen theobject startson thewrong nodeand theoverheadit induces.

5.6.1 Evaluation envir onment

Theevaluationenvironmentusedconsistsof eight clientsand fourstorageservers. All twelvenodes

arestandard PCsrunning RedHat Linux 5.2andareequippedwith 300 ����� Pentium II processors

and 128 ��� of main memory. Each storage server contains a single Maxtor 84320D4 IDE disk

drive (4 ��� , 10 }�~ average seek, 5200 ���*� , up to 14 �����L~ media transfer rate). There is no

heterogeneity in the hardware resources across the storage servers or clients. Such heterogeneity

will besimulated by creatingabaseworkload that consumeresourcesatcertain nodes.

The network, on the other hand, is heterogeneous. Particularly, the evaluation usedtwo net-

works, a 100 ��� �L~ Ethernet, which is referred to as the SAN(storage-areanetwork) and a shared

10 ��� �L~ segment, which is referredto astheLAN (local-areanetwork). All four storageserversare

directly connectedto theSAN, whereas four of the eight clients are connected to the SAN (called

SAN clients), and theother four clients reside on the LAN (the LAN clients). The LAN is bridged

to the SAN via a 10 ��� �L~ link. Figure 5.10 graphically sketches of theevaluation environment.

While thesenetworksareof low performanceby today’sstandards,their relativespeedsaresimilar

to thoseseen in emerging high-performanceSAN and LAN environments (�¡� �L~ in theSAN and

100 ��� �L~ in theLAN).

5.6. EVALUATION OF FILESYSTEM ADAPTATION 183

SAN Clients

LAN clients

100Mb switched
Ethernet Storage servers

¢t£E¤e¥5¦8§t¨R© ª$«E¬$®§tª�©:¯tª$
° ©²± «$³$ª

(Pentium II 300Mhz)

(Pentium II 300Mhz)

(Pentium II 300Mhz)

Figure 5.10: Evaluation environment. The system consists of storage servers containing Pentium II 300 Mhz

processors with 128 MB of RAM and a single Maxtor IDE disk drive. Each disk has a capacity of 4GB, an

average seek time of 10 ms and a sustained transfer rate of up to 14 MB/s. The clients have the same

processor and memory capacity. The network is heterogeneous. It consists of a switched 100 Mb/s Ethernet

bridged to a 10 Mb/s shared Ethernet segment.

5.6.2 File caching

Caching is an important function of a distributedfilesystem. There aretwo kindsof caches,client-

sideand server-side caches. Client-side cachesusually yield dramatic reduction in storageaccess

latencies because they avoid slow client networks, increase the total amount of memory available

for caching relative to server-side caching only, and reduce the loadon the server by not needing

to forward the readto the server at all. A server-side cache can better capture reusecharacteris-

tics across clients, simplifies and avoids the cost of maintaining clientcache consistency, andalso

effectively lowersdisk latenciesespecially with a fastnetwork.

TheABACUSFS prototypefilesystemcontainsacacheobject thatstartson theclient by default,

and is movedto theserverif higherperformancemandatesthis migration. While client-sidecaching

is usually effective, it cansometimescauseoppositeperformanceeffectseven with aslow network.

Consider an application that inserts small records into files stored on a storage server. Thesein-

serts require a read of the much larger enclosing block from the server (an installation read), the

insertions,andthena write back of the enclosing block. Even when the original block is cached,

writing a small record in a block requires transferring theentire contents of theenclosing block to

the server. Under such a workload, it is more advantageous to send a description of the update to

theserver rather thanupdatetheblock locally at theclient [O’Toole andShrira, 1994].

Caching in ABACUSFS is providedby a cache object manager. The cache manager on a node

184 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Storage Server C

C
´

lient-server network

C
µ

lient B

Cache

A
¶

pp2

C
µ

lient A

Cache

A
¶

pp1

S
·

mall-update
installations

H
¸

igh reuse
w¹ orkload

Figure 5.11: Function placement for objects in a file cache. Client A has a high reuse workload, such that

the amount of data moved between the application and the cache is higher than that moved between the

storage server and the cache. In this case, client caching is effective. In the case of client B, the workload

includes small update installations causing the cache to fetch a much larger block from the server, install the

small update, then write the larger block back to the server. Assuming no reuse, the amount of data moved

between the server and client B’s cache is larger than that moved between its cache and the application (App

2), favoring server-side cache placement.

manages cache objects for all the files accessed on that node. In addition to the ReadObj()

and WriteObj() methods, the cache providesmethods for cache coherence. In particular, the

BreakCallback() method is invokedby aserverto notify thecachethatafilehasbeenupdated

and thecached version is no longervalid.

CachePlacement: Adapting to data accesspatterns

Client-sidecachesin distributedfile and databasesystemsoften yield dramatic reduction in storage

access latencies becausethey avoid slow client networks, increase the total amount of memory

available for caching, and reduce the load on the server. However, enabling client-side caching

can yield the opposite effectundercertain access patterns. This section shows experimentally that

ABACUS canappropriately migratethe per-file cacheobject in responseto dataaccesspatternsvia

generic monitoring without knowledgeof objectsemantics.

Experiment. Thefollowing experiment wascarriedout to evaluatetheimpact of adaptivecache

placementon application performanceand to test theabili ty of ABACUS to discover thebestplace-

ment for the cache under different application access patterns. Using the evaluation environment

described above, the history window of ABACUS, � , was set to one second, and the threshold

benefit was set to 30%. In thefirst benchmark, table insert, the application inserts 1,500
2R9ºd �1»;¼8½

5.6. EVALUATION OF FILESYSTEM ADAPTATION 185

18

.7
6

3.

82

0.

38

0.

37

7.

79

2.

92

0.

47

0.

42

 6

.9
9

 2

.5
3

 2

0.
47

 3

.6
4

Insert,
¾
LAN

Insert,
¿
SAN

Scan,
À
LAN

Scan,
Á
SAN

0
Â

10
Ã

20

E
la

ps
ed

 ti
m

e
(s

)

At client
Ä
Adaptive
At server

Figure 5.12: This figure shows that client-side caching is essential for workloads exhibiting reuse (Scan), but

causes pathological performance when inserting small records (Insert). ABACUS automatically enables and

disables client caching in ABACUSFS by placing the cache object at the client or at the server.

recordsinto a
2Ru|9ÆÅ � file. An insert writesa

2R9ºd �I»1¼=½ record to arandom location in thefile. In the

second benchmark, tablescan, theapplication readsthe1,500 recordsback, againin randomorder.

The cache,which uses a block size of
dÇÅ � , is largeenough for the working set of the application.

Before recording numbers, theexperiment was run onceto warm thecache.

Results. As shown in Figure 5.12, fixing the location of thecache at the server for the insert

benchmarkis 2.7X faster than at a client on the LAN, and1.5X faster thanat a client on theSAN.

ABACUS comeswithin 10%of thebetter for theLAN case, andwithin 15%for theSAN case. The

difference is due to the relative length of theexperiments, causing the cache to migraterelatively

late in the SAN case (which runs for only a few multiples of theobservation window). The table

scanbenchmark highlightsthebenefit of client-sidecaching whentheapplicationworkloadexhibits

reuse. In this case, ABACUS leaves theABACUSFS cacheat the client, cutting execution time over

fixing thecacheat theserverby over40X and8X for theLAN andSAN tests respectively.

Cachecoherence

The cache coherence object manager is responsible for ensuring data blocks of a lower layer’s

stored object are cached coherently in each of the multiple client caches. Files are mappedonto

one or more underlying objects. When file data is cachedon a client, data from theseunderlying

objects is cached. A cachecoherenceobject is associatedwith eachunderlying object. Thecache

coherenceobject is anchoredto thestorageserverwhichhosts theunderlyingobject.

The cache coherence object performs its function by intercepting ReadObj() requests and

186 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Isolation

Storage

A
¶

tomicity

Storage

A
nchored

O
bjects

Client A

Server C Server D

App

C
µ

onsole

Client B

R
È

AID

A
¶

pp

C
µ

onsole

R
È

AID

L
É

AN (low-bandwidth network)

S
Ê

AN (high-bandwidth network)

R
È

AID
I
Ë
solation

A
¶

tomicity

R
È

AID
I
Ë
solation

Figure 5.13: This figure illustrates how different ABACUS clients may place function associated with the same

file in different locations. Clients A and B access the same file bound to a simple object stack. The file is

partitioned across devices C and D. The console object initiates requests that trickles down to an application

object (App), a RAID object, and finally a storage object.

installi ng a callback for the read block [Howardetal., 1988]. The object also interceptsWrite-

Obj() requests and breaks any matching installed callbacks. Cache coherence functions on a

storageserver areimplemented by acachecoherenceobjectmanager.

5.6.3 Striping and RAID

When the network consists of switched high bandwidth links and files are completely stored on

a single storage server, the storageaccess bandwidth can be severely limited by the bandwidth

of the server machine. Striping dataacrossmultiple storage servers eliminates the single server

bottleneck from the data transfer path, enabling higher bandwidth to a single client, as well as

substantially larger aggregate bandwidth to multiple clients. Several filesystems were proposedto

exploit thepotential of network-striping. ExamplesincludeZebra[Hartman and Ousterhout, 1993],

Swif t [Long etal., 1994], and theCheopssystemof Chapter3.

Large collections of storage also commonly employ redundancy codessuch RAID levels 1

through5 transparently toapplications,sothatsimpleandcommonstorageserverfailuresoroutages

can be toleratedwithout invokingexpensivehigher-level failureand disaster recovery mechanisms.

Theprototype filesystemimplementsstriping and RAID acrossstorageservers, through theRAID

5.6. EVALUATION OF FILESYSTEM ADAPTATION 187

class. Figure 5.13 shows a typical stack that includesa RAID object. RAID objectscanbe config-

uredto initially start on the client or on theserver. Thechoice dependson thenetwork bandwidth

and the trustworthinessof the client. The RAID object is layered atop low level storage objects.

Underlying storageobjectsareaccessibleonthestorageserverswhomay act independently of each

other. EachRAID object is invokedby theobjectshigher in itsstack to perform readsand writeson

behalf of theapplication.

RAID objectsperformexactly four operations, dividedinto accesstasksandmanagementtasks.

Theaccesstasksarereadsand writes(hostreadandhostwrite operationsasdescribedin Chapter4).

These tasks provide semantics essentially identical to reading and writing a base storage object.

The management tasks arereconstruction and datamigration (reconstruct and migrateoperations

respectively). Each high-level taskis mappedonto oneor more low-level read and write requests to

(contiguous) physical blocks on a single storage object (devread anddevwrite described in Chap-

ter 4). Depending on thestriping and redundancy policy, and whether astoragedevicehas failed,a

hostreador hostwritemaymaponto differentbasestorage transactions (BSTs).

Blocks within a RAID object are mappedonto one or more physical storage objects. RAID

accessoperations(readandwrite) aswell asmanagementoperations(reconstruction and migration)

invoke one or more basic BSTs. Following the designs of Chapter 3 and 4, the representation

of a RAID object is described by a stripe map which specifies how the object is mapped, what

redundancy schemeis used, andwhat BSTs to use to read and write the object. Stripe maps are

cached by RAID object managers at a node to allow direct access storage from that node. The

RAID layer performsno caching of data or parity blocks, leaving the function of caching to the

other objects in the stack, such as the cache object. RAID object managers in ABACUSFS use

the timestamp ordering protocol described in Chapter 4 to ensure that parity codes are updated

correctly andthat migration and reconstruction tasks are correctly synchronizedwith accesstasks.

Timestamp checksatthestorageserversareperformed usingaRAID Isolation andAtomicity (RIA)

Object. This is implemented asoneobjectmanager oneachstorageserver. Thismanagergroupsthe

implementation of all local RIA objectson a givendevice andimplementsthe timestampordering

protocol.

RAID Placement: Adapting to systemresourcedistr ibution

The proper placementof the RAID object largely dependson the performanceof the network con-

necting the client to the storage servers. Recall that a RAID level 5 small write, asdescribed in

188 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

 7
4.

50

 1
4.

23

 9
.0

4

 3
1.

13

 1
4.

47

 1
1.

76

 2
8.

12

 1
9.

18

 1
7.

62

Write,
Ì
LAN

Write,
Í
SAN

Degraded read,
Î

SAN

0
Â10
Ã20
Ï30
Ð40
Ñ50
Ò60
Ó70
Ô80
Õ

E
la

ps
ed

 ti
m

e
(s

)

At client
Ä
Adaptive
At server

Figure 5.14: This figure shows the results of the RAID benchmarks. Contention for the server’s CPU resources

make client-based RAID more appropriate, except in the LAN case, where the network is the bottleneck.

Section 2.3, invokesfour I/Os,two to pre-read theold dataandparity, andtwo to write thenew data

and parity. Similarly, whena disk failure occurs, a block readrequires reading all theblocks in a

stripe and XORing themtogether to reconstruct failed data. This canresult in substantial network

traffic betweentheRAID object and thestorageservers.

Two workloads were constructed to evaluate ABACUSFS RAID performance with ABACUS

adaptivity. Thefirst consists of two clientswriting two separate Ö*×�Ø files randomly. Two clients

wereused to attempt to seeif ABACUS makes the proper trade-off between client-side execution

of parity computations on the less loadedclient processorsand between thenetwork efficiency of

server-side parity computation (which savesmessaging). Thestripesize is 5 (4 data + parity) and

the stripeunit is Ù|ÚÆÛ�Ø . Thesecond workloadconsistsof the two clients reading the files back in

degradedmode(with onediskmarkedfailed).

Results. As shown in Figure 5.14, executing the RAID object at the server improvesRAID

small write performancein theLAN case by a factor of 2.6X over executing theobject at the host.

Theperformanceof theexperiment whenABACUS adaptively placestheobject is within 10% of the

fastest. Conversely, in the SAN case,executing theRAID object locally at the client is 1.3X faster

becausethe client is lessloaded andable to perform theRAID functionality more quickly. Here,

ABACUS comeswithin 1% of this fastest value. The advantage of client-based RAID is slightly

morepronounced in themore CPU-intensive degraded read case, in which theoptimal location is

almost twice as fast as at the server. Here, ABACUS comeswithin 30% of the better. In every

instance,ABACUS automatically selectsthebest location for theRAID object.

5.6. EVALUATION OF FILESYSTEM ADAPTATION 189

LAN SAN

At client 65.47 4.60

Adaptive 4.33 3.33

At server 3.02 2.83

Table 5.2: Migrating bulk data movement. This table shows the time in seconds taken to copy a Ü%ÝßÞ¡à file from

one storage server to another on both our LAN and SAN configurations. The table shows the copy function

statically placed at the client, adaptively located by ABACUS, and statically placed at the storage node.

RAID: Copy BST placement

Experiment. Onetypical operation in managing largestoragesystemsis datareconfiguration, that

is, migrating data blocks between devices to re-balance loador to effectively use the capacity of

newly added devices. This canbedoneby a UNIX user with rdist, rcp, or tar if the system

doesnot provideautomatic support for loadre-balancing. Copyapplicationsareideal candidatesfor

migration from client to storagenodes,becausethey oftenoverwhelm theclient’s cacheand move

a lot more datathan necessary across the network. A migratable version of the copy task, called

abacus copy, was implementedon ABACUSFS.

Results. Table5.2 shows thetime takento copy a áRâ7×�Ø file from onestoragenode to another

using abacus copy. Running the copy object at the storage node is most beneficial when the

client is connected to thelow-speedLAN. In this case,ABACUS migratesthe object to thestorage

nodes andachieves within 43%of theoptimal case in which thecopyobject begins at thestorage

node. This optimal case is over 20X better than thecase in which theobjectexecutes at the client.

When thecopytask is started onaSAN client, ABACUS doesnot initiatemigration. Theexperiment

on this fast network runs soquickly that the cost of migration would becomparatively high. Nat-

urally, whenmoving enough more data, ABACUS wil l also perform the migration evenin the SAN

configuration. Further, evenmorebenefit isobservedfrommigrating thecopywhenthesourceand

destination storagesnodesare thesame(i.e., only onestoragenode is involved).

5.6.4 Directory management

The directory object manager is multi- threaded and supports replication of directory data across

multiplehosts. Thedirectory module implementsahierarchical namespaceas that implementedby

UNIX filesystems. It enables directoriesto be replicated at several nodesproviding trusted hosts

190 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

with the abili ty to locally cache and parse directory blocks. It also supports scalable directory

management by using an optimistic concurrency control protocol based on timestamp ordering,

using timestamps derived from loosely synchronizedreal-time clocks guidedby thealgorithmsof

Chapter 4.

Dir ectory concurrencycontrol

Races can occur between clients concurrently operating on shared directories. As an example,

consider a directory update operation such asMkDir(), which proceeds by scanning the parent

directory for thenameto makesureit is not already there,then updatingoneof thedirectory blocks

to insert the new nameand the associated metadata (inode number). Since blocks are cachedat

each host, two hoststrying to insert two directories in the sameparent directory can both scanthe

locally directory cached block, pick the same free slot to insert the new directory andwrite the

parent directory back to storage, resulting only onedirectory being inserted.

Since directoriescan be potentially cached and concurrently accessedby multiple hosts, they

are bound to the following stack: directory (implementing directory parsing and update operations

such asCreateFile(), RemoveFile(), etc.), and a directory isolation and atomicity object

(DIA) object. This discussion wil l describe directory objects that are not bound to a RAID object

(are not mirroredor parity protected). TheDIA object ensuresthatconcurrent directory operations

are isolatedfromoneanother. It usesawrite-aheadlogto ensureconsistency in theevent of failures

during operations. The DIA object also maintains callbacks sothat all cacheddirectory blocks are

coherent. Thecachecoherenceobjectusedfor datafilesisnot usedin thiscasebecausecombining

timestamp checking with coherenceallowsseveral performanceoptimizationswithout complicating

the reasoning about correctness.

Thedirectory objectmanager provides POSIX-like directory calls, using the shared cache dis-

cussedabove and the underlying object calls. The DIA object manager providessupport for both

cache coherence and optimistic concurrency control. The former is provided by interposing on

ReadObj() and WriteObj() calls, installing call-backson cachedblocksduring ReadObj()

calls, andbreaking relevant call-backsduringWriteObj() calls. The latter is providedby times-

tamping cacheblocks[BernsteinandGoodman, 1980] and exporting aspecialCommitAction()

method that checks specified readSetsand writeSets. ThereadSet (writeSet) consists of the list of

blocks read(written) by theclient.

To illustrate how the directory manager interacts with the DIA object manager, let’s take a

5.6. EVALUATION OF FILESYSTEM ADAPTATION 191

Storage
Server C

Timestamp checks
Logging Isolation

Storage

Server C

Atomicity

Dir ectory
S
ã

er ialization
aä t server under
high contention

N
å

etwork (SAN or LAN)

Client B

Dir ectory

FileSys

Console

Client A

Dir ectory

FileSys

Console

FileSys

Console

FileSys

Console

Client A Client B

Dir ectory
Isolation
Atomicity

Dir ectory

Figure 5.15: Directory management in ABACUSFS. The directory object receives requests to operate on di-

rectories, for example to insert a name in a directory, or to list directory contents. While performing directory

management at the client is more scalable in general under low contention (left), it can lead to degraded per-

formance in the case of high contention. Under high contention, the distributed concurrency control and cache

coherence traffic among clients can induce enough overhead that a centralized server-side implementation

becomes favorable (right).

simple concrete example of a directory operation: anMkDir(). When theoperation starts at the

directory manager, a new timestamp opts is acquired and an action is initialized. An action is

a data structure which includesa readSet, a writeSet anda timestamp. The readSet(respectively

writeSet) contain a list of namesof theblocks read (written) by theactionand their timestamps. As

theblocksof theparentdirectory arescannedfor thenameto beinserted, their identifiers3 and their

timestampsareappendedto thereadSet. Assuming thenamedoesnot already exists,it is insertedin

a freeslot. Theblock wherethenameis insertedis addedto thewriteSet. As soon asthe operation

is readyto completelocally, aCommitAction() request is sent down the stack, with theaction

and thenew block contentsasarguments. During thecommit, theblock is lockedlocally soit is not

accessed. The lock is releasedoncetheoperationcompletes.

The DIA object manager performs timestampchecks against recently committedupdates in a

manner very similar to the algorithmsof Chapter 4. Precisely, thechecksestablish that theblocks

in the readSetare themost recent versions,andthat opts exceedstherts andwts for theblocks
3A blockis representedin areadsetor writesetby theparentstorageobjectit belongsto andits offsetinto that object.

192 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

in the read and write sets. Note thatbecause clocks are loosely synchronized, a block’s wts and

rts need to bemaintainedonly for ashort timewindow (T), after which they canbediscarded and

logically replaced with the current time minusT. This may result in rejecting someoperationsthat

would otherwise be accepted but it will not result in incorrect operation. If thechecks succeed, the

new block contentsarecommittedto thelog andcallbacksarebrokento nodescaching thatblocks.

Otherwise, a rejection is returnedto thehost, who refreshesits cacheandretries the insert fromthe

beginning.

Dir ectory placement: Adapting to contention

The function placement problem involves a fundamental choice between the scalabili ty of client-

side execution whereCPU and memory resources aremore abundant and the potential network-

efficiency of server-side execution. In particular, it involvesa choice betweenreplicating function

across clients(which comesat thecost of higher synchronization overhead but which allows client

resourcesto beexploited) and centralizing it on a few nodes. Theplacement of directory manage-

ment functionexemplifiesthis trade-off anddemonstratesthat transparent monitoringcaneffectively

maketheproper trade-off in each case.

Filesystemfunctionality suchascaching or pathnamelookup, for example, is oftendistributed

to improve scalabili ty [Howardetal., 1988], as arefunctionsof other largeapplications. Synchro-

nization amongparallel clients is anoverhead which variesdepending on theamount of inter-client

contention overshareddata. Considertheexample of afile cachewhichisdistributed acrossclients.

Filesarestoredon theserverand cachedon clients. Furthermore,assumethat filesarekept coherent

by theserver. Whena client readsa file, the serverrecords thename of thefile and the client that

read it, promising theclient to notify it whenthe file is written. Whenanother clientwritesa file,

thewrite is immediately propagated to theserver, whichnotifies theclientsthathave thefile cached

that their version is now stale (via a “callback”) The clients thenaccessthe server to fetch the new

copy. This is how coherence is achievedin AFS[Howard etal., 1988] for example.

Now consider thecasewhereclients are accessing independent files,each write is propagated

to the server anddoesnot generateany “callbacks” becausethe file being written is cached only

at the client that is writing it. In this case, except for the initial invalidation message, there is no

furthercoherence-inducedcommunication from theserver to theclients. Thus,placing thecacheat

theclient doesnot induceany moresynchronization overhead than if it wasplaced at theserver.

On theotherhand, considerthecasewhere theclientsareall actively accessing,reading and/or

5.6. EVALUATION OF FILESYSTEM ADAPTATION 193

writing, thesame file. In this case,each write by a clientresults in “callbacks” to theactive clients,

who in turn contact the serverto fetch the recently written version of the block. Soon after that,

the sameclientor another client writesthe block again, causing a callback to bepropagated by the

server to therestof theclients. Theclientsthenre-fetch thenew copyof theblockthatwasupdated.

Under suchaworkload, placingthecacheattheclient causesexcessivesynchronization overheadin

the form of coherencetraffic (callbacks)anddatare-fetching. To sum up, theplacement of function

under certain workloads can have a dramatic impact on the amount of synchronization overhead,

and consequently theamount of network messaging. Theeffect of this overheadmust be weighed

against thebenefit of widerscalereplication (parallelization) of function.

Experiment. To validate this hypothesis, a few experiments were conducted. A workloadthat

performs directory inserts in a shared namespace waschosenasthe contention benchmark. This

benchmarkis more complicated than in thedistributed file caching case and therefore morechal-

lengingto ABACUS. Directoriesin ABACUS present ahierarchicalnamespacelike all UNIX filesys-

temsandareimplementedusingtheobject graphshown in Figure5.15. Whenclientsaccessdisjoint

parts of thedirectory namespace(i.e., there are no concurrent conflicting accesses), the optimistic

schemein which concurrency control checks are performedafter the fact by the isolation (DIA)

object works well. Eachdirectory object at a client maintains a cache of the directories accessed

frequently by that client, making directory reads fast. Moreover, directory updatesare cheap be-

causeno metadata pre-readsare required, andno lock messaging is performed. Further, offloading

from theserver thebulk of thework results in betterscalability and freesstoragedevices to execute

demanding workloads from competing clients. When contention is high, however, the numberof

retries and cache invalidations seenby the directory object increases,potentially causing several

round-trip latenciesper operation. Whencontention increases, thedirectory object should migrate

to the storage device. This would serialize client updatesthrough one object, thereby eliminating

retries.

Two benchmarks were constructed to evaluate how ABACUS responds to different levels of

directory contention. The first is a high contention workload, where four clients insert 200 files

each in a shareddirectory. Thesecond is a low contention workloadwhere four clients insert 200

fileseachin private(unique)directories.

Results. As shown in Figure5.16, ABACUS cutsexecution time for the high contention work-

loadby migrating the directory object to theserver. In theLAN case, ABACUS comeswithin 10%

of thebest,which is 8X better thanlocating thedirectory object at thehost. ABACUS comeswithin

194 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

 3
7.

42

 2
3.

99

 1
1.

58

 1
8.

12

 1
8.

72

 1
6.

10

 1
1.

80 1
6.

53

 1
5.

01

 9
.9

2

 8
.2

7

High contention,
æ

LAN
High contention,
ç

SAN
Low contention,
è

LAN
Low contention,
é

SAN

0
ê

10

20
ë
30
Ð
40
Ñ

E
la

ps
ed

 ti
m

e
(s

)

At client
ì
Adaptive
í
At server

144.74

Figure 5.16: This figure shows the time to execute our directory insert benchmark under different levels of

directory contention. ABACUS migrates the directory object in all but the fourth case.

LAN SAN

At client 125 86

Adaptive 7 27

At server 0 0

Table 5.3: This table shows the number of retries (averaged over 5 runs) incurred by the optimistic concurrency

control scheme when inserting entries into a highly contended directory. Results are shown for the case where

the directory object is statically placed at the client, adaptively located by ABACUS, and statically placed at the

storage server.

25% of the best for the high contention, SAN case(which is 2.5X better than the worst case).

Notetheretry results summarizedin Table 5.3. There arelower retriesunder ABACUS for the high

contention, LAN case than for the high contention, SAN configuration. In both cases, ABACUS

observed relatively high traffic between the directory object and storage. ABACUS estimates that

moving it closer to the isolation object would makeretries cheaper (local to the storage server).

It adapts morequickly in theLAN case becausethe estimated benefit is greater. ABACUS hadto

observe far more retries and revalidation traffic on the SAN case before deciding to migrate the

object.

Underlow contention, ABACUS makesdifferent decisionsin theLAN andSAN cases,migrating

the directory object to the server in theformer and not migrating it in thelatter. For these tests, he

benchmark was started from a cold cache, causing many installation reads. Hence, in the low

contention, LAN case, ABACUS estimates that migrating the directory object to thestorage server,

avoiding the network, is worth it. However, in the SAN case, the network is fast enough that the

5.7. SUPPORTING USER APPLICATIONS 195

0 5 10 15

Elapsed time (s)
î0

50

100

150

200

C
um

ul
at

iv
e

in
se

rt
s/

re
tr

ie
s

Cumulative retries
ï

Cumulative inserts
ð

Migration times
ñ

Figure 5.17: This figure shows the cumulative inserts and retries of two clients operating on a highly contended

directory over the SAN. Client 1’s curves are solid, while client 2’s are dotted.

ABACUS cost-benefit model estimatestheinstallation readnetwork cost to be limited. Indeed,the

results show that thestatic client and storageserver configurations for the SAN casediffer by less

than30%,thethreshold benefit for triggeringmigration.

Notethat clientsneednot agreeto migratethedirectory objectsto thestoragedeviceatthesame

time. They candecide independently, based on their migration benefit estimation. Correctnessis

ensured even if only someof the clients decide to move the object to the storage device because

all operations are verified to have occurred in timestamp order by the isolation object, which is

always presenton the storageservers. Figure 5.17 shows a time-line of two clients from thehigh

contention, SAN benchmark. The graph shows the cumulative number of inserted files and the

cumulative number of retries for two clients. Oneclient experiencesa sharp increasein retriesand

its objectismovedto theserver first. Thesecond happensto suffer fromarelatively low, but steady

retry rate,which triggersits adaptation a li ttle later. Thefirst client experiencesa sharp increasein

therateof progresssoonafter it migrates. Thesecondexperiencesasubstantial, but lower, increase

in its rateof progressafter it migrates, which is expected asstorageserver loadincreases.

5.7 Support ing userapplications

While the ABACUS systemfocussedon adaptive function placement in distributed filesystems, the

approach that it embodiescan in fact bereadily generalized to support adaptive functionplacement

for all stream-processing kinds of applications. This section describessomeexample applications

thatcan benefit fromadaptive function placement over ABACUS. In particular, it describes thecase

of adatafilteringapplication which wasportedto ABACUS. This sectionreportson itsperformance

196 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

and implementation on theABACUS run-time. Thisdiscussion clarifieshow function placement can

begeneralizedbeyond the ABACUS filesystem to user-level applications, assumingthe underlying

filesystemis itself mobile.

5.7.1 Exampleapplication scenarios

There is a growing trendfor businessesto access a variety of servicesvia the web. There is a trend

even to host traditional desktopapplicationson remoteservers,at an“application serviceprovider”

(ASP).This movesthetasksof upgrade, maintenanceandstoragemanagement to theASP, reducing

the coststo theclient. On theother hand, streaming of real-time multimedia content customizedto

the user’s interestsis becoming commonplace. Such applicationsbenefit from adaptive placement

of their componentsdueto thewidevariabilit y in client-server bandwidthson theinternet and dueto

thegreat disparity in clientresources (PDAs to resourceful workstations) andin server load. As in-

vestments in the Internet’s infrastructurecontinue,bandwidth to theserver improves,andASPsand

content-rich applicationsbecome increasingly attractive and widespread. However, heterogeneity

will remainamajor challengefor application performancemanagement.

Distrib utedweb applications

ASPscan provide morerobust performanceacross workloadsandnetwork topologiesby partition-

ing function between theclient andthe server dynamically at run-time. Such a dynamic function

placementcanstill maintain the easeof management of server-side software maintenance, while

opportunistically shipping function to theclient whenpossible.

Customizedmultimedia reports

An increasing number of applications on the internet today compile multiple multimedia streams

of information, and customize these streamsto the needs of end users, their language, interests

and background. Such applications aggregatecontent from different sites, merge and filter this

information together and deliver it to the end client. The optimal placeto execute the different

functions on the dataset or stream depends on the kind of client used, e.g. a PDA or high-end

workstation, the current load on the server, andon the performance of the network between the

client and theserver. Dynamicpartitioning of functionbased onblackbox monitoring cansimplif y

theconfigurationof suchapplicationsoverwide areanetworksand heterogeneousclientandserver

pairs.

5.7. SUPPORTING USER APPLICATIONS 197

Storage

Server C

C
ò

lient-server network

Client B

Sear ch

Console

Client A

Sear ch

Console

h
ó

ighly
selective filter

pô ass
t
õ
hrough

Storage

Server C

(a) (d)

Storage

Search

C
ò

onsole

1 MB

0
ö

.2 MB

Storage

Search

C
ò

onsole

1 MB

0
ö

.8 MB

filter

(b) (c)

Figure 5.18: The alternative placements of a filter object. Thicker arrows denote more larger data transfers. If

the filter is highly selective, returning a small portion of the data it reads, as in the case of client A, then it can

potentially benefit from executing at the server. This reduces the amount of data transferred over the network.

If the filter has low selectivity, as in the case of client B, passing through most of the data that it reads, then it

would not benefit much from server-side execution.

5.7.2 Casestudy: Fil tering

Consider the example of a filtering application running on ABACUS. The application consists of

a synthetic benchmark that simulatessearching. It filtersan input dataset, returning a percentage

of the input data anddiscarding the rest. This percentage can be specified to the program asan

argument. The application program is composed of a console part (or a “main” program) that

performsinitializationand input/out, and afilter object.

Thefilter object accessesthefilesystem to readthe input dataset. In this simple example, the

filesystemis accessedvia remote procedurecalls to a “storageobject” anchored to theserver. For

simplicity, thefile accessed by thefilter wasnot bound to a realistic ABACUSFS stack(containing

caching and striping). This makestheexperiment simple and allows us to focuson theplacement

of thefilter object. Data is not cached on the client side. Thefilter exports one important method,

namely FilterObject(), which takestwo arguments, the size of theblock to filter. The per-

centageof thedatato filter out is specified to the filter when it is first instantiated. The filter object

recordsitsposition in theinput file. Whenit receivesaFilterObject invocation, it processesa

blockof datafrom its current position,and returnsdatato theconsole in a result buffer.

Theselectivity of a filter is definedastheratio of the datadiscarded to the total amount of data

readfrom theinput file. Thus,a filter that throws away ÷LøIù of the inputdata, and returnsa fifth of

198 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

 3
6.

24

 4
.8

2

 4
0.

73

 3
7.

12

 8
.5

5

 2
.0

2

 4
0.

84

 3
6.

13

 6
.9

1

 1
.3

8

 7
3.

07

 2
5.

66

High selectivity,
ú

LAN
High selectivity,
û

SAN
Low selectivity,
ü

SAN,
Loaded drive

Low selectivity,
ý

LAN

0
ê

20

40
þ
60
ÿ
80
�

E
la

ps
ed

 ti
m

e
(s

)

At client
ì
Adaptive
í
At server

Figure 5.19: The performance of the filter benchmark is shown in this figure. Executing the filter at the storage

server is advantageous in all but the third configuration, in which the filter is computationally expensive and

runs faster on the more resource-rich client.

it, hasa selectivity of ø��:÷ . Filterswith high selectivity fit the intuition of being “highly selective”,

choosing only a few from a largeset. Precisely: �������
	�������������� á������ ��� � ��� �!"� � ��# . Applications

can exhibit drastically different behavior basedon run-time parameters. This section shows that

the selectivity of the filter (which depends on the data set and the pattern being searched — a

programinput) determinestheappropriatelocationfor thefilterto run. For example, there’sadrastic

differencebetweengrep kernel Bible.txt and grep kernel LinuxBible.txt.

Experiment. Asdatasetsin large-scalebusinessescontinue to grow, an increasingly important

userapplicationishigh-performancesearch, or datafiltering. Filtering is generally ahighly selective

operation, consuming a large amount of data and producing a smaller fraction. A synthetic filter

object wasconstructed that returnsa configurable percentage of the input data to the object above

it. Highly selective filters represent ideal candidate for execution close to the data, so long as

computation resourcesareavailable.

In this experiment, both thefilter’s selectivity and CPU consumption were varied from low to

high. A filter labeled low selectivity outputs ÷Lø;ù of thedata that it reads, while a filter with high

selectivity outputs only 20% of its input data. A filter with low CPU consumption doesthemini-

mal amount of work to achieve this function, while a filter with high CPU consumption simulates

traversing largedatastructures(e.g.,thefinitestatemachinesof a text searchprogram likegrep).

Results. The filtering application starts executing with theconsole invoking the methodFil-

terObject(), exported by the filter object. As the application executes, data is transferredfrom

the storage object (the storageserver) to the filter (the client node), and from the filter to thecon-

5.8. DYNAMIC EVALUATION OF ABACUS 199

0 10 20 30 40
$

50 60 70

Elapsed time (s)

0

1000

2000

3000

4000

C
um

ul
at

iv
e

of

 b
lo

ck
s

pr
oc

es
se

d
Filter 1
%
Filter 2
%

Filter 1 moves
to server
&

Filter 1 move to client

Filter 2 moves to server

Figure 5.20: This figure plots the cumulative number of blocks searched by two filters versus elapsed time.

ABACUS’s competition resolving algorithm successfully chooses the more selective Filter 2 over the Filter 1 for

execution at the storage server.

sole. The ABACUS run-time system quickly accumulatesa history of the amount of datamoved

betweenobjects by recording the amount of datamoved in and out of an object. Thesestatistics

are updatedon procedure return from each object. Figure 5.18(a) and (c) illustrates the data flow

graphsconstructed by ABACUS at run-time in thecaseof two filterswith different selectivities.

Figure5.19showstheelapsedtimeto read andfilter a áKâÆ×�Ø file in anumberof configurations.

In thefirst set of numbers, ABACUS migratesthefilter from client to storageserver, coming within

25% of thebestcase,which isover5X betterthanfiltering attheclient. Similarly, ABACUS migrates

the filter in thesecond set. While achieving better performancethan statically locating thefilter at

the client, ABACUS reachesonly within 50% of thebest becausethetime requiredfor ABACUS to

migratetheobject isabigger fraction of total runtime. In thethird set, acomputationally expensive

filter was started. We simulate a loaded or slower storage server by making the filter twice as

expensive to run on thestorage server. Here, thefilter executes1.8X faster on theclient. ABACUS

correctly detectsthis caseandkeeps thefilter on theclient. Finally, in the fourth setof numbers, the

valueof moving is too low for ABACUS to deem it worthy of migration.

5.8 Dynamic evaluation of ABACUS

The previous section demonstrated thebenefitsof adaptive placement andshowed through several

microbenchmarks that ABACUS candiscover the best placement automatically under relative static

200 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

workload and network conditions. This section evaluates the abili ty of ABACUS to adapt under

moredynamically varying conditions.

5.8.1 Adapting to competition over resources

Sharedstorageserver resourcesarerarely dedicatedto serving oneworkload. An additional com-

plexity addressed by ABACUS is provisioning storageserver resourcesbetween competing clients.

Toward reducing global application execution time, ABACUS resolves competition among objects

that would executemorequickly at theserver by favoring those objectsthat would derive a greater

benefit from doing so.

Experiment. In this experiment, two filter objects are startedon two Ù|Ú7×�Ø files on our LAN.

The filters have different selectivities, and hence derive different benefits from executing at the

storageserver. In detail, Fil ter 1 produces60% of thedata that it consumes,while Filter 2, being

the more selective filter, outputs only 30% of the data it consumes. The storageserver’s memory

resourcesare restricted sothatit canonly support onefilter ata time.

Results. Figure5.20 shows thecumulative progressof thefilters over their execution, andthe

migrationdecisionsmadeby ABACUS. The lessselectiveFilter 1 wasstarted first. ABACUS shortly

migrated it to the storageserver. Soon after, themore selective Fil ter 2 wasstarted. Shortly after

the second filter started, ABACUS migratedthe highly selective Filter 2 to theserver, kicking back

the other to its original node. The slopesof thecurvesshow that thefilter currently on theserver

runsfaster than whennot, but thatFil ter2 derivesmorebenefit sinceit ismoreselective. Filtersare

migrated to theserverafter anoticeable delay because in our current implementation, clientsdo not

periodically update theserverwith resourcestatistics.

5.8.2 Adapting to changesin the workload

Applications rarely exhibit the samebehavior or consumeresourcesat the samerate throughout

their lifetimes. Instead,anapplicationmay changephasesatanumber of pointsduringitsexecution

in responseto input from a user or a file or as a result of algorithmic properties. Such multiphasic

applicationsmakeaparticularly compelling case for the function relocation that ABACUS provides.

Experiment. Let’snow revisit our filecachingexamplebut make it multiphasic this time. This

cache benchmark does an insert phase, followedby a scanning phase, then aninserting phase, and

finally anotherscanphase.Thegoal is to determinewhether thebenefit estimatesat theserver will

ejectanapplication that changed its behavior after being movedto theserver. Further, we wish to

5.8. DYNAMIC EVALUATION OF ABACUS 201

Insert Scan Insert Scan Total

At client 26.03 0.41 28.33 0.39 55.16

Adaptive 11.69 7.22 12.15 3.46 34.52

At server 7.76 29.20 7.74 26.03 70.73

MIN 7.76 0.41 7.74 0.39 16.30

Table 5.4: This table shows the performance of a multiphasic application in the static placement cases and

under ABACUS. The application goes through an insert phase, followed by a scan phase, back to an insert

phase, and concludes with a final scan phase. The table shows the completion time in seconds of each phase

when the application is fixed to the server for its entire lifetime (all phases), when it is fixed to the client, and

when it executes under ABACUS.

seewhether ABACUS recovers from badhistory quickly enough to achieveadaptation that is useful

to an application that exhibitsmultiplecontrasting phases.

Results. Table 5.4shows thatABACUS migratesthecache to theappropriate location basedon

the behavior of the application over time. First, ABACUS migrates the cache to the serverfor the

insert phase.Then, ABACUS ejects the cache objectfrom the server server whenthe serverdetects

that thecacheis being reused by theclient. Both static choiceslead to badperformance with these

alternating phases. Consequently, ABACUS outperformsboth static cases— by 1.6X comparedto

fixing function at the client, andby 2X comparedto fixing function at theserver. The“MIN” row

refers to the minimum execution time picked alternatively from the client and server cases. Note

that ABACUS is approximately twiceasslow asMIN, if it wereachieved. This is to beexpected, as

this extremescenario changesphasesfairly rapidly. Figure 5.21 represents a sketch of thetimeline

of thecaching application. Theapplicationchangesphasesat5, 10, and15seconds.

5.8.3 Systemoverhead

ABACUS inducesdirect overhead on the system in two ways. First, it allocatesspaceto store the

application andfilesystem object graphs and the associated statistics. Second, it consumesCPU

cyclesto crunch thesestatisticsanddecideon thenext bestplacement.

In a typical openfile session, when the file is bound to three to five layers of mobile objects,

ABACUS requires20 KB to store the graph and the statistics for that open file session. A good

fraction of this overhead canprobably beoptimizedaway through a more careful implementation.

Furthermore, ABACUS can limit the amount of spaceit consumes by carefully monitoring only a

202 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

0
'

5
(

10 15 20
)

Elapsed time (s)
*

0
'

100

200
+

300

400
,

P
ro

ce
ss

in
g

ra
te

At client
Adaptive
At drive

Figure 5.21: This figure plots the processing rate in number of records per second for three configurations. In

the first configuration, the cache is anchored to the client, in the second, it is anchored to the server, and in the

third it is allowed to migrate under ABACUS. Because progress is measured at discrete time intervals as the

cumulative number of records processed, this graph can not be used to infer the exact times at which ABACUS

performed a migration from one node to the other.

subset of the open file sessions, thosethat move a lot of data, for example. For theother sessions,

the system can simply maintain summaryinformation such asthe total amount of data read from

the basestorageobjects. This summary information is necessary to discover open file sessions that

becomedata-intensive andpromote theminto astatewherethey are fully monitored.

TheABACUS run-timesystemalso consumesCPU cycleswhen the resourcemanageranalyzes

thecollectedgraphsto find out if a better placementexists. In theabove experiments, the ABACUS

resource manager wasconfiguredto wakeup onceevery 200 milli seconds and inspect thegraphs.

Theamount of overheadcan beconfigured by limiting thefrequency of inspections. Theobservable

overheadwhile executing applications in theabove experiments wasmostly within 10%. At worst,

it wasaslargeas25%in thecaseof short-livedprogramsfor which ABACUS-relatedinitializations

and statisticscollectionswerenot amortizedover a long enoughwindow of execution.

5.8. DYNAMIC EVALUATION OF ABACUS 203

0
-

1 2
.

3
/

4
0

5
1

6
2

7
3

Time (seconds)

−1

−0.5

0
-

0.5
4

1

1.5

2
.

C
os

t/b
en

ef
it

es
tim

at
e

(s
ec

on
ds

)

Migration cost
5
Benefit estimate
6
Net benefit estimate
7

Cost and benefit estimates for the synthetic filter
(cost, benefit, net benefit and threshold values vs. time)
8

Figure 5.22: Cost and benefit estimates versus time for the synthetic filter application.

5.8.4 Thresholdbenefit and history size

This section attempts to gain some insight into thedynamicsof the ABACUS cost-benefit estima-

tions. Consider the example of a highly selective filter application processing a 9 MB file, and

returning 20% of the datait reads. The next experiment starts the filter at the client and collects

and logsthecost andbenefit estimatescomputedby ABACUS. ABACUS wasdirectednot to invoke

any migrations although it continued to compute the required estimates. The client-server 10 Mb

Ethernet network was measured to deliver an approximateend-to-endapplication readbandwidth

of ø:�<; MB/s. Sincethe filtering application’s execution timewasdominated by server to client net-

work transfers, filtering a 4 MB file on the client required approximately 8 seconds. Performing

thefiltering on theserver would have requiredapproximately only 2 seconds(only = MB would be

transferredto theclient). Thus,thebenefit of server-sideexecution overclient-sideexecution for the

entireduration of theapplicationcan beapproximatedas > seconds,or �@?�; secondsper each second

of execution.

Figure 5.22 shows the estimatesof cost and benefit computed by the ABACUS run-time system

versustimeas theapplication executedon theclient. Notice that thebenefit afteran initial increase

flattened at about ø��@>A; seconds per second of execution. ABACUS approximated the benefit of

server-sideexecutionto beareduction of execution timeby �B>A; secondsovertheobservation history

window (of one second). This number correspondsto thevalue of CEDGFIH�H , computedby taking the

differenceof Equations5.4and5.3. ABACUS observed that theoutput of thefilterwasonly 20% of

204 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

thesizeof thedatacurrently being communicatedover thenetwork. Using its estimatesof network

bandwidth, ABACUS computed thebenefit to be J �AK of the history window. This benefit value is

relatively closeto thevalueexpectedfrom theanalysis of thepreviousparagraph, or ø:�@? .
Thefigure also plotsthecostof migration over time. Thecostof migration dependson thesize

of the state that mustbe transferred from the client to the server. As the filter executed, its state

increased and the cost accordingly increased. At somepoint (around L �MK), the cost of migration

began to exceedthebenefit frommigration. Thisis becauseABACUS estimated thebenefit assuming

that theapplication wil l execute only for another N seconds. Longer history windows would have

allowedfor the benefit to behigher, overcoming theone-time migration cost and resulting in more

migrations. Longer history windows make the system slow to react to changesin theapplication,

however.

The figure also shows the net benefit from migration. The net benefit initially increasedand

thenstarteddecreasing as the cost of migration roseand the benefit remained flat. Note also how

the threshold benefitvalues, marked by thehorizontal dashedlines in thefigure,arekey to deciding

whether or not a migration occurs. In a setof migration experiments, the threshold value was set

to: ø��O=AP=ø"� K P8ø��<;�P=ø:�@? and ø��<Q . With threshold valuesof ø��<; and higher, no migrations occurred. This

is explainedby the plot of thenetbenefit estimatein the figure, which doesnot exceed ø:�<; , at any

timeduring execution.

5.9 Discussion

This section discusses somespecific aspects and limitationsof theABACUS prototypewhich were

not already sufficiently addressed.

5.9.1 Programming model and run-timesystem

Themereexistenceof mechanismsto changetheplacementof components,andthedevelopment of

anapplication according agivenprogrammingmodel doesnot always imply that run-timemobilit y

will improve application performance. The application should still be designedwith the goal of

better performancethrough mobilit y. Just like theuseof amodular programminglanguagedoesnot

imply a modular application, theavailability of mobility mechanismsdoesnot imply performance

gains. For instance, the run-time system can be overwhelmed with huge object graphs if the pro-

grammerchoosesto makeevery base type a migratable object. In this case, the run-time system

5.9. DISCUSSION 205

mustmove large subgraphs to generate any benefit and the overheadof themonitoring andplace-

mentalgorithmscanbecomeexcessive. Tools thatassist theprogrammersin properly decomposing

applications at the propergranularity would be helpful. For filesystems, thedecomposition is rel-

atively straight-forwardwith eachlayer in a stackable filesystem being encapsulated in an object.

For user applications, it is not aseasy.

Providing universalguidelinesfor thedesign of applicationswhichcanbenefit fromtheadaptive

placement of their components is challenging. More work on this question is needed. However, it

is clear that developing a tool thatassistsprogrammers in understanding resourceconsumption and

data flow through their programs can prove helpful in properly decomposing an application into

ABACUS objects.

ABACUS separatesresourcemanagementfrom monitoring andfrom method redirection mech-

anisms. It is therefore relatively simple to implement a different resourcemanagement policy. The

ABACUS benefit estimatesare based on the artificial assumption that the set of applications exe-

cuting during the observation window (of length N seconds) will execute exactly for another N
seconds. Equivalently, ABACUS assumes that history will repeat itself only for another N seconds-

longwindow. ABACUS discardshistory information beyond N secondsago. It alsodoesnotattempt

to estimate theapplication remaining execution time fromthesizeof thedataset, for example. The

algorithms used by ABACUS can be improved by more accurately estimating the remaining appli-

cation execution timeandby using old history information rather thandiscarding it.

The threshold benefit test employedby ABACUS migration algorithms is important becauseit

dampensoscillationsandhelpsmaskshort fluctuationsin resourceavailabili ty. A low threshold ben-

efit wil l makeABACUS chasesmallbenefitsthatmay not materialize. This canbebecauseABACUS

adapted too quickly to a short perturbation in network performancefor instance. In general, the

threshold benefit should be set such that it does not react to measurement or modeling error. If the

threshold benefit exceedsthe tolerance allowed for measurement and modeling errors, migration

will most oftenbeagooddecision.

5.9.2 Security

The ability of distributed applicationsto adaptively place their componentsat theserver opens the

potential for security threats. Mechanisms to protect against thesethreatsarenecessary to make

application andfilesystemreconfiguration possible. Thethreatsthatadaptivecomponent placement

createscan beorganizedinto four categories:

206 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

R Applicationcompromising theserver. Theapplication canmaliciously compromisetheserver

by modifying its code, stateor other resources that theapplications should not access. The

resourcesthat canbe accessedby an application are: memory, filesystem, and thenetwork.

The safety of memory accesses can be controlled through Java, addressspaces, or interpre-

tation, for example. Rights in the filesystemcanbebeenforcedby ABACUSFS according to

its accesscontrol policy, as the server would if the application was making requests from its

homeclient. Accessto thenetwork ismadethroughtheoperatingsystem,and so in principle

doesnot poseany threatsto theserver(exceptfor denial of servicewhich is discussed below).

R Servercompromising theapplication. The server can also bemalicious and compromise the

application, by changing its code or state. This is a problem in the general casewhere the

server is someuntrusted remote node. In the context of this thesis, the server machine is

trusted, and it should besince it is storing andserving thedata to clients.

TheABACUS prototypeavoidsthesafetythreatsassociatedwithmigratingmaliciousorbuggy

application components to a server by running themin a separateaddressspace. Filesystem

componentsarelinked in with thefilesystemprocessrunning at theserver. Thecodeisguar-

anteednot to betampered with becauseit is directly readfromthefilesystem and notaccepted

fromaclient node.

R Applications compromising each other. One application that is remotely executing on the

server can accessstate of otherapplications and maymodify it. The samemechanismsused

to protect theserver’s resourcesfromtheapplication canbeusedto isolateapplicationsfrom

eachother.

R Denying server resources. An application canconsumeall theserver’s resources, rendering

it uselessto other applications. In ABACUS, this does not compromise the availability of

the storage server itself since the basic storage service runs at a higher priority then any

client-shipped code. However, an application might be designed to convince the run-time

systemto always select it for server-side execution over other competing applications. This

is conceivable in ABACUS becausethe resource management policy works towards global

reductionof execution timeacrossclientsandnot towards fairness.

Althoughany mobile object canmigrateto theserverand server consumeresources, ABACUS

can, in principle, restrict to which nodesa mobile object canmigrate throughthe useof un-

derlying storageserveraccesscontrol such asNASD capabili ties. NASDstorageserversmay

5.10. RELATED WORK 207

accept themigration of mobile objectsonly if they are authorizedby somewell-known and

trustedentity. ThisNASD managerentity canhandout unforgeablecapabili ties to themobile

objectsauthorizing themto useresourcesonagivenserver. If thecapability verification fails

in any specific migration, migration is refused.

5.10 Relatedwork

There exists a large base of excellent research andpractical experiencesrelated to code mobility

and and function placement in clusters. The ideaof function migration was introduced over two

decadesagoasa way to balanceload acrossmultiple CPUs in a system[Stoneand Bokhari, 1978,

Bokhari, 1979], and as a way to ensure continuous service availabili ty in the presence of system

faults [Rennels,1980]. Thissection briefly reviews this relatedwork.

5.10.1 Processmigration

Systemssuch as DEMOS/MP [Powell andMil ler, 1983], Sprite [Douglisand Ousterhout, 1991],

System V [Theimer etal., 1985] and Condor [Brickeret al., 1991] developed mechanisms to mi-

grateentire processes. Process migration is complex becausethe entire stateof a process, which

can be scattered throughout operating system datastructuresand the process’ own addressspace,

mustbe made accessible to theprocess on thenew node and thesemantics of all operationsshould

bethesamebefore, during, and after the migrations. The processstateincludesthe contents of its

addressspace (virtual memory), open files(open file entries andcachedblocks), communication

channels,and theprocessor’s state.

Processmigration can be enacted transparently to theprocessor canoccur through a process-

visible checkpoint/restore mechanism. Transparent processmigration hasbeen built using a com-

pletekernel-supported migration mechanism, or using only a user-level package. User-level im-

plementations tend to have limitedtransparency and applicabili ty, because they cannot achieve full

transparency. As well, they cannot make all the process’ statethat is embedded in the operating

system on thesourcenodeavailable on thetargetnodeaftermigration.

Transparent kernel-supported migration across heterogeneous platformsis even morecompli-

catedthanbetweenhomogeneous machines.Thecontents of theprocessvirtual memory cannot be

simply transferred to target node becausethe two machinesmay represent programs, numbersor

charactersdifferently. Evenif an executableversion of thecode to bemigratedis available for both

208 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

architectures,accurately reconstructing thecontentsof theprocess’ addressspace in theabsenceof

datatypeinformation is acomplex and error pronetask[Chanchio and Sun,1998]. Most prior work

and all thesystemsdescribedhereassumehomogeneousclusters.

DEMOS/MP

The DEMOS/MP distributed operating system is one of the earliestoperating systems to provide

kernel-supported transparent processmigration [Powell andMil ler, 1983]. TheDEMOS operating

system uses theabstraction of linksto implement communicationbetweenprocessesandbetweena

processand theoperatingsystem.

This nice abstraction enablesthe operating system to enact migration elegantly. All commu-

nication with a processoccurs through links. Thus, adding support for location transparency is

focussed on making link behavior independent of the node. A link is attached to a processand

not to a node. Thus,after the processmigrates, thecommunication subsystem correctly forwards

the messagesto thenew process. Becauseall system calls use links, this mechanism provides the

required transparency.

Spri te

Location transparency is an original design goal of Sprite [Douglis andOusterhout, 1991]. For ex-

ample, Sprite includesa highly location transparent network filesystem. Yet, transparent migration

still proveddifficult even in thecaseof openfilestatein this location-transparent network filesystem.

Open fileshave threekindsof stateassociated with them: cacheddata, afileposition, andafile

reference. Becausethestateassociatedwith anopenfile is copiedfrom sourceto target, it is shared

across nodes. This sharing is thesourceof the problem. The Sprite file server has a policy where

it disables file caching whena file is openfor writing by more thanonenode. In suchcases,writes

are propagated immediately andlessefficiently to the server. When a processis migrated, its files

all appear to beopen by sourceanddestination, causingcaching to bedisabled. Alternatively, if the

file is first closedat thesourcenode, it canbeincorrectly deleted, if it is a temporary file, which is

to be immediately removed on close. These issues were overcome but required Sprite to develop

complex modificationsto migration and to theoperatingsystem.

Sprite associatesa home node with each processwhich is the machine where the process was

started. System calls thatdependon the location of a process areforwardedto theprocess’s home

node. As long as the number of thesesystem calls is small, the impact of this forwarding on

5.10. RELATED WORK 209

performance may be acceptable. fork and exec are examples of expensive system calls that

mustbe forwardedto thehomenode.

Systemslike theV kernel, DEMOS, andAccent[Richard Rashid, 1986], where all interactions

with a process, including OSsystem calls, occurred through a uniform communication abstraction,

can elegantly enact migration by making the endpoints of their communication channels location

transparent. Messageswereforwardedto thenew location aftermigration. Sprite,ontheother hand,

allowedprocessesto interact with theoperating systemthrough traditional systemcalls which re-

quired lesselegant, albeit often moreefficient, operating systemsupport. However, both approaches

require someform of rebinding after migration. For example, if a processwants direct accessto a

hardware resourceon thenodeit is runningon, its request cannot beforwardedto itshomenode. It

is sometimeshard to know which nodetheprogrammerwantsasystemcall to effect.

Condor

While kernel-supported processmigration canbetransparent to user processes, it hasnot achieved

widespreadacceptancein commercial operatingsystems.I believethecomplexity of kernel-supported

migration and the lack of strong demand for it so far hasdiscouraged its commercial inclusion.

While there is significant demands for processmigration for thepurposeof exploiting idle worksta-

tion resources in clusters, this demand is satisfiedby simpler user-level migration implementations

such as Condor and the Load Sharing Facility [Brickeret al., 1991, Zhouet al., 1992], or through

application-specific mechanisms[Noble etal., 1997].

Theapproach to processmigration that gainedcommercial successis theless transparentuser-

level implementation, of which Condor is a good example [Brickeret al., 1991]. Condor employs

threeprinciple mechanisms to provide the load balancing in a cluster: Classified Advertisements,

RemoteSystem Calls, and JobCheckpointing. ClassifiedAds are the mechanism thatCondor uses

to pair up Resource Requestsand ResourceOffers. Remote system calls redirect thesystemcalls

of the new copy of the processto a shadow process running on the user’s local workstation. The

system calls are executedon the local workstation by theshadow, and the results are sent back to

the application on the remoteworkstation. This enablesCondor to migrate a process to a remote

workstation that doesnot have all the capabilit ies of the original workstation. For example, the

remote workstation may have ample CPU cycles but no access to a network filesystem that the

application usesto storefiles.In this case,after migration, thefileaccesssystem calls aresent back

to beservicedat theoriginal nodeby theshadow (vestigial) process.

210 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Checkpointing in Condor is performed through checkpointing and restart libraries linked to

with the process. Whena process is to be migrated,Condor sends a signal which is captured by

the checkpointing library. This library contains code that saves the virtual memory contents of

the process to be usedto reinitialize the new process on the target node. Because Condor is a

totally user-level implementation, it ismuch less transparent than kernel supportedapproaches.For

instance,forking and processgroupsarenot supported.

The research described in this chapter addresses the problem of migrating application objects

that are usually of finer granularity than entire processes. Rather than focusing on the migration

mechanism, ABACUS asks for thehelp of theprogrammer in abiding to a programming discipline

that simplifies migration. The focusin ABACUS is insteadon where to place components and how

to dynamically adjust thisplacement.

5.10.2 Programming systemssupporting object mobility

Mobile object systemsareprogramming systemswhere objects can move betweennodestranspar-

ently to the application programmer. A seminal implementation of object mobilit y is demonstrated

by Emerald [Julet al., 1988].

Emerald is a distributed programming languageand system which supports fine-grainedobject

mobilit y [Jul etal., 1988]. Emerald providesauniform object model, whereeverything in theappli-

cation is anobject. Built-in types(integers,floats), aswell asarrays and structs are objects. Object

invocation is location transparent and hasthesame semantics in both local andremote cases. An

Emerald objectconsists of a name, which uniquely identifies the object, a representation, which –

except for thecase of primitive types– consists of references to other objects, a set of operations

(an interface), and anoptional process, which is started after the object is createdand executesin

parallel to invocationson theobject. Emerald doesnot support inheritance.Objects in Emerald are

derived from abstract data types, canbe either passive or active and can be passed as arguments

to method invocations. Active objectsare associated with a processthat is startedafter theobject

is createdand executes concurrently to the invocationsperformed on theobject. To ensure proper

synchronization betweenconcurrent invocationsand the internal, active process,Emerald offers its

programmersmonitorsandcondition variables.

Emerald implementsdatamigration throughacombinationof by-copy, by-moveandby-network-

referencemechanisms. Local referencesarechanged tonetwork referenceswhenanobject migrates.

For immutable objects, however, Emeraldusesdatamigrationby copy. Theobjectscanbedeclared

5.10. RELATED WORK 211

as“immutable” by the programmer (i.e. the values of the fields in the object do not change over

time), in which case they arefreely copiedacrossthe network simplify ing sharing. An object of a

built-in type that is passedasanargument to a remoteobjectmethod is alsocopied.

Other objects aresent asnetwork references. Since an invocation to a remote object canpass

several other local objectsas arguments, performancecandegrade if the argument objectsare not

moved to the target node. Emerald supports call-by-move semantics where argument objects are

migrated to the target node hosting the invoked object. This can be specified by the programmer

using special keywords. Whenanobject is moved, its associatedmethodsand statemust bemoved

with it.

ABACUS uses similar mechanismsto thoseproposedin Emerald to find mobile objectsat run-

time. While Emerald enablesobjectmobili ty betweennodes,ABACUS focuses on the complimen-

tary problemof deciding where to locateobjectswithin acluster.

5.10.3 Mobileagent systems

Recent work in mobile agents has proposed a different programming model to support explici t

application-supported migration [Dale,1997, Grayet al., 1996, Chessetal., 1997, Knabe, 1995].

The growth of the internet has recently catalyzedresearch on languagesandrun-time systemssup-

porting “mobile agent” applicationswhereanagent “roamsaround” thenetwork, moving fromone

site to another performing somecomputation at eachsite. An example of a mobile agent is a pro-

gramthatsearches for thecheapestairfarebetween two citiesby crawling from oneairline’s site to

the next. Mobile agents areattractive in that they cansupport “spontaneous electronic commerce”

[Chessetal., 1997], electronic commercetransactionsthat do not require theprior agreement or co-

operationof thesitesinvolved. Computationscanroamthenetwork choosing their path dynamically

and freely. Mobile agents raise security issuessincea server is usually nervous about accepting an

agent without knowing its intentions.

Theeleganceandwiderangeof thepotential applicationsof mobileagentshaveresultedin sev-

eralmobileagent programmingsystems[Dale, 1997, Gray, 1996,Hyltonet al., 1996,Straeretal., 1996,

Acharya etal., 1997, Bharatand Cardelli, 1997]. Mostsystemsareobject-basedalthoughsomeare

scripting languageswith support for migration.

Mobile agents, like ABACUS, use explicit checkpoint/restore methods to save andre-

store their statewhen they migrate. However, while mobile agents are responsible for deciding

where they should executeandwhenthey should move fromonenodeto another, mobile objects in

212 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

ABACUS delegatethatresponsibili ty to theABACUS run-timesystem.

5.10.4 Remoteevaluation

Traditional distributedapplicationsstatically partition function betweenclient and server. Applica-

tion programmers decide on this function partitioning at design-time by fixing the “programming

interface” to the server. The list of remote procedure calls (RPC) implemented by the server is

therefore fixed at design-time. Clients build applications by building on the servicesprovided by

the servers. Applications that arenot well-matchedwith this division of labor betweenclient and

serversuffer from inefficientperformance.

Consider the example of a distributed filesystem. The server providesprocedures to insert a

new file and deleteanexisting file fromahierarchical tree-likenamespace.It also providesa lookup

procedurewhich returnsthecontentsof adirectory (all thefilesthat exist in thatdirectory). Thenew

file nameand theparent directory arespecified asarguments to theinsert procedure. The filename

of the existing file andthe parent directory are specified asarguments of thedelete procedure. A

lookup procedure call takesthe parent directory asanargument andreturnsits contentsasa result.

Now consideraclient that desiresto deleteall fileswith a “.tmp” extension in thenamespace.This

client is required to issuea large numberof successive RPCs, to lookup all the directories in the

namespaceandthento delete,oneRPCata time, thematching files. In such ascenario, it would be

moreefficient to send the“deletesubtree” programto theserverand executeit there and avoid this

excessiveclient-server communication.

Remote evaluation [StamosandGifford, 1990] is a more general mechanism to program dis-

tributed systems. It allows a node to send a request to another nodein the form of a “program”.

Thedestination nodeexecutes the program andreturns the results to thesource node. While with

remote procedure calls, server computers are designedto offer a fixedsetof services, remote eval-

uation allows servers to be dynamically extended. Remote evaluation can usethe sameargument

passing semantics asRPCs,and masks computer and communication failuresin the sameway. It

can also provide for a static checking framework to identify “programs” that cannot be sent to a

givennodefor execution, althoughin general this is very hard to do without significant restrictions

on theprogramming model.

Stamos’ Remote Evaluation allows flexibility in the placement of function (execution of ser-

vices) in a fashion similar to ABACUS. However, it doesnot provide an algorithm or suggest a

framework which allows this placement to be automatically decided. The programmer decides

5.10. RELATED WORK 213

whento invokeaservice locally and whento ship it to a remotenode. A filesystem built onRemote

Evaluationwould require thefilesystemprogrammer to think about whento do local versusremote

execution.

5.10.5 Active disks

A growing number of important applicationsoperateon largedatasets,searching,computing sum-

maries,or looking for specific patterns or rules, essentially “filtering” thedata. Fil ter-li ke applica-

tionsoftenmakeoneor moresequential scansof thedata[Riedel etal., 1998]. Applicationsexecute

on the host, with thestoragedevice serving asblock servers. Activedisk systemsclaim that thein-

creasing levels of integration of on-disk controllers arecreating “excess” computing cycleson the

on-disk processor. Thesecyclescanbeharnessedby downloading“application-specific” datainten-

sive filters. Currently, data-intensive applicationsexecute entirely on the host, oftenbottlenecking

on transferringdatafrom thestoragedevices(servers) to thehost (client in this case).

Recently, considerable interest has been devoted to the “remote execution” of application-

specific codeon on-disk processors. Several systems have been proposed such asactive and in-

telligent disks [Riedel etal., 1998, Keeton etal., 1998, Acharyaet al., 1998]. Remote execution is

especially appealing for data-intensive applications that selectively filter, mine, or sort large data

sets. Active disksthus proposeexecuting the data intensive function of an application on the on-

diskprocessor.

Acharya et al. [Acharyaetal., 1998] proposea stream-based programming model, where user-

downloaded functionsoperateon datablocksasthey “streamby” fromthedisk. Oneproblem with

this stream-based model is coherenceof data cached by applicationsexecuting on thehost. Since

data canpotentially bereplicated in thehostand in theon-disk memory, consistency problemscan

arise. Moreover, this programming model is quite restrictive. For instance, to limit the amount

of resources consumedby downloaded functions, user-downloaded functions aredisallowed from

dynamically allocatingmemory.

Active disks delegate to the programmer the task of partitioning the application. In the best

possiblecase,thequery optimizer-like engineis used to partition functionsbetweenhost andactive

disk [Riedel, 1999]. While query optimizers usea-priori knowledge about the function being im-

plementedto estimatewhatpartitioning isbest,ABACUS usesblack-box monitoring which is more

generally applicable albeit at thecostof higher run-time overhead.

214 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.10.6 Application object par titi oning

Coign [Hunt and Scott, 1999] is a system which optimizes the partitioning of objects in a multi-

object application executing overaclusterof nodes. It tracesthecommunicationsof theapplication

during someinitial executionsandusesthis to decidewhereeach object should live. Coign doesnot

allow objects to move after theapplication starts. Whentheapplication starts,objectsareanchored

to their locations. Coign relieves the programmer from allocating resourcesanddeciding object

placementat design time. Coign employs scenario-based profiling and graph-cutting algorithms

to partition application objects in a distributed component application between nodesof a cluster.

Coign focuseson finding theproper initial placement of objectsat installation time. It usesbinary

rewriting techniques to collectstatisticsabout inter-object communication when a typical workload

is appliedto thesystem which arethenusedto decideontheproperplacement of component objects

giventheavailability of CPU andnetwork resources.

Coign doesnotperform run-timemonitoringor preemptivemigration of component objects. Its

placementalgorithmsareexecuted off-l ineand thereforehaverelatively forgivingresponsetimere-

quirements. On theotherhand, Coign enablesoptimizationof function placement at thegranularity

of an object, and not the granularity of entire processes. In the presence of a “typical scenario”,

Coign canbe very effective in improving performance. However, when the proper placement de-

pends on invocation-time parameters or on dynamicchangesin resource availability, this approach

can besuboptimal.

River [Arpaci-Dusseau etal., 1999] is a data-flow programmingenvironment and I/O substrate

for clustersof computers. It is designed with the goal of providing maximum performance in the

commoncasedespiteunderlyingheterogeneity innoderesourcesanddespiteotherglitchesandnon-

uniformitiesthat might affect node performance. River balances load acrossconsumersof a data

set using a distributed-queue. River effectively balancesload by allocating work to consumersto

match their currentdataconsumption rates. This ensuresloadbalancing acrossmultipleconsumers

performing the same task. This research complements River by addressing the caseof multiple

concurrenttasks.

The closest previous system to the approach takenby this dissertation is Equanimity. Equa-

nimity dynamically rebalancesservicebetweenaclient and its server[Herrin, II andFinkel, 1993],

using heuristics basedon theamount of data communicated betweenfunction. Equanimity did not

consider theimpact of function placement on load imbalanceandusedonly simplecommunication-

based heuristics to partitioning thegraph of function between aclient andits server.

5.10. RELATED WORK 215

This research builds on Equanimity by considering service rebalancing in more realistic en-

vironments which exhibit client competition, data-intensive applications layered atop filesystems,

heterogeneous resourcedistributionsand shared datacomputing.

5.10.7 Databasesystems

Database management systems must often provide stringentguaranteeson transaction throughput

and maximum latency. Databasemanagement systemsinclude a query optimizer which compiles

a query in a structured high-level language onto an execution plan which is carefully selected to

maximizea givenperformance goal. Query optimizers decidewhat part of the query to execute on

which nodeby consulting arule-based system or apredictiveperformancemodel. Theseapproaches

apply effectively to relational queriesbecausethereis a limited number of query operators and the

operatorsareknown to theoptimizeraheadof time.

Traditional relational databasesystem arebased on a “ function shipping” approach. Clients

submit entire queriesto theserverswhich execute thequery and return theresults. Object-oriented

databasesystemareoftenbasedona“datashipping” approachthat makesthemsimilartodistributed

filesystems.Dataistransferredfromtheserversto theclient whereit is cached.Queriesareexecuted

on this datalocally at theclient. While datashipping is more scalable in principle becauseit uses

client resources,network efficiency oftenmandatesa function shipping approach.

Hybrid shipping [Franklin etal., 1996] is a technique proposedto dynamically distribute query

processing load between clients and serversof a databasemanagement system. This technique

usesa priori knowledgeof thealgorithms implementedby the query operators to estimate thebest

partitioning of work betweenclientsandservers. Instead, ABACUS appliesto awiderclassof appli-

cationsby relying only on black-box monitoring to makeplacement decisions, without knowledge

of thesemanticsor algorithms implemented by theapplication components.

Onewaytoview ABACUS researchis thatit attemptstobridgethegapbetweendatabasesystems

and filesystemsby bringing the benefits automatic resource management capabilitiesof database

query optimizersto the applicationsthat usefilesystemsand other object stores. Unlike database

query optimizers, ABACUS uses a generic mechanism basedon monitoring inter-object communi-

cation and object resourceconsumption to help it predict theoptimal placement.

216 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

5.10.8 Parallel programming systems

Many programminglanguagesand systemshave recently investigated ways to improve the locality

of dataaccessesfor parallel applicationsincluding [AmarasingheandLam,1993,Hsieh etal., 1993,

Chandraetal., 1993, CarlisleandRogers,1995]. For example, Olden[Carlisle and Rogers, 1995]

and Prelude [Hsiehetal., 1993] attempt to improve locality by migrating computations to the data.

A computationaccessingdataonaremotenodemay bemoved to that node. COOL [Chandraetal., 1993]

is a parallel languagewith a scheduling algorithm that attempts to enhancethelocality of thecom-

putation while balancing the load. COOL providesan affinity construct that programmersuseto

providehints that drive thetaskschedulingalgorithm.

The research in this chapter builds on this previous work by applying such techniquesto the

caseof storage-intensiveapplications. Storage-intensiveapplicationscanbeeffectively modeledby

a timed dataflow graph which canbe usedto make effective placement decisions. Moreover, such

applicationsmove a largeamount of data allowing a run-time systemto learn valuable information

about inter-object communication and object resource consumption quickly, and judiciously use

it to select the best placement possible. Furthermore, this research is the first, to the bestof our

knowledge, to apply thesetechniquesto the caseof a particular and important systemapplication,

namelyadistributedfilesystem.

5.11 Summary

Emerging active storage systemspromisedramatic heterogeneity. Active storage servers—single

disks, storage appliancesand servers—have varied processor speeds, memory capacities, andI/O

bandwidths. Client systems—SMP servers, desktops, and laptops—also have varied processor

speeds, memory capacities, network link speeds and levels of trustworthiness. Application tasks

vary their loadover timebecauseof algorithmicor run-timeparameters. Most importantly, dynami-

cally varyingapplication mixesresult fromindependent andstochastic processesatdifferentclients.

These disparities make it hard for any design-time “one-system-fits-all” function placement deci-

sion to provide robustperformance. In contrast,a dynamicfunction placement scheme can achieve

better performanceby adapting to application behavior and resourceavailabilit y.

Previous systems demonstrated different function placement decisions, accentuating the fun-

damental trade-off between the scalabilit y of client-side execution and the network efficiency of

source/sink-side computing. However, due to thevariability in application resource consumption,

5.11. SUMMARY 217

in application mixesand in cluster resourceavailabili ty, thetensionbetweenscalability and source-

sink computing cannot be easily resolved until run-time. This chapter presents an overview and

evaluation of ABACUS, an experimental prototype system used to demonstrate the feasibili ty of

adaptive run-time function placement betweenclients and serversfor filesystem functions aswell

asstream-processing typeof applications. ABACUS uses analgorithm that continuously monitors

resource availabili ty aswell asfunction resource consumption and inter-function communication

and usesthis knowledge to intelligently partition function betweenclient and server.

This chapter describes a distributed filesystem,ABACUSFS, portedto the ABACUS systemand

reports on its ability to adapt. Microbenchmarks demonstrate that ABACUS and ABACUSFS can

effectively adapt to variations in network topology, application cache accesspattern, application

data reduction (filter selectivity), contentionovershareddata,significant changes in application be-

havior at run-time,aswell asdynamiccompetition fromconcurrent applicationsover sharedserver

resources. Microbenchmark results arequite promising; ABACUS often improvedapplication exe-

cution timeby afactor of 6 or more. Under all experiments in thischapter, ABACUS selects thebest

placement for eachfunction, “correcting” placement if function wasinitially started onthe“wrong”

node. Under more complex scenarios, ABACUS outperforms experiments in which function was

statically placed at invocation time, converging to within 70% of themaximum achievable perfor-

mance. Furthermore,ABACUS adaptsplacementwithout knowledgeof thesemanticsimplemented

by theobjects. The adaptation is based only on black-box monitoring of theobject and thenumber

of bytesmovedbetweenobjects.

218 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Chapter 6

Conclusionsand futurework

This chapter concludesthis dissertation by summarizing the maincontributions and describing di-

rectionsfor futurework. It isorganized asfollows: Section6.1summarizestheresearchreportedon

in this dissertation. Section 6.2 highlights the maincontributions. Section 6.3discussesdirections

for futurework.

6.1 Dissert ation summary

6.1.1 Network-attachedstorage

Storage bandwidth requirements continue to grow due to rapidly increasing client performance,

new, richer content data types such as video, anddata intensive applications suchasdata mining.

This problem hasbeenrecognized for at least a decade [Longet al., 1994, Pattersonet al., 1988,

Hartman and Ousterhout, 1993]. All storagesystem solutions to date incur a high overhead cost

for providing bandwidth due to existing storage architectures’ reliance on file serversas a bridge

betweenstorageand client networks. Such storage systemsdo not scale because they rely on a

central controller to manageandmediate accessto the physical storagedevices. Requestsfrom the

application all passthroughthestoragecontroller, which then forwardsthemto thestoragedevices,

storingandcopying data through it onevery access. Storagesystemsadministratorsexpandstorage

capacity by using multiple underlying disk arrays, and partitioning thedata set manually between

thearrays. Unfortunately, even if load balancing wasagooduseof time,thesystemadministrator is

rarely well equipped with thedynamic information to perform balancingin atimely and satisfactory

manner.

Storagearchitecturesare ready to change asa result of the synergy from four overriding fac-

tors: increasing object sizesand data ratesin many applications, new attachment technology, the

219

220 CHAPTER 6. CONCLUSIONSAND FUTURE WORK

convergenceof peripheral and interprocessor switched networks, and an excessof on-drive tran-

sistors. Network-Attached Secure Disks(NASD) [Gibson etal., 1997b, Gibsonetal., 1998] is an

architecture that enables cost-effective bandwidth scaling. NASD eliminatestheserver bottleneck

by modifying storagedevicesso they can transfer data directly to clients. Further, NASD reparti-

tionstraditional file server functionality betweentheNASD drive,client andserver.

NASD doesnot advocate that all functions of the traditional file serverneed to be or should

be migrated into storage devices. NASD devicesdo not perform the highest levels of distributed

file system function — global naming, access control, concurrency control, andcache coherency

— which definesemanticsthatvarysignificantly acrossdistributedfilesystemsand to whichclient

applications and operating systemstightly bind. Instead, the residual file system, which is called

the file manager, continues to define andmanagethesehigh level policies while NASD devices

implement simple storageprimitivesefficiently andoperateasindependently of thefile manageras

thesepolicies allow. The low cost of storage is due to the large marketfor mass-produced disks.

This massproduction requires a standard interface that must be simple, efficient, and flexible to

support a wide rangeof file system semantics acrossmultiple technology generations.

NASD enablesclients to perform parallel data transfersto and from thestoragedevices. This

dissertation describesastorageservice,Cheops,which implementssuchfunction. Real applications

running on top of a Cheops/NASD prototypereceive scalable dataaccessbandwidths that increase

linearly with system size. For a Cheops client to conduct parallel transfers directly to and from

the NASD devices, it must cache the stripe maps and capabilit ies required to resolve a file-level

accessandmapit onto accessesto thephysical NASDobjects. TheCheopsapproachis to virtualize

storagelayout in order to makestoragelook more manageable to higher-level filesystems. Cheops

avoids reinlisting servers to synchronously resolvethevirtual to physicalmapping by decomposing

and distributingitsaccessfunctionsandmanagement functionssuchthataccessfunctionisexecuted

at the clientwhere the request is initiated. Cheopsmanagersare responsible for authorization and

oversight operationssothattheparticipating clientsalwaysdo theright thing.

6.1.2 Sharedstoragearrays

For thesake of scalability, Cheopsallows clients to accessshareddevices directly. This fundamen-

tally makeseachstorageclient astoragecontroller on behalf of theapplications runningon it. Each

storagecontroller can serve clients and managestorage. Unfortunately, such sharedstoragearrays

lack a central point to effect coordination. Because datais striped acrossseveral devicesand often

6.1. DISSERTATION SUMMARY 221

N
S

etwork
S
T

witched

U�V�W
U�V�WXAY Z [B\^]S

T
torage

SC

C
_

ontroller

S
T

CSI bus
(
`
I/O bus)

(
`
a) Traditional storage systems (

`
b) Scalable storage arrays

C
_

lients U�V�W

...X Y Z [@\^]

XAY Z [B\^]
C
_

lients

XAY Z [B\^]

XAY Z [B\^]

XAY Z [B\^]
S
T

torage
C
_

ontrollers

Parallel

Figure 6.1: Traditional storage systems (a) use a single controller. Shared arrays (b) use parallel cooperating

controllers to access and manage storage.

stored redundantly, a single logical I/O operation initiated by an application may involve sending

requeststo several devices. Unless proper concurrency control provisions are taken,theseI/Os can

become interleaved sothathostssee inconsistent dataor corrupt the redundancy codes.

This dissertation proposesandevaluatesan architecture that enables the controllersto concur-

rently access shareddevices, migrate data betweendevices, and reconstruct dataon failed devices

whileensuring correctnessand recovering properly fromfailures. Thedifficult aspectof this task is

to ensure that the solution is scalable, thereby delivering thescalability of theNASD architecture.

The proposedapproach is to avoid central global entitiesand opt for distributing control overhead

instead.Both concurrency control and recovery protocolsaredistributed. Specifically, theapproach

proposesbreaking storageaccessandmanagement tasks into two-phasedlight-weight transactions,

called base storagetransactions(BSTs). Distributedprotocols are used to ensureconcurrency con-

trol and recovery. These protocols do not suffer from a central bottleneck. Moreover, they exploit

the two-phased natureof BSTs to piggy back control messagesover data I/Os,hiding control mes-

saging latency in thecommon case.

The base protocols assume that within the shared storage array, data blocks are cached at the

NASD devices and not at the controllers. When controllers are allowed to cachedataand parity

blocks, the distributed protocols can be extended to guaranteeserializabilit y for reads and writes.

This dissertationdemonstrates that timestamporderingwith validation performsbetter than device-

servedleasing in thepresenceof contention, falsesharingandrandom accessworkloads, all typical

of clustered storage systems. In summary, it concludes that timestampordering based on loosely

222 CHAPTER 6. CONCLUSIONSAND FUTURE WORK

SAN Client

LAN client

S
a

witched

LAN

WAN

W
b

A
c

N client

S
a

AN

Data servers (sources)

- File servers (A)

- Smart Storage (D)

- Sensors/Cameras (C)

... - Clustered Server (B)

dBegf hiegf
dBegf hiegf
dBegf hiegf

C
j

PU

A
k

vailable memory

S
l

torage access bandwidth
(
m
to server B’s data)

J
n
ava

Figure 6.2: Emerging systems include programmable clients and servers. However, the clients and the servers

vary in their computational and memory resources. The optimal partitioning of function between client and

server varies based on run-time characteristics such as node load, network bandwidth, and amount of com-

munication between application components. This figure shows the available CPU and memory resources

on some of the nodes. The available access bandwidth between a node and the storage on server B is

also graphed. Assume a generic computation over a data set streaming out of server B, where should the

computation be performed (client or server?).

synchronizedclocks has robust performanceacrosslow andhigh contention levels, in the presence

of device-side or host-side caching. At thesametime, timestampordering requireslimitedstate at

thedevicesanddoesnot requirethedevicesto perform anyextramessagingon behalf of hosts(such

aslease revocation).

6.1.3 Dynamic and automatic function placement

Another challenging aspect of storage management concerns the proper partitioning of function

betweenthedifferent nodes in thestoragesystem. Thepartitioning of function between client and

server has a direct impact on how load is balanced among a server and its clients and on how

much data is transferred betweenclient and server. Naive placement can cause resources to go

underutili zedandloadto be imbalancedor largeamountsof datato be transferred(unnecessarily)

over bottlenecked links.

Currently, the partitioning of filesystem function between client and server is decided by the

application programmer at design time. Filesystems designersdecide on function partitioning after

careful consideration of a multitudeof factors including therelative amounts of resources assumed

6.2. CONTRIBUTIONS 223

to beat theclient andthestoragedevice, theperformanceof thenetwork connecting them, thetrust-

worthinessof theclients, and thecharacteristicsof thetargetworkloads.New hardwaregenerations

changethe performanceratios among thesystemcomponents, invalidating thedesign assumptions

predicating the original placement. To cope with this, applications are often tuned for each new

environment andfor eachhardwaregeneration.

In general, dynamic variations in resource distribution and in workload characteristics during

the lif etime of an application’s execution often mandate a change in function placement. Even

for applications that have a relatively constant behavior during their execution, concurrency and

contention on resourcesanddataamongapplicationsoften inducedynamicchanges thatcannot be

anticipatedbeforehand.

This dissertation research observes that the proper partitioning of function is crucial to per-

formance. It investigates algorithms that optimize application performance by intelligently and

adaptively partitioning the application’s processing between the client andthe server. The findings

suggestanautomatic andtransparent techniquethat enables the“effectivebandwidth” seenby data-

intensive applications to beincreased by moving data-intensive functionscloserto the datasources

(storageservers) or sinks (clients) based on the availability of processing power and the amount

timespent communicatingbetween nodes.

In particular, the findings establish that dynamicplacement of functionsat run-time is superior

to static one-time placement. Further, it shows that dynamic placement can be effectively per-

formedbased only onblack-box monitoring of applicationcomponentsandof resourceavailability

throughout the cluster. It proposesa programming model to composeapplications from explicitl y

migratable mobile objects. A run-time systemobserves the resourcesconsumed by mobile objects,

and their intercommunication andemployson-lineanalytic models to evaluatealternativeplacement

configurationsand adaptaccordingly.

6.2 Contri butions

This dissertation makesseveral contributions; somein the form of fundamental scientific results,

and others in theform of artifactsandprototypeswhich support further investigations.

224 CHAPTER 6. CONCLUSIONSAND FUTURE WORK

6.2.1 Results

R Anapproachbasedonspecializedtransactionstostructuringstorageaccessandmanagement

in a RAID array with multiple concurrentcontrollers.

R Distributeddevice-basedprotocols to ensure correctness in a shared RAID array with multi-

ple concurrentcontrollers. The protocols offer good scalabilit y and limitedload and stateat

thenodes.

R Experimental data showingthepotential importanceof dynamic function placement for data-

intensiveapplicationsandthefeasibili ty of deciding bestplacement based onblack-boxmon-

itoring.

6.2.2 Artifacts

R Cheops prototype. Cheops is a striping library for network-attachedsecure disks. Cheops

provides a “v irtual” NASD interface atop physical NASD objects. It allows clients to cache

virtual to physical mappingsand thereforehavedirect parallel accessto thestoragedevices.

R ABACUS and ABACUSFS. The ABACUS prototype canbeusedto experiment with dynamic

function placement in clusters. ABACUSFS is acomposable object-basedfilesystemenabling

adaptive function placementbetweenclient and server.

6.3 Futurework

More experience with the ABACUS programming model would be valuable. Applying the tech-

niquesof continuousmonitoring and adaptive placement to streaming applicationsover thewebis

promising. Stream-processing application functionscanbeautomatically distributedbetweenclient,

serverand proxy. Thealgorithmsusedby ABACUS should beextendedto handletheplacement over

multiple intermediatenodes.Also,to work well in geographically wideareas,themeasurement and

statistics collection technology mustbe made more robust to wild perturbationsand fluctuations in

performance,a typical characteristic of wide area networks. ABACUS canbenefit from using Java

insteadof C++ asits baseprogramming language. Java is platform-independent and therefore can

enable migrationacrossheterogeneousarchitectures.

The intelligence of the ABACUS run-time system canbe extendedin several directions to im-

proveitsperformance. Currently, it reactsonly to recent clusteractivity. Oneapproach isto augment

6.3. FUTURE WORK 225

the system with theability to maintain long-term pastprofiles (on the granularity of a day, week,

or month) to make more intelligent migration decisions. Similarly, application hints about their

future accessescan be integrated to improve function placement decisions. A further useof his-

tory canimprove the benefit estimation for the cost/benefit analysis. It is not worth migrating an

object that will terminate shortly. Remaining time for applications canbe estimated using heuris-

tics [Harchol-BalterandDowney, 1995] or by consulting a databaseof pastprofiles.

226 CHAPTER 6. CONCLUSIONSAND FUTURE WORK

Bibl iography

[Acharyaetal., 1997] Acharya, A., Ranganathan, M., and Saltz, J. (1997). Sumatra: A language

for resource-awaremobile programs. In Mobile Object Systems: Towards the Programmable

Internet, pages111–130. Springer-Verlag. LectureNotes in Computer ScienceNo. 1222.

[Acharyaetal., 1998] Acharya, A., Uysal, M., and Saltz, J. (1998). Active disks: Programming

model, algorithmsandevaluation. In Proceedingsof the8th International Conferenceon Archi-

tectural Support for ProgrammingLanguagesand Operating Systems, pages 81–91, San Jose,

CA.

[Adyaetal., 1995] Adya, A., Gruber, R., Liskov, B., and Maheshwari, U. (1995). Efficient op-

timistic concurrency control using loosely synchronizedclocks. In Carey, M. J. and Schneider,

D. A., editors, Proceedingsof the1995ACM SIGMOD International ConferenceonManagement

of Data, pages23–34, SanJose, CA.

[Agrawal andSchafer, 1996] Agrawal, R. and Schafer, J. (1996). Parallel mining of association

rules. In IEEE Transactionson Knowledgeand DataEngineering, volume8, pages962–969.

[Agrawal andSrikant, 1994] Agrawal, R. and Srikant, R. (1994). Fastalgorithmsfor mining as-

sociation rules. In Bocca, J. B., Jarke,M., andZaniolo, C., editors, Proceedings of the 20th

International Conference on Very Large Data Bases(VLDB), pages 487–499, Santiago, Chile.

MorganKaufmann.

[AmarasingheandLam, 1993] Amarasinghe, S. and Lam, M. (1993). Communication optimiza-

tion and codegeneration for distributed memory machines.In Proceedingsof SIGPLANConfer-

enceon ProgramLanguageDesignand Implementation, Albuquerque,NM.

[Amiri etal., 2000] Amiri, K., Gibson, G., and Golding, R. (2000). Highly concurrent sharedstor-

age. In Proceedingsof the 20th International Conference on Distributed Computing Systems,

Taipei, Taiwan, Republic of China.

227

228 BIBLIOGRAPHY

[Andersonet al., 1996] Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli,

D. S., andWang, R. Y. (1996). Serverlessnetwork file systems. ACM Transactionson Computer

Systems, 14(1):41–79.

[ANSI, 1986] ANSI (1986). Small Computer System Interface(SCSI) Specification. ANSI

X3.131.

[ANSI, 1993] ANSI (1993). Small Computer System Interface (SCSI) Specification 2. ANSI

X3T9.2/375D.

[Arpaci-Dusseauetal., 1999] Arpaci-Dusseau, R. H., Anderson, E., Treuhaft, N., Culler, D. E.,

Hellerstein, J. M., Patterson, D., andYelick, K. (1999). Cluster I/O with River: Making thefast

casecommon. In Proceedingsof theSixthWorkshop onInput/Output in Parallel andDistributed

Systems, pages10–22, Atlanta,GA.

[Bakeret al., 1991] Baker, M., Hartman, J., Kupfer, M., Shirriff, K., andOusterhout, J. (1991).

Measurements of a distributed file system. In Proceedings of the 13th ACM Symposium on

Operating SystemsPrinciples, pages198–212, Pacific Grove,CA, USA.

[Benner, 1996] Benner, A. F. (1996). Fibre Channel: Gigabit Communications andI/O for Com-

puter Networks. McGraw Hill, New York.

[BernsteinandGoodman, 1980] Bernstein, P. A. and Goodman, N. (1980). Timestamp-based al-

gorithms for concurrency control in distributed database systems. In Proceedings of the 6th

Conferenceon VeryLargeDatabases(VLDB), pages285–300, Montreal, Canada.

[BharatandCardelli, 1997] Bharat, K. and Cardelli, L. (1997). Migratory applications. In Mobile

Object Systems:Towards the Programmable Internet, pages131–149. Springer-Verlag. Lecture

Notes in Computer ScienceNo. 1222.

[Birrel and Needham, 1980] Birrel, A. D. and Needham,R. M. (1980). A universalfile server. In

IEEE transactionsonsoftwareengineering, volume6, pages450–453.

[Birrell andNelson, 1984] Birrell, A. D. and Nelson,B. J.(1984). Implementingremoteprocedure

calls. ACM Transactionson Computer Systems, 2(1):39–59.

[Blaumet al., 1994] Blaum, M., Brady, J.,Bruck, J., and Menon, J. (1994). EVENODD: An opti-

mal schemefor tolerating double disk failuresin RAID architectures.In Proceedingsof the21st

Annual International SymposiumonComputer Architecture, pages245–254,Chicago, IL.

BIBLIOGRAPHY 229

[Bodenet al., 1995] Boden, N. J., Cohen, D., Felderman, R. E., Kulawik, A. E., Seitz, C. L.,

Seizovic, J.N., and Su, W.-K. (1995). Myrinet—aGigabet-per-second local-areanetwork. IEEE

Micro, 15(1):29–36.

[Bokhari, 1979] Bokhari, S. H. (1979). Dual processor scheduling with dynamic reassignemnt.

IEEE TransactionsonSoftwareEngineering, 5(4):341–349.

[Bolosky etal., 1996] Bolosky, W. J., III, J. S. B., Draves,R. P., Fitzgerald, R. P., Gibson, G. A.,

and Jones, M. B. (1996). The tiger video fileserver. In Proceedings of the Sixth International

Workshop on Network and Operating SystemSupport for Digital Audio and Video, Zushi, Japan.

[Bricker etal., 1991] Bricker, A., Litzkow, M., and Livny, M. (1991). Condor technical summary.

Technical Report 1069, University of Wisconsin—Madison, Computer ScienceDepartment.

[Buzzard etal., 1996] Buzzard, G., Jacobson, D., Mackey, M., Marovich,S., and Wilkes, J. (1996).

An implementation of theHamlynsender-managedinterfacearchitecture. In Proceedingsof the

2nd SymposiumonOperating SystemsDesignand Implementation, pages245–259.

[CabreraandLong, 1991] Cabrera,L.-F. and Long, D. D. E. (1991). Swift: Using distributeddisk

striping to providehigh I/O datarates. In Computing Systems, Fall, 1991, pages405–436.

[Caoet al., 1994] Cao, P., Lim, S. B., Venkataraman,S., andWilkes, J. (1994). The TickerTAIP

parallel RAID architecture. ACM TransactionsonComputer Systems, 12(3):236–269.

[Carey etal., 1994] Carey, M. J., DeWitt, D. J., Franklin, M. J., Hall, N. E., McAulif fe, M. L.,

Naughton, J. F., Schuh, D. T., Solomon, M. H., Tan, C. K., Tsatalos, O. G., White, S. J., and

Zwil ling, M. J. (1994). Shoring up persistent applications. In Proceedingsof theInternational

Conferenceon Management of Data (SIGMOD), pages383–394, Minneapolis MN (USA).

[Carlisleand Rogers,1995] Carlisle,M. and Rogers,A. (1995). Softwarecaching and computation

migration in olden. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and

Practiceof Parallel Programming, SantaBarbara,CA.

[Chanchio andSun, 1998] Chanchio, K. andSun, X. H. (1998). Memory spacerepresentation for

heterogeneous network processmigration. In Proceedings of the 12th International Parallel

Processing Symposium, pages801–805. IEEE ComputerSociety Press, LosAlamitos, CA.

230 BIBLIOGRAPHY

[Chandraetal., 1993] Chandra, R., Gupta, A., and Hennessy, J. (1993). Data locality and load

balancing in cool. In Proceedingsof the Fourth ACM SIGPLAN Symposium on Principlesand

Practiceof Parallel Programming, SanDiego, CA.

[Chao etal., 1992] Chao, C.,English, R.,Jacobson,D., Stepanov, A., andWilkes,J. (1992). Mime:

A high performance parallel storage device with strong recovery guarantees. Hewlett-Packard

LaboratoriesTechnical Report HPL-SSP-92-9.

[Chen and Bershad, 1993] Chen, J. B. and Bershad, B. N. (1993). The impact of operating sys-

tem structure on memory systemperformance. In Proceedingsof the14th ACM Symposium on

Operating SystemsPrinciples, pages120–133.

[Chesset al., 1997] Chess,D., Harrison, C., andKershenbaum,A. (1997). Mobileagents: Are they

a good idea? – update. In Mobile Object Systems:Towards theProgrammable Internet, pages

46–48. Springer-Verlag. LectureNotesin ComputerScienceNo. 1222.

[Cobalt Networks,1999] Cobalt Networks(1999). Cobalt networksdeliversnetwork-attachedstor-

age solution with the new NASRaQ. Press release, http://www.cobaltnet.com/company/press/-

press32.html.

[Corbett and Feitelson, 1994] Corbett, P. and Feitelson, D. (1994). Design and performance of

the Vesta parallel file system. In Proceedings of the Scalable High-Performance Computing

Conference, pages63–70, Knoxvil le, TN, USA.

[Corbett etal., 1996] Corbett, P., Prost, J.-P., Demetriou, C., Gibson, G., Riedel, E., Zelenka, J.,

Chen, Y., Felten, E., Li, K., Hartman, J., Peterson, L., Bershad, B., Wolman, A., and Aydt, R.

(1996). Proposal for a commonparallel file systemprogramming interface. Technical Report

CMU-CS-96-193, School of ComputerScience, CarnegieMellon University, Pittsbrugh, PA.

[Courtright, 1997] Courtright, W. (1997). A transactional approach to redundant diskarray imple-

mentation. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon

University, Pittsburgh, PA.

[Dahlin, 1995] Dahlin,M. (1995). ServerlessNetwork File Systems. PhD thesis,ComputerScience

Division, Department of Electrical Enginneringand Computer Science,University of Calif ornia,

Berkeley, CA.

BIBLIOGRAPHY 231

[Dale, 1997] Dale, J. (1997). A Mobile Agent Architecture for Distributed Information Manage-

ment. PhDthesis, University of Southampton.

[deJongeetal., 1993] deJonge,W., Kaashoek, M., and Hsieh, W. (1993). The logical disk: A new

approach to improving file systems. In Proceedings of the14th ACM Symposium on Operating

SystemsPrinciples, pages15–28, Ashevil le, NC, USA.

[Dewitt and Hawthorn, 1981] Dewitt, D. and Hawthorn, P. (1981). A performance evaluation of

database machine architectures. In Proceedings of the 7th International Conference on Very

Large Data Bases (VLDB).

[Douglis,1990] Douglis,F. (1990). Transparent ProcessMigrationin theSpriteOperating System.

PhD thesis, University of California, Berkeley, CA. Available asTechnical Report UCB/CSD

90/598.

[Douglisand Ousterhout, 1991] Douglis, F. and Ousterhout, J. (1991). Transparent processmi-

gration: Design alternatives andtheSprite implementation. Software—Practice & Experience,

21(8):757–785.

[Drapeau etal., 1994] Drapeau,A. L., Shirrif , K. W., Hartman,J.H., Miller, E.L., Seshan, S.,Katz,

R. H., Lutz, K., Patterson, D. A., Lee,E. K., Chen, P. H., and Gibson,G. A. (1994). RAID-II: A

high-bandwidth network file server. In Proceedingsof the21st Annual International Symposium

on Computer Architecture, pages234–244.

[Emanuel, 1997] Emanuel, S. (1997). Storage growth fuels admin woes.

http://www.idg.net/crd data 87572.html.

[English and Stephanov, 1992] English, R. andStephanov, A. (1992). Loge:aself-organizing disk

controller. In Proceedings of the USENIXWinter 1992 Technical Conference, pages 237–251,

San Fransisco,CA, USA.

[EnStor, 1997] EnStor(1997). The storage challenge. http://www.enstor.com.au/challenge.htm,

Feb 2000.

[Eswaran etal., 1976] Eswaran, K., Gray, J., Lorie, R., and Traiger, L. (1976). The notions of

consistency and predicatelocks in a databasesystem. Communications of theACM, 9(11):624–

623.

232 BIBLIOGRAPHY

[Faloutsos,1996] Faloutsos, C. (1996). Searching Multimedia Databases by Content. Kluwer

Aacademic Publishers Inc.

[Fayyad, 1998] Fayyad, U. (1998). Tamingthegiantsand themonsters: Mininglargedatabasesfor

nuggetsof knowledge. In DatabaseProgrammingandDesign.

[Forum, 1995] Forum, T. M. (1995). The MPI message-passing interface standard.

http://www.mcs.anl.gov/mli/standard.htm.

[Franklin etal., 1996] Franklin, M. J., Jónsson, B. T., and Kossmann, D. (1996). Performance

tradeoffs for client-server query processing. In Proceedings of the 1996 ACM SIGMOD In-

ternational Conference on Management of Data, volume 25 of ACM SIGMOD Record, pages

149–160, New York, NY.

[Gibsonetal., 1997a] Gibson, G., Nagle, D. F., Amiri , K., Chang, F. W., Gobioff, H., Riedel, E.,

Rochberg, D., andZelenka,J.(1997a). Filesystemsfor network-attachedsecuredisks. Technical

Report CMU-CS-97-118, School of Computer Science,CarnegieMellon University, Pittsbrugh,

PA.

[Gibson, 1992] Gibson, G. A. (1992). Redundant Disk Arrays: Reliable,Parallel Secondary Stor-

age. MIT Press.

[Gibsonetal., 1998] Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J.,Chang, F. W., Gobioff, H.,

Hardin, C., Riedel, E., Rochberg, D., and Zelenka, J. (1998). A cost-effective, high-bandwidth

storage architecture. In Proceedings of the 8th Conference on Architectural Support for Pro-

gramming Languagesand OperatingSystems(ASPLOS98), pages92–103, SanJose,CA.

[Gibsonetal., 1997b] Gibson, G. A., Nagle, D. F., Amiri, K., Chang, F. W., Feinberg, E. M., Go-

bioff, H., Lee, C., Ozceri, B., Riedel, E., Rochberg, D., andZelenka, J. (1997b). File server

scaling with network-attached secure disks. In Proceedings of the 1997 ACM International

Conferenceon Measurementand Modeling of Computer Systems(ACM SIGMETRICS), pages

272–284, Seattle,WA.

[Gibsonetal., 1999] Gibson, G. A., Nagle, D. F., Courtright, W., Lanza,N., Mazaitis, P., Unangst,

M., andZelenka,J. (1999). NASD scalable storage systems.In Proceedingsof theUSENIX ’99

ExtremeLinuxWorkshop, Monterey, CA.

BIBLIOGRAPHY 233

[GibsonandWilkes, 1996] Gibson, G. A. and Wilkes, J. (1996). Self-managing network-attached

storage. In ACM Computing Surveys, volume28,4es,page209.

[GigabitEthernet,1999] GigabitEthernet (1999). Gigabit Ethernet overview - updatedMay 1999.

http://www.gigabitethernet.org/technology/whitepapers/gige 0698/papers98 toc.html.

[Gobioff, 1999] Gobioff, H. (1999). Security for a High PeformanceCommodity StorageSubsys-

tem. PhD thesis,Departmentof ComputerScience,Carnegie MellonUniversity, Pittsburgh, PA.

[Golding etal., 1995] Golding, R., Shriver, E., Sulli van, T., and Wilkes, J. (1995). Attribute-

managed storage. In Workshopon Modeling andSpecification of I/O, SanAntonio, TX.

[Golding and Borowsky, 1999] Golding, R. A. andBorowsky, E. (1999). Fault-tolerant replication

management in large-scaledistributedstoragesystems. In Proceedingsof the 18th Symposium

on Reliable DistributedSystems, pages144–155,Lausanne,Switzerland.

[Gong, 1989] Gong, L. (1989). A secure indentity-basedcapability system. In Proceedings of the

IEEE Symposiumon Security and Privacy, pages56–63, Oakland, CA.

[Gray andCheriton, 1989] Gray, C. and Cheriton, D. (1989). Leases: An efficient fault-tolerant

mechanism for distributedfile cache consistency. In Proceedingsof the12th ACM Symposium

on Operating SystemsPrinciples, pages202–210, Litchfield Park AZ USA. ACM.

[Gray, 1997] Gray, J. (1997). Whathappenswhenprocessorsare infinitely fastand storageis free?

KeynoteSpeechat theFifth Workshop on I/O in Parallel and DistributedSystems, San Jose,CA.

[Gray etal., 1975] Gray, J.,Lorie, R., Putzulo, G., and Traiger, I. (1975). Granularity of locks and

degreesof consistency in ashareddatabase. IBM ResearchReport RJ1654.

[Gray andReuter, 1993] Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and

Techniques. MorganKaufmann.

[Gray etal., 1996] Gray, R., Kotz, D., Nog, S., Rus, D., and Cybenko,G. (1996). Mobile agents

for mobile computing. Technical Report PCS-TR96-285,Dept. of ComputerScience,Dartmouth

College.

[Gray, 1996] Gray, R. S. (1996). Agent Tcl: A flexible and secure mobile agent system. In Pro-

ceedingsof the4th Annual Tcl/Tk Workshop, pages9–23, Monterey, CA.

234 BIBLIOGRAPHY

[Grochowski, 2000] Grochowski, E. (2000). Storage price projections.

http://www.storage.ibm.com/technolo/grochows/g05.htm.

[Grochowski and Hoyt, 1996] Grochowski, E.G. andHoyt, R. F. (1996). Futuretrendsin harddisk

drives. In IEEE Transactionson Magnetics, volume32.

[Haerder and Reuter, 1983] Haerder, T. and Reuter, A. (1983). Principles of transaction-oriented

database recovery. ACM ComputingSurveys, 15(4):287–317.

[Harchol-BalterandDowney, 1995] Harchol-Balter, M. and Downey, A. B. (1995). Exploiting lif e-

timedistributions for dynamicload balancing. Operating SystemsReview, 29(5):236.

[Hartmanand Ousterhout, 1993] Hartman, J.andOusterhout, J.(1993). TheZebrastripednetwork

file system. In Proceedingsof the14th ACM Symposiumon Operating SystemsPrinciples, pages

29–43, Ashevill e,NC, USA.

[Hartmanetal., 1999] Hartman, J. H., Murdock, I., and Spalink, T. (1999). The Swarm scalable

storagesystem. In Proceedingsof the19th IEEE International Conferenceon DistributedCom-

puting Systems(ICDCS’99).

[Heidemann and Popek,1994] Heidemann,J.S.and Popek, G. J.(1994). File-systemdevelopment

with stackable layers. ACM Transactionson Computer Systems, 12(1):58–89.

[Herrin, II andFinkel, 1993] Herrin, II, E. H. and Finkel, R. A. (1993). Servicerebalancing. Tech-

nicalReport CS-235-93, Department of Computer Science, University of Kentucky.

[Hitz etal., 1990] Hitz, D., Harris,G.,Lau, J.K., andSchwartz, A. M. (1990). Using UNIX asone

component of a lightweight distributedkernel for multiprocessor file servers. In Proceedingsof

the1990Winter USENIX Conference, pages285–295.

[Hitz etal., 1994] Hitz, D., Lau, J., and Malcolm, M. (1994). File system design for an NFS file

server appliance. In Proceedingsof theUSENIX Winter 1994 Technical Conference, pages235–

246, San Fransisco,CA, USA.

[Holland etal., 1994] Holland, M., Gibson, G. A., andSiewiorek, D. P. (1994). Architectures and

algorithms for on-line failure recovery in redundant disk arrays. Journal of Distributed and

Parallel Databases, 2(3):295–335.

BIBLIOGRAPHY 235

[Hollebeek, 1997] Hollebeek,R. (1997). Spurring economic development with largescale informa-

tion infrastructure. In Proceedingsof the4th Inernational ConferenceonComputational Physics,

Singapore.

[Horst,1995] Horst,R. (1995). TNet: A reliablesystemareanetwork. IEEE Micro, 15(1):37–45.

[Howardetal., 1988] Howard, J.,Kazar, M. L., Menees, S. G.,Nichols,D. A., Satyanarayanan, M.,

Sidebotham, R. N., and West, M. J. (1988). Scale and performancein a distributedfile system.

ACM Transactionson Computer Systems, 6(1):51–81.

[Hsieh etal., 1993] Hsieh, W., Wang, P., andWeihl, W. (1993). Computation migration: Enhancing

locality for distributed-memory parallel systems. In Proceedingsof theFourth ACM SIGPLAN

SymposiumonPrinciplesand Practiceof Parallel Programming, San Diego, CA.

[Hunt and Scott, 1999] Hunt, G. C. and Scott, M. L. (1999). The Coign automatic distributed par-

titioning system. In Proceedingsof the3rd SymposiumonOperatingSystemsDesignand Imple-

mentation, pages187–200, New Orleans,Louisiana.

[Hyl tonet al., 1996] Hylton, J., Manheimer, K., Drake, Jr., F. L., Warsaw, B., Masse, R., and van

Rossum,G. (1996). Knowbot programming: System support for mobile agents. In Proceedings

of the Fifth International Workshop on Object Orientation in Operating Systems, pages 8–13,

Seattle, WA.

[Intel, 1995] Intel (1995). Virtual interface(VI) architecture. http://www.viarch.org/.

[Jones,1998] Jones, A. (1998). Creating and sustaining competitive advantage. http://www.one-

events.com/slides/stratus/.

[Jul etal., 1988] Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grainedmobilit y in

theEmeraldsystem. ACM Transactionson Computer Systems, 6(1):109–133.

[Keetonet al., 1998] Keeton, K., Patterson, D., andHellerstein, J. (1998). A casefor intelligent

disks (IDISKs). SIGMOD Record (ACM Special Interest Group on Management of Data),

27(3):42–52.

[Khalidi andNelson, 1993] Khalidi, Y. and Nelson, M. (1993). Extensible file systemsin Spring.

In Proceedingsof the14th ACM SymposiumonOperating SystemsPrinciples, pages1–14.

236 BIBLIOGRAPHY

[Kim, 1986] Kim, M. Y. (1986). Synchronizeddisk interleaving. In IEEETransactionsoncomput-

ers, number11, pages978–988.

[Knabe, 1995] Knabe, F. C. (1995). LanguageSupport for Mobile Agents. PhD thesis, Carnegie

MellonUniversity, Pittsburgh,PA. AlsoavailableasCarngieMellonSchool of Computer Science

Technical Report CMU-CS-95-223 and EuropeanComputer Industry Centre Technical Report

ECRC-95-36.

[KriegerandStumm, 1997] Krieger, O. and Stumm, M. (1997). HFS:A performance-oriented flex-

ible file systembasedon building-blockcompositions. ACM TransactionsonComputer Systems,

15(3):286–321.

[KungandRobinson, 1981] Kung, H. T. and Robinson, J. T. (1981). On optimistic methods for

concurrency control. ACM TransactionsonDatabaseSystems, 6(2):213–226.

[Lambetal., 1991] Lamb, C., Landis, G., Orenstein, J., andWeinreb,D. (1991). The ObjectStore

databasesystem. Communicationsof theACM, 34(10):50–63.

[LeeandThekkath, 1996] Lee,E. K. and Thekkath, C. A. (1996). Petal: Distributed virtual disks.

In Proceedings of the 7th International Conferenceon Architectural Support for Programming

Languagesand Operating Systems, pages84–92, Cambridge, Massachusetts.

[Long etal., 1994] Long, D. D. E., Montague,B. R., and Cabrera, L.-F. (1994). Swift/RAID: A

distributed RAID system. Computing Systems, 7(3):333–359.

[Lycos,1999] Lycos (1999). Squeezing it all into top-shelf storage:Rising storage

demands drive firms to capacity planning and management. http://www.zdnet.-

org/eweek/stories/general/01101138963300.html.

[M. Livny and Boral, 1987] M. Livny, S. K. and Boral, H. (1987). Multi-disk management algo-

rithms.In Proceedingsof the1987ACM ConferenceonMeasurement andModeling of Computer

Systems (ACM SIGMETRICS), pages69–77.

[MaedaandBershad, 1993] Maeda, C. and Bershad, B. (1993). Protocol service decomposition

for high-performance networking. In Proceedingsof the 14th ACM Symposium on Operating

Systems Principles, pages244–255.

[McKusick et al., 1984] McKusick, M., Joy, W., Leffler, S., andFabry, R. (1984). A fastfile system

for UNIX. ACM Transactionson Computer Systems, 2(3):181–197.

BIBLIOGRAPHY 237

[McKusick et al., 1996] McKusick, M. K., Bostic, K., Karels, M. J.,and Quarterman, J.S. (1996).

The Design and Implementation of the 4.4BSDOperating System. Addison-Wesley Publishing

Company, Inc.

[McVoy and Kleiman, 1991] McVoy, L. and Kleiman, S. (1991). Extent-like performance from a

UNIX file system. In Proceedings of the USENIX Winter 1991 Technical Conference, pages

33–43, Dallas,TX, USA.

[Metcalfe and Boggs,1976] Metcalfe, R.M. and Boggs, D. R. (1976). Ethernet: Distributedpacket

switching for localcomputernetworks. Communicationsof theACM, 19(7):395–404.

[Mil ls, 1988] Mil ls, D. L. (1988). Network time protocol: specification and implementation.

DARPA-internet RFC 1059.

[Mul lender etal., 1990] Mullender, S. J.,van Rossum, G., Tanenbaum,A. S., van Renesse,R., and

vanStaveren, H. (1990). Amoeba: A distributedoperating systemfor the1990s. IEEE Computer

Magazine, 23(5):44–54.

[Muntz andLui, 1990] Muntz, R. and Lui, J. (1990). Performance analysis of disk arrays under

failure. In Proceedingsof the 16th Conference on Very Large Data Bases(VLDB), pages162–

173, Brisbane,Queensland, Australia.

[Neuman and Ts’o, 1994] Neuman, B. C. and Ts’o, T. (1994). Kerberos: An authenticationservice

for computer networks. In IEEE Communications, volume32, pages33–38.

[News,1998] News, I. (1998). Price Waterhouse predicts explosive e-commerce growth.

http://www.internetnews.com/ecnews/article/0,1087,4 26681,00.html.

[NIST, 1994] NIST (1994). Digital signaturestandard. NIST FIPS Pub 186.

[Noble etal., 1997] Noble, B. D., Satyanarayanan,M., Narayanan,D., Tilton, J. E., Flinn, J., and

Walker, K. R. (1997). Agile application-awareadaptation for mobility. In Proceedings of the

16th ACM Symposiumon Operating SystemsPrinciples, pages276–287, Saint Malo, France.

[OSI Standard, 1986] OSI Standard (1986). OSI Transport Protocol Specification. Technical Re-

port ISO-8073, ISO.

[O’TooleandShrira, 1994] O’Toole, J. and Shrira,L. (1994). Opportunistic log: Efficient installa-

tion readsin areliablestorageserver. InProceedingsof the1stUSENIX SymposiumonOperating

238 BIBLIOGRAPHY

SystemsDesignand Implementation (OSDI): November 14–17, 1994, Monterey, CA,USA, pages

39–48.

[Ousterhout, 1990] Ousterhout, J. K. (1990). Why aren’t operating systemsgetting faster as fastas

hardware? In Proceedingsof theSummer1990USENIXConf., pages247–256, Anaheim, CA

(USA).

[Ousterhout etal., 1985] Ousterhout, J. K., Costa, H. D., Harrison, D., Kunze, J. A., Kupfer, M.,

and Thompson, J. G. (1985). A trace-driven analysis of the Unix 4.2 BSD file system. In

Proceedingsof the10th ACM Symposium on Operating SystemsPrinciples, pages15–24, Orcas

Island, WA.

[Papadimitriou, 1979] Papadimitriou, C. H. (1979). Theserializability of concurrentdatabaseup-

dates. Journal of theACM, 26(4):631–653.

[Patterson etal., 1988] Patterson, D., Gibson, G., and Katz, R. (1988). A casefor redundant ar-

rays of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD International

Conferenceon Management of Data, pages109–116, Washington, DC, USA.

[Patterson etal., 1995] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka,

J. (1995). Informedprefetching and caching. In Proceedings of the 15th ACM Symposium on

Operating SystemsPrinciples, pages79–95, Copper Mountain Resort, CO.

[Pierce,1989] Pierce, P. (1989). A concurrent file systemfor ahighly parallel massstoragesystem.

In Proceedingsof the 4th Conference on Hypercube Concurrent Computers and Applications,

pages155–160, Monterey, CA.

[Powell andMil ler, 1983] Powell, M. L. and Mill er, B. P. (1983). Process migration in DE-

MOS/MP. In Proceedings of the 9th Symposium on Operating System Principles, pages110–

119.

[Rambus,2000] Rambus (2000). Rambus for small, high performance memory systems. http://-

www.rambus.com/developer/downloads/Value Proposition Networking.html.

[Rennels, 1980] Rennels, D. A. (1980). Distributed fault-tolerantcomputer systems. IEEE Com-

puter, 13(3):39–46.

BIBLIOGRAPHY 239

[Richard Rashid, 1986] Richard Rashid (1986). From RIG to Accent to Mach: The evolution of

a network operating system. In Proceedings of the ACM/IEEE Computer Society Fall Joint

Computer Conference, pages1128–37.

[Riedel, 1999] Riedel, E. (1999). ActiveDisks- Remote Execution for Network-AttachedStorage.

PhD thesis, Department of Electrical Enginnering, CarnegieMellon University, Pittsburgh, PA.

[Riedel et al., 1998] Riedel,E.,Gibson,G.,and Faloutsos,C. (1998). Activestoragefor large-scale

dataminingandmultimedia. In Proceedingsof the24th International Conferenceon Very Large

Databases(VLDB), pages62–73, New York, NY.

[Rosenblum, 1995] Rosenblum, M. (1995). The Design and Implementation of a Log-structured

File System. Kluwer AcademicPublishers,Norwell, MA, USA.

[Sandberg etal., 1985] Sandberg, R., Goldberg, D., Kleiman, S., Walsh,D., andLyon, B. (1985).

The design and implementation of the Sun network filesystem. In Proceedingsof theUSENIX

Summer1985 Technical Conference, pages119–130.

[Satyanarayanan, 1990] Satyanarayanan, M. (1990). Scalable, secure and highly available distr-

buted fileaccess. IEEE Computer, 23(5):9–21.

[Schulzeetal., 1989] Schulze,M., Gibson, G., Katz, R., and Patterson, D. (1989). How reliable is

aRAID? In Intellectual leverage, COMPCONSpring89, pages118–123, SanFrancisco (USA).

IEEE.

[Seagate,1999] Seagate(1999). Jini: A pathway for intelligent network storage. Pressrelease,

http://www.seagate.com:80/newsinfo/newsroom/papers/D2c1.html.

[Shirley et al., 1994] Shirley, J., Hu, W., and Magid, D. (1994). Guide to Writing DCE Applica-

tions. O’Reilly & Associates,Inc., Sebastopol, CA 95472, secondedition.

[Spalink etal., 1998] Spalink, T., Hartman, J., and Gibson, G. (1998). Theeffect of mobile code

on fileservice. Technical Report TR98-12, TheDepartmentof ComputerScience,University of

Arizona.

[StamosandGifford, 1990] Stamos, J. W. and Gifford, D. K. (1990). Remote evaluation. ACM

Transactionson ProgrammingLanguagesandSystems, 12(4):537–565.

240 BIBLIOGRAPHY

[Stoneand Bokhari, 1978] Stone,H. S. andBokhari,S. H. (1978). Control of distributed processes.

IEEE Computer, (7):97–106.

[Straeretal., 1996] Straer, M., Baumann, J.,andHohl, F. (1996). Mole – aJavabased mobileagent

system. In Proceedingsof the2nd ECOOP Workshop on Mobile Object Systems, pages 28–35,

Linz, Austria.

[Tanenbaum,1992] Tanenbaum,A. S. (1992). Modern Operating Systems. Prentice Hall, New

Jersey.

[Technology, 1998] Technology, S. (1998). Cheetah: IndustryLeading Performance for the Most

Demanding Application. World WideWeb, http://www.seagate.com/.

[Theimeretal., 1985] Theimer, M., Lantz, K., and Cheriton, D. (1985). Preemptable remote exe-

cution faciliti esfor theV-System. In Proceedings of the10th Symposium on Operating System

Principles, pages2–12.

[Thekkathet al., 1997] Thekkath, C. A., Mann, T., and Lee, E. K. (1997). Frangipani: A scalable

distributed file system. In Proceedingsof the16th Symposiumon Operating Systems Principles

(SOSP-97), pages224–237, Saint Malo, France.

[TPC, 1998] TPC (1998). TPC-C andTPC-D executivesummaries. http://www.tpc.org/.

[TriCoreNews Release, 1997] TriCoreNewsRelease(1997). Siemens’ new 32-bit embedded chip

architecture enables next level of performance in real-time electronics design. http://www.tri-

core.com/.

[University of AntwerpInformation Service,2000] University of Antwerp Information Service

(2000). Campusconnectivity statusmap. http://www.uia.ac.be/cc/internet.html.

[VanMeteret al., 1996] Van Meter, R., Finn, G., andHotz, S. (1996). Derived virtual devices: A

secure distributed file system mechanism. In Proc. Fifth NASA Goddard Conferenceon Mass

StorageSystemsand Technologies, pages95–97, CollegePark, MD.

[Vetter, 1995] Vetter, R. J. (1995). ATM concepts, architectures,and protocols. Communications

of theACM, 38(2):30–38.

[von Eicken etal., 1995] von Eicken, T., Basu, A., Buch, V., and Vogels, W. (1995). U-Net: A

user-level network interface for parallel and distributedcomputing. In Proceedings of the 15th

BIBLIOGRAPHY 241

Symposiumon Operating SystemsPrinciples(SOSP-95), pages40–53, Copper MountainResort,

Colorado.

[WatsonandCoyne, 1995] Watson, R. andCoyne,R. (1995). The parallel I/O architecture of the

high-performancestoragesystem (HPSS). In Proceedingsof the14th IEEESymposiumonMass

StorageSystems, pages27–44.

[Wilkes,1995] Wilkes,J. (1995). ThePantheonstorage-system simulator. Hewlett-PackardLabo-

ratoriesTechnical Report HPL-SSP-95-114.

[Wilkesetal., 1996] Wilkes, J., Golding, R., Staelin, C., and Sulli van, T. (1996). The HP Au-

toRAID hierarchical storagesystem. ACM TransactionsonComputer Systems, 14(1):108–136.

[Wong and Wilkes, 2000] Wong, T. andWilkes,J. (2000). My cacheor yours? In preparation.

[YeeandTygar, 1995] Yee, B. S. and Tygar, J. D. (1995). Secure coprocessors in electronic com-

merceapplications. In Proceedingsof the1995 USENIX Electronic CommerceWorkshop, pages

166–170, New York, NY (USA).

[Zhou etal., 1992] Zhou, S., Wang, J.,Zheng, X., and Delisle, P. (1992). Utopia: A loadsharing

facility for large, heterogeneous distributed computing systems. Technical Report CSRI-257,

University of Toronto.

