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Abstract: Collaboration has become a dominant feature of modern science. Many scientific 
problems are beyond the realm of individual discipline or scientist to solve and hence 
require collaborative efforts. Meanwhile, today’s science becomes increasingly more data-
intensive, resulting in a rapid transition from computational science to e-Science (or digital 
science). Recently, scientific workflows have emerged for scientists to integrate distributed 
computations, datasets, and analysis tools to enable and accelerate scientific discovery. The 
convergence of the above two trends naturally leads to the concept of collaborative 
scientific workflows. This paper presents a disciplinary definition of this term, discusses the 
opportunities, requirements, and challenges of collaborative scientific workflows for the 
enablement of scientific collaboration, and concludes with our ongoing work in this 
direction. 
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1.  INTRODUCTION 

In recent years, scientists have started to use scientific 

workflows to integrate and structure local and remote 

heterogeneous computational and data resources to perform 

in silico experiments and have made significant scientific 

discoveries. In contrast to business workflows that are 

controlflow oriented and orchestrate a collection of well-

defined business tasks to achieve a business goal, scientific 

workflows are dataflow oriented and streamline a collection 

of scientific tasks to enable and accelerate scientific 

discovery [1, 2]. Several scientific workflow management 

systems (SWFMSs) have been developed to support 

scientific workflow design and execution, such as Kepler 

[1], Taverna [3], Triana [4], VisTrails [5], Pegasus [2], 

Swift [6], and VIEW [7, 8]. 

Existing SWFMSs mainly support single scientists to 

compose and execute scientific workflows. Modern 

scientific research projects, however, are collaborative in 

nature, and team members usually reside at geographically 

distributed locations. For example, the Cancer Biomedical 

Informatics Grid (caBIG) initiative launched by the 

National Cancer Institute aims to connect the entire global 

cancer community to accelerate cancer research [9]. 

Therefore, there is a compelling need for a proper IT 

infrastructure and online services to support collaborative 

scientific workflows on the Internet. We define a 

collaborative scientific workflow as the computerized 

facilitation or automation of a scientific process, in whole or 

part, which streamlines and integrates people, datasets, and 

scientific tasks with data channels, dataflow constructs, and 

collaboration patterns to automate collaborative data 

computation and analysis for enabling and accelerating 

scientific discovery. 

Building Internet-based services to support collaborative 

scientific workflows poses significant challenges. One main 

challenge is to understand the sophisticated interaction and 

hierarchical composition of various dataflow constructs and 

collaboration patterns to model complex and large-scale 

scientific workflows among scientists. A second challenge 

is to capture, manage, and utilize large amounts of 

distributed, heterogeneous, multi-level, and collaborative 

provenance data for the reproducibility of scientific results 

produced from collaborative scientific workflows. 
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Fig. 1. A collaborative scientific workflow. 

As a starting point, this paper examines the state of the art 

of the field of scientific workflows toward supporting 

collaborative scientific workflows that are targeted for 

collaborative science. Our preliminary research work is also 

reported to evaluate the trend toward the direction and 

inspire extensive research work. The remainder of the paper 

is organized as follows. Section 2 motivates our research. 

Section 3 discusses existing work. Section 4 presents 

research challenges. Section 5 presents our preliminary 

work toward the direction of collaborative scientific 

workflows. Section 6 makes conclusions. 

2.  MOTIVATION OF COLLABORATIVE SCIENTIFIC 

WORKFLOWS 

The latest advance of IT technologies have enabled and 

encouraged people to form large-scale and multidisciplinary 

scientific research projects to solve complex scientific 

problems. Demanding intensive computation and data 

sharing, these projects are collaborative in nature and 

usually include multiple domain scientists with domain-

specific expertise located at geographically distributed 

organizations. Fig. 1 illustrates a scientific workflow 

comprising seven tasks (T1~T7) that have to be conducted 

by three scientists from three organizations at distributed 

locations. As shown in Fig. 1, the tasks are not isolated from 

each other. Instead, they have to be streamlined in a defined 

workflow to produce useful scientific results. In other 

words, every scientific workflow run requires all three 

scientists to collaborate, either synchronously or 

asynchronously. 

Therefore, there is a compelling need for an online system 

to support such collaborative scientific workflows on the 

Internet. Such a system should provide services to allow 

participating scientists to view the progress of the entire 

workflow, repeat a workflow run, and communicate and 

collaborate with peer scientists to perform scientific 

workflows. The system should also enable these projects to 

dynamically structure and integrate computations, datasets, 

scientists, and other resources or even workflows from 

multiple autonomous organizations with the goal of solving 

a scientific problem collaboratively. 

Several scientific workflow management systems 

(SWFMSs) have been developed as single-user 

environments that focus on helping an individual scientist 

compose scientific workflows from available resources. 

Some systems show some collaboration features, in the 

sense that they allow a scientist to compose a scientific 

workflow from shared services, e.g., published Grid 

services. However, they provide limited support for multiple 

scientists to collaboratively compose and manipulate a 

shared scientific workflow as the scenario shown in Fig. 1. 

They do not address and support user interaction and 

cooperation that are required and essential for an effective 

and efficient scientific collaboration. 

In addition, current SWFMSs are built on top of different 

workflow models. Thus, their interoperability is poor. It is 

neither practical nor feasible to require that every domain 

scientist in a large-scale research project to adopt the same 

SWFMS and tool. Meanwhile, note that it is common for a 

domain scientist to participate in multiple scientific 

collaboration projects simultaneously. Therefore, it is 

critical to establish fundamental models to support 

collaborative scientific workflows, so that interoperability 

can be achieved among different SWFMSs. 

Although the business world has recognized similar need 

[10] and has developed a preliminary model to support 

business workflows involving humans [10], the model is 

inapplicable to collaborative scientific workflows due to the 

fundamental differences between business workflows and 

scientific workflows: While business workflows are 

controlflow oriented, scientific workflows are dataflow 

oriented, introducing a new set of requirements for system 

development [11]. Moreover, provenance management has 

become a critical functionality for scientific workflows [12]. 

Although provenance bears much similarity to audit trails in 

business workflows, provenance provides much richer 

information than audit trails do. While audit trails only 

record temporal information concerning what operations are 

performed by whom at what times, provenance, in addition, 

records the causal relationships between these activities. 

Moreover, audit trails serve the purpose of auditing, while 

provenance is used for reproducibility of scientific results. 

In summary, the lack of collaboration support and 

interoperability among SWFMSs has largely limited the 

potential of using scientific workflows to enable and 

accelerate scientific discovery and to solve scientific 

problems that require collaborative efforts. If research on 

collaboration and interoperability lags implementation too 

much, IT scientists and engineers will have to retrofit 

techniques to achieve these requirements. They will have 

fewer options and most likely end up with a suboptimal 

solution. 

3.  STATE OF THE ART OF SCIENTIFIC WORKFLOWS 

To understand the challenges and opportunities of 

supporting collaborative scientific workflows, it is critical to 

examine the state of the art of the field of scientific 

workflows. Below, we focus on analyzing existing systems 

and their scientific workflow models, provenance models, 

and collaboration support. 

Several scientific workflow management systems 

(SWFMSs) have been developed over the past decade. Their 

key features are summarized in Fig. 2. Kepler [1] is a Java-

based open-source SWFMS, where a scientific workflow is 

composed of components called actors and its execution is 

controlled by a computational model controller called 

director. Taverna [3] is an open-source SWFMS targeted 

for life science. Based on a repository of services supporting 
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Fig. 3. Scientific workflow model. 

SWFMS Key features 

Kepler multiple models of computation; data in various formats; data, workflow, component 

Taverna SCUFL for workflow representation; Web services support; GUI; social groups 

Triana sophisticated graphical user interface 

VisTrails visualization of evolving workflows; provenance management 

Pegasus mapping workflows on Grid; manage workflow execution 

Swift Grid-based workflows with short-running tasks; a parallel scripting language & execution engine 

VIEW service-oriented architecture and efficient provenance querying and management 

Fig. 2. A comparison of existing SWFMSs. 

various bioinformatics data analysis and transformation, 

Taverna uses an XML-based workflow language called 

SCUFL/XSCUFL for workflow representation with each 

component being either a Web service or a processor 

developed using Java Beanshell script. Taverna also features 

by its professional graphical user interface. Triana [4] 

provides a sophisticated graphical user interface for 

workflow composition and modification, including 

grouping, editing, and zooming functions. VisTrails [5] 

focuses on workflow visualizations supporting provenance 

tracking of workflow evolution in addition to data product 

derivation history. Pegasus [2] provides a framework that 

maps complex scientific workflows onto distributed Grid 

resources. Artificial intelligence planning techniques are 

used for guiding workflow composition. Using an actor-

oriented modeling mechanism, Pegasus manages workflow 

execution and enables automatic retries at failures. Swift [6] 

combines a scripting language called SwiftScript with a 

runtime system to support specification and execution of 

large-scale loosely coupled computations over a Grid 

environment. Finally, our VIEW [7, 8] system features a 

service-oriented architecture and efficient provenance 

management for scientific data visualization [12]. 

Each of these SWFMSs provides a platform to support a 

single scientist to compose scientific workflows from 

various resources. Their foundations center on scientific 

workflow models and provenance models, which are 

reviewed below. 

3.1 Scientific Workflow Models 

Tasks are considered basic building blocks of scientific 

workflows. Existing task models [1, 3] are illustrated in Fig. 

3.(a), where a task represents a computational or analytical 

step of a scientific process. Each task comprises a set of 

input ports and output ports as its communication interface 

to other tasks. As shown in Fig. 3.(a), a task may also 

comprise an arbitrary number of input parameters (special 

kinds of input ports) that can be used by a scientist to 

configure the dynamic execution behaviors of the task. 

Centered on tasks, existing scientific workflow models [1, 

3] adopt a dataflow-driven modeling paradigm. As shown in 

Fig. 3.(b) as an example, tasks are linked together into a 

workflow via data channels; a task will automatically start 

its execution whenever all required data become available at 

the input ports of the task. During workflow execution, 

tasks communicate with each other by passing data through 

data channels. As shown in Fig. 3.(b), a task in a workflow 

model may be a composite task that is expandable into a 

sub-workflow. 

Some advanced techniques have been proposed to 

enhance the basic scientific workflow model. The 

transactional task model [13] uses concurrency control to 

ensure correct simultaneous access of databases and failure 

atomicity for workflow tasks. The shared hypermedia-based 

task model [14] supports simultaneous change, 

visualization, and navigation control of workflow task 

structure and attributes by multiple users. 

In the current workflow models, however, human factor is 

not given sufficient consideration. The latest work of 

Taverna starts to investigate interaction patterns [15]. 

Simple parameter setting is supported at the task level. 

Recently, the WS-HumanTask model [16] is introduced to 

integrate humans into service-oriented business workflows. 

However, it does not support modeling of collaboration 

behaviors and patterns (e.g., user parameter control, steering 

control, and result validation control) that are required by a 

scientific workflow task. As shown in Fig. 3.(b), Tasks 1 to 

4 each belongs to its proprietary domain. The workflow 

model does not provide a facility to support the 

differentiation between the four domains and how they can 

collaborate on the workflow execution. Since many 

scientific process scenarios require constant, rich, and 

intricate user actions, it is important to develop a workflow 

model for collaborative scientific workflows that supports 

the flexible, efficient, and effective modeling and 

management of interaction, coordination, collaboration 

among workflows, tasks, datasets, organizations, groups, 

and individuals. 

3.2 Provenance Models 

Provenance management has been acknowledged as a 

critical functionality for any SWFMS [12, 17-21]; see [22, 

23] for surveys. Provenance supports the reproducibility of 

scientific results. Provenance data captures the derivation 

history of a data product, including the original data 

sources, intermediate data products, and the steps that are 

applied to produce the data product. In other words, 

provenance captures the detailed scientific protocol that is 

needed to reproduce a scientific discovery. An execution of 

the workflow shown in Fig. 3.(b) produces a workflow run 

provenance shown in Fig. 4.(a), which is a graph consisting 

of two types of nodes: circles represent parameter values 
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Fig. 4. Scientific workflow provenance. 

and data products; rectangles represent task runs. Edges 

represent dependencies between nodes. 

Kepler [1] implements a provenance recorder to track 

information about a workflow run, including its context, 

data derivation history, workflow definition, and workflow 

evolution. Taverna [3] uses Semantic Web technologies for 

representing provenance metadata at four levels: process, 

data, organization, and knowledge. VisTrails [24] records 

provenance for workflow evolution as well as for data 

product derivation and use it for collaborative design of 

scientific workflows [24]. Heinis and Alonso create an 

interval-based representation for provenance storage to save 

space [25]. Chapman et al. propose a set of factorization 

processes and inheritance-based methods to reduce the size 

of actual provenance datasets by up to a factor of 20 [26]. 

To facilitate focused query and navigation over large 

amounts of provenance, Biton et al. develop a provenance 

abstraction technique called “user views” to return only 

relevant and abstracted provenance information to a user 

[27]. Our RDFProv system [12, 28] integrates the 

interoperability, extensibility, and reasoning advantages of 

Semantic Web technologies with the storage and querying 

power of a relational database management system and 

provides the first provably semantics-preserving SPARQL-

to-SQL query mapping algorithms [29]. 

Several stand-alone provenance systems have also been 

developed [30-34], including the PReServ system developed 

under the Provenance Aware Service Oriented Architecture 

(PASOA) project [32] and the Karma system [33]. Both 

systems support Web services interfaces. To promote the 

interoperability of provenance among different systems, the 

Open Provenance Model was initiated in 2007 and has been 

positively influencing the community ever since [35]. In a 

collaborative scientific workflow environment, new 

requirements arise to provenance management due to the 

distributed nature of provenance data involving inter-

domain data dependencies. As shown in Fig. 4.(b), the 

provenance data shown in Fig. 4.(a) is divided into two sub-

graphs stored in two different provenance stores of the two 

domains representing participating organizations or security 

domains [36]. While some researchers have studied the 

problem of provenance capture for distributed scientific 

workflows [37], provenance management for collaborative 

scientific workflows, in which human collaboration and 

interaction are essential, has not been explored. 

To support collaborative scientific workflows, a 

provenance model shall enable access and querying of 

provenance, across multiple workflow domains and at 

different levels. The goal is to support the reproducibility of 

scientific results obtained from the execution of 

collaborative scientific workflows performed by multiple 

scientists from different organizations. In addition, it is 

important to explore how to effectively and efficiently store, 

extract, and manage distributed provenance data to support 

the full lifecycle of a collaborative scientific workflow. 

3.3 Workflow Scheduling 

Workflow scheduling is a major functionality of the 

workflow engine in an SWFMS [11], which schedules, 

assigns, and maps workflow tasks to machines or humans 

for execution. While early workflow scheduling work 

focuses on correctness issues, such as enforcing inter-task 

dependencies [38], recent work, mainly in the area of 

scientific workflow, focuses on performance, cost, and QoS 

based optimization of workflow scheduling [39]. 

A workflow scheduler can either be centralized, 

hierarchical, or decentralized. A centralized scheduler 

produces schedules for a whole workflow; a hierarchical 

scheduler schedules a workflow by a cooperation of the root 

scheduler and its descendant low-level schedulers; a 

decentralized scheduler utilizes a network of sub-schedulers 

to make scheduling decisions of a workflow [39]. A 

scheduler can make a local scheduling decision, which is 

solely based on the information of the task and sub-

workflow at hand, or a global scheduling decision, which is 

based on the information and structure of the entire 

workflow. A workflow schedule can be either static that is 

generated before workflow execution, or dynamic that is 

generated on-the-fly based on runtime dynamic information, 

or adaptive that is based on adaptation of a static workflow 

schedule toward runtime dynamic information. The goal of 

workflow scheduling is to optimize some objective function, 

such as overall workflow execution time (aka makespan), 

budget, deadline, or other QoS criteria. It has been shown 

that in general, the workflow scheduling problem in a 

distributed environment is NP-complete [40]. Thus, in 

practice, various heuristics-based algorithms are used. 

Here, we briefly review a number of representative 

workflow scheduling algorithms (see [41] for a more 

comprehensive survey on this topic). The Min-Min 

algorithm determines for each task t of a given set of 

independent tasks, the resource r that provides the minimum 

estimated completion time (MECT), then schedules the task 

t with the minimum MECT on its corresponding resource r 

[42]. The Max-Min algorithm also calculates MECT for 

each task, but instead of choosing the task with the 

minimum MECT to schedule, it selects the one with the 

maximum MECT to maximize the overlap between long-

duration task runs and short-duration task runs, thus 

reducing the overall execution time [42]. The sufferage 

algorithm [42] calculates MECT for each task t, as well as 

MECT2, which is the second best minimum ECT for the 

task, and their difference (MECT2-MECT) as the sufferage 

value, which quantifies the penalty of not assigning a task to 

its best resource. The task with the maximum sufferage 

value is chosen to schedule first onto the resource that 

provides the mimimum MECT. The DCA algorithm [43] 

provides a dynamic programming-based approach to 

optimize both overall execution time and economic cost. A 

user will designate one of them as the primary criterion and 

the other one as the secondary criterion. The user will also 

provide a sliding constraint for the primary criterion. The 

algorithm first optimizes solely for the first criterion, and 
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then optimizes for the second criterion while preserving the 

primary criterion cost within the sliding constraint. The 

HEFT algorithm [44] analyzes the whole workflow and 

calculates a rank value for each task based on the critical 

path from the task to the exit task, which is based on the 

average execution time and average data transfer time of the 

tasks on all resources. All the tasks in the workflow is then 

ordered decreasingly and scheduled in that order by 

selecting the resources that can complete the tasks in the 

earliest time. The GRASP algorithm iteratively generates 

solutions and then keeps the best solution as the final 

schedule. Each iteration consists of a construction phase that 

generates a feasible solution, and a local phase that applies a 

local search to improve the solution. GRASP can generate 

better schedules than other scheduling techniques, as it 

searches the whole solution space with considering the 

whole workflow and all available resources, although 

scheduling overhead is subject to the cost of each iteration 

and the number of iterations. 

None of the above workflow scheduling algorithms, 

however, considers human tasks and collaboration 

primitives that involve human collaboration and 

coordination, which are essential for collaborative scientific 

workflow scheduling. Therefore, workflow scheduling 

algorithms that minimize not only machine cycles, but also 

human cycles, as well as communication overhead 

introduced by data movement and human-human 

coordination should be investigated for collaborative 

scientific workflows. 

 

3.4 QoS of Workflows 
Quality constraints are critical for workflow design and 

selection [45]. Cardoso et al. [46] elaborate theoretical 

concepts of a QoS-aware workflow on top of a set of 

metrics. Many researchers have been exploring how to 

model and manage QoS of workflows, not only to satisfy 

user requirements but also to enhance workflow adaptability 

to ever changing environments. QoS of workflows may be 

modeled in a comprehensive manner. Not only can it be 

modeled at different levels (e.g., task level or workflow 

level), but also may it comprise a variety of attributes (e.g., 

reliability, performance, and fault tolerance). 

Based on the Multidimensional Multi-choice Knapsack 

Problem (MMKP), Kofler et al. [47] create a mathematical 

model to represent various QoS parameters of a workflow 

against configurable user requirements. They also develop a 

parallelizable branch and bound algorithm to maximize the 

measurement of workflow over the Kepler [1] system. Yu et 

al. [48] model QoS constraints in a combinatorial model 

(MMKP) and a graph model (Multi-Constraint Optimal Path 

(MCOP) problem). 

Zeng et al. [49] propose a middleware to support QoS-

aware workflow composition of Web services using the 

integer programming method. Their algorithms predict QoS 

values based on historical invocation records. Lv [50] 

proposes an evaluation algorithm to calculate three QoS 

values of a workflow based on the values of its comprising 

tasks: time, expense, and reliability. 

Binder et al. [51] adopt Semantic Web technology to model 

user requirements, and propose a mathematical model that is 

equipped with genetic algorithms to calculate and optimize 

workflow execution cost. Tao et al. [52] consider six QoS 

parameters: time, cost, reliability, availability, reputation, and 

security. They also propose a rotary hybrid discrete particle 

swarm optimization (RHDPSO) algorithm that disturbs 

double extremums to enhance premature convergence and 

local optimum. 

Guo et al. [53] propose an XML-based language to define 

QoS requirements (i.e., performance) of a workflow and 

associate the document with a business workflow language 

BPEL [54] document to enable a QoS-aware workflow 

management system. Brandic et al. [55] extend BPEL with 

QoS extensions, and build a prototype of a QoS-aware 

workflow engine equipped with various planning strategies 

on the Grid. Patel et al. [56] adopt a document to specify QoS 

values to support workflow discovery and recommendation. 

 

3.5 Collaborative Workflows 
For business workflows, the term “collaborative workflows” 

is interchangeable with the term “coordinated workflows” 

[57-59]. They emphasize the coordination between 

workflows toward a common business goal. 

The reference architecture proposed by the Workflow 

Management Coalition (WfMC) [60] has been widely 

adopted in the development of numerous business workflow 

management systems. Huang et al. [61] propose to use the 

agent technology to coordinate workflows. Dang et al. [62] 

propose to employ agents to coordinate workflow execution 

through a commitment-based formalisms by ontologically 

reasoning about their states and actions. Balasooriya et al. 

[63] propose a decentralized services-oriented middleware 

architecture to coordinate workflows. The central component 

of the architecture is a coordinator proxy object that manages 

dependencies of workflows and handles messages between 

the workflows. Balasooriya et al. [64] propose a two-layered 

framework, where distributed Web services are modeled as 

self-coordinating entities, and a workflow is created by 

interconnecting such entities into a distributed network of 

objects using Web bond primitives. 

Some researchers particularly study workflow coordination 

in a Grid environment. Miller et al. [65] propose a protocol 

language to express and coordinate workflows comprising 

both reactive (Web services) and proactive (autonomous 

agents) tasks in a Grid environment. Prodan [66] studied how 

to efficiently execute the specification of workflow 

coordination on a Grid with scalability. Based on γ-calculus, 

Nemeth et al. [67] model workflow coordination as 

molecules and reactions to enable autonomous evolution in a 

changing Grid environment. 

The Computer Supported Cooperative Work (CSCW) 

community has also studied the workflow coordination 

problem. Compared to the distributed system-oriented 

workflow management that focuses on structured processes, 

CSCW-oriented workflow control focuses on the 

unstructured processing on the shared document by human 

collaborators. For example, collaborators with different 

ownerships possess different controls over the processes 

[68]. Therefore, a number of CSCW-oriented workflow 

systems automate the coordination and interoperation of 

workplace activities [69]. To name a few, Business Process 

Models (BPM) [70] is a collaborative business process 

modeling tool; OntoEdit [71] supports a concurrent 
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Fig. 5. The provenance space. 

collaborative software engineering process; Yen et al. 

present a collaborative control design tool that allows 

privileged collaborators to change the process as needed 

[68]; OPCATeam [69] integrates the object-oriented and 

process-oriented paradigms into one single framework to 

enable the coexistence of structured processes and human 

interaction behaviors in one business process modeling 

system. 

In contrast to collaborative business workflows that imply 

collaboration between business workflows, we use the term 

to refer to collaboration between workflow human users. 

The need for integrating human interaction and 

collaboration into a workflow model has been recently 

recognized in the business workflow community. 

Ayachitula et al. [72] divide workflows into human-centric 

workflows and automated process-based workflows. Russell 

et al. [73] propose to establish a separate team access 

control layer, which combines role and organization, to 

management access in a collaborative workflow 

environment. The BPEL4People [10] workflow model is 

proposed to extend the de facto industry standard business 

workflow language BPEL [54] to standardize the interaction 

between automated and human workflows. However, 

BPEL4People workflow model is not suitable to be used for 

supporting collaborative scientific workflows because: 1) 

BPEL is controlflow-oriented and hence lacks dataflow 

constructs for interaction, movement, and processing of 

large datasets; 2) every computational components in BPEL 

must be a Web service, thus, lacking the support of 

modeling user interaction and visualization intensive tasks. 

Therefore, we argue that establishing a fundamental 

collaboration model is necessary. Such a collaboration 

model should be independent and can be plugged into other 

models dynamically to favor configurability and re-

configurability. This requirement is critical for a 

collaborative SWFMS to become generally applicable to 

various scientific collaboration projects and domains. 

Different scientific research projects may adopt different 

collaboration policies. A basic collaboration model should 

be flexible enough so that it can be configured to support 

these diverse collaboration rules and patterns, and then be 

plugged into a generic scientific workflow management 

system to support the corresponding research projects. 

A collaboration description language will be important to 

properly represent human interactions and collaboration 

rules and patterns. It can formalize the collaboration models 

for reasoning and tracking during collaborative scientific 

workflow design, execution, and management. It may 

further strengthen the collaboration model with higher 

flexibility and extensibility. Such a high-level collaboration 

description language can help participating scientists 

precisely define and regulate actions in the lifecycle of 

scientific workflows. Scientists involved in a collaborative 

scientific exploration are domain knowledge experts; 

however, they may not be software developers. Such a 

language can help those domain experts define a 

collaborative scientific workflow system, and an associated 

language compiler can automatically generate program 

code. Moreover, using a collaboration language to construct 

a collaborative scientific workflow application makes it 

possible for different scientific workflow systems to interact 

and interoperate with each other to build new scientific 

workflows more easily and rapidly. 

Existing scientific workflow languages and authoring 

tools are primarily designed to support automated scientific 

processes based on Web services and Grid services. Human 

user intervention and interactions are currently not 

supported. Due to the clear demand on supporting and 

standardizing human interaction and collaboration in 

scientific workflows, it is important to develop a 

collaboration language and authoring tool to support formal 

descriptions of scientific activities. 

4.  REQUIREMENTS OF COLLABORATIVE SCIENTIFIC 

WORKFLOWS 

4.1 Provenance Space 

An exploratory process, aiming for a scientific discovery 

and conducted by multiple distributed scientists through 

collaboratively running scientific workflows, can be 

modeled as an exploration of a provenance space as shown 

in Fig. 5. Conceptually, we model the provenance space in 

three dimensions: workflow evolution, parameter tuning, 

and input selection. Exploring along the workflow evolution 

dimension aims to design a new workflow that has the 

potential to lead to a scientific discovery; exploring along 

the parameter tuning dimension aims to determine the right 

parameter settings to enable such a scientific discovery; 

exploring along the input selection dimension aims to locate 

and select proper raw datasets in which the sought-after 

knowledge is hidden. In reality, parameter tuning and input 

selection may each become comprehensive and hierarchical 

for a particular workflow. For example, it is common that 

the parameter vector of a typical scientific workflow may 

contain dozens of various parameters. 

In such a provenance space, as shown in Fig. 5, the goal is 

to run the exploratory process to find and reach a sought-

after unknown scientific discovery point that corresponds to 

a proper scientific workflow, a suitable set of parameter 

settings, and an appropriate selection of input datasets. The 

strength of a collaborative scientific workflow is that the 

provenance space can be explored collaboratively and 

simultaneously by a group of geographically distributed 

scientists who share expertise, datasets, and other resources. 

For example, while one scientist is more experienced in 

tuning one set of parameters, another scientist may be more 
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Fig. 6. Requirements of scientific collaboration.  

experienced in operating on a particular dataset. 

The current scientific workflow infrastructure provides 

no or little support to expedite the collaborative exploratory 

process, thus resulting in a manual trial-and-error approach 

that has become one major bottleneck of today’s scientific 

discovery. Historic provenance data captures not only the 

execution and evolution history of workflows, but also the 

scientists’ computational thinking history represented as 

workflow designs, parameter tuning, workflow evolution, 

and input data selection. Our objective is to develop a 

procedure that automatically mines insightful knowledge 

from provenance data to assist scientists in future 

collaborative workflow evolution, parameter tuning, and 

input data selection. 

Developing such a knowledge discovery process is 

highly difficult because: 1) The provenance space is infinite 

and the target scientific discovery points are unknown and 

may not be specified in advance or even foreseen; 2) 

Provenance data is high-dimensional, heterogeneous, and 

hierarchical, and hence provenance mining is not a trivial 

task; 3) The knowledge, constraints, and feedbacks from 

scientists have to be considered in a dynamic manner. 

4.2 Eight Key Requirements of Resource Sharing 

Unlike business collaboration focusing on the coordination 

of work (privileges and duties) among various parties [3], 

scientific collaboration concerns more about resource 

sharing at various levels [74]. We conducted a 

comprehensive study of the scientific collaboration 

literature, including a recent book entitled “Scientific 

Collaboration on the Internet” that is edited by Olson et al 

[75], which covers the challenges, experiences, and lessons 

summarized from a dozen of large-scale modern 

cyberinfrastructure projects, ranging from physical science, 

biological and health science, to earth and environmental 

science. Based on these studies and our research on 

scientific workflows and Internet-based collaboration, we 

identify eight key requirements for a collaborative SWFMS 

from a resource sharing perspective, as shown in Fig. 6. 

R1: Expertise sharing. The 21th century features the 

emergence of a new society, called the Knowledge Society, 

in which knowledge becomes the primary production 

resource instead of capital and labor. On one hand, the rapid 

growth of scientific knowledge increases the specialization 

of individual scientists. On the other hand, many of today’s 

complex scientific problems are beyond the realm of a 

single discipline or scientist to solve. In the context of 

collaborative scientific workflows, a key requirement is 

easy and fast access to a pool of experts, so that various 

scientific tasks of a scientific workflow can be assigned to 

the scientists with proper expertise. Thus, a common 

collaboration pattern would be “to discover scientist S with 

expertise E to perform scientific task T of scientific 

workflow W.” Efficient and effective support of various 

expertise sharing patterns will not only form collaboration 

relationships that would be impossible otherwise, but also 

facilitate scientists in working together to answer questions 

that they cannot undertake alone. 

R2: Workflow sharing. Modern scientific collaborations 

may require multiple scientists to collaboratively design, 

compose, execute, monitor, provenance track, and manage 

scientific workflows in both synchronous and asynchronous 

modes. Existing SWFMSs [3-7, 76] help individual 

scientists construct scientific workflows locally. Their 

individual work products (scientific workflows) are 

manually sent to collaborators (e.g., via emails) or uploaded 

into some shared social space (e.g., MyExperiment [77]) to 

enable collaboration. For example, collaborators can 

download a published Taverna workflow from 

MyExperiment, load it into their local Taverna workbench, 

update, and send the new workflow back to the original 

collaborator for further changes. In the context of 

collaborative scientific workflows, an advanced 

collaborative environment is needed, where scientific 

workflows are encapsulated as services for publishing, 

discovery, and reuse. 

R3: Data sharing. Modern science becomes more and 

more data-intensive, revealing the transition from 

computational science to e-Science (or digital science). Data 

sharing has become so important that some funding 

agencies, such as NIH, require that all large grant proposals 

must contain a data management plan to enable data sharing 

[78]. However, large volumes, complex types and 

structures, and the fear of losing data ownership pose great 

challenges to data sharing. In the context of collaborative 

scientific workflows, one key requirement would be the 

dynamic request of a desirable dataset from peers or 

collaborators. For example, during the execution of a 

scientific workflow, scientists may realize that a specific 

dataset is needed to continue the exploration, while the 

dataset belongs to an external group of scientists. Such a 

data sharing pattern should form a service interaction 

pattern so that both the data service requestor and the data 

service provider will achieve data sharing according to 

Service Level Agreements (SLAs). Moreover, data 

discovery will also be an important operation to support 

efficient and effective peer-to-peer (P2P) data sharing. 

R4: Tool sharing. Although no tools can replace the 

critical and creative thinking and analysis of a scientist, 

software tools play an increasingly important role in 

scientists’ daily work in data processing and analysis. 

Sharing of these tools saves development expense and time; 

moreover, it encourages the reuse of a tool in a context that 

is beyond the imagination of the original developers. In the 

context of collaborative scientific workflows, supporting 

various tool sharing patterns is needed. For example, 

scientists may find that their obtained test data require 
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Fig. 7. Scientific workflow run provenance. 

specific processing and analysis by a specific data analysis 

tool that is owned by, and maybe best operated by, an 

external group of scientists. One challenge for tool sharing 

is the shimming problem [79], which occurs due to the 

incompatibility of the interfaces and/or input/output data 

formats between external tools and existing tasks in a 

workflow. 

R5: Computing power sharing. Nowadays, many scientific 

problems require the support of high-end computing, such 

as grid computing and cloud computing [80]. For example, 

in the ALICE project in Physics, it has been estimated that 

the project will require 35 MSI2k (1 MSI2k ≅ 430 CPUs) of 

computing capacity, 14 PB of disk or transient storage, and 

11 PB/year of tape or permanent storage for best 

performance. In the context of collaborative scientific 

workflows, given the fast advance of high-end computing 

technology, a key requirement for computing power sharing 

is to separate the science-focused and technology-

independent problem solving environment (PSE) from the 

underlying computing infrastructure. In this way, domain 

scientists can focus on their science while utilizing the state-

of-the-art computing technologies in a transparent manner. 

Such a separation will also prevent vendor lock-in, so that 

users can seamlessly switch from one service provider to 

another. 

R6: Storage sharing. The new generation of scientific 

experiments has resulted in a data deluge. For example, the 

Sloan Digital Sky Survey generates tens of terabytes of data. 

The proposal of the large Synoptic Survey Telescope is 

expected to produce more than 3 petabytes of data per year 

for the catalogs alone [75]. As a result, storage sharing 

becomes critical for processing and analyzing petascale 

scientific data. In the context of collaborative scientific 

workflows, storage needs to be abstracted as a utility based 

upon an on-demand basis. An architectural requirement is to 

enable a separation between a high-level data product model 

and a low-level storage model, so that the advancement of 

the storage model will not affect the data product model 

used in collaborative scientific workflow management. 

R7: Instrument sharing. Some scientific problems solving 

requires the access of remote expensive physical 

instruments. The integration of the shared access of remote 

physical devices in a collaborative scientific workflow 

environment is a key requirement. For example, the Large 

Hadron Collider (LHC), the world’s largest and highest-

energy particle accelerator at present, is a multibillion 

apparatus internationally shared in the high-energy physics 

community. Projects around LHC are highly collaborative: 

the ATLAS experiment alone involves over 1,800 physicists 

from 140 institutions over 34 countries around the world 

[75]. How to manage and share such an expensive and 

sophisticated instrument is a big challenge, besides social 

and organizational challenges. 

R8: Labor sharing. While scientific work features 

exploratory and creative, part of the work usually becomes 

routine and labor-intensive. For example, microarray data 

annotation and analysis are typically labor-intensive. Such 

work may be outsourced to a third-party organization, who 

can hire, train, and manage a group of data analysts more 

efficiently and effectively. The analysts can then become a 

pool for labor sharing. An efficient mechanism to facilitate 

labor sharing in the context of collaborative scientific 

workflows may greatly reduce “human cycles” and 

accelerate scientific discovery, and might also reduce the 

cost of doing science. 

5.  RESEARCH CHALLENGES 

Based on our investigation of existing SWFMSs, we believe 

that it is important to develop fundamental models, 

language, architecture, and system to support collaborative 

scientific workflows. This section will discuss some key 

research challenges. 

5.1 Development of a Collaborative Scientific Workflow 

Model 

The major difficulties are three folds: 1) from a scientific 

workflow perspective, one has to understand and identify 

the requirements specific for scientific workflows, and then 

define and formalize various dataflow constructs in both 

syntax and semantics; 2) from a collaboration perspective, 

one has to understand various collaboration scenarios and 

requirements in the scientific workflow context, and then 

define and formalize various collaboration primitives and 

their composition properties; and 3) from an integrated 

model perspective, one has to investigate how collaboration 

primitives and dataflow constructs can be seamlessly 

integrated into one uniform collaborative scientific 

workflow model with well-defined and extensible 

semantics. 

5.2 Development of a Collaborative Provenance Model 

Provenance of a scientific workflow captures the derivation 

history of a data product, including the sources, intermediate 

data products, and the steps that are applied to produce the 

data product. Provenance management is essential for 

scientific workflows to support reproducibility of scientific 

discovery, result interpretation, and problem diagnosis. Fig. 

7 presents a scientific workflow run provenance for a 

particular execution of the scientific workflow shown in 

Fig. 1. 

To ensure that scientific results are reproducible, a 

provenance system has to provide two key facilities. First, 

the provenance system has to collect and record sufficient 

provenance information, and support searching, querying, 

browsing, and visualization of provenance information. 

Second, the provenance system has to support the rerun or 

partial rerun of a workflow to reproduce or validate 

significant scientific results that are produced from running 
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a collaborative scientific workflow. 

Such a task is highly challenging due to the following 

characteristics of provenance data produced from the 

execution of collaborative scientific workflows: 1) 

Distributed: Collaborative scientific workflows typically 

involve resources from multiple organizations, as shown in 

Fig. 1. The capture and management of provenance are 

often distributed and inter-organizational provenance 

dependencies have to be properly modeled and managed. 2) 

Heterogeneous: Provenance produced from different 

scientific workflows often conforms to different schemas. 

Moreover, workflows may evolve rapidly, demanding a 

flexible provenance model to accommodate heterogeneity 

and evolution. 3) Hierarchical: Since scientific workflows 

are often constructed and managed hierarchically to deal 

with the complexity of scientific processes, the 

corresponding provenance data are multi-level. 4) 

Collaborative: The collaborative provenance data model has 

to be extensible to support new user interaction and 

collaboration patterns and store additional provenance 

information concerning the interactions and coordination 

among scientists. Limited changes are allowed when 

additional user interaction and collaboration patterns are 

introduced. 

5.3 Design of a Collaboration Model and a Collaboration 

Language 

Scientific collaborations are typically featured as 

exploratory and unpredictable, and require constant user 

interaction and intervention in the process. For example, a 

scientific workflow may not be able to be fully composed at 

the beginning; participating scientists may discuss and 

creatively decide subsequent actions in the middle of the 

process based on intermediate experimental results; new 

collaborators may join in the middle of an exploration as the 

need for specific expertise and domain knowledge arises; 

participating scientists may possess different schedules and 

hence an asynchronous collaboration mode has to be 

supported in addition to a synchronous one; a scientific 

workflow may not have a clear time boundary and may last 

a long period of time, and so on. In addition, the 

introduction of human interaction may lead to other 

concerns such as co-design, co-run, co-monitor, and co-

approve scientific workflows. 

Thus, a collaboration model is required to capture and 

abstract such comprehensive and dynamic collaboration 

activities and patterns. Furthermore, such a collaboration 

model has to be flexible to endure constant changes and 

reconfigurations. For example, it is common that a scientist 

simultaneously participates in several collaborative 

scientific explorations, each specifying project-wise 

collaboration rules and protocols. Moreover, how to 

seamlessly incorporate a collaboration model with a task 

model, a workflow model, and w provenance model remains 

another challenge. 

5.4 Implementation of a Collaborative Scientific 

Workflow Management System 

Such an effort should also explore and establish a 

methodology to guide domain scientists to construct project-

specific collaborative scientific workflow systems. A 

reference architecture for building collaborative scientific 

workflow management systems based on aforementioned 

models should be provided, for the purpose of guiding a 

research project to easily customize and construct a domain-

specific collaborative scientific workflow system, and 

enable interoperability between different collaborative 

scientific workflow systems. The sophisticated interaction 

and relationships between scientific workflow models and 

collaboration models require a deep investigation to design 

a sustainable architecture for various scientific 

collaborations.  

6.  ONGOING RESEARCH 

Toward the ultimate goal of developing a fundamental and 

generally applicable infrastructure to support the design, 

execution, monitoring, provenance tracking, and 

management of collaborative scientific workflows, we have 

conducted some preliminary research work. In this section, 

we report our research work in four directions: the VIEW 

and Confucius systems, the RDFProv provenance system, 

the CODL/XCODL collaboration languages, and an SOA-

based infrastructure. Our ongoing work focuses on 

addressing the R2 (Workflow sharing) and R3 (Data 

sharing). 

6.1 The Confucius and VIEW Systems 

We have developed VIEW [7, 8], a service-oriented 

scientific workflow management prototype system. VIEW 

comprises a workbench to visually design workflows, a 

workflow engine to execute workflows [81], a provenance 

manager to store and query workflow provenance [12], and 

a data product manager to store and manage data products 

[82]. Using VIEW, a scientist can create a new project 

consisting of multiple related scientific workflows. The 

workbench collects all workflow specifications into a log 

and, once the workflow design is complete, stores the 

workflow specifications through the record interface of the 

provenance manager to support the storage of workflow 

evolution provenance [5]. An existing workflow can evolve 

into a new workflow, augmenting its corresponding 

provenance database with new data. While a workflow runs, 

the workflow engine collects its execution provenance into a 

log and, once the execution finishes, stores it into the 

provenance database. 

We have also developed Confucius 1.0 [83, 84], a 

prototyping system supporting collaborative composition of 

scientific workflows, built upon the Taverna [3] system. 

Using a client/server model, multiple scientists may join in a 

shared session to design scientific workflows collaboratively. 

Any change (adding or removal of components) made by one 

scientist will be immediately reflected on all collaborators’ 

screens. 

6.2 The RDFProv Provenance System 
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Fig. 8 SOA-based system architecture. 

We have developed a provenance prototype system, called 

RDFProv [28, 85], for storing and querying scientific 

workflow provenance data. Our approach combines the 

advantages of interoperability, extensibility, and reasoning 

of Semantic Web technologies with the power of storage 

and querying of a relational database management system. 

While the Resource Description Framework (RDF) model 

represents data in graphs, the relational model represents 

data in tables. To transform data in the RDF model to data 

in the relational model, the following three mappings were 

performed: 1) Ontology to relational database schema 

mapping, which takes an input scientific workflow 

provenance ontology and automatically generates a 

relational database schema that is optimized for common 

provenance queries; 2) Provenance data to relational data 

mapping, which maps a provenance dataset in RDF format 

to relational tuples conforming to the database schema 

generated by the first algorithm; and 3) SPARQL-to-SQL 

query mapping, which maps an input SPARQL query into 

an equivalent SQL query. 

We also developed a relational operator, called nested 

optional join (NOJ) [85], to optimize SPARQL queries to 

enhance provenance query performance. By benchmarking 

the performance of RDFProv and other optimization 

strategies designed for scientific workflow provenance [28, 

85], we proved that our solution provides higher efficiency 

and scalability to provenance data management [28]. 

6.3 Language Supporting Rule Mitigated Collaboration 

We have developed a description language, called 

COllaboration Description Language (CODL) [86], to help 

the specification of the requirements of a collaboration in 

the format of an electronic conference. A library of 

collaboration primitives was constructed based on our study 

of proven human collaboration rules (i.e., Robert’s Rules of 

Order) and our extended procedure rule set adapted for 

network and parallel operations [87]. A CODL runtime was 

developed to automatically translate CODL specifications 

into a set of collaboration primitives executed over a Java 

Virtual Machine. Based on CODL, we established a 

Member-Session-Meeting-Group architectural model to 

enhance collaboration control management [87]. A rule-

mitigated synchronous collaboration environment was 

developed to permit users to gather in virtual meetings for 

discussion and decision making [87]. 

To eliminate the procedural style of CODL and permit 

flexible and dynamic specifications of coordination 

requirements, we extended CODL into X-CODL [88]. X-

CODL serves as a plug-in to CODL as a description 

language focusing on defining coordination requirements. 

X-CODL models collaboration-oriented coordination 

requirements, while decoupling the coordination statements 

from collaboration business logic. We also developed a 

methodology to translate X-CODL specifications into 

Colored Petri Nets for simulation, analysis, and validation. 

6.4 An SOA-Based Infrastructure 

Based on our study and exploration, we found that Service 

Oriented Architecture (SOA) [89] can play an important 

role for constructing a generally applicable collaborative 

scientific workflow management system. Derived from the 

SOA Reference Architecture (SOA-RA) [90, 91] that 

provides a high-level template for developing SOA-based 

solutions with an abstraction of an SOA factored into layers, 

we define a two-dimensional layered architecture supporting 

scientific collaborations. 

As shown in Fig. 8, the horizontal layers support 

application-specific functional requirements, and the 

vertical layers provide system-support facilities and 

enablement. Collaboration is separated from scientific 

workflow management into two layers. Provenance data 

models and management models are handled by a dedicated 

Data Architecture layer. Each layer shall comprise a set of 

design decisions, options, and key performance indicators. 

Provenance tracking of the execution of collaborative 

scientific workflows is performed in the Governance layer. 

The rerun or partial rerun of composed scientific workflows 

will be managed by the Scientific Workflow Management 

layer. Our SOA-based framework supports collaborative 

workflows. As shown in Fig. 8, vertical layers provide 

system-level support for distributed domain scientists to 

collaborate effectively and efficiently. 

Our previous work introduces the concept of architectural 

building blocks (ABBs) that represent the constituent 

elements of a layer of SOA-RA [89]. For the SOA-based 

infrastructure to guide construction of collaborative 

scientific workflow management systems, we plan to 

examine our ABB pool and define ABBs for each layer in 

our architectural model. 

7.  CONCLUSIONS 

With the advent of the national cyberinfrastructure act and 

its focus on providing unprecedented IT support for 

scientific activities, research on mechanisms for automating 

and accelerating collaborative scientific discovery processes 

for a wide range of science and engineering disciplines has 

become more important than ever. In this paper, we survey 

the state of the art of the field of scientific workflows and 

identify the importance and research challenges of 

collaborative scientific workflows. We conclude that it is 

critical to develop a fundamental and generally applicable 

infrastructure to support the lifecycle of collaborative 

scientific workflows. We expect that SOA will play an 
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essential role in designing and developing a generally 

applicable collaborative scientific workflow management 

system that can support resource sharing at various levels in 

the form of services. 
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