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Abstract—Large-scale scientific data management and 

analysis usually relies on many distributed scientists 

with diverse expertise. In recent years, such a 

collaborative effort is often composed and automated 

into a dataflow-oriented process, a so-called scientific 

workflow. However, existing scientific workflow tools 

are single user-oriented and do not support collaborative 

scientific workflow composition, execution, and 

management among multiple distributed scientists. In 

this paper, we report our study of collaboration 

protocols towards building a tool supporting 

collaborative scientific workflow composition. Based on 

a scientific collaboration ontology, we propose a 

collaboration model supported by a set of collaboration 

primitives and patterns. The collaboration protocols are 

then applied to support effective concurrency control in 

the process of collaborative workflow composition. 

Keywords-collaborative scientific workflows; collaboration 

protocols; Taverna. 

I.  INTRODUCTION 

The advancement of modern science has created sheer 
volume of data with increasing complexity. A phenomenon 
of data deluge is witnessed in each science domain, in which 
extreme scale of scientific data not only poses a grand 
challenge to data storage and access, but also to high-
throughput data analysis and computation. Processing and 
managing such extreme-scale scientific data sets is usually 
beyond the realms of a single scientist to solve [1]; instead, it 
has to rely on many domain scientists with diverse expertise 
and from distributed locations. For example, the Large 
Synoptic Survey Telescope (LSST) experiment [2], which 
aims to repeatedly image half of the sky over a planned 10-
year survey, will produce data at a rate of 300 MB/s, 
resulting in catalogs of about 130 TB for roughly 3×10
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sources times 10 years worth of data. Analyzing and 
managing such extreme-scale data sets demand collaboration 
of a number of national labs and organizations with hundreds 
to thousands of scientists and engineers engaged [2, 3]. 

Meanwhile, such extreme-scale scientific data analysis 
and processing is usually composed and automated into a 
dataflow-oriented process, the so-called scientific workflow. 
In contrast to business workflows, which are control-flow 

oriented and orchestrate a collection of well-defined business 
tasks to achieve a business goal, scientific workflows are 
often dataflow-oriented and streamline a collection of 
scientific tasks to enable and accelerate scientific discovery 
[4, 5]. Scientists use scientific workflows to integrate and 
structure local and remote heterogeneous computational and 
data resources to perform in silico experiments [1, 6-8]. The 
increasingly important role of scientific workflows in 
modern science was recently reemphasized in an article that 
is published in Science and titled “Beyond the Data Deluge” 
[9]. The article concludes that, “in the future, the rapidity 
with which any given discipline advances is likely to depend 
on how well the community acquires the necessary expertise 
in database, workflow management, visualization, and Cloud 
computing technologies.” 

In short, scientific workflow and scientific collaboration 
are two key techniques to facilitate extreme-scale scientific 
data analysis and management. However, existing scientific 
workflow management systems (SWFMSs) [10-15] are 
single user oriented, focusing on helping individual scientists 
construct scientific workflows from available applications 
and services. Individual work artifacts (scientific workflows) 
are manually sent to collaborators (e.g., via emails) or 
uploaded into some shared social space (e.g., MyExperiment 
[16]) to enable scientific collaboration. For example, a 
collaborator can download a published workflow (e.g., in the 
format of Taverna [11], a popular scientific workflow tool) 
from MyExperiment, load it into her local Taverna 
workbench, update, and send the updated workflow  back to 
the original collaborator for further changes. 

To facilitate more interactivity between collaborators to 
better support exploratory collaborative data analysis and 
enable effective steering of the computational process in the 
context of scientific workflows, we have been developing a 
collaborative scientific workflow tool. Without reinventing 
the wheel, we examined a widely used single-user scientific 
workflow tool, Taverna [11], and extended it into a multi-
user version. 

In this paper, we present the preliminary results of our 
study of collaboration protocols supporting effective and 
efficient collaborative scientific workflow composition. Here 
we focus on multiple scientists cooperatively design and 
compose a common scientific workflow. We propose a 
scientific collaboration provenance ontology, and base on it, 
a collaboration model supported by a set of collaboration 
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primitives, and patterns. The collaboration protocols are then 
applied to support effective concurrency control in the 
process of collaborative workflow composition. 

The remainder of the paper is organized as follows. In 
Section 2, we present related work. In Section 3, we 
introduce our scientific collaboration provenance ontology. 
In Section 4, we present our framework of collaboration 
protocols. In Section 5, we discuss composition concurrency 
control. In Section 6, we discuss system design and 
implementation, as well as our preliminary experiments. In 
Section 7, we conclude the paper. 

II. RELATED WORK 

To date, several scientific workflow management 
systems (SWFMSs) have been developed as single-user 
environments, which run on local desktop computers or on 
Grids to help individual scientists construct scientific 
workflows from available resources. Representative 
SWFMSs include Kepler [17], Taverna [11], Triana [12], 
VisTrails [13], Pegasus [5], Swift [14], and VIEW [15, 18]. 

Kepler [17] is a Java-based open-source SWFMS, where 
a scientific workflow is composed of uniform components 
called actors and its execution is controlled by a dedicated 
computational model controller called director. Taverna [11] 
is an open-source SWFMS targeted for life science. Taverna 
adopts an XML-based workflow language called SCUFL to 
support workflow representation, each component being 
either a Web service or a Java Beanshell script-based 
processor supporting various bioinformatics data analysis 
and transformation. Triana [12] provides a sophisticated 
graphical user interface supporting workflow composition 
and modification activities, including grouping, editing, and 
zooming functions. VisTrails [13] focuses on workflow 
visualizations supporting provenance tracking of workflow 
evolution in addition to data product derivation history. 
Pegasus [5] provides a framework that maps complex 
scientific workflows onto distributed Grid resources. 
Artificial intelligence planning techniques are used for 
guiding workflow composition. Swift [14] combines a 
scripting language called SwiftScript with a powerful runtime 
system to support workflow specification and execution of 
large loosely coupled computations over the Grid 
environments. VIEW [15, 18] provides a tool that allows 
domain scientists to compose a scientific workflow from 
available resources and services. The system is featured with 
efficient provenance management by utilizing the power of 
relational databases [30]. 

Each of these SWFMSs provides a platform to support 
individual scientists in composing scientific workflows from 
various resources. Their foundations center on scientific 
workflow models and provenance models. 

Some systems show some collaboration features, in the 
sense that they allow a scientist to compose a scientific 
workflow from shared resources and services, e.g., published 
Grid services. However, they provide limited support for 
multiple scientists to collaboratively compose and 
manipulate a shared scientific workflow. They do not 
address and support user interaction and cooperation that are 
required and essential for an effective and efficient scientific 

collaboration [19]. 
Some SWFMSs, such as Taverna [11], provide limited 

off-line collaborative scientific workflow composition. In 
such systems, researchers can publish their composed 
scientific workflows in a dedicated social workflow space 
(e.g., MyExperiment [16]); others using the same SWFMS 
can download the workflows, make changes, and upload the 
new version into MyExperiment to initiate further 
interactions. However, such SWFMSs do not support real-
time shared scientific workflow composition. 

The business community recently recognized the need of 
involving humans into business workflows and has 
developed a preliminary model [20]. However, the model is 
inapplicable to collaborative scientific workflows due to the 
fundamental differences between business workflows and 
scientific workflows. While business workflows are control 
flow oriented, scientific workflows are dataflow oriented. 
Furthermore, provenance data management for the 
reproducibility of scientific results is essential for scientific 
workflows but not for business workflows. Hence, scientific 
workflows pose a different set of requirements [6]. 

Sayah and Zhang [21] present their annotated business 
hyperchain technology enabling on-demand business 
collaboration with the Web services technology. They 
propose a set of business collaboration primitives serving 
business scenarios. In contrast, our collaboration primitives 
serve scientific collaboration scenarios. In addition, design-
time collaboration provenance is automatically captured for 
credit acknowledgement as well as guiding future 
collaborative workflow composition. 

We studied the state of the art of the field of scientific 
workflows toward the support of collaborative scientific 
workflows and reported our observations in [19]. We also 
have surveyed the literature of workflow control mechanisms 
in a collaborative environment in [22] and observed that 
current workflow control configurations have to be 
predefined and remain immutable throughout the execution 
of a workflow. With the rapid emergence of Services 
Computing technology [23], a workflow may select optimal 
available services (e.g., a specific data processing and 
analysis service) at runtime based on some QoS 
measurements. We conclude that workflow control should be 
driven by demand: it should be customizable and adaptive 
during runtime. 

III. SCIENTIFIC COLLABORATION PROVENANCE 

ONTOLOGY 

We develop a scientific collaboration provenance 
ontology to support the modeling of various traditional 
provenance information about scientific workflow and user 
interaction and collaboration patterns. The ontology is shown 
in Fig. 1. 

Establishing a knowledge base, our collaboration 
provenance ontology is centered upon the concept of 
“workflow.” Each scientific workflow comprises organized 
processors (tasks) and data links (aka. data channels), as well 
as predefined requirements and annotations (comments) 
dynamically generated. Each workflow maintains one or 
more floors that are tokens to ensure concurrency control. 
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Figure 1. A scientific collaboration provenance ontology. 

 
Figure 2. Collaboration rule container. 

Long-term collaboration on a scientific workflow forms a 
meeting. A short-term synchronous collaboration is called a 
session. 

Each scientific workflow belongs to a project. Each 
project belongs to a scientific group (could be a virtual 
group). Each group may comprise multiple focuses, each 
involving multiple projects. A group contains a set of 
members, each may belong to different organizations. 

Collaboration on a scientific workflow is conducted by 
members serving in different roles. The initiator (creator) of 
a scientific workflow is called a moderator. Scientists who 
cooperate on the lifecycle of a workflow are called 
collaborators. They have read and write privileges. A 
collaboration may also involve visitors, who are granted with 
read privilege only. 

Our scientific collaboration provenance ontology, which 
is extensible, serves as a foundation for managing 
collaboration provenance. Each scientific collaboration 
project may define customized ontology and add additional 
annotations into the basic ontology for special purposes. For 
example, a research project may introduce project-wise 
particular roles in their collaboration. 

IV. COLLABORATION PROTOCOLS 

A. Collaboration Patterns 

1) Collaboration Model 
Establishing a collaboration model is important to 

support effective human interaction and collaboration 
throughout the life cycle of scientific workflow composition. 
Such a collaboration model will be independent and can be 
dynamically plugged into other models to favor 
configurability and re-configurability. This requirement is 
critical for our tool to become generally applicable to various 
scientific collaboration projects. Different scientific research 
projects may adopt different collaboration rules and patterns. 
A fundamental collaboration model must be able to be 
configured to support these diverse collaboration rules and 
patterns, and then be plugged into a generic scientific 

workflow management system to support the corresponding 
research projects. 

To regulate human interaction in collaborative scientific 
workflows, we propose a collaboration model as a 4-tuple 
container shown in Fig. 2: 

 
>=< ValidatorMonitorOperatorOwnerRuleC ,,,_  

 
The collaboration container comprises four basic plug-in 

roles: owner, operator, monitor, and validator. An owner 
role represents a group of scientists who have ownerships 
over a dataset or a task. An operator role represents a group 
of scientists who have the privilege to operate on a dataset 
or a task. A monitor role represents a group of scientists 
who have the privilege to monitor the operation process of a 
task or over a dataset. A validator role represents a group of 
scientists who have the privilege to validate an operation 
over a dataset or a task and claim the success of such an 
operation. One scientist may act in multiple roles 
simultaneously. 

 

2) Collaboration Patterns 
Significantly different from business collaboration, 

scientific collaboration is typically exploratory and 
unpredictable, thus requiring constant human interaction and 
intervention in the process. For example, a scientific 
workflow may not be able to be fully composed at the 
beginning; participating scientists may discuss and creatively 
decide subsequent actions in the middle of the process based 
on intermediate experimental results; new collaborators may 
join in the middle of an exploration if the need for specific 
expertise or domain knowledge arises; participating scientists 
may have different schedules and hence an asynchronous 
collaboration mode has to be supported in addition to a 
synchronous one; a scientific workflow may not have a clear 
time boundary and may last a long time, and so on. 

Therefore, we have been studying scientific collaboration 
scenarios to identify data-centric collaboration patterns. We 
understand that in scientific collaboration, besides data to be 
computed, other artifacts are also important such as, 
references (for triggering discussions), ideas and initiatives 
(to move work forward), and designs (blueprint before 
experiments). In this paper, we only consider data-centric 
collaboration. As a starting point, we focus on two-way 
collaboration patterns, where only two scientists are 
involved in a collaborative activity. Our preliminary set 
includes six scientific collaboration patterns: (1) dataset 
request, (2) analysis request, (3) validation request, (4) 
discussion request, (5) co-run, and (6) co-approve. 

Dataset request pattern reflects a scenario when some 
specific data is required, during the execution of a scientific 
workflow, to continue the exploration, while the dataset 
belongs to an external scientist group. Given a scientific 
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TABLE I.  COLLABORATION PRIMITIVES 

Type Primitive Name 

Collaboration 

preparation 

primitives 

Request for Dataset (RFD) 

Request for Data Analysis (RFA)  

Request for Validation (RFV) 

Request for Discussion (RFC) 

Request for Co-run (RFCR) 

Request for Co-approval (RFCA) 

Collaboration 

conduction primitives 

Accept or Reject Request (A/R) 

Command Submission (CS) 

Data Submission (DS) 

Update Submission (US) 

 

workflow W, scientist A asks for dataset D from scientist B 
before continuing. 

Analysis request pattern reflects a scenario when some 
particular data obtained has to be analyzed by a specific tool 
or process that is owned by an external scientist group. 
Given a scientific workflow W, scientist A asks scientist B to 
analyze dataset D. Upon receipt of the request, B may 
conduct the analysis manually, using a tool or instrument, 
and return the analysis result to A. A can then continue with 
the original workflow execution. 

Validation request pattern reflects a scenario when an 
interesting discovery is reached that requires verification and 
validation by a group of scientists with specific expertise to 
make a decision. In the context of a scientific workflow W, 
scientist A asks scientist B to validate a specific task T or 
dataset D. The result will be either positive or negative. 

Discussion request pattern reflects a scenario when 
discussion is needed over some specific topics, and the 
results of the discussion will decide the direction (or steps) of 
the following action. In the context of a scientific workflow 
W, scientist A asks scientist B to discuss over a task T or a 
dataset D. At the end of the discussion, they will reach an 
agreement to decide the following steps. 

Co-run pattern reflects a scenario when two scientists 
individually run some data analysis processes over the same 
dataset simultaneously. Given one dataset D, scientists A and 
B perform sub-workflows w1 and w2 concurrently and 
respectively, and then compare the results obtained from the 
two workflows corresponding to two alternative methods. 

Co-approve pattern reflects a scenario when both 
scientists have to reach an agreement on an experimental 
result before its release. Scientists A and B need to approve 
each other to perform a workflow W. 

These collaboration patterns can be represented using 
our proposed simple yet powerful collaboration model. For 
example, if applied to a dataset, this collaboration container 
can determine that certain scientists have the ownership 
over the dataset. For another example, if applied to a task 
representing a data analysis process, this collaboration 
container can determine that only certain scientists have the 
expertise and ownership to run the corresponding data 
analysis tool. These examples show that our proposed 
collaboration model can be applied to any workflow 
component (data products or tasks) to realize a fine-grained 
collaboration control. Note that our proposed collaboration 
model shows great flexibility: if a scientist reconfigures 
some parameters of a particular collaboration container at 
runtime, the collaboration policy affecting the scientific 
workflow may be changed accordingly. 

B. Services-Oriented Collaboration Realization 

Our goal is two-fold: one to facilitate communication 
between collaborators; the other is to enable collaboration 
provenance collection, meaning that the collaboration 
process is recorded and can be replayed later on. Thus, we 
construct a uniform collaboration message-based 
communication protocol. 

 

1) Collaboration Primitives 

Based on the collaboration patterns, we identified a set 
of semi-structured collaboration primitives, as summarized 
in Table 1. The primitives are divided into two categories: 
collaboration preparation primitives and collaboration 
conduction primitives. Since scientific collaboration may 
last a long period of time, we adopt an asynchronous 
communication mode, meaning that each collaboration 
primitive is associated with an instant acknowledgement. 

Six collaboration preparation primitives are identified: 
(1) Request for Dataset (RFD), when a dataset is needed in 
the middle of a workflow; (2) Request for Data Analysis 
(RFA), when a data analysis process is needed in the middle 
of a workflow; (3) Request for Validation (RFV), when a 
data validation process is required; (4) Request for 
Discussion (RFC), when a discussion is required on a 
merged phenomenon; (5) Request for Co-run (RFCR), when 
concurrent sub-workflows are required; and (6) Request for 
Co-approval (RFCA), when an approval has to be made by 
multiple parties. 

Four collaboration conduction primitives are identified: 
(1) Accept or Reject Request (A/R), when a request (e.g., 
RFD) is accepted or rejected by a collaborator; (2) 
Command Submission (CS), when a specific computational 
command is provided; (3) Data Submission (DS), when a 
specific data set is transferred; and (4) Update Submission 
(US), when a collaborator updates collaboration status in 
response to a request. 

In addition to be used individually, these collaboration 
primitives serve can be used as building blocks for 
collaborators to model comprehensive collaboration 
patterns. 

 

2) Collaboration Mini-Workflow 
Based on the identified collaboration primitives, we 

apply the concept of Service Oriented Architecture to 
implement the collaboration patterns. Each collaboration 
pattern is accomplished by a mini-workflow comprising a 
set of configured collaboration primitives. Through different 
combinations over the set of collaboration primitives, 
different collaboration patterns can be realized. 

We have constructed six example mini-workflows to 
realize the six collaboration patterns described in Section 
4.1.2. (1) dataset request: comprising the RFD primitive, 
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<process name="RFDmicroflow" 

    targetNamespace="urn:CollaborationConstructs" 

    xmlns:tns="urn:samples:CollaborationConstructs" 

    xmlns="http://confucius.org/constructs/"> 

     

    <sequence> 

        <invoke name="invokeRFD" 

            partner="CollaboratorA" portType="tns:RFDoriginatorPT" 

            operation="sendRFD" outputVariable="RFD">  

        </invoke> 

 

        <invoke name="ackRFD" 

            partner="CollaboratorB" portType="tns:RFDreceiverPT" 

            operation="ackRFD" outputVariable="RFD_Receipt_Ack"> 

        </invoke> 

 

        <invoke name="acceptRFD" 

            partner="CollaboratorB" portType="tns:RFDreceiverPT" 

            operation="acceptRFD " outputVariable="A"> 

        </invoke> 

 

        <invoke name="ackAcceptRFD" 

            partner="CollaboratorA" portType="tns:RFDoriginatorPT" 

            operation="ackAcceptRFD" outputVariable="A_Receipt_Ack"> 

        </invoke> 

 

        <invoke name="invokeDS" 

            partner="CollaboratorB" portType="tns:RFDreceiverPT" 

            operation="submitDS" outputVariable="DS"> 

        </invoke> 

 

        <invoke name="ackDS" 

            partner="CollaboratorA" portType="tns:RFDoriginatorPT" 

            operation="receiveDS" outputVariable="DS_Receipt_Ack"> 

        </invoke> 

    </sequence> 

</process> 

 

Figure 3. Service-oriented mini-workflow. 

 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

                     targetNamespace="http://confucius.org/class" 

                     xmlns:tns="http://confucius.org/class"> 

    <xsd:element name="Name" type="xsd:string"/> 

    <xsd:element name="task" type="xsd:anyURI" 

default="http://confucius.org/class#Task"/> 

    <xsd:element name="workflow" type="xsd:anyURI" 

default="http://confucius.org/class#Workflow"/> 

    <xsd:element name="project" type="xsd:anyURI" 

default="http://confucius.org/class#Project"/> 

    <xsd:element name="Construct"> 

        <xsd:annotation> 

            <xsd:documentation> A construct is the atomic unit of 

collaborative work in a scientific workflow. </xsd:documentation> 

        </xsd:annotation> 

        <xsd:complexType> 

            <xsd:sequence> 

                <xsd:element ref="tns:Name"/> 

                <xsd:element ref="tns:task"/> 

                <xsd:element ref="tns:workflow"/> 

                <xsd:element ref="tns:project"/> 

            </xsd:sequence> 

        </xsd:complexType> 

    </xsd:element> 

</xsd:schema> 

 

Figure 4. Schema for a transaction. 

A/R primitive, and DS primitive; (2) analysis request: 
comprising the RFA primitive, A/R primitive, and CS 
primitive; (3) validation request: comprising the RFV, A/R, 
and CS primitive; (4) discussion request: comprising the 
RFC primitive and a collection of US primitives; (5) co-run: 
comprising the RFCR primitive, A/R primitive, and US 
primitive; and (6) co-approve: comprising the RFCA 
primitive, A/R primitive, and US primitive. 

Such a mini-workflow can be formalized using the 
Business Process Execution Language (BPEL). Since BPEL 
is based on Pi-calculus, modeling mini-workflows in BPEL 
will allow us to formally reason about the construction of a 
new mini-workflow. Taking the first collaboration pattern 
(dataset request) as an example, Fig. 3 shows a section of its 
BPEL definition. For simplicity, we skipped the section 
defining messages (collaboration messages), partners 
(collaborators A and B), and variables (messages), and links 
(expressing synchronization dependencies). 

As shown in Fig. 3, each collaboration primitive is 
wrapped as a Web service. Two parties (Collaborators A 
and B) act as service providers and service requestors 
alternatively. Each collaboration primitive is realized by a 
service call, associated with the corresponding messages. 
Once represented by BPEL, multiple collaboration 

constructs may combine to form a comprehensive 
collaboration scenario. Such a service-oriented model 
enables platform-neutral and language-neutral collaboration. 

 

3) Service-Oriented Collaboration Provenance 
Provenance has been widely considered critical to the 

reproducibility of scientific workflows [24, 25]. Compared 
to existing significant amount of work focusing on 
provenance for scientific workflow execution, our work 
focuses on collaboration provenance tracking human 
interactions in the process of scientific workflow 
composition. Our method is to record all collaborative 
activities leading to a composed workflow. 

We decided to adopt the Web services technology [23] 
to realize collaboration mini-workflows. As the best 
enabling technology of Service Oriented Architecture 
(SOA) to date, the Web services technology allows us to 
enable universal communications among participating 
scientists with platform independence and language 
independence. Collaboration primitives are encapsulated in 
Simple Object Access Protocol (SOAP) messages and 
communicated between collaborators. To enable validation 
and analysis, we adopt the XML Schema to uniform the 
format of collaboration messages. Fig. 4 shows a section of 
the specification of a collaboration message. 

Messages are divided into request messages and 
response messages. Each message contains one or more 
primitives that form a transaction, meaning that they form 
an atomic unit of work in a scientific workflow. Each 
transaction aims to serve for a task in a workflow, which 
belongs to a scientific project. A message may also contain 
optional data such as annotations. 
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Figure 5. Word count workflow. 

V. COMPOSITION CONCURRENCY CONTROL 

The lifetime of a collaborative scientific workflow may 
last for a long period of time, thus the concurrency control 
over its different phases deserves consideration. In this 
paper, we discuss concurrency control at workflow 
composition time. 

A. Locking Granularity 

At composition time, multiple scientists collaborate to 
develop a scientific workflow. Without reinventing the 
wheel, our previous work extended Taverna, a popular 
scientific workflow tool, into a collaborative version [26]. 
The reason why we chose Taverna is mainly based on its 
popularity and big user base [11]. Another reason is that 
Taverna is an open-source tool developed in Java. Thus we 
can explore its code and turns it into a collaborative version. 
Adopting the instrument from an extensively tested and well 
proved human communication protocol, Robert’s Rules of 
Order (RRO) [27], we establish a floor control mechanism. 
Each scientific workflow maintains a single floor (token), 
which can be assigned to one collaborator at a time. Each 
collaborator requests and competes for the floor. Only the 
collaborator holding the floor can propagate their changes 
on the shared workflow. After done with the update, the 
collaborator can release the floor and other collaborators 
may get it. 

Such a workflow-level floor control may not be efficient 
to support large-scale scientific workflow composition. 
Since scientific research is an exploratory process, the 
development of a scientific workflow may undergo many 
discussions and changes and may last for a long period of 
time. Meanwhile, a collaboration group nowadays usually 
comprises scientists from different organizations at 
distributed locations. They may possess different schedules 
and may even reside in different time zones; thus, their 
collaboration may adopt both synchronous and 
asynchronous modes. Furthermore, a large-scale scientific 
workflow may involve many comprising components. It is 
neither efficient nor practical, if one scientist working on 
one component locks the entire workflow and other 
scientists cannot work on unrelated components. 

To increase composition concurrency, we investigate the 
option of locking the smallest building blocks. A scientific 
workflow allows multiple un-overlapped locks, so that 
multiple scientists may work on the locked components 
simultaneously. 

According to the existing scientific workflow 
management tools, the smallest building blocks in a 
scientific workflow are tasks and data channels. In Taverna, 
a task is called a processor; the data channels linking 
between processors are called data links. Fig. 5 is a highly 
simplified scientific workflow drawn in Taverna, which 
illustrates a word count example using the MapReduce 
programming model [28]. Two processors Mappers 
repeatedly process a list of word lines, by breaking each line 
into individual words and generating a list of <word, 1> 
pairs over all the words found. All the intermediate <word, 
1> pairs are transferred, through the data links, to the 
processor Reducer that aggregates the pairs according to the 

words. The results are a list of <word, value> pairs that 
show the number of appearances of each word. 

If we set up the locks on individual processors and data 
links only, two collaborators may concurrently update one 
processor Mapper1 and its output data links, respectively. 
This situation may not be desirable, because the data link 
directly depends on the processor. In other words, connected 
processors and data links may have close semantic 
relationships, which need to be preserved by requiring that 
neighboring entities cannot be updated by different 
collaborators at the same time. 

Furthermore, adjacent processors in a workflow may 
also possess semantic relationships between them. For 
example, as shown in Fig. 5, in which triangles represent 
workflow inputs and outputs, the Mapper1 processor and 
the Reducer processor are neighbors in the workflow, and a 
data link connects them together. The Reducer processor 
stays at the downstream of the workflow; meaning that the 
output of the Mapper1 processor servers as the input of the 
Reducer processor. Assume that two collaborators are 
working on the two processors simultaneously, and 
collaborator A changes some business logic at the Mapper1 
processor. Even if these changes may not change the input 
of the Reducer processor, the collaborator working on the 
Reducer processor should be aware that someone is working 
on the upstream processor. 

Therefore, we propose a concept of synchronization 
area that represents a conceptual area in a shared scientific 
workflow, which allows only one collaborator to work on it 
at a given time. Such an area represents a dynamic semantic 
area. In the context of a Taverna workflow, if a user tries to 
lock a data link, the synchronization area is the data link. If 
a user tries to lock a processor, the synchronization area is 
dynamically delimited and includes all of the fan-out data 
links of the processor. In Fig. 5, the manually drawn red 
circle around the Mapper1 processor and its fan-out data 
link represents such a synchronization area. 

B. Locking Algorithms 

Based on the concept of synchronization area, we built 
four algorithms, on locking/releasing a processor and 
locking/releasing a data link. The algorithms are shown as 
below. 
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Algorithm 1: Lock Processor 
Input: A user selects a processor and presses “lock” 
Requirements: Lock a processor. 
1: if processor ∈  locked processor list then do nothing; 
2: else 
3:     begin transaction 
4:         processor_owner ← self; lock_flag ← 1 
5:         for each outgoing data link 
6:             call lock_data_link 
7:             if return = false then abort 
8:     end transaction 
9: endif 
 
Algorithm 2: Release Processor 
Input: A user selects a processor, presses “release” 
Requirements: Unlock a processor. 
1: if processor owner ≠ self then do nothing; 
2: else 
3:     begin transaction 
4:         set processor.lock_flag ← 0 
5:         for each outgoing data link 
6:             call release_data_link 
7:     end transaction 
8: endif 
 
Algorithm 3: Lock Data Link 
Input: A user selects a data link and presses “lock” 
Requirements: Lock a data link. 
1: if data link ∉  database then insert 

2:     if data link.lock_flag = 1 then return false 
3:     else data_link.owner ← self; lockFlag ← 1 
4: endif 
 
Algorithm 2: Release Data Link 
Input: A user selects a data link, presses “release” 
Requirements: Unlock a data link. 
1: if data link owner ≠ self then do nothing; 
2: else set data_link.lock_flag ← 0 

3: endif 
 

If a user selects a processor and clicks to lock the 
processor, we first check whether it has been locked by 
another collaborator. If nobody locks it, then an 
uninterruptable transaction starts. First, we set the lock flag 
of the processor, and fill the name of the owner of the 
processor. For each outgoing data link of the processor, we 
check whether there is an active lock on it. If any outgoing 
data link is currently locked by other collaborators, the 
entire locking attempt is aborted. Otherwise, we call the 
corresponding algorithm to lock the data link. After all 
outgoing data links are locked, the transaction succeeds. In 
summary, the lock action will automatically lock all 
downstream data links, in addition to the processor. 

To release a processor, we will first check whether the 
user has the privilege, i.e., whether she is the owner of the 
processor. If the answer is positive, in addition to the 
processor itself, the action will call the corresponding 
algorithm to release all of the downstream data links. 

To lock a data link, we first check whether the data link 
has been uploaded into the database (here we adopt a lazy 
instantiation pattern for a higher performance). After 
ensuring that the data link is in the database, we check 
whether it has already been locked. If not, the data link will 
be marked as being locked. Otherwise, a notification will be 
sent. 

To release a data link, we first check whether the user 

has the privilege, i.e., whether she is the owner of the data 
link. If the answer is positive, the flag of the data link will 
be set as unlocked. 

C. Collaboration Transactions 

Our locking algorithms facilitate concurrent workflow 
composition. Actions by each user can be modeled as 
transactions to ensure concurrency control. We define four 
basic actions (in Taverna context): 1) insert a data link, 2) 
delete a data link, 3) insert a processor, and 4) delete a 
processor. An update action can be modeled as a delete 
followed by an insert. Thus, all collaborative composition 
actions can be mapped to database update operations. As a 
result, we can exploit the concurrency control facility of 
database management systems to ensure the serializability 
of all executions. Bad transactions will be automatically 
aborted. We are working on an exception handling facility 
here; which is out of the scope of this paper. After a user 
update is successfully committed, all collaborators will be 
notified, so that each collaborator can have the most-up-to 
date workflow. 

At the database level, to support concurrent updates of 
scientific workflow tasks by a distributed group of 
scientists, we implemented a READ COMMITTED with 
first-committer-win (RC-fcw) scheme [29], which is an 
extension of READ COMMITTED with the first-
committer-win feature from the SNAPSHOT isolation level. 
In RC-fcw, transactions obtain long-term write locks on 
items and short-term read locks. In addition, if T1 commits 
to writing a data item between the time period when T2 has 
read and attempted to write the same item, T2 will be 
aborted (first-committer-wins). We implemented RC-fcw 
using the following strategy. Each task stored in a database 
is associated with a version number. When a transaction 
reads a task and intends to update the same task at a later 
time, a version comparison is triggered to check whether 
any other transaction has updated the task in between. The 
check and the update together are performed atomically. 

VI.  SYSTEM DESIGN AND EXPERIMENTS 

A. System Implementation 

We built a collaboration pattern template library. The 
basic building blocks are collaboration primitives. Users can 
build new collaboration patterns using existing collaboration 
primitives. Identified collaboration patterns are stored as 
provenance data to support the tracking, storing, and 
querying of interactions and coordination among scientists. 

We built a central server supporting all workflow 
collaborations. Workflow evolution provenance and 
collaboration provenance are stored in a shared database on 
the server. Each collaborator may store an intermediate 
version of the workflow on the local machine, but all 
committed activities are stored at the server, in order to 
support asynchronous collaboration where collaborators may 
decide to work on the shared workflow at preferable time. 
We consider four options for selecting database systems: 
native XML, relational, XML-relational, and RDF. Currently 
we use a relational database because it is the preferred choice 
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Figure 6. Screen shots of concurrent workflow updates. 

 
Figure 7. Test results of throughputs and failed task updates. 

for Taverna. 
Fig. 6 shows a snapshot of our Confucius system 

supporting concurrent workflow composition. To ease 
illustration, we show two screens (left and right) representing 
two scientists running two client versions of Confucius on 
two distributed machines. Here we use remote desktop 
feature of Windows to show the two screens together. When 
a scientist write locks a task on the shared workflow, the 
other scientist cannot update the task due to our concurrency 
control. 

B. Concurrency Control Experiments 

We have designed and conducted a series of experiments 
to evaluate our READ COMMITTED with first-committer-
win (RC-fcw) scheme for supporting concurrent updates of 
scientific workflow tasks by a group of scientists. Here we 
report our preliminary experimental study. 

For experimental settings, without losing generality, we 
adopt a randomly generated scientific workflow comprising 
20 tasks. Each collaborator is simulated by an independent 
Java thread, which iteratively reads a random task of the 
workflow, waits for a randomly generated time interval, and 
then performs an update on the task. While each 
collaborator indefinitely performs such iterative random 
updates, we record the total numbers of both successful task 
updates and unsuccessful task updates (due to abort), 
respectively, within a predefined time window. All 
experiments were conducted on a PC with Intel Core 2 Duo 
CPU P8800, @2.66 GHz & 2.76GHz and 3 GB main 
memory, running the Windows 7 Home Premium operating 
system. The database system used is Apache Derby 
10.5.3.0. The database is installed in an embedded fashion 
for this experiment, so that no data transportation time is 
considered. 

Our experiments focus on testing the throughput of the 
Confucius system by varying the number of collaborators. 
The throughput is defined as the number of successful task 
updates per minute. The average throughput is calculated for 
each collaboration group size of N (10, 20, …, 100). For 
each group size, the experiment is repeatedly performed 10 
times with the average calculated. We also monitor the 
number of failed task updates performed per minute to show 

the trend of update conflicts as the number of collaborators 
increases. 

Fig. 7 shows how the number of successful task updates 
per minute for varying number of collaborators, from 
76,242 task updates per minute for 10 collaborators, to 
79,015 task updates per minute for 100 collaborators. We 
can see that the collaboration productivity (represented by 
the throughout) is steadily increased as the number of 
concurrent scientist collaboration increases, reaching a 
maximum of 119,207 task updates per minute at a group 
size of 30. Afterwards, the group productivity starts to 
decline due to the increase of conflicts that leads to abortion. 

Fig. 7 also releases that as the number of collaborators 
increases, the number of conflicts and hence the number of 
failed task updates per minute also increases monotonically. 
When the size of a group is smaller than 30, such an 
increasing number of unsuccessful task updates is more than 
compensated by the increased number of successful task 
updates as a result of increased collaborators, assuming a 
constant productivity for each collaborator. However, when 
the size of the group goes beyond 30, the conflicts start to 
dominate - an additional collaborator only decreases 
productivity as she introduces less successful task updates 
than the number of failed task updates that she causes due to 
increased conflicts. 

We also compare our RC-fcw scheme with the Two 
Phase Locking No Wait (2PL-wait0) scheme, which aborts a 
transaction right away if the requested lock is not available. 
In Fig. 7, the experimental results using our scheme are 
shown in green color; and those using the 2PL-wait0 are 
shown in brown color. We can see that our RC-fcw 
approach surpasses the 2PL-wait approach supporting 
scientific collaboration. While the 2PL-wait approach 
supports up to 15 concurrent scientists, our approach 
supports up to 30 concurrent scientists. Fig. 7 also shows 
that our TC-fcw approach bears much lower abort rate, 
when the number of concurrent scientists increases. 

In summary, from a concurrency control point of view, 
there exits an optimal number for the group size that 
optimizes the productivity of the system. How to increase 
such a number, which is the ideal speedup of productivity, is 
an interesting and challenging open research problem. We 
plan to further study this problem in our future research. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented our ongoing work on 
establishing collaboration protocols to support collaborative 
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scientific workflow composition. Our framework includes a 
collaboration ontology associated with a set of collaboration 
patterns, primitives, and constructs, and a number of 
concurrent control mechanisms to support concurrent 
collaborative workflow composition. 

Based on the ontology, we plan to enhance collaboration 
provenance management performance by extending our 
previous work on provenance [30] to support efficient 
collection, storage, and querying of collaboration 
provenance, leveraging existing relational, RDF, and XML 
database techniques. Furthermore, we plan to conduct more 
experiments to study the effects of tuning various 
parameters on concurrent productivity. For example, we 
plan to tune the number of concurrent collaborators, the 
productivity of individual members, the number of tasks 
comprised in the shared scientific workflow, and so on. 
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