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1. ABSTRACT

Control and state variable constraints are often overlooked in the development of control laws.

Although recent developments with DMC and QDMC have addressed this problem for linear systems,

incorporation of state and control variable constraints for nonlinear control problems has seen relatively

little development. In this paper, a nonlinear control strategy based on operator theory is extended to deal

with control and state variable constraints. Here we show that Newton-type control algorithms can easily

be generalized using an on-line optimization approach. In particular, a special form of a successive

quadratic programming (SQP) strategy is used to handle control and state variable constraints.

Moreover, the constrained approach can be shown to fit into the IMC structure proposed by

Economou and Morari. Using the small gain theory of Zames, we show that constraints on state and

control variables can replace the design of a nonlinear fitter for noninvertble processes and thereby lead

to stable controllers. The advantage to this approach, however, is that constraints are relatively

straightforward to'apply since the limits of their response are known in advance.

After presenting a detailed description of the method, a number of scenarios are considered for the

control of nonlinear reactor models. These models cannot in general be controlled using linear control

strategies. With the nonlinear constrained approach, on the other hand, regulation and control can be

done in a straightforward manner, and emphasis to more important parts of the system can be given with

appropriate placement of constraints.



2. INTRODUCTION

The Internal Model Control(IMC) structure was proposed by Garcia and Morari (1982). They

recently extended ft to multivariable systems (Garcia and Morari, 1985a, 1985b). The main attractive

features in the IMC structure are as follows. First, while the controller affects the quality of the response,

the filter takes care of the robustness of the control block independently. Note that a filter is a block in the

feedback signal to account for the model and process mismatch reflected through the estimated

disturbance and to achieve a desired degree of robustness. Secondly, the closed-loop system is stable

as long as the controller and model are open-loop stable. Only robustness needs to be considered.

Furthermore, this model representation is suitable for a theoretical robustness analysis.

One special case of IMC is Dynamic Matrix Control(DMC) (developed at the Shell Oil Co.) .which

has been reported to perform very well in application (Cutler and Ramaker, 1979; Prett and Gllette,i979).

DMC is structured such that the entire control algorithm can be put into a linearly constrained optimization

problem . When the objective function for this optimization problem is of the sum-of-the-error-squared

form, the algorithm becomes Quadratic Dynamic Matrix Control (QDMC), the second generation of the

DMC algorithm. QDMC without constraints was found to have an IMC structure (Garcia and Morari,1982).

Moreover, the DMC algorithm is the first control technique which could successfully handle general

process constraints. DMC is a type of model-predictive controller, which solves a new optimal problem

and produces a "new" controller at each execution. The on-line measurements which cannot be foreseen

at the design stage are used to adjust controller settings and to handle the constraints. This distinguishes

the algorithm from the conventional controller that uses a fixed relationship between error and

manipulated variables, and is solved only once, during the conceptual design phase. Even though DMC

shows certain superior characteristics among linear controllers, the inherent linear model restricts its use

in highly non-linear processes. One can argue that if the nonlinear model can be linearized, then DMC

can be used to control the process. N is well known however that a linearized model is only valid in a

small neighborhood of the reference point. If the external forces such as unmeasured disturbances drive

the system outside the valid neighborhood, the linearized model will introduce large modeling errors

which can mislead control actions. Furthermore, certain nonlinear systems are almost impossible to be

controlled by any type of linear controller. Two examples of this type of systems will be presented later.

Therefore, a nonlinear predictor-type controller in the IMC structure should be developed to deal with

these nonlinear systems.

Economou and Morari (1985,1986) extended the IMC design approach to nonlinear lumped

parameter systems. Based on an operator formalism, a Newton-type control algorithm was constructed.

Simulation examples demonstrated the good performance of this control algorithm and showed that the

control algorithm worked well even in the case where no linear controller can yield stable behavior. On the

other hand, this algorithm cannot deal with the process constraints .which limits the potential usefulness

of this algorithm.

In this work, a special form of the successive quadratic programming strategy is used to handle



process constraints. A Newton-type control law in the IMC structure is briefly presented in the next

section. The successive quadratic programming algorithm is developed in section 4. This approach can

be shown to fit into the nonlinear IMC structure. A computing algorithm based on this strategy is outlined

in section 5. In order to demonstrate the effectiveness of the strategy, two example problems are

simulated in section 6. The simulation results demonstrate the good performance of the suggested

algorithm. Finally, the stability of the constrained controller is briefly analyzed in section 7.

3. A NEWTON TYPE CONTROL LAW

Economou and Morari (1985,1986) extended the IMC structure to an autonomous lumped

parameter Muttiple-lnput-Muttiple-Output (MIMO) nonlinear system. A Newton-type method was used to

construct the control law for nonlinear models. The systems considered are generated by a set of ordinary

differential equations. The vector form is as follows:

^ (l)

where x € Rn is the state of the system, and for every t € (0, «) ,u(t) € Rm is the input, with the

corresponding output form map (y € Rm)

y « tOO (2)

In deriving this strategy, several assumptions are made. First, we assume the system exists and

has a unique solution. Secondly, we assume at this point the model is perfect, in that there is no model

and system mismatch. This assumption will later be relaxed for stability analysis. Finally, we assume that

the system inputs are piecewise constant functions to reduce the problem at hand to a finite dimensional

space. Here, the letter s Is used as a superscript to make the time discrete. The s* sampling interval

•xtendsfrom t* to f*1 . T - t ^ - t * Is the constant sampling time; Xs is the state at t8; us is the

system input held constant over (t*. t*+1).

In the discrete setting of the study, x(t2; tvx,u»+1) is the solution of equation (1) at time t2 for u(t) *

u» (tt < t < tg) and initial condition x(tt; t1fx,u*) - x»; Xs will denote the state of the system at t - *+\ i.e.

X' •**+1 «X(^rf tftf) (3)

Since (1) is autonomous: X(t t* T; t1fx,u) « X(t2+T; t2,x,u) i.e. t does not have an explicit



dependence on t. Therefore time will be dropped from the parameter list and the following convention will

be used:

X' « X(T; J>*T) « Xtf+7; ftfjf] (4)

The derivatives of X* with respect to x* and u* will be defined as follows:

(5)

p . 2£) (6)
30*0

The y* > g(x') is the system output at t*, The derivative of y* with respect to x will be defined

ax» ax*

A computational theory for calculating 4>* and I* is presented here. The statements are proved in

Economou (1985).

« / (9)

TOO - 0 (11)

The Newton-Type Control law with p • 1 (where p is the number of forward steps allowed to

achieve the desired output y*) is presented here. The detailed derivation is straightforward and can be

found in Economou (1985).

c^Voc - x») • (y -/•») - (crlrw • o 02)

where Au « u"W

However, the algorithm developed by Economou and Morari cannot deal with constraints which

inevitably exist in the chemical process. The process constraints can arise from various considerations, a



few of which include:

(0 Physical Limitations on Equipment: All equipment has physical limitations which cannot be

exceeded during the operation.

(II) Product Specifications: Any intermediates, or marketable products need to satisfy certain

specifications required for further processing, or by consumers.

(III) Safety: Many process variables should not exceed certain bounds for the sake of safety.

4. A NONLINEAR STRATEGY FOR HANDLING PROCESS CONSTRAINTS

Designing a control algorithm which has the capacity to handle the constraints is not an easy task,

especially when a nonlinear system is involved. A candidate algorithm should have the following

characteristics:

(I) Predict Model: A model should be based on prediction of output. Thus, any potential violation of

process constraints can be foreseen, and proper corrections can be made.

(II) Optimal Input: In MIMO systems , it is often possible to trade off good performance of one output

against poor performance of another; therefore, based on the relative importance of the different outputs,

a set of optimal outputs needs to be determined.

(III) Easy To Analyze: The structure of the controller should be transparent enough to perform stability

and robustness analysis. The nonlinear IMC structure has a framework that allows this analysis , and as

a result is a viable candidate.

Linear control variable constraints can be dealt with easily, using quadratic programming.

Moreover, the following quadratic programming problem without any constraints is identical to the

Newton-type control law. The proof can be found in Appendix A. Note that the Hessian of the objective

function is positive semklefinite. which means at least a local minimum can be found.

Min CTttf • htofpHto/ (13)

where

CT — [ CT1 *» ( x* - X* ) • ( y - y**1)] T ( C+1 P ) (14)

H m (C*+lT*f(C+lr*) (15)



With the help of the quadratic form in the objective function, the linear equalities and inequalities

constraints of control variables can be included . In this case problem (13) becomes

Min

sa d £ AQf+Au) £ cf (16)

where the A € k x k i s a matrix multiplying the control variables; V defines the number of

constraints. When a'k equals ag , It becomes an equality constraint. For simplicity we put equality and

inequality constraints together. In a real chemical process, we need to deal not only with the constraints

of the control variables, but also with the constraints of the state variables. The latter are probably more

important to get a desired product or to avoid failure of the production process. Simple bounds on state

variables are the most common state constraints in most chemical processes. So our objective is to

handle the following problem:

Min CTAu*
Am

SJ cf £ Atf+Aif) £ of (17)

t

The moving time horizon is introduced for on-line implementation. Given the current time t6, the

immediate past control variable us .initial state variable xs (xs'1), and the measurement of current state

x*+1 (xs), we hope to find an optimal control variable u*+1 which can efficiently drive the process to the set

point without violating the control and state variable constraints. Figure 1. shows the schematic of the

moving time horizon.

In order to avoid the computational difficulties of dealing with these state constraints, a new state

variable is defined to convert a path constraint into a terminal constraint (Sargent, Sullivan,i977).

, (18)

« 0
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Figure 1: The moving time horizon

We then impose the constraint xn^1(tf) - 0 and substitute this constraint with the path constraints of

state variables in (17). x» is an implicit function of u and there is no direct method to solve this kind of

problem. Here an iteration algorithm is developed to deal with the above problem. We expand xn4i(tf)

about u£V by using Taylor series and truncating the expansion after the second term. The letter j is used

as a subscript to indicate the j-th iteration .

Define

(19)

(20)

(21)

The calculation form of K^1 can be found in Appendix B.

So xn+1(t|)« 0 is linearized by the following equation:

(22)



The quadratic programming problem at j * 1 iteration is as follows:

Min

SJ d £ A^+Aufip fl" (23)

There are two types of constraints we need to consider. One is hard constraints - no dynamic

violations of the bounds allowed at any time. Another is soft constraints - violations of bounds tolerated

for satisfactton of other criteria, in the problem (23) only hard constraints have been considered. Let us

assume the soft constraints for the control variables are

d <> Ajtf+bif) <> a? (24)

where \ € R m i ; m1 is the number of soft constraints. Since these constraints can be violated to

satisfy the hard constraints, the slack variables Sm need to be added in the inequality (24) to increase the

feasible region. On the other hand, including the summation of all elements of Sm in the objective

function, the algorithm can search the optimal control strategy to satisfy soft constraints whenever it is

feasible. Then the soft constraints of (24) become

• (25)

The objective function becomes

Min CTt*t + hjtufpHtot *Y C0& (26)
si

Since the importance of each constraint may not be same, a weighting factor o, can be included to

reflect the differences. If the soft constraints involve state variables, the problem becomes more

complicated. Assume x% has the following soft constraint:

S af (27)

Similarly, as we did before, a new variable xn+1+^ is defined as follows:
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{min(O. x4<0-*{)}2 +{moi(0. x?-x,<0)}2

0

(28)

A first order approximation of the new variable is used as we did in (19) and a slack variable 5m +i is

added in the inequality to increase the feasible region. Then the soft constraint of (27) in j* iteration

becomes

and dimension of soft state constraints is m2. The vector form of these constraints is

(29)

(30)

where

Kf'du

(31)

2, 3, ... (32)

Including the soft constraints the quadratic programming problem at j* iteration becomes
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Min CTAu*J+h,&rfrHAu?J+ Y (0,5,

SJ tf S i4(«^j+AiiJ.,) S «« (33)

• Kf *du - 0.

6m 2 0.

where m - m , + m2 is the dimension of alt of the soft constraints.

5. ALGORITHM

The algorithm for the nonlinear control problem follows:

1. start with an initial condition x*,u*

2. solve for X1*1, C»+ 1 .08 , I * . simultaneously

a ) s e t j - 0

b) set ug+1 - u*

3. a) solve QP (Eqn. 33) , get u»+1

b) choose a stepsize based on the Armijo linesearch

4. l f (duf1)T(duf+ 1)< e

where e is a small positive number

go to next sampling time s - s+1 and return to step 1.

5. else (gobacktostep3.wtthj-j + 1

For clarity, the flowsheet of the algorithm for the control problem is shown in Figure 2.

An Armijo line search is introduced to control the search stepsize. We define a test function :
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( 3 4 )

* ( u * t 1 ) t e t h e directional derivation along the search direction. Here Hj is a penalty parameter that

satisfies Uj > Xj where are Kuhn-Tucker multiplies from the QP; a, are rows of the matrix A,.

Algorithm for selecting the Armijo step size:

1. having u*}1, and new QP solution u*+1

define d u -

2. a) set a - 1

b) evaluate * ( u ^ 1 + a du). *(uf.V ). *'

c) if

+ adu) - H'dip,1) ^ aS^'d^,1) (35)

go to 3.

d) else, use quadratic interpolation to find new value of a

a « max {8,, . £ L r-)a (36)
2[*'(«p1>*4'(«p1)H'(Jf')]

here 8j - 63 « . 1 , a nominal value

go to b).

3. else, go to next QP Iteration with uj*1 « u»V + adu
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given initial cond.

Xs Vs

calculate: r*,4>*
c - 1

t

construct a quadratic
programing prob.

assume u**= u *

solve the quadratic

optimal problem

Armijo line search
test

No

•

reduce

No

stepsize

Yes

convergence test

£

I Yes

Next step
Figure 2: The flowsheet of the algorithm

The most crucial assumption which we made in developing the above algorithm is that the model

be perfect. That is rarely the case in chemical processes because the model and disturbance

uncertainties unavoidably exist. An on-line identification phase should be added to update the model after
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a number of time steps by using the differences between measured and predicted values of outputs. An
optimization problem can be constructed to estimate these uncertain parameters. The objective function
is to minimize the differences between the measured and predicted values subject to the bounds of these
parameters. By using a nonlinear model, the physical significances of these parameters can be
recognized and it is possible to set the bounds of these parameters. If uncertain parameters are slow
moving i.e. the time constants of these parameters are much larger than the time interval of control, the
parameters can be assumed as constants and the updated values can be used to predict the process in a
future time horizon. If variation in parameters is sufficiently large compared to the time interval of our
model, the dynamic nature of these parameters should be analyzed in order to postulate some model for
the variation. Jang et al. (1987) recently proposed a two-phase approach to control and operate a
chemical process. A similar idea has been discussed in their paper.

6. EXAMPLES

Two example problems are simulated to demonstrate the effectiveness of the strategy proposed in

this work. The first example problem was adapted from the paper of Matsuura and Kato (1967), which

describes a kinetic model with multiequilibrium points at steady state. The second example problem was

modified from Economou and Morari's paper (1986). Their original problem was extended to a three

dimensional system with constraints. The control objective of both problems is to operate the reactor as

closely as possible to the setpoint. When the system gain changes sign as the operating point changes

from one side of the setpoint to the other, any linear controller with integral action cannot perform well

(Morari.1983). Without integral action the linear controller will result in a large offset. Both example

problems possess this feature. Therefore, the linear controller cannot be used in this type of system . On

the other hand, the nonlinear controller with constraints proposed in this work controls this system very

welt as seen by the results of our simulations.

Example 1: A Stirred Tank Reactor (1)

For the reaction

A • B

where A is in excess, a reaction rate equation can be written as follows:

(l.O+K2CB)
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where CB is the concentration of component B. The reaction occurs in an ideal stirred tank as

shown in Figure 3.

Figure 3: A stirred tank reactor (1)

The concentrations of B in the two inlet flows are assumed to be fixed: CB1 - 24.9, CB 2 - 0.1 .

Both inlet flows contain excess amount of A. The tank is well stirred with a liquid outflow rate determined

by the liquid height in the tank h, I.e.. F(h) - 0.2 ho5.-The cross section area of the tank is 1. The

sampling time of this problem is set to 1.0 min. The values of various parameters are listed in Table 1.

Appendix C. After simplification, the model becomes

U) -W •0820

where
u i
U2

inlet flow rate with condensed B (F,)
inlet flow rate with dilute B (F2)

x, . liquid height in the tank
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concentration of B in the reactor

When the height of liquid level y, is at setpoint (y^-iOO.) and two Inlet flow rates are at the steady

state (0,-1.0; u2-1.0). the graphical solution of Eq.(38.b) is illustrated In Figure 4. The convection term in

the Eq.(38.b) Is a straight line with slope i / i . t is the time constant of the reactor in the steady state.

When the reaction rB is shown as a function of CB by the curve Indicated with rB(CB) in the Figure 4. there

are three different equilibrium points (a, p\ •$ of the system of which a, y are stable equilibrium points and

P is unstable. Detailed discussion of the stability of this isothermal reactor was presented in Matsuura

and Kato's paper (1967). Here the point p is used as a setpoint to demonstrate the proposed algorithm

developed above.

0.3

4 6

Concentration.

Figure 4: Multiequilibrium points at steady state

From Figure 4 we can observe that the system gain changes sign as the operating point changes

from one side of point p to the other. In addition, from this unstable equilibrium point a small disturbance

can drive the system to two stable equilibrium points o or 7. depending on increase or decrease of B

concentration in the reactor caused by the disturbance.

The control objective Is to minimize the difference between the reactor output and setpoint. All

simulation results are presented at the end of the paper. (Figures are numbered by roman numerals /, //.

etc.) Two sets of initial conditions are used. Set (1) is in the region where the system automatically goes

to point o without any control. Set (2) . on the other hand, is in the region where the system goes to point
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Y without any control. Table 2 shows the numerical values of these initial conditions.

We simulate and control this example problem with various control variable constraints and without

putting any constraints on the state variable. The u, and u2 have same tower and upper bounds. The

tower bounds of u, and u2 are zero. The upper bounds varied from 5.10 to infinity. Footnotes In Figures /

through IV indicate the various upper bounds on the u, and u2. Figures / and // are y, and y2 vs. time,

respectively, using set (1) initial conditions. Figures /// and IV are similar plots with set (2) initial

conditions. The simulation results show that the algorithm efficiently drives the system to the set point

without violating constraints.

In Figure /. increasing the upper bound from 5.0 to 10.0 on u, and u2. the overshoot of y,

decreases. When the upper bounds of u, and u2 are removed, the overshoot of y, is totally eliminated. In

Figure /// the best performance of outputs is the one with no upper bound on the control variables. In

Figures //and IV, the rise time decreases with increasing the upper bound on u, and u2.

Intuitively, one would think that the higher the upper bound on u, and u2. the better the

performance, since the feasible regton of control profile is increased. This is what we actually observe in

all plots of this example. However, it is not always true. Consider the simulation results of the next

example. Here, as will be explained later, the best performance of some outputs is not from the most

relaxed bounds on the control profile.

To control and simulate this example problem for 50 sampling times, required roughly 30 CPU
seconds on a MicroVax II.

Example 2: A Stirred Tank Reactor (2)
4

The first order reversible exothermic reaction

k,
A „ B

k*

Is carried out in a Ideal stirred tank shown in Figure 5.

We assume that the combined concentration of A and B is constant. The tank is wen stirred with

liquid outlet determined by the liquid height in the tank h. l.e.. F(h) . 2.5h°•*. The nonlinear differential-

algebraic equations that models the dynamics of the reactor can be found In Appendix C. They are

derived from differential mass and energy balances. The values of various parameters can be found in

Table 3. After substituting numerical values tor all the parameters, the model can be simplified as follows:
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Figure 5: A stirred tank reactor (2)

dx.

7 */3(r-
(39)

>2

The control objective is to operate the reactor output as close as possible to the setpoint subject to

the process constraints. Figure 6 shows the equilibrium vs. reactor temperature (x2) when the height of

liquid level (y,) Is at the set point (y/-0.16). Two sets of initial conditions were used. One is at the

lefthand side of maximum point of the equilibrium reactor curve; another one is on the righthand side.

Since the height of liquid level is not initially at the set point the actual initial point can only be presented

in a three-dimensional plot. The reason we used two sets of initial conditions is because the linear IMC

controller is unstable at set(2) initial conditions with fixed height of liquid level (Economou, Morari 1985).

Table 4 shows the details of the two sets of initial conditions.

Using the algorithm developed previously, we first simulate this example problem with various

control variable constraints and without putting any constraints on the state variable. We varied the u2

upper bound with a fixed tower bound at 300. u, is not bounded. Figures Vand VI are yv y2 vs. time .
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Figure 6: Equilibrium diagram

respectively, using set (1) initial conditions. Figures VII and VIII are similar plots with set (2) initial

conditions. Footnotes in the figures indicate the various upper bounds on the u2 corresponding to various

curves. In Figure Wwe observe that the best performance is obtained when there is no upper bound on

u2. However, Figure Vis different; that is, the best performance is obtained when the upper bound on u2

is 490. One possible explanation for this is that in MIM0 systems, it is often possible to trade off good

performance of one output against poor performance of another. Here, even though one output has the

best performance with no upper bound on u2 • another output is relatively poor in performance. This

observation tells us that although the overall performance of a MIM0 system in terms of achieving the

lowest values in the optimal objective function may be improved by relaxing control variable bounds, the

improvement of individual outputs is not guaranteed.

In order to demonstrate the effectiveness of state variable constraints, we simulated this example

problem with both control variable and state variable constraints. The results were compared with the

output which had no state variable constraints. Figures /Xand Xshow yt and y2 vs. time, respectively,

with set(1) initial condition. Three curves were plotted in each figure. Curve 1 has no state variable

constraints; Curve 2 has a loose constraint on x t; Curve 3 has a tight constraint on x t . Figures XI and

XII are similar plots with set (2) initial conditions. The Table 5 shows the details of these constraints.

Figures /Xand X/show that the controller with state variable constraints performs better than one

without constraints. The reason may be that when a Newton-type control law is derived, the second or

higher order terms are truncated and some system information related to these higher order terms is lost.

Then a full Newton step will be taken which may be oversized and the new control variable u**1 may not

yield a good value. By including the state variable constraints with our iteration algorithm, we also use an

Armijo line search to control the stepsize and iterate until the optimal point has been found. This

improves the performance of the controller.
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In problem (23), the hard constraints of control variables are always satisfied during the iterations

due to the structure of the problem. In addition, the hard constraints of state variables are also

guaranteed to be satisfied at the end of iterations. This can be shown as follows. When convergence

criterion is satisfied, (du)T(du) s e, which implies du -> 0, xn4i(t() must then be equal to zero. In other

words, the state variable constraints are not violated in the one step time horizon. Our simulation results

also support this claim.

From Figures /Xand X/, Curve 3 avoids the oscillation which occurs in both Curve 1 and Curve 2.

The rise time in Curve-3 is similar or shorter than Curve 1 and Curve 2. The price to be paid for having

better control on x1 is that one has to tolerate sluggish response on x3. In other words, one can

manipulate the state variable constraints to change the response speed of the individual state variable.

The optimal solutions for this example problem usually require 3 to 4 iterations except at the first

sampling interval, where more iterations are required to find an optimal solution. To simulate and control

10 sampling times (T - 1.0 min.) in this example required roughly 1.5 to 2.0 CPU minutes on a MicroVax

II. Of course problems without state variable constraints require much less computation since only one

QP solution is required for a time step.

7. STABILITY ANALYSIS

In the IMC structure, a filter is introduced to reduce the loop gain and to achieve the desired degree

of robustness. If a perfect IMC controller has process constraints, the robustness of the system can be

achieved by adjusting the constraints. In this case a filter is not needed

Before we prove the similarity between a filter and use of process constraints, let us briefly

introduce the nonlinear IMC structure for an autonomous lumped parameter MIMO system (Economou

and Morari, 1986). The block diagram of this structure is shown in Figure 7.

In the Figure 7 the nonlinear operator F, C, P, and M denote the filter, controller, plant, and model,

respectively. Blocks with double lines are used to emphasize that the operators are nonlinear and that the

linear block diagram manipulations cannot be used.

We also introduce some mathematical concepts which are needed in the proof. A more detailed

treatment of these concepts can be found in the work of Kolmogorov and Fomin (1954), Rail (1969).

Norm

A linear space R is said to be normed if to each element x e R there corresponds a nonnegatrve

number |W| , called the norm of xt such that:
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Figure 7: A complete nonlinear IMC structure

1). I W I - 0 , I f f x - 0

2). llotxll « (a| llxll

a is an arbitrary constant.

3). llx+yll £ IWI • Itvll

A complete normed space is said to be a Banach space.

Linear Operator

Let D and R be two Banach spaces, whose elements are denoted respectively as u and y. Let a rule be

given according to which to each u in some set U c D there is assigned some element y in the space

R. Then an operator y • Mu with range of values in R can be defined on the set U. An operator M is said

to be linear if the equality

(40)

is satisfied for any two elements u v u 2 € 1 / . a, and o^ are arbitrary real numbers. An operator M is

considered when it does not possess the above property.

Operator Gain
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Let us consider a nonlinear operator M which transforms the input subspace D to the output subspace R

u 6 D; y € R (41)

Define the.gain Of M, denoted by o(M), be

where the supremum is taken over all u € D.

Zames' (1966) small gain theorem:

If the open loop gain is less than one, then the closed loop is bounded.

For the IMC structure, It is equivalent to (Economou and Morari, 1986)

Pd denotes the plant operator with the effect of disturbance. When P d « M , the perfect model case,

IMC controller C is open loop stable, and then the inequality is trivially satisfied. When the process is

poorly modeled, which means g(Pd * M) is large, the control gain g(C) has to be small. Usually, the perfect

controller C « Mr cannot be used because the condition of (43) may not be satisfied. In order to satisfy the

stability condition, an adjustable filter F is introduced such that C « MrF. Then the stability condition of

(43) becomes:

Notation:

u — the inputs determined by an IMC controller without the constraints on u

C — the IMC perfect controller , C « M r

ur — the inputs determined by an IMC controller with the constraints on u
Cr — IMC controller with constraints on u

If the constrained SQP controller is used, the stability analysis of the closed bop system is
straightforward. Without loss of generality let us assume u is scaled and constrained as follows:
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-8 £ ur £ 8 (45)

Then the constrainted oontroller maps the error e to the constrained control variable ur.

u, « C> (46)

where e is defined as e • y - /

We assume the process is open bop stable, i.e. any bounded input gives a bounded and

continuous output. Then since all inputs are bounded, the closed loop process with the constrained

controller will remain input-output stable. Using Zames small gain theory, one can verify this as follows.

To simplify the proof we assume the plant operator Pd maps zero into itself, i.e.

0 ; for u ^ 0 (47)

Consider a scaled and constrained QP so that

Min CTtot • h
Am 2

SJ -5 < ur £ 6 (48)

where 8 is greater or equal to 0. We can partition ur into components at bounds ud and unconstrained

components, uy, with llu l̂L « 8; ||uj|_ < 8. Then controller gain with constraints becomes:

Bell Ikll

The gain of the IMC controller is

sup K™ m sup - M - (50)

Combining Eq.(49) and Eq.(50), we have

Hull IM
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To express the sufficient condition of closed loop stability, the inequality (51) can be written as follows.

8(Cr)g(PrM) £ ±^Qg(PrAf) < 1 (52)

To satisfy condition (52) consider two cases:

a). If Ml - 0, the plant operator maps zero into itself. The output y is zero and the controller is stable.

b). U N I * 0 and by making S small enough |K|| >> 6 and the sufficient condition (52) can be made

to hold.

Comparing stability condition (52) with (44), we can see that putting constraints on u has a similar

function as the filter in the nonlinear IMC structure. Both of them make the process more robust.

8. CONCLUSION

An extension of the nonlinear IMC design procedure to a special form of successive quadratic

programming strategy to handle process constraints was presented. This strategy can efficiently handle

both soft and hard constraints. Simulation results for two nonlinear reactor control problems show the

effectiveness of this strategy. Finally, since all of the control variables can be bounded, the stability of the

constrained controller is guaranteed as long as the process is open loop stable. This can be proved by

the small gain theory of Zames.

The algorithm developed in this work is a single step method, which means that the algorithm only

predicts one step ahead. It assumes that the process will reach the setpoint at the end of the first step. If

a process to be controlled possesses time delay that is longer than one sampling time interval, or if the

time delay associated with different pairs of inputs and outputs is not the same, the single step algorithm

is not capable of handling it. Moreover, H a batch process needs to be controlled, an optimal control

profile in the entire time horizon rather than a single step should be calculated. Therefore, a multistep

predictive algorithm needs to be developed. In addition, even V a process does not possess time delay,

the controller performance may also benefit from the long time prediction.

In addition, most chemical processes are difficult to model precisely since there unavoidably exist

parameter and disturbance uncertainties. The structure of the model can usually be derived from a

mathematical description of fundamental physicochemical phenomena taking place in the process. If on-

Ine computer control is used, the process measurements can be used to estimate the uncertain

parameters and disturbances. Then the updated model can be used to calculate the optimal control

profile in future time horizon. A reliable algorithm of parameter estimation needs to be developed in the

future.
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Figure IV: Uquid level vs. time
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Figure V: Conversion vs. time (without state constraints)
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APPENDIX A

Referring to Eq.(12), let

Now Eq.(i2) becomes

£2 + TAu «= 0 (I'O

Equation (ii) is equivalent to the following problem

Min

Proof: Let

F -

(iv)

When the optimal condition is satisfied, we have

i £ . - 0.5(2.0 QTT • 2.0 6uTlTT) - 0 (v)
dAu

Then we have

(OT+A«TT7)T « 0 (vi)

which is equivalent to the following

a + TA« « o (v«)
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Then Eq(i4) and (15) become

CT « GTT {viiLa)

H « TTT (yui.b)

Here T needs ID be square and nonsingular or must have

dim(y) * dm(u) (ix)
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APPENDIX B

When differentiating Eq(20)in respect to t we have

di Bu

du dt

£ {nun (0. x*"^)}- min(0. x^<)}

Similarly, the differential of Kf+1 can be written

dt dt du

dx:
• 2.0{min (0, x^O-x))}- min(0, x"-x/

Kff) - 0.
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APPENDIX C

The following nonlinear differential-algebraic equations model the dynamics of the second example.

They are derived from differential mass and energy balances. The meaning of variables can be found

from the nomenclature at the end of this appendix. The values of various parameters can be found in

Table 3.

- BJF. + V{KXAO -

I - 1. 2

A( • Bi « A0 + Be « 1.0

DH « -

V « v!eJi

We define:

X, - Bo £/, - F,
x 2 - ro t/2 - ^
X, « A

NOMENCLATURE

^ the cross area of the tank
Aj the concentration of A in inflow
AQ the concentration of A in outflow
Bj the concentration of B in inflow
Bo the concentration of B in outflow
Cp heat capacity of the liquid
Cj Arrhenius's constant (i • 1.2)
Ej activation energy (I • 1,2)
h the height of the liquid level in trie tank
Kj reaction constant (i • 1 ,2 )
Fj Inlet flow rate
Fo outlet flow rate
HB heat of reaction
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R
V
P

universal gas constant
volume of the tank
density of the liquid in the tank

PARAMETER

K2«1.0

PARAMETER

CB i -24.9

SET POINT

y,*-2.787

y2*-100.0

Table 1: Parameter values of example 1.

SET(1)

x10-0.10

*z> - 40.0

SET(2)

x10 - 7.00

Xao - 40.0

Table 2: Initial conditions of example 1.

PARAMETER

Aj-LOmol/ l

Ag-6.25m2

B, m 0.0mol/l

C2-1x106/$

Cp-1000cal/mol

PARAMETER

E,-IC^cal/mol

E2-1.5x104cal/mol

HR - 5000cal/mol

R-1.987 cal/l

p-1.0kg/l

SET POINT

y/ • ,508mol/l

y2*«.16m

Table 3: Parameter values of example 2.
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SET(1)

x,-0.16

X2-351.

X3-0.12

u,-0.866

u2-352.

SET(2)

X, . 0.41

x2-503.

Xg-0.20

u,«1.12

U2-5O4.

Table 4: Initial conditions of example 2.

Figure IX &X

Curve 1.

Curve 2.

Curve 3.

Figure XI & XII

Curve 1.

Curve 2.

Curve 3.

/

.16

.40

/

.41

.49

w U
X 1

/

.51

.51

X1

/

.51

51

x2

/

300.

300.

«t'

/

300.

300.

x2

/

550.

550.

x2

/

550.

550.

Note: no constraints on uv u2, and x3

Table 5: Process constraints of example 2.
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