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Timing-accurate Storage Emulation

John Linwood Griffin, Jiri Schindler, Steven W. Schlosser,
John S. Bucy, Gregory R. Ganger

Carnegie Mellon University

Abstract

Timing-accurate storage emulation fills an important gap
in the set of common performance evaluation techniques
for proposed storage designs: it allows a researcher to
experiment with not-yet-existing storage components in
the context of real systems executing real applications.
As its name suggests, a timing-accurate storage emula-
tor appears to the system to be a real storage component
with service times matching a simulation model of that
component. This paper promotes timing-accurate stor-
age emulation by describing its unique features, demon-
strating its feasibility, and illustrating its value. A pro-
totype, called the Memulator, is described and shown to
produce service times within 2% of those computed by
its component simulator for over 99% of requests. Two
sets of measurements enabled by the Memulator illus-
trate its power: (1) application performance on a modern
Linux system equipped with a MEMS-based storage de-
vice (no such device exists at this time), and (2) appli-
cation performance on a modern Linux system equipped
with a disk whose firmware has been modified (we have
no access to firmware source code).

1 Introduction

Despite decades of practice, performance evaluation of
proposed storage subsystems is almost always incom-
plete and disconnected from reality. In particular, future
storage technologies and potential firmware extensions
usually cannot be prototyped by researchers, so any eval-
uation must rely upon simulation or analytic models of
the prospective subsystem. Unfortunately, this reliance
commonly limits consideration of real application work-
loads and complex “real system” effects, both of which
can hide or undo benefits predicted by simulating stor-
age components in isolation. For this reason, such local-
ized evaluation has long been considered unacceptable in
other disciplines, such as networking, architecture, and
even file systems.

Timing-accurate storage emulation offers a solution to
this dilemma, allowing simulated storage components to
be plugged into real systems, which can then be used for
complete, application-based experiments. As illustrated
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Figure 1: A system with (a) real storage or (b) emulated stor-
age. The emulator transparently replaces storage devices in a
real system. By reporting request completions at the correct
times, the performance of different devices can be mimicked,
enabling full system-level evaluations of proposed storage sub-
system modifications.

in Figure 1, a storage emulator transparently fills the role
of a real storage component (e.g., a SCSI disk), correctly
mimicking the interface and retaining stored data to re-
spond to future reads. A timing-accurate storage emula-
tor responds to each request after its simulator-computed
service time passes; the performance observed by the
system should match the simulation model. To accom-
plish this, the emulator must synchronize the simulator’s
internal time with the real-world clock, inserting requests
into the simulator when they arrive and reporting com-
pletions when the simulator determines they are done.
If the simulator’s model represents a real component,
the system-observed performance will be of that com-
ponent. Thus, the results from application benchmarking
will represent the end-to-end performance effect of using
that component in a real system.

This paper makes a case for timing-accurate storage em-
ulation and demonstrates that it works in practice. It
describes general design issues and details the imple-
mentation of our prototype emulator. Our original goal
was thorough evaluation of operating system algorithms
for not-yet-existing MEMS-based storage devices [11,
12]—this led to the prototype’s name: Memulator. The
Memulator integrates the DiskSim simulator [10], a real-
time timing loop, and a large RAM cache to achieve
flexible, timing-accurate storage emulation. It can em-
ulate any storage component that DiskSim can simulate,
including MEMS-based storage, disk arrays, and many
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modern disk drives. Calibration measurements indicate
that the Memulator’s response times are within 2% of
the DiskSim times for over 99% of requests. Using
DiskSim’s validated disk models, we also verify that sys-
tem performance is the same with the Memulator as with
a real storage device.

We illustrate the power of timing-accurate storage emu-
lation with two experiments that the Memulator makes
possible. First, we measure how MEMS-based storage
would affect application performance on a current Linux
system; since fully-functioning MEMS-based storage
devices are still years away, this experiment is only pos-
sible with emulation. Second, we measure how an ex-
tension (zero-latency reads) to disk firmware would af-
fect application performance on a Linux system; since
we have no access to firmware source code, we can only
do this with emulation. We also discuss a third type of
experiment, interface extensions, that requires changes
to both the host OS and the storage subsystem; without
emulation (or complete implementation), thorough eval-
uation of interface extensions is not possible.

The remainder of this paper is organized as follows. Sec-
tion 2 makes a case for timing-accurate storage emula-
tion. Section 3 discusses the design of timing-accurate
storage emulators in general. Section 4 describes the
Memulator in detail. Section 5 validates the response
times of the Memulator relative to simulated device per-
formance. Section 6 describes experiments enabled by
the Memulator. Section 7 summarizes this paper’s con-
tributions.

2 A case for emulation

Storage emulation is rarely used for performance evalu-
ation of prospective storage system designs. This sec-
tion makes a case for more frequent use, arguing that
timing-accurate storage emulation offers a unique per-
formance evaluation capability: experimentation with
as-yet-unavailable storage components in the context of
real systems. Such experimentation is important because
complex system characteristics can hide or reduce pre-
dicted benefits of new storage components [9]. Fur-
ther, some new storage architectures and interfaces re-
quire both OS modifications and new (or modified) stor-
age components—until the new components are avail-
able, only emulation allows such collaborative advances
to be tested and their performance evaluated.

2.1 Storage performance evaluation

Figure 2 illustrates a spectrum of techniques for evalu-
ating storage designs, ranging from quick-and-dirty es-
timates to real application measurements on a complete
system. Techniques to the left generally demand less of

the evaluator: less effort to set up and employ, less time
to produce a result, and less need for the evaluated stor-
age system to be feasible. Techniques to the right gen-
erally produce more believable results: more accurate,
more inclusive of complex system effects, and more rep-
resentative of the effects under real workloads.

The six techniques shown are each appropriate in some
circumstances, as each offers a different mixture of these
features. For example, storage simulation allows hy-
pothetical storage systems to be evaluated quickly and
efficiently. Even futuristic technologies and modifica-
tions to proprietary firmware can be explored. Simula-
tion results, however, must be taken with a grain of salt,
since the simulation may abstract away important char-
acteristics of the storage components, overall system, or
workload. In particular, representative workloads are
rarely used, since synthetic workload generation is still
an open problem, I/O traces ignore system feedback ef-
fects [9], and available traces are often out-of-date—in
fact, many storage researchers still rely on the decade-
old “HP traces” from 1992 [21]. As a different example,
experimenting with prototypes allows one to evaluate de-
signs in the context of full systems and real workloads.
Doing so, of course, requires considerable investment in
prototype development and experiment configuration.

As indicated in Figure 2, storage emulation offers an in-
teresting mix of features: the flexibility of simulation
and the reality of experimental measurements. That is,
storage emulation allows futuristic storage designs to be
evaluated in the context of real OSes and applications.
This enables two types of experiments. First, end-to-end
measurements can be made of the effects of non-existent
storage components in existing systems. Such compo-
nents are usually simulated in isolation and evaluated un-
der non-representative workloads. Second, end-to-end
measurements can be made of the effects of non-existent
storage components in modified systems. For example,
storage interface changes often require that both the stor-
age components and the OS be modified to utilize the
new interface. Experimentation is impossible without
the ability to modify both components, which is a very
real problem with the proprietary firmware of most disks
and disk array controllers. Section 6 explores concrete
examples of both types of experiments.

We are aware of only one other technique offering
a similar mix of features: complete machine simula-
tion [3, 17, 19]. Under this technique, the hardware of
a computer system is simulated in enough detail to boot
a real OS and run applications. If the simulation pro-
gresses according to timing-accurate models of the key
system components (e.g., CPUs, caches, buses, mem-
ory system, I/O interconnects, I/O components), it can
be used for performance evaluation. Because it boots
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Figure 2: Storage performance evaluation techniques. This illustration linearizes techniques across a spectrum from the
hquickest,easiest,most flexiblei to the most haccurate,complete,representativei. In this spectrum, storage emulation provides the
unique ability to explore nonexistent storage components in the context of full systems executing real applications.

a real OS and runs real applications, a complete ma-
chine simulator enables the same types of experiments
as storage emulation. Further, by manipulating simu-
lator parameters, the effects of new storage devices on
hypothetical machines (e.g., with 10 GHz CPUs) can be
evaluated [20, 22]. Unfortunately, substantial effort is
required to build and maintain a complete machine sim-
ulator, both in terms of correctly executing programs and
correctly accounting for time. For example, the SimOS
machine simulator required extensive effort to create and
validate; just a few years later, its hardware models are
out of date, the CPU instruction set it emulates is being
phased out, and source code for the OS that it boots is
difficult to acquire. In addition, these simulators usually
run more slowly than real systems, increasing evaluation
time. Storage emulation does not share these difficulties.

2.2 Related emulation

In a sense, storage emulation is commonplace. For ex-
ample, the standard SCSI interface allowed disk arrays
to rapidly enter the storage market by supporting a disk-
like interface to systems. Similarly, the NFS remote pro-
cedure call (RPC) interface allowed dedicated filer appli-
ances [13] to look like traditional NFS file servers. In ad-
dition, we have been told anecdotal stories of emulation’s
use in industry for development and correctness testing
of new product designs. However, these examples repre-
sent only the “storage emulation” half of timing-accurate
storage emulation.

The “timing-accurate” half has been much utilized
by networking researchers [1, 6, 18]. Timing-
accurate network emulation parallels our description of
timing-accurate storage emulation: real hosts intercon-

nected by the emulated network observe normal packet
send/receive semantics and performance that accurately
reflects a simulation model. The observable performance
effects include propagation delays, bandwidths, and
packet losses. Like timing-accurate storage emulation,
timing-accurate network emulation enables real system
benchmarking that would not otherwise be possible—in
particular, deploying a substantial network just for exper-
iments is simply not feasible.

We are aware of only a few previous cases of timing-
accurate storage emulation being used for performance
evaluation. The most relevant example is the evaluation
of eager writing by Wang et al. [25]. Under eager writ-
ing, data is written to a disk location that is close to the
disk head’s current location. To evaluate the benefits of
having disk firmware support for eager writing, Wang et
al. embedded a disk simulator in Solaris 2.6, augmented
it with a RAM disk, and arranged (using the sleep()

system call) to have completions reported after delays
computed by the simulator. Although some details dif-
fer, this is similar to the Memulator’s design. A less di-
rect example is the common practice of emulating non-
volatile RAM by simply pretending that normal RAM
is non-volatile [5, 8]. Although this is unacceptable for
a production system, such pretending is fine for perfor-
mance experiments.

A central purpose of this paper is to promote timing-
accurate storage emulation as a first-class tool in the stor-
age research toolbox. Towards this end, we describe its
unique capabilities, demonstrate its relatively straightfor-
ward realization, and illustrate its power with several ex-
periments that we could not otherwise perform.



3 Emulator design

A timing-accurate storage emulator must appear to its
host system to be the storage subsystem that it emulates.
Doing so involves three main tasks. First, the emula-
tor must correctly support the protocols of the interface
behind which it is implemented. Second, the emulator
must complete requests in the amount of time computed
by a model of the storage subsystem. Third, the emulator
must retain copies of written data to satisfy read requests.
This section describes how these three tasks are handled
and the steps an emulator goes through to service storage
requests.

3.1 Emulator components

Figure 3 shows the internals of a timing-accurate storage
emulator. This section describes how the components of
the emulator work to satisfy three tasks: communications
management (the storage interface), timing management
(the simulation engine and timing loop), and data man-
agement (the RAM cache and overflow storage).

Communications management. The storage interface
component connects the emulator to the host system.
As such, it must export the proper interface. The stor-
age interface ensures that requests are transferred to and
from the host according to the emulated protocol. In-
coming requests are parsed and passed to the other em-
ulator components, and outgoing messages are properly
formatted for return to the host. In addition to servic-
ing requests, the storage interface must respond appro-
priately to exceptional cases such as malformed requests
or device errors.

In response to a read or write request, the storage in-
terface parses the request, checks its validity, and then
passes it to the timing and data management components
of the emulator. In some cases, it may have to inter-
act further with the host (e.g., for bus arbitration or if
the emulated device supports disconnection). In addi-
tion to reads and writes, the emulator must support con-
trol requests that return information about the emulated
drive such as its capacity, status, or error condition. In
practice, a subset of often-used control commands usu-
ally suffices. When a request is completed, the response
is formatted appropriately for the emulated protocol and
forwarded to the host through the storage interface.

Timing management. The simulation engine and timing
loop work together to provide the timing-accurate nature
of the emulation. Specifically, the simulator determines
how long each request should take to complete, and the
timing loop ensures that completion is reported after the
determined amount of time.

There are two ways that the simulation engine and tim-
ing loop can interact. One approach keeps the two sep-

Storage interface

RAM cache Timing loop

Simulation engineOverflow storage

Host

Emulation software

Figure 3: Emulation software internals. The five compo-
nents inside the “storage emulation software” box comprise
the three primary emulator tasks: communications manage-
ment (the storage interface), timing management (the simula-
tion engine and timing loop), and data management (the RAM
cache and overflow storage).

arate: when a request arrives, the timing loop calls the
simulator code once to get the service time. In this ap-
proach, the simulator code takes the real-world arrival
time and the request details, and it returns the computed
service time. After the appropriate real-time delay, the
timing loop tells the storage interface component to re-
port completion. The emulator-based evaulation of eager
writing [25] used a disk simulator by Kotz et al. [15] in
this way.

Although it is straightforward, this first approach often
does not properly handle concurrent requests. For exam-
ple, a new request arrival may affect the service time of
outstanding requests due to bus contention, request over-
lapping, or request scheduling. A more general approach
is to synchronize the advancement of the simulator’s in-
ternal clock with the real-world clock. This synchroniza-
tion can most easily be done with event-based simula-
tion.

An event-based simulator breaks each request into a se-
ries of abstract and physical events: REQUEST ARRIVAL,
CONTROLLER THINK TIME COMPLETE, DISK SEEK

COMPLETE, READ OF SECTOR N COMPLETE, and so
on. Each event is associated with a time, and an event
“occurs” when the simulator’s clock reaches the corre-
sponding time. Event occurrences are processed by sim-
ulation code that updates state and schedules subsequent
events. For example, the CONTROLLER THINK TIME

COMPLETE event may be scheduled to occur a constant
time after the REQUEST ARRIVAL event.

To synchronize an event-based simulation with the real
world, the emulator lets the timing loop control the sim-
ulator clock advancement. When each event completes,
the simulator engine notifies the timing loop of the next



scheduled event time. The timing loop waits until that
time arrives, then calls back into the simulator to begin
processing the next event. If a new request arrives, a RE-
QUEST ARRIVAL event is prepended to the simulator’s
event list with the current wall clock time, and the timing
loop calls back into the simulator immediately. When the
REQUEST COMPLETE event ultimately occurs, the sim-
ulator engine notifies the storage interface.

In practice, the request arrival and completion times must
be skewed slightly to account for processing and com-
munication delays. The arrival time of a request is ad-
justed backwards slightly to account for the delay in re-
ceiving the request. Likewise, the simulator runs slightly
ahead of the real-world clock so that the storage interface
will start sending completion messages early enough for
them to arrive on time. An obvious additional require-
ment is that the simulation computations themselves be
fast enough that they do not delay completion messages;
the computation time for any given request must be lower
than the computed service time.

Data management. In addition to providing accurate
timing of requests, emulation software must provide a
consistent view of stored data. This is satisfied by the
combination of a RAM-based block (sector) cache and
overflow storage for swapping blocks from the cache.
These components act as a conventional memory man-
ager: groups of blocks can be grouped into “pages” that
are evicted from or promoted into the cache. The over-
flow storage is only necessary for workloads requiring
active storage in excess of the memory allocated to the
emulation software. Possible implementations of the
overflow storage include paging to one or more locally-
attached disk drives, or paging to shared network-based
RAM [2].

Data transfers from overflow storage may not complete
quickly enough when emulating a high-performance de-
vice. When this is the case, cache preloading schemes
may be necessary to ensure high RAM cache hit rates.
These schemes can take advantage of the repeatability of
experiments. For example, a workload could be initially
run solely to generate a trace of accessed blocks, then run
a second time using that trace to intelligently preload the
cache throughout execution.

Since a timing-accurate storage emulator is used only as
a performance evaluation tool and not as a production
data store, persistence characteristics can be relaxed to
increase performance. For example, write-back caching
can be used to avoid costly overflow storage delays. If
the system crashes and data is lost, the experiment can
simply be re-run.

3.2 Host system interactions

Figure 4 shows the two most natural points at which to
integrate a storage emulator into a host system. In the
first (local emulation), the device driver is modified to
communicate directly with the emulation software rather
than with real storage components. Although this does
involve some modifications to the system under test, they
are restricted to the device driver. In the second (remote
emulation), the host system is left unmodified and the
emulation software runs on a second computer attached
to the host via a storage interconnect. The second com-
puter responds just as a real storage device would. Both
integration points leave intact the application and OS
software which is doing the real work and generating
storage requests. Both also share a 3-step interface be-
tween the emulation software and the rest of the system.

Step 1: Send the request to the emulator. When a read
or write request arrives at the device driver, it is directed
to the emulated device. In the case of local emulation,
the device driver is modified to be aware of the emula-
tion software and explicitly delivers the request to it. A
device that is emulated remotely does not need a mod-
ified device driver; requests are sent unmodified across
the bus to the emulation machine which in turn delivers
the request to the emulation software located there. Once
the emulation software (either local or remote) has the
request, it issues it to the simulator engine to determine
how long the request should take to complete.

Step 2: Transfer data between the host and emulator.
The emulation software initiates the data transfer. In the
case of a read request, data is transferred from the RAM
cache to the host. In the case of a write request, data goes
from the host into the RAM cache and is saved to service
future reads. Data transfer should usually begin soon af-
ter the request arrives, since all data must be transferred
before the completion time computed by the simulator in
Step 1. A local emulator can pass pointers to buffers in its
RAM cache directly to the modified device driver. The
driver then copies data between these userspace buffers
and the appropriate kernel buffers. A remote emulator
sends data over the bus to the host.

Step 3: Send the reply to the device driver. The em-
ulation software waits until the request service time as
determined in Step 1 elapses. At this point, a comple-
tion interrupt must be delivered to the OS. In the remote
case, the completion message is sent over the bus, just
as with a normal storage device, and the unmodified de-
vice driver deals with it appropriately. In the local case,
the emulation software directly notifies the device driver
that the request is complete at the device level. The driver
then calls back into the operating system to complete the
request at the system level.
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Figure 4: Communication paths when emulation is run (a) locally or (b) remotely. When run locally, emulation software commu-
nicates directly with a modified device driver in the kernel. Under remote emulation, all modifications take place outside the system
under test, eliminating any impact of the emulation overheads. The three steps are described in Section 3.2.

The local design works well in practice and allows for
extra communication paths between the operating sys-
tem and emulator. For example, the device driver can
measure perceived request service times and communi-
cate these to the emulator, enabling the emulator to re-
fine its model of communications overheads. In addi-
tion, this architecture enables evaluation of nonstandard
device interfaces (such as freeblock requests or exposed
eager writes) as discussed in Section 6.3.

However, a local emulator will have some impact on the
system under test. Device driver modifications are nec-
essary for communications with the emulator, and extra
CPU time and memory are used to run the emulation
software, which could perturb the host’s workload. Us-
ing a dual-processor machine with one CPU dedicated to
emulation and with added memory dedicated to the RAM
cache can mitigate this overhead, but some interference
is inevitable. A remote emulator avoids these perturba-
tions completely by performing the emulation on sepa-
rate, dedicated hardware. In this case, host overheads are
eliminated and no modifications are required in the host’s
device driver.

In addition to device-specific delays, a local emulator
must account for bus delays, since there is no physical
bus between the host and the emulator. An advantage
of this is that it allows emulation of devices “connected”
to very fast local buses (for example, the PCI or system
bus) or even emulation of the interconnect itself. A re-
mote emulator that is physically attached to the host via a
bus need not calculate such delays, unless it is emulating
a different storage interconnect.

4 Implementation of the Memulator

This section describes the implementation of the
Memulator, a prototype timing-accurate storage emula-
tor. The emulation software runs as a user-level applica-
tion and communicates with the host via a modified SCSI
device driver. The Memulator can be run as either a local
or remote emulator.

User-level emulation software. In the Memulator, user-
level emulation software does the core work of timing-
accurate storage emulation. It interprets requests, retains
stored data, simulates device timings, and sends replies
after the correct delays. This component is common to
both the local and remote Memulator.

Timings are computed by DiskSim, which is an event-
driven storage simulator [10]. The Memulator interacts
with DiskSim via its “external control mode,” in which
external software (the timing loop) calls into DiskSim,
specifies how far the simulation time should proceed
before control is returned, and is then told when the
next DiskSim-internal event should happen. The timing
loop keeps the simulation time in close proximity to the
real-world clock as given by the processor’s time stamp
counter.

Main memory is used to hold data written by previous
requests. The Memulator’s RAM cache is allocated and
pinned in-core in its entirety during initialization using
the malloc() and mlock() system calls. The operat-
ing system’s resource limits may need to be adjusted to
allow the pinning of a large memory region. The Memu-
lator does not currently support overflow storage, so the
working set of each experiment is limited to the cache’s
capacity.

When invalid opcodes, out-of-range requests, or invalid
target/LUN pairs are received, the Memulator’s storage



interface generates the appropriate sense code and im-
mediately returns an error condition. Table 1 lists the
SCSI commands supported by the Memulator. These
commands are sufficient to allow Linux or FreeBSD to
mount and use Memulator devices as SCSI disks.

Local emulation. The local version of the Memulator
runs on the Linux 2.4 operating system. When used for
local emulation, the user-level emulation software runs
on the system under test as illustrated in Figure 4(a).

The modified device driver is a low-level component in
the Linux SCSI subsystem. The driver accepts SCSI
requests (Scsi Cmnd structures) from the Linux kernel
via the standard mid-to-low-level queuecommand() in-
terface and passes them on to the storage interface as de-
scribed below. When a request is complete, the driver
notifies the kernel using the standard scsi done() mid-
level callback.

The Memulator’s storage interface communicates with
the device driver via modified system calls on the spe-
cial character device file /dev/memulator. The storage
interface uses the poll() system call to discover that a
new request has arrived at the driver. It then uses the
read() system call to transfer the 6-, 10-, or 12-byte
SCSI command, the target device number, the logical
unit number, and a unique request identifier. Following
this transfer the timing loop immediately prepends a RE-
QUEST ARRIVAL event to the DiskSim event queue. The
arrival timestamp is skewed approximately 25µs into the
past to account for communications overheads; this value
was determined empirically for our experimental setup.
Once the newly arrived request is enqueued, the storage
interface immediately directs the device driver to copy
the requested data between the user and kernel memory
buffers. The emulation software later uses the write()

system call to notify the device driver when it determines
the request is complete.

Table 1: Required SCSI command support. Support for the
upper six commands is necessary for an emulator to interact
with a Linux 2.4 host. All nine commands must be supported
when communicating with a FreeBSD 4.4 host.

Command Function
READ (6 and 10) Read data from device
WRITE (6 and 10) Write data to device
TEST UNIT READY Check for device online
INQUIRY Get device parameters
READ CAPACITY Get device size in sectors
REQUEST SENSE Get details of last error
MODE SENSE Configure device
WRITE AND VERIFY Verify data on device
SYNCHRONIZE CACHE Flush device cache

Remote emulation. The remote version of the Memu-
lator runs on the FreeBSD 4.4 operating system. When
used for remote emulation, the Memulator runs entirely
on a separate computer system. Both the host and remote
systems are connected to a shared storage interconnect as
illustrated in Figure 4(b).

Remote emulation requires hardware support in the bus
adapter to act as a target in order to receive commands
from an initiator. The operating system must also handle
incoming requests and direct them to the user-level em-
ulation software. This support is provided by FreeBSD’s
CAM subsystem when used with certain SCSI or Fibre
Channel cards. The storage interface communicates with
a modified target mode device driver in much the same
manner as described for the local version of the Memula-
tor. For remote emulation experiments the arrival times-
tamp is skewed approximately 120µs into the past.

Alternative implementations of a remote emulator could
leverage storage networking protocols such as iSCSI or
run on dedicated custom hardware connected to the PCI
or system buses of the host system.

5 Memulator validation

This section presents three evaluations of the Memula-
tor. First, we show that the upper bound of performance
for our setup is sufficient to meet the requirements of the
devices we model. Second, we show that the Memulator
accurately reflects the timings of a simulated storage de-
vice. Third, we show that this timing-accuracy can trans-
late into accurate emulation of a real storage device.

5.1 Experimental setup

Local emulation experiments are performed on a
700MHz dual-processor Intel Pentium III-based work-
station with 2GB RAM running Linux 2.4.2. The second
CPU is used to reduce interference between the emula-
tion software and the regular workload. During all ex-
periments, 1;792MB of main memory is pinned as the
Memulator’s RAM cache, leaving 256MB for the “real”
system activity. Unless otherwise specified, the experi-
ments in this paper are run under local emulation.

For remote emulation, the Memulator runs on a single-
processor workstation with 2GB RAM and FreeBSD
4.4. The host system is a single-processor workstation
with 256MB RAM running either Linux or FreeBSD
as noted below. The host and remote systems are con-
nected by an 80MB=s SCSI bus via Adaptec AHA-
29160 adapters.

The disk used for comparison is the Seagate Cheetah
X15, a 15,000 RPM disk with 3:9ms average seek time
and 18GB capacity. It is connected to a 1Gbit=s Fibre
Channel network (FC-AL) hosted by a QLogic ISP2100.



This disk was chosen as a reasonable example of a mod-
ern high-end disk. Validated DiskSim specifications are
available [7] for this disk, allowing us to configure the
Memulator using validated parameters for the Cheetah
X15.

To focus on storage performance, we use six artificial
workloads: “random or mixed” crossed with “small, uni-
form, or large.” A random workload has zero probabil-
ity of local access or sequential access; request starting
locations are uniformly distributed across the storage ca-
pacity. A mixed workload has 30% probability of “local”
access (within 500 LBNs of the previous request) and
20% probability of sequential access. A small workload
is composed of 8-sector (4KB) requests, a large work-
load uses 256-sector (128KB) requests, and a uniform
workload has uniformly distributed request sizes in inter-
vals of 2KB over the range [2KB, 130KB]. Therefore,
a “mixed large” workload has some sequential and local
accesses and is composed of 128KB requests. All work-
loads are made up of 1,000 I/O requests, of which 67%
are reads.

We also present results for the PostMark benchmark [14].
PostMark was designed to measure the performance of
a file system used for electronic mail, news, and web-
based services. It creates a large number of small files, on
which a specified number of transactions are performed.
Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read
or append. The transaction types are chosen randomly
with consideration given to user definable weights.
The benchmark parameters in these experiments spec-
ify 20,000 transactions on 10,000 files, with a file size of
between 10KB and 20KB.

5.2 Implementation performance

To determine the fastest device that the Memulator can
emulate, we configured it to reply with request comple-
tions immediately after the data transfer phase. By re-
moving the timing component, all that remains is the
overhead required for emulation.

We measure request rate and bandwidth for both local
and remote configurations. Request rate is measured
by issuing 210 one-sector read requests and dividing the
number of requests by the elapsed time. Bandwidth
is measured by issuing 210 1024-sector read requests
and dividing the total bytes transferred by elapsed time.
System-level caching is disallowed; all requests are syn-
chronously issued through the Linux SCSI generic (SG)
interface in local emulation and the FreeBSD direct ac-
cess interface during remote emulation.

The results for local and remote emulation are shown
in Table 2, along with the required performance values

for MEMS-based storage [11] and the Seagate Cheetah
X15 [23]. Both the local and remote Memulator config-
urations achieve the required performance threshold for
both devices along both axes.

5.3 Memulator accuracy

To evaluate how closely the Memulator comes to per-
fect timing-accurate emulation, we execute the six arti-
ficial workloads against both the Memulator and against
standalone DiskSim. We run these workloads against the
Memulator by generating a series of SCSI requests based
on each workload’s characteristics and issuing the re-
quests to the Memulator through the Linux SCSI generic
(SG) interface. The SG interface allows an applica-
tion to create SCSI requests at the user level, pass these
commands directly to the device driver, receive replies
from the driver, and handle them directly at user level.
We measure the Memulator’s accuracy by taking arrival
and completion timestamps inside the device driver, then
comparing these times to the per-request times reported
by standalone DiskSim. If these times match, the kernel
is seeing exactly the performance intended.

Table 3 displays the results, and Figure 5 provides a sup-
plementary view of the uniform workloads. The average
j% emulation errorj (that is, the average per-request er-
ror, independent of whether the request completed too
fast or too slow) is less than 0.33% in all cases, and over
99% of all requests have less than 2% error. Most errors
larger than 2% are only slightly larger. Exceptions fall
into two categories: (1) the simulator can take too long
to compute a result, and (2) the emulation program can
be context-switched off of the CPU. These exceptions
occurs for about one request in 1000 in the experiments.
Fundamentally, the extra delays from both categories are
unbounded, but we have observed only 5–10% inaccu-
racy from the first and up to 3–4ms errors from the sec-
ond.

Table 2: Upper bound of Memulator performance. The local
and remote emulation values are measured with the Memula-
tor configured to return data and replies as quickly as possible.
The remote emulation experiments are run using a FreeBSD
host. The MEMS-based storage [11] and Seagate Cheetah
X15 [23] values represent peak bandwidth and average request
rate for random I/O.

Request rate Bandwidth
Available performance

Local emulation 22;468req=s 84:5MB=s
Remote emulation 8;883req=s 103:5MB=s

Required performance
MEMS-based storage 1;422req=s 76MB=s
Cheetah X15 disk 244req=s 49MB=s



Table 3: Memulator accuracy. Each workload represents 1,000 requests as measured inside the device driver and inside DiskSim.
“Mean service time” is the average request service time reported by the simulation engine. “Mean emulation error” reports the
average difference between the measured (emulated) time and the simulated service time of each request. Negative values represent
requests that finished more quickly than the simulated time. “Mean jemulation % errorj” is the average of the absolute values of
percent error of the emulated time for each request with respect to the simulated service time. “Requests under 1% error” shows
the percentage of requests completing within 1% of their simulated time.

small requests (4KB) uniform (2–130KB) large requests (128KB)
random mixed random mixed random mixed

10ms constant time model
mean service time 10;000µs 10;000µs 10;000µs 10;000µs 10;000µs 10;000µs
mean emulation error -0:65µs -0:49µs 0:93µs 0:75µs 2:36µs 1:42µs
mean jemulation % errorj 0.01% 0.01% 0.04% 0.02% 0.05% 0.05%
requests under 1% error 100% 100% 99.9% 100.0% 100.0% 99.9%

Cheetah X15 model
mean service time 6;509µs 5;568µs 9;116µs 8;410µs 11;301µs 10;154µs
mean emulation error 5:33µs 10:87µs 0:92µs -0:19µs -10:08µs -9:70µs
mean jemulation % errorj 0.11% 0.33% 0.07% 0.08% 0.09% 0.11%
requests under 1% error 99.5% 92.4% 99.9% 99.1% 100% 100%

MEMS-based storage model
mean service time 1;057µs 1;049µs 2;001µs 1;957µs 2;846µs 2;857µs
mean emulation error -0:21µs 0:16µs -0:59µs -0:50µs -1:54µs -0:01µs
mean jemulation % errorj 0.13% 0.16% 0.13% 0.14% 0.13% 0.11%
requests under 1% error 100% 99.4% 100% 98.9% 100% 100%

Table 4: Application run times using the Memulator vs. using a real disk. Both the local and the remote Memulator faithfully
reproduce the performance of the disk under the PostMark benchmark, but there is some interference with application performance
in the local emulation case. PostMark was configured to use 10,000 files between 10 KB and 20 KB in size, with 20,000 transactions.
Each data point is the average of ten runs of the benchmark. The remote emulation experiments are run using a Linux host.

Real Cheetah X15 Local emulation Remote emulation
PostMark

run time 78:422s 74:523s 78:532s
standard deviation 0:375 0:618 0:244
percent error from real disk — 4:97% 0:14%
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Figure 5: Densities of emulation error and percent error. Emulation error is defined as the difference between the time reported
by the emulator and that reported by the simulator alone running the same workload. This error shows the timing discrepancy
caused by variation in the overheads of emulation, such as passing commands and data to the emulation software. A perfect
emulator would introduce no discrepencies and the times would match exactly. The Memulator is shown to introduce only minor
discrepencies compared to DiskSim running alone. Each graph shows the combined results of the “random uniform” and “mixed
uniform” workloads, for a total of 4,000 requests. Percent error is calculated with respect to the simulated request time. Bin sizes
are 1µs in the service time graphs and 0.05% in the percent error graphs.



Table 5: Exploring a change to disk firmware. Here we use
timing-accurate storage emulation to add zero-latency access
capability to a disk (the Seagate Cheetah X15) that in reality
does not support it. Each data point is the average of ten runs
of the benchmark.

Zero- Decrease
Default latency in time

PostMark
run time 74:523s 74:469s 0.1%
std. dev. 0.618 0.783 —

5.4 Comparison with real disks

Having established in Section 5.3 that the Memulator
matches its internal simulation timings, we compare ap-
plication run times using the Memulator vs. using real
disks. The results are shown in Table 4. In this ex-
periment, we see the advantage of using remote emula-
tion rather than local emulation. Interactions between the
“real” application/OS activity and local emulation activ-
ity cause the benchmark runtime to be off by 5%. With
remote emulation, on the other hand, benchmark perfor-
mance is almost identical (within 0.14%) whether using
the disk or the Memulator. Although the close match
for remote emulation is comforting, it is important to re-
member that the Memulator’s main responsibility is to
ensure fidelity to the model’s timing. It is the respon-
sibility of the model’s creator to ensure fidelity to the
modeled device.

6 Memulator-enabled experiments

This section illustrates the power of timing-accurate stor-
age emulation by describing experiments made possible
by the Memulator. These experiments fall into three cat-
egories: experiments with modified disks, experiments
with futuristic devices, and experiments with storage in-
terface extensions.

6.1 Changes to existing devices

A long-standing obstacle for most experimental stor-
age researchers is that disk firmware source code
is unavailable. This prevents direct experimentation
with modifications to firmware algorithms, including
LBN-to-physical mapping, on-board cache management,
prefetching, and scheduling. With the Memulator, this
obstacle is partially removed.

To illustrate the new capability, we compare application
performance when a disk has zero-latency read support
and when it does not. Zero-latency read (a.k.a. read-on-
arrival and immediate read) allows the disk firmware to
fetch sectors from the media in any order, rather than
requiring strictly ascending LBN order. When exactly

Table 6: Exploring technology trends. These results show the
effect of scaling the rotation speed of the Seagate Cheetah X15
to 30,000 RPM. Each data point is the average of ten runs of
the benchmark.

15,000 30,000 Decrease
RPM RPM in time

PostMark
run time 74:523s 66:215s 11.1%
std. dev. 0.618 0.651 —

one track is fetched, zero-latency read support allows the
media transfer to begin as soon as the seek is complete;
since every sector on the track is desired, the media trans-
fer requires at most one rotation. Without zero-latency
read, the same request would suffer the normal rotational
latency before the one rotation of media transfer.

Table 5 shows the performance impact of zero-latency
reads on the PostMark benchmark described in the pre-
vious section. Although some disks support zero-latency
reads, the Cheetah X15 does not. This design choice is
correct for PostMark: as the workload involves mostly
small files and background disk writes, there is little op-
portunity to benefit from zero-latency reads. A workload
with larger transfers could be expected to benefit.

Although this particular result may not be interesting, the
ability to conduct the experiment is. Enabling full system
experimentation may increase the believability of results
pertaining to future firmware enhancement proposals.

In addition to firmware and algorithmic changes, timing-
accurate storage emulation enables experiments reflect-
ing hardware and technology changes. For example,
Table 6 shows the performance impact of doubling the
Cheetah X15’s rotational speed. Despite reducing rota-
tional latency by half and doubling the media transfer
rate, this hardware upgrade results in only an 11.1% im-
provement for PostMark.

6.2 New storage technologies

Microelectromechanical systems (MEMS)-based storage
is an exciting new technology that could soon be avail-
able in systems. MEMS are very small scale mechani-
cal structures—on the order of 10–1000µm—fabricated
on the surface of silicon chips [26]. Using thousands of
minute MEMS read/write heads, data bits can be stored
in and retrieved from media coated on a small movable
media sled [4, 11, 24]. With higher storage densities
(260–720Gbit=in2) and lower random access times (un-
der 1 ms), MEMS-based storage devices could play a sig-
nificant role in future systems.

The Memulator allows us to explore the impact of using
MEMS-based storage in existing computer systems, even



Table 7: MEMS-based storage vs. Seagate Cheetah X15.
These results compare the runtime of the PostMark benchmark
on a Cheetah X15 disk and a MEMS-based storage device.
Each data point is the average of ten runs of the benchmark.

Cheetah MEMS- Decrease
X15 based in time

PostMark
run time 74:523s 51:420s 31.0%
std. dev. 0.618 1.678 —

though the devices themselves are several years from
production. We configured the Memulator to use the G2
device described by Schlosser et al. [22].

Table 7 compares the performance of PostMark running
on the Cheetah X15 and on MEMS-based storage. Al-
though the average response time of the disk was five
times greater than the MEMS-based storage device (7:91
vs. 1:59ms), we observed only a 31% decrease in over-
all runtime when using MEMS-based storage. This is
because of the relatively small dataset (only 10,000 10–
20KB files) and the aggressive writeback caching per-
formed by the Linux host system. This caching masks
much of the benefit of the faster I/O times of MEMS-
based storage. For workloads with larger data sets or syn-
chronous writes (e.g., transaction processing), the over-
all system performance improvements would be greater.
The performance with MEMS-based storage approaches
our setup’s minimum runtime of 48:512s, which we
measured by rerunning the experiment with the Memula-
tor configured to respond to all I/O requests immediately.

6.3 Storage interface extensions

A third set of storage designs that would benefit from
emulation-based evaluation involves storage interface
extensions. Such extensions require that both the host
OS and the storage device be modified to utilize a new
interface. Not only must the interface be supported, but
often the implementations of both sides must change to
truly exploit a new interface’s potential. Two examples
of this arise from recently-proposed mechanisms: free-
block scheduling [16] and eager writing [25].

Freeblock scheduling consists of replacing the rotational
latency delays of high-priority disk requests with back-
ground media transfers. Since the high-priority data will
rotate around to the disk head at the same time, regard-
less of what is done during the rotational latency, these
background media transfers can occur without slowing
the high-priority requests. It is believed that freeblock
scheduling can be accomplished most effectively from
within disk firmware. Before they will consider new
functionality, however, disk manufacturers want to know

exactly what the interface should be and what real appli-
cation environments will benefit. Since researchers have
no access to disk firmware, this creates a chicken-and-
egg problem. The Memulator, combined with OS source
code (e.g., Linux), enables the interface and application
questions to be explored.

Eager writing consists of writing new data to an unused
location near the disk head’s current location. Such dy-
namic data placement can significantly reduce service
times. As with freeblock scheduling, the best decisions
would probably be made from within disk firmware.
However, this approach would require the firmware to
maintain a mapping table, and it would not benefit from
the OS’s knowledge of high-level intra-file and inter-file
data relationships. A more cooperative interface might
allow the host system to direct the disk to write a block
to any of several locations (whichever is most efficient);
the device would then return the resulting location, which
could be recorded in the host’s metadata structures. Diffi-
culties would undoubtedly arise with this design, and the
Memulator enables OS prototyping and experimentation
to flesh them out.

7 Summary

This paper describes and promotes timing-accurate stor-
age emulation as a foundation for more thorough eval-
uation of proposed storage designs. Measurements of
our prototype, the Memulator, demonstrate that 99%
of its response times are within 2% of their simulator-
computed targets. More importantly, the Memulator al-
lows us to run real application benchmarks on real sys-
tems equipped with storage components that we cannot
yet build, such as disks with firmware extensions and
MEMS-based storage.
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