The Joint Services of Money and Credit

William A. Barnett1 and Liting Su2

1Department of Economics, University of Kansas, and Center for Financial Stability, NY City
2Department of Economics, University of Kansas
Credit card transactions \subset monetary supply components?
How do such theories work?

- Credit cards balances $\not\subset$ monetary assets.
- Credit cards balances \subset liabilities.
- Credit cards balances used for current period transactions provide monetary services.
- Aggregation and index number theory measure service flows.
How do such theories work?

- Credit cards balances $\not\subset$ monetary assets.
- Credit cards balances \subset liabilities.
- Credit cards balances used for current period transactions provide monetary services.
- Aggregation and index number theory measure service flows.
How do such theories work?

- Credit cards balances \(\not\subset \) monetary assets.
- Credit cards balances \(\subset \) liabilities.
- Credit cards balances used for current period transactions provide monetary services.
- Aggregation and index number theory measure service flows.
How do such theories work?

- Credit cards balances \(\not\subset\) monetary assets.
- Credit cards balances \(\subset\) liabilities.
- Credit cards balances used for current period transactions provide monetary services.
- Aggregation and index number theory measure service flows.
How do such theories work?

- Credit cards balances \(\not\subset \) monetary assets.
- Credit cards balances \(\subset \) liabilities.
- Credit cards balances used for current period transactions provide monetary services.
- Aggregation and index number theory measure service flows.
Intertemporal Allocation

\[
\text{max } u_t = u_t(m_t, ..., m_{t+T}; c_t, ..., c_{t+T}; x_t, ..., x_{t+T}; A_{t+T})
\]

\[
= U_t(v(m_t, c_t), v_{t+1}(m_{t+1}, c_{t+1}), ..., v_{t+T}(m_{t+T}, c_{t+T}));
\]

\[
V(x_t), V_{t+1}(x_{t+1}); A_{t+T})
\]

subject to

\[
p'_s x_s = \omega_s L_s + \sum_{i=1}^{n} [(1 + r_{i,s-1}) p^*_{s-1} m_{i,s-1} - p^*_s m_{is}]
\]

\[
+ \sum_{j=1}^{k} [p^*_s c_{j,s} - (1 + e_{j,s-1}) p^*_{s-1} c_{j,s-1}]
\]

\[
+ [(1 + R_{s-1}) p^*_s A_{s-1} - p^*_s A_{s}].
\]
Intertemporal Allocation

\[
\max u_t = u_t(m_t, \ldots, m_{t+T}; c_t, \ldots, c_{t+T}; x_t, \ldots, x_{t+T}; A_{t+T}) \]

\[
= U_t(\nu(m_t, c_t), \nu_{t+1}(m_{t+1}, c_{t+1}), \ldots, \nu_{t+T}(m_{t+T}, c_{t+T}));
\]

\[
V(x_t), V_{t+1}(x_{t+1}; A_{t+T})
\]

subject to

\[
p_s' x_s = \omega_s L_s + \sum_{i=1}^{n} [(1 + r_{i,s-1})p_{s-1}^* m_{i,s-1} - p_s^* m_{is}]
\]

\[
+ \sum_{j=1}^{k} [p_s^* c_{j,s} - (1 + e_{j,s-1})p_{s-1}^* c_{j,s-1}]
\]

\[
+ [(1 + R_{s-1})p_{s-1}^* A_{s-1} - p_s^* A_s].
\]

William A. Barnett and Liting Su
University of Kansas
Intertemporal Allocation

\[
\max u_t = u_t(m_t, \ldots, m_{t+T}; c_t, \ldots, c_{t+T}; x_t, \ldots, x_{t+T}; A_{t+T})
\]

\[
= U_t(\nu(m_t, c_t), \nu_{t+1}(m_{t+1}, c_{t+1}), \ldots, \nu_{t+T}(m_{t+T}, c_{t+T}));
\]

\[
V(x_t), V_{t+1}(x_{t+1}; A_{t+T})
\]

subject to

\[
p'_s x_s = \omega_s L_s + \sum_{i=1}^{n}[(1 + r_{i,s-1})p^*_{s-1}m_{i,s-1} - p^*_s m_{is}]
\]

\[
+ \sum_{j=1}^{k}[p^*_s c_{j,s} - (1 + e_{j,s-1})p^*_{s-1}c_{j,s-1}]
\]

\[
+ [(1 + R_{s-1})p^*_{s-1}A_{s-1} - p^*_s A_s].
\]
Intertemporal Allocation

\[
\max \ u_t = u_t(m_t, ..., m_{t+T}; c_t, ..., c_{t+T}; x_t, ..., x_{t+T}; A_{t+T})
\]

\[
= U_t(\nu(m_t, c_t), \nu_{t+1}(m_{t+1}, c_{t+1}), ..., \nu_{t+T}(m_{t+T}, c_{t+T}));
\]

\[
V(x_t), V_{t+1}(x_{t+1}; A_{t+T})
\]

subject to

\[
p'_s x_s = \omega_s L_s + \sum_{i=1}^{n} [(1 + r_{i,s-1}) p^*_s m_{i,s-1} - p^*_s m_{is}]
\]

\[
+ \sum_{j=1}^{k} [p^*_s c_{j,s} - (1 + e_{j,s-1}) p^*_{s-1} c_{j,s-1}]
\]

\[
+ [(1 + R_{s-1}) p^*_{s-1} A_{s-1} - p^*_s A_s].
\]
Intertemporal Allocation

\[
\max u_t = u_t(m_t, \ldots, m_{t+T}; c_t, \ldots, c_{t+T}; x_t, \ldots, x_{t+T}; A_{t+T})
\]

\[
= U_t(\nu(m_t, c_t), \nu_{t+1}(m_{t+1}, c_{t+1}), \ldots, \nu_{t+T}(m_{t+T}, c_{t+T}));
\]

\[
V(x_t), V_{t+1}(x_{t+1}; A_{t+T})
\]

subject to

\[
p_s' x_s = \omega_s L_s + \sum_{i=1}^{n} [(1 + r_{i,s-1})p_{s-1}^* m_{i,s-1} - p_s^* m_{i,s}] + \sum_{j=1}^{k} [p_s^* c_{j,s} - (1 + e_{j,s-1})p_{s-1}^* c_{j,s-1}]
\]

\[
+ [(1 + R_{s-1})p_{s-1}^* A_{s-1} - p_s^* A_s].
\]
Let

\[\rho = \begin{cases}
1, & \text{if } s = t, \\
\prod_{u=t}^{s-1}(1 + R_u), & \text{if } t + 1 \leq s \leq t + T.
\end{cases} \]
Then

\[
\begin{align*}
&\sum_{s=t}^{t+T} \left(\frac{p'_s}{\rho_s} \right) x_s + \sum_{s=t}^{t+T} \sum_{i=1}^{n} \left[\frac{p^*_s}{\rho_s} - \frac{p^*_s(1+r_{i,s})}{\rho_{s+1}} \right] m_{i,s} + \\
&\sum_{i=1}^{n} \frac{p^*_{t+T}(1+r_{i,t+T})}{\rho_{t+T+1}} m_{i,t+T} + \frac{p^*_{t+T}}{\rho_{t+T}} A_{t+T} + \\
&\sum_{s=t}^{t+T} \sum_{j=1}^{k} \left[\frac{p^*_s(1+e_{j,s})}{\rho_{s+1}} - \frac{p^*_s}{\rho_s} \right] c_{j,s} \\
&= \sum_{s=t}^{t+T} \left(\frac{\omega_s}{\rho_s} \right) L_s + \sum_{i=1}^{n} (1 + r_{i,t-1}) p^*_{t-1} m_{i,t-1} + (1 + R_{t-1}) A_{t-1} p^*_{t-1} + \\
&\sum_{j=1}^{k} \frac{p^*_{t+T}(1+e_{j,t+T})}{\rho_{t+T+1}} c_{j,t+T} + \\
&\sum_{j=1}^{k} (1 + e_{j,t-1}) p^*_{t-1} c_{j,t-1}.
\end{align*}
\]
The nominal user cost of monetary asset holding m_{is} is

\[\pi^*_{is} = \frac{p^*_s}{\rho_s} - \frac{p^*_s(1 + r_{is})}{\rho_s + 1} = \frac{p^*_t}{1 + R_t}. \]
Likewise, the nominal user cost of credit card service \(c_{js} \) is

\[
\tilde{\pi}_j^* = \frac{p_s^*(1 + e_{js})}{\rho_{s+1}} - \frac{p_s^*}{\rho_s} = p_t^* \frac{e_{jt} - R_t}{1 + R_t}.
\]
Extension to Revolving Credit

Method 1: Define c_{js} to be total debt balances in the credit card account.

Method 2: Define c_{js} to be credit card balances used for purchases during period s.
Extension to Revolving Credit

Method 1: Define c_{js} to be total debt balances in the credit card account.

Method 2: Define c_{js} to be credit card balances used for purchases during period s.
Extension to Revolving Credit

Method 1: Define c_{js} to be total debt balances in the credit card account.

Method 2: Define c_{js} to be credit card balances used for purchases during period s.
The budget constraint

$$p'_s x_s = \omega_s L_s + \sum_{i=1}^{n} \left[(1 + r_{i,s-1}) p_{s-1}^* m_{i,s-1} - p_s^* m_{is} \right]$$

$$+ \sum_{j=1}^{k} \left[p_s^* y_{j,s} - (1 + e_{j,s-1}) p_{s-1}^* y_{j,s-1} \right]$$

$$+ \left[(1 + R_{s-1}) p_{s-1}^* A_{s-1} - p_s^* A_s \right],$$

where $y_{js} = c_{js} + z_{js}$.

William A. Barnett and Liting Su
University of Kansas
Thus,

\[p'_s x_s = \omega_s L_s + \sum_{i=1}^{n} [(1 + r_{i,s-1})p^*_s m_{i,s-1} - p^*_s m_{is}] + \sum_{j=1}^{k} [p^*_s c_{j,s} - (1 + e_{j,s-1})p^*_{s-1} c_{j,s-1}] + \sum_{j=1}^{k} [p^*_s z_{j,s} - (1 + e_{j,s-1})p^*_{s-1} z_{j,s-1}] + [(1 + R_{s-1})p^*_{s-1} A_{s-1} - p^*_s A_s]. \]
Comparison of The Two Methods:

1. Method 1: If c_{js} is defined to be total debt balances in the credit card account:
 - All of the theory in this paper would be unchanged.
 - But the interpretation of inclusion of credit card debt in the utility function would be altered in a somewhat disturbing manner.

2. Method 2: If y_{js} is defined to be total debt balances in the credit card account, where $y_{js} = c_{js} + z_{js}$:
 - Only current period credit card purchases c_{js} provide transactions services included in the aggregate.
 - Theoretically preferable to Method 1, but has heavier data requirements.

Note: Empirical test needed to determine whether the aggregates are robust to Method 1 versus Method 2. If not robust, then Method 1 not justified.
Comparison of The Two Methods:

1. Method 1: If \(c_{js} \) is defined to be total debt balances in the credit card account:
 - All of the theory in this paper would be unchanged.
 - But the interpretation of inclusion of credit card debt in the utility function would be altered in a somewhat disturbing manner.

2. Method 2: If \(y_{js} \) is defined to be total debt balances in the credit card account, where \(y_{js} = c_{js} + z_{js} \):
 - Only current period credit card purchases \(c_{js} \) provide transactions services included in the aggregate.
 - Theoretically preferable to Method 1, but has heavier data requirements.

Note: Empirical test needed to determine whether the aggregates are robust to Method 1 versus Method 2. If not robust, then Method 1 not justified.
Comparison of The Two Methods:

1. Method 1: If c_{js} is defined to be total debt balances in the credit card account:
 - All of the theory in this paper would be unchanged.
 - But the interpretation of inclusion of credit card debt in the utility function would be altered in a somewhat disturbing manner.

2. Method 2: If y_{js} is defined to be total debt balances in the credit card account, where $y_{js} = c_{js} + z_{js}$:
 - Only current period credit card purchases c_{js} provide transactions services included in the aggregate.
 - Theoretically preferable to Method 1, but has heavier data requirements.

Note: Empirical test needed to determine whether the aggregates are robust to Method 1 versus Method 2. If not robust, then Method 1 not justified.
Comparison of The Two Methods:

1. Method 1: If c_{js} is defined to be total debt balances in the credit card account:
 - All of the theory in this paper would be unchanged.
 - But the interpretation of inclusion of credit card debt in the utility function would be altered in a somewhat disturbing manner.

2. Method 2: If y_{js} is defined to be total debt balances in the credit card account, where $y_{js} = c_{js} + z_{js}$:
 - Only current period credit card purchases c_{js} provide transactions services included in the aggregate.
 - Theoretically preferable to Method 1, but has heavier data requirements.

Note: Empirical test needed to determine whether the aggregates are robust to Method 1 versus Method 2. If not robust, then Method 1 not justified.
The assumptions on homogeneous blockwise weak separability of the intertemporal utility function are sufficient for consistent two-stage budgeting. See Green (1964, theorem 4).

1. Stage 1: The consumer selects real expenditure on augmented monetary services, I_t^*, and on aggregate consumer goods for each period within the planning horizon, along with terminal benchmark asset holdings, A_{t+T}.

2. Stage 2: Augmented monetary services I_t^* are allocated over demands for the current period services of monetary assets and credit cards. That decision is to select m_t and c_t to

$$\max \nu(m_t, c_t),$$

subject to

$$\pi_t^* m_t + \tilde{\pi}_t^* c_t = I_t^*.$$
The assumptions on homogeneous blockwise weak separability of the intertemporal utility function are sufficient for consistent two-stage budgeting. See Green (1964, theorem 4).

1 Stage 1: The consumer selects real expenditure on augmented monetary services, \(l_t^* \), and on aggregate consumer goods for each period within the planning horizon, along with terminal benchmark asset holdings, \(A_{t+T} \).

2 Stage 2: Augmented monetary services \(l_t^* \) are allocated over demands for the current period services of monetary assets and credit cards. That decision is to select \(m_t \) and \(c_t \) to

\[
\max \nu(m_t, c_t),
\]

subject to

\[
\pi_t^* m_t + \bar{\pi}_t^* c_t = l_t^*.
\]
The assumptions on homogeneous blockwise weak separability of the intertemporal utility function are sufficient for consistent two-stage budgeting. See Green (1964, theorem 4).

1 Stage 1: The consumer selects real expenditure on augmented monetary services, \(l_t^* \), and on aggregate consumer goods for each period within the planning horizon, along with terminal benchmark asset holdings, \(A_{t+T} \).

2 Stage 2: Augmented monetary services \(l_t^* \) are allocated over demands for the current period services of monetary assets and credit cards. That decision is to select \(m_t \) and \(c_t \) to

\[
\max \nu(m_t, c_t),
\]

subject to

\[
\pi_t^* m_t + \tilde{\pi}_t^* c_t = l_t^*.
\]
The exact quantity aggregate is the level of the indirect utility produced by the utility maximization problem:

\[
\mathcal{M} = \max \{ \nu(m_t, c_t) : \pi'_t m_t + \tilde{\pi}'_t c_t = I_t \} \\
= \max \{ \nu(m_t, c_t) : \pi'^*_t m_t + \tilde{\pi}'_t c_t = I^*_t \} \\
= \nu(m_t, c_t) \\
= \mathcal{M}(m_t, c_t) \\
= \text{augmented monetary aggregate.}
\]
An exact dual pair of price and quantity aggregates satisfies Fisher’s factor reversal test:

\[\Pi(\pi_t, \tilde{\pi}_t) = \frac{I_t}{M_t} \]
Since ν is linear homogeneous, it follows from Barnett (1987) that,

$$\Pi(\pi_t, \tilde{\pi}_t) = \left[\max_{\{m_t, c_t\}} \left\{ \nu(m_t, c_t) : \pi'_t m_t + \tilde{\pi}'_t c_t = 1 \right\} \right]^{-1}.$$

Define the cost function

$$E(\nu_0, \pi_t, \tilde{\pi}_t) = \min_{\{m_t, c_t\}} \left\{ \pi'_t m_t + \tilde{\pi}'_t c_t : \nu(m_t, c_t) = \nu_0 \right\}.$$
Since ν is linear homogeneous, it follows from Barnett (1987) that,

$$
\Pi(\pi_t, \tilde{\pi}_t) = \left[\max_{\{m_t, c_t\}} \{\nu(m_t, c_t) : \pi'_t m_t + \tilde{\pi}'_t c_t = 1\} \right]^{-1}.
$$

Define the cost function

$$
E(\nu_0, \pi_t, \tilde{\pi}_t) = \min_{\{m_t, c_t\}} \{\pi'_t m_t + \tilde{\pi}'_t c_t : \nu(m_t, c_t) = \nu_0\}.
$$
It can be proved that

\[\Pi(\pi_t, \tilde{\pi}_t) = E(1, \pi_t, \tilde{\pi}_t) = \min_{\{m_t, c_t\}} \{ \pi'_t m_t + \tilde{\pi}'_t c_t : \nu(m_t, c_t) = 1 \}. \]

So

\[\Pi(\pi_t, \tilde{\pi}_t) = \frac{I_t}{M_t} = E(1, \pi_t, \tilde{\pi}_t). \]
It can be proved that

\[\Pi(\pi_t, \tilde{\pi}_t) = E(1, \pi_t, \tilde{\pi}_t) = \min \{ \pi'_t m_t + \tilde{\pi}'_t c_t : \nu(m_t, c_t) = 1 \} \].

So

\[\Pi(\pi_t, \tilde{\pi}_t) = \frac{I_t}{M_t} = E(1, \pi_t, \tilde{\pi}_t). \]
In summary, we have

\[M_t = \max \{ g_1(m_t) : \pi_t^* m_t = \Pi^*_m M_t \} \]

and

\[C_t = \max \{ g_2(c_t) : \tilde{\pi}_t^* c_t = \Pi^*_c C_t \} . \]

Thus, the optimal values of the monetary and credit card quantity aggregates are related to the joint aggregate in the following manner:

\[\mathcal{M}_t = \tilde{\nu}(M_t, C_t) . \]
In summary, we have

\[M_t = \max \{ g_1(m_t) : \pi_t^* m_t = \Pi^*_m M_t \} \]

and

\[C_t = \max \{ g_2(c_t) : \tilde{\pi}_t^* c_t = \Pi^*_c C_t \}. \]

Thus, the optimal values of the monetary and credit card quantity aggregates are related to the joint aggregate in the following manner:

\[\mathcal{M}_t = \tilde{\nu}(M_t, C_t). \]
Discrete Time Approximations to the Divisia Index: the Törnqvist-Theil Approximation:

\[
\log M(t) - \log M(t-1) \\
= \sum_{i=1}^{n} \bar{\omega}_{it} (\log m_{it} - \log m_{i,t-1}) + \sum_{i=1}^{k} \bar{\tilde{\omega}}_{it} (\log c_{it} - \log c_{i,t-1}),
\]

where \(\bar{\omega}_{it} = (\omega_{it} + \omega_{i,t-1})/2 \) and \(\bar{\tilde{\omega}}_{it} = (\tilde{\omega}_{it} + \tilde{\omega}_{i,t-1})/2 \).
Risk Adjustment

Choose the deterministic point \((m_t, c_t, x_t, A_t)\), and the stochastic process \((m_s, c_s, x_s, A_s)\), \(s = t + 1, \ldots, \infty\), to maximize

\[
u(m_t, c_t, x_t) + E_t[\sum_{s=t+1}^{\infty} \frac{1}{1+\xi}^{s-t} u(m_s, c_s, x_s)],
\]

subject to \((m_s, c_s, x_s, A_s) \in S(s)\) for \(s = t, t + 1, \ldots, \infty\), and also subject to the transversality condition

\[
\lim_{s \to \infty} E_t(\frac{1}{1+\xi})^{s-t} A_s = 0.
\]
Risk Adjustment

Choose the deterministic point \((m_t, c_t, x_t, A_t)\), and the stochastic process \((m_s, c_s, x_s, A_s), s = t + 1, \ldots, \infty\), to maximize

\[
u(m_t, c_t, x_t) + E_t\left[\sum_{s=t+1}^{\infty} \left(\frac{1}{1 + \xi} \right)^{s-t} \nu(m_s, c_s, x_s) \right],
\]

subject to \((m_s, c_s, x_s, A_s) \in S(s)\) for \(s = t, t + 1, \ldots, \infty\), and also subject to the transversality condition

\[
\lim_{s \to \infty} E_t \left(\frac{1}{1 + \xi} \right)^{s-t} A_s = 0.
\]
Risk Adjustment

Choose the deterministic point \((m_t, c_t, x_t, A_t)\), and the stochastic process \((m_s, c_s, x_s, A_s)\), \(s = t + 1, \ldots, \infty\), to maximize

\[
u(m_t, c_t, x_t) + E_t\left[\sum_{s=t+1}^{\infty} \frac{1}{1+\xi}^{s-t} u(m_s, c_s, x_s) \right],
\]

subject to \((m_s, c_s, x_s, A_s) \in S(s)\) for \(s = t, t + 1, \ldots, \infty\), and also subject to the transversality condition

\[
\lim_{s \to \infty} E_t\left(\frac{1}{1+\xi}^{s-t} A_s \right) = 0.
\]
Existence of an Augmented Monetary Aggregate for the Consumer

We assume that the utility function, \(u \), is blockwise weakly separable in \((m_s, c_s) \) and in \(x_s \):

\[
u(m_s, c_s, x_s) = F[M(m_s, c_s), X(x_s)].\]
So Euler Equations are:

\[
E_s\left[\frac{\partial V}{\partial m_{is}} - \rho \frac{p^*_s(R_s - r_{is})}{p^*_{s+1}} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

\[
E_s\left[\frac{\partial V}{\partial c_{js}} - \rho \frac{p^*_s(e_{js} - R_s)}{p^*_{s+1}} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

and

\[
E_s\left[\frac{\partial V}{\partial X_s} - \rho \frac{p^*_s(1 + R_s)}{p^*_{s+1}} \frac{\partial V}{\partial X_{s+1}} \right] = 0.
\]
So Euler Equations are:

\[
E_s \left[\frac{\partial V}{\partial m_{is}} - \rho \frac{p_s^*(R_s - r_{is})}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

\[
E_s \left[\frac{\partial V}{\partial c_{js}} - \rho \frac{p_s^*(e_{js} - R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

and

\[
E_s \left[\frac{\partial V}{\partial X_s} - \rho \frac{p_s^*(1 + R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0.
\]
So Euler Equations are:

\[
E_s \left[\frac{\partial V}{\partial m_{is}} - \rho \frac{p_s^*(R_s - r_{is})}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

\[
E_s \left[\frac{\partial V}{\partial c_{js}} - \rho \frac{p_s^*(e_{js} - R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0,
\]

and

\[
E_s \left[\frac{\partial V}{\partial X_{s}} - \rho \frac{p_s^*(1 + R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}} \right] = 0.
\]
So Euler Equations are:

\[
E_s\left[\frac{\partial V}{\partial m_{is}} - \rho \frac{p_s^*(R_s - r_{is})}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}}\right] = 0,
\]

\[
E_s\left[\frac{\partial V}{\partial c_{js}} - \rho \frac{p_s^*(e_{js} - R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}}\right] = 0,
\]

and

\[
E_s\left[\frac{\partial V}{\partial X_s} - \rho \frac{p_s^*(1 + R_s)}{p_{s+1}^*} \frac{\partial V}{\partial X_{s+1}}\right] = 0.
\]
New Generalized Augmented Divisia Index Under Risk

Definition The contemporaneous risk-adjusted real user cost price of the services of m_{it}^a is \mathcal{P}_{it}^a, defined such that

$$\mathcal{P}_{it}^a = \frac{\partial V}{\partial m_{it}^a} \cdot \frac{\partial X_t}{\partial V}, \quad i = 1, 2, ..., n + k.$$
Theorem 1(a) The risk adjusted real user cost of the services of monetary asset i under risk is $P_{it}^m = \pi_{it} + \psi_{it}$, where

$$\pi_{it} = \frac{E_t R_t^* - E_t r_{it}^*}{1 + E_t R_t},$$

and

$$\psi_{it} = \rho (1 - \pi_{it}) \frac{\text{Cov} \left(R_t^*, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}} - \rho \frac{\text{Cov} \left(r_{it}^*, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}}.$$
Theorem 1(a) The risk adjusted real user cost of the services of monetary asset i under risk is $\mathcal{P}_it^m = \pi_{it} + \psi_{it}$, where

$$\pi_{it} = \frac{E_t R^*_t - E_t r^*_it}{1 + E_t R_t},$$

and

$$\psi_{it} = \rho (1 - \pi_{it}) \frac{\text{Cov} \left(R^*_t, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}} - \rho \frac{\text{Cov} \left(r^*_it, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}}.$$
Theorem 1(b) The risk adjusted real user cost of the services of credit card type j under risk is $\mathcal{P}^c_{jt} = \tilde{\pi}_{jt} + \tilde{\psi}_{jt}$, where

$$\tilde{\pi}_{jt} = \frac{E_t e^*_{jt} - E_t R^*_t}{1 + E_t R_t},$$

and

$$\tilde{\psi}_{jt} = \rho \frac{\text{Cov} \left(e^*_{jt}, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}} - \rho (1 + \tilde{\pi}_{jt}) \frac{\text{Cov} \left(R^*_t, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}}.$$

William A. Barnett and Liting Su
University of Kansas
Theorem 1(b) The risk adjusted real user cost of the services of credit card type j under risk is $\mathcal{P}_{jt} = \tilde{\pi}_{jt} + \tilde{\psi}_{jt}$, where

$$\tilde{\pi}_{jt} = \frac{E_t e_{jt}^* - E_t R_t^*}{1 + E_t R_t},$$

and

$$\tilde{\psi}_{jt} = \rho \frac{\text{Cov} \left(e_{jt}^*, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}} - \rho (1 + \tilde{\pi}_{jt}) \frac{\text{Cov} \left(R_t^*, \frac{\partial V}{\partial X_{t+1}} \right)}{\frac{\partial V}{\partial X_t}}.$$
Theorem 2 In the share equations, \(\omega_{it} = \pi^{a}_{it} m^{a}_{it} / \pi^{a'}_{t} m^{a}_{t} \), we replace the user costs, \(\pi^{a}_{t} = (\pi'_{t}, \tilde{\pi}'_{t})' \), by the risk-adjusted user costs, \(\mathcal{P}^{a}_{it} \), to produce the risk adjusted shares,

\[
S_{it} = \mathcal{P}^{a}_{it} m^{a}_{it} / \sum_{j=1}^{n+k} \mathcal{P}^{a}_{jt} m^{a}_{jt}.
\]

Under our weak-separability assumption, \(V(m_{s}, c_{s}, X_{s}) = F[M(m_{s}, c_{s}), X_{s}] \), and our assumption that the monetary aggregation function \(M \) is linearly homogeneous, the following generalized augmented Divisia index holds under risk:

\[
d \log M_{t} = \sum_{i=1}^{n+k} S_{it} d \log m^{a}_{it}.
\]
Conclusion

- Economic aggregation and index number theory measure service flows, independently of whether from assets or liabilities.
- So the transactions services of credit cards could be included in monetary aggregates.
- This paper has provided theory solving that long overlooked problem.
- Six possible approaches exist to incorporating credit card services into monetary aggregates: Method 1 or Method 2 under risk neutrality, Method 1 or Method 2 under CCAPM risk, or Method 1 or Method 2 under intertemporally nonseparable risk.
Conclusion

- Economic aggregation and index number theory measure service flows, independently of whether from assets or liabilities.
- So the transactions services of credit cards could be included in monetary aggregates.
- This paper has provided theory solving that long overlooked problem.
- Six possible approaches exist to incorporating credit card services into monetary aggregates: Method 1 or Method 2 under risk neutrality, Method 1 or Method 2 under CCAPM risk, or Method 1 or Method 2 under intertemporally nonseparable risk.
Conclusion

- Economic aggregation and index number theory measure service flows, independently of whether from assets or liabilities.

- So the transactions services of credit cards could be included in monetary aggregates.

- This paper has provided theory solving that long overlooked problem.

- Six possible approaches exist to incorporating credit card services into monetary aggregates: Method 1 or Method 2 under risk neutrality, Method 1 or Method 2 under CCAPM risk, or Method 1 or Method 2 under intertemporally nonseparable risk.
Conclusion

- Economic aggregation and index number theory measure service flows, independently of whether from assets or liabilities.

- So the transactions services of credit cards could be included in monetary aggregates.

- This paper has provided theory solving that long overlooked problem.

- Six possible approaches exist to incorporating credit card services into monetary aggregates: Method 1 or Method 2 under risk neutrality, Method 1 or Method 2 under CCAPM risk, or Method 1 or Method 2 under intertemporally nonseparable risk.
Conclusion

- Economic aggregation and index number theory measure service flows, independently of whether from assets or liabilities.
- So the transactions services of credit cards could be included in monetary aggregates.
- This paper has provided theory solving that long overlooked problem.
- Six possible approaches exist to incorporating credit card services into monetary aggregates: Method 1 or Method 2 under risk neutrality, Method 1 or Method 2 under CCAPM risk, or Method 1 or Method 2 under intertemporally nonseparable risk.