Intra-Speaker Topic Modeling for Improved Multi-Party Meeting Summarization with Integrated Random Walk

Yun-Nung Chen
Carnegie Mellon University

Florian Metze
Carnegie Mellon University, fmetze@andrew.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/lti

Part of the [Computer Sciences Commons](http://repository.cmu.edu/lti)

Published In

Intra-Speaker Topic Modeling for Improved Multi-Party Meeting Summarization with Integrated Random Walk

Yun-Nung Chen and Florian Metze
School of Computer Science, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213-3891, USA
{yvchen,fmetze}@cs.cmu.edu

Abstract

This paper proposes an improved approach of summarization for spoken multi-party interaction, in which integrated random walk is performed on a graph constructed with topical/lexical relations. Each utterance is represented as a node of the graph and the edge between two nodes is weighted by the similarity between the two utterances, where we use two types of edges, one from topical similarity evaluated by probabilistic latent semantic analysis (PLSA) and another from word overlap. We model intra-speaker topics by partially sharing the topics from the same speaker in the graph. We did experiments for ASR and manual transcripts. For ASR transcripts, experiments showed intra-speaker topic sharing and integrating topical/lexical relations can help include the important utterances.

1 Introduction

Speech summarization is very important (Lee and Chen, 2005), because multimedia/spoken documents are more difficult to browse, and it has been actively investigated before. While most work was focused primarily on news content, recent effort has been increasingly directed to new domains such as lectures (Glass et al, 2007; Chen et al, 2011) and multi-party interaction (Banerjee and Rudnicky, 2008; Liu and Liu, 2010). We take meeting recording as multi-party interaction and do experiments on this dataset, where we perform extractive summarization on ASR and manual transcripts, which has been used before (Liu et al, 2010).

For text summarization, many approaches focus on graph-based methods to compute lexical centrality as importance to extract summaries (Erkan and Radev, 2004). Some works focus on maximizing coverage of summaries using the objective function (Gillick, 2011). The speech summarization carries intrinsic difficulties due to the presence of recognition errors, spontaneous speech effect, and lack of segmentation. A general approach has been found very successful (Furui et al, 2004), in which each utterance in the document $d, U = t_1t_2...t_i...t_n$, represented as a sequence of terms t_i, is given an importance score:

$$I(U, d) = \frac{1}{n} \sum_{i=1}^{n} [\lambda_1 s(t_i, d) + \lambda_2 l(t_i) + \lambda_3 c(t_i) + \lambda_4 g(t_i)] + \lambda_5 b(U),$$

where $s(t_i, d)$, $l(t_i)$, $c(t_i)$, $g(t_i)$ are respectively some statistical measure (such as TF-IDF), linguistic measure (e.g., different part-of-speech tags are given different weights), confidence score and N-gram score for the term t_i, and $b(U)$ is calculated from the grammatical structure of the utterance U, and $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ and λ_5 are weighting parameters. For each document, the utterances to be used in the summary are then selected based on this score.

In recent work, Chen (2011) proposed a graphical structure to rescore $I(U, d)$, which can model the topical coherence between utterances using random walk within documents. With similar idea, we use graph-based approach to consider the importance of terms and the similarity between utterances, where topical and lexical similarity are integrated in the graph, so that utterances topically or lexically similar to more important utterances are given higher scores. Because similarity evaluated by word overlap may be inaccurate due to recognition errors, topical similarity can compensate the disadvantages. In addition, unlike lecture and news summarization, meeting recording is the corpus of multi-party interaction so that this paper proposes the approach of modeling intra-speaker topics in the graph to improve meeting summarization (Garg et al, 2009).

2 Proposed Approach

We apply word stemming and noise utterance filtering for utterances in all meetings. Then we construct a graph to compute the importance of all utterances.
2.1 Parameters from PLSA

PLSA (Hofmann, 1999) has been widely used to analyze the semantics of documents based on a set of topics. Given a set of documents \(\{d_j, j = 1, 2, ..., J\} \) and all terms \(\{t_i, i = 1, 2, ..., M\} \) they include, PLSA uses a set of latent topic variables, \(\{T_k, k = 1, 2, ..., K\} \), to characterize the "term-document" co-occurrence relationships. The PLSA model can be optimized with EM algorithm by maximizing a likelihood function (Hofmann, 1999). We utilize two parameters from PLSA: latent topic significance (LTS) and latent topic entropy (LTE) (Kong and Lee, 2011).

Latent Topic Significance (LTS) for a given term \(t_i \) with respect to a topic \(T_k \) can be defined as

\[
\text{LTS}_{t_i}(T_k) = \frac{\sum_{d_j \in D} n(t_i, d_j) P(T_k \mid d_j)}{\sum_{d_j \in D} n(t_i, d_j) [1 - P(T_k \mid d_j)]},
\]

where \(n(t_i, d_j) \) is the occurrence count of term \(t_i \) in a document \(d_j \). Thus, a higher LTS\(_{t_i}(T_k)\) indicates that the term \(t_i \) is more significant for the latent topic \(T_k \).

Latent Topic Entropy (LTE), for a given term \(t_i \) can be calculated from the topic distribution \(P(T_k \mid t_i) \):

\[
\text{LTE}(t_i) = -\sum_{k=1}^{K} P(T_k \mid t_i) \log P(T_k \mid t_i),
\]

where the topic distribution \(P(T_k \mid t_i) \) can be estimated from PLSA. LTE\(_{t_i}\) is a measure of how the term \(t_i \) is focused on a few topics, so a lower latent topic entropy implies the term carries more topical information.

2.2 Statistical Measures of a Term

The statistical measure of a term \(t_i \), \(s(t_i, d) \) in (1) can be defined in terms of LTE\(_t\) in (3) as

\[
s(t_i, d) = \frac{\gamma \cdot n(t_i, d)}{\text{LTE}(t_i)},
\]

where \(\gamma \) is a scaling factor such that \(0 \leq s(t_i, d) \leq 1 \); the score \(s(t_i, d) \) is inversely proportion to the latent topic entropy LTE\(_t\). Some works (Kong and Lee, 2011) showed that the use in (1) of \(s(t_i, d) \) as defined in (4) outperformed the very successful "significance score" (Furui et al, 2004) in speech summarization; then, we use it as the baseline.

2.3 Similarity between Utterances

Within a document \(d \), we can first compute the probability that the topic \(T_k \) is addressed by an utterance \(U_i \):

\[
P(T_k \mid U_i) = \frac{\sum_{t \in U_i} n(t, U_i) P(T_k \mid t)}{\sum_{t \in U_i} n(t, U_i)}.
\]

Then an asymmetric topical similarity \(\text{TopicSim}(U_i, U_j) \) for utterances \(U_i \) to \(U_j \) (with direction \(U_i \rightarrow U_j \)) can be defined by accumulating LTS\(_t\)(\(T_k \)) in (2) weighted by \(P(T_k \mid U_i) \) for all terms \(t \) in \(U_j \) over all latent topics:

\[
\text{TopicSim}(U_i, U_j) = \sum_{k=1}^{K} \sum_{t \in U_j} \text{LTS}(T_k) P(T_k \mid U_i),
\]

where the idea is very similar to the generative probability in IR. We call it generative significance of \(U_i \) given \(U_j \).

Within a document \(d \), the lexical similarity is the measure of word overlap between the utterance \(U_i \) and \(U_j \). We compute LexSim\(_{U_i, U_j}\) as the cosine similarity between two TF-IDF vectors from \(U_i \) and \(U_j \) like well-known LexRank (Erkan and Radev, 2004). Note that LexSim\(_{U_i, U_j}\) = LexSim\(_{U_j, U_i}\).

2.4 Intra-Speaker Topic Modeling

We assume a single speaker usually focuses on similar topics, so if an utterance is important, the scores of the utterances from the same speaker should be increased. Then we increase the similarity between the utterances from the same speaker to share the topics:

\[
\text{TopicSim}'_{U_i, U_j} = \begin{cases}
\text{TopicSim}(U_i, U_j)^{1+w} & \text{if } U_i \in S_k \text{ and } U_j \in S_k \\
\text{TopicSim}(U_i, U_j)^{1-w} & \text{otherwise}
\end{cases}
\]

where \(S_k \) is the set of utterances from the same speaker, and \(w \) is a parameter to control the increase of similarity.
where \(S_k \) is the set including all utterances from speaker \(k \), and \(w \) is a weighting parameter for modeling the speaker relation, which means the level of coherence of topics within a single speaker. Here the topics from the same speaker can partially shared.

2.5 Integrated Random Walk

We modify random walk (Hsu and Kennedy, 2007; Chen et al, 2011) to integrate two types of similarity over the graph obtained above. \(v(i) \) is the new score for node \(U_i \), which is the interpolation of three scores, the normalized initial importance \(r(i) \) for node \(U_i \) and the score contributed by all neighboring nodes \(U_j \) of node \(U_i \) weighted by \(p_t(j,i) \) and \(p_l(j,i) \),

\[
v(i) = (1 - \alpha - \beta) r(i) + \alpha \sum_{U_j \in B_t^i} p_t(j,i) v(j) + \beta \sum_{U_j \in B_l^i} p_l(j,i) v(j),
\]

where \(\alpha \) and \(\beta \) are the interpolation weights, \(B_t^i \) is the set of neighbors connected to node \(U_i \) via topical incoming edges, \(B_l^i \) is the set of neighbors connected to node \(U_i \) via lexical incoming edges, and

\[
r(i) = \frac{I(U_i,d)}{\sum_{U_j} I(U_j,d)}
\]

is normalized importance scores of utterance \(U_i \), \(I(U_i,d) \) in (1). We normalize topical similarity by the total similarity summed over the set of outgoing edges, to produce the weight \(p_t(j,i) \) for the edge from \(U_j \) to \(U_i \) on the graph. Similarly, \(p_l(j,i) \) is normalized in lexical edges.

(8) can be iteratively solved with the approach very similar to that for the PageRank problem (Page et al, 1998). Let \(\mathbf{v} = [v(i), i = 1, 2, ..., L]^{T} \) and \(\mathbf{r} = [r(i), i = 1, 2, ..., L]^{T} \) be the column vectors for \(v(i) \) and \(r(i) \) for all utterances in the document, where \(L \) is the total number of utterances in the document \(d \) and \(\mathbf{T} \) represents transpose. (8) then has a vector form below,

\[
\mathbf{v} = (1 - \alpha - \beta) \mathbf{r} + \alpha \mathbf{P}_t \mathbf{v} + \beta \mathbf{P}_l \mathbf{v} = (1 - \alpha - \beta) \mathbf{r} + \alpha \mathbf{P}_t \mathbf{v} + \beta \mathbf{P}_l \mathbf{v} = \mathbf{P}' \mathbf{v},
\]

where \(\mathbf{P}_t \) and \(\mathbf{P}_l \) are \(L \times L \) matrices of \(p_t(j,i) \) and \(p_l(j,i) \) respectively, and \(\mathbf{e} = [1, 1, ..., 1]^{T} \). It has been shown that the solution \(\mathbf{v} \) of (10) is the dominant eigenvector of \(\mathbf{P}' \) (Langville and Meyer, 2006), or the eigenvector corresponding to the largest absolute eigenvalue of \(\mathbf{P}' \).

The solution \(v(i) \) can then be obtained.

3 Experiments

3.1 Corpus

The corpus used in this research is the sequences of natural meetings, which featured largely overlapping participant sets and topics of discussion. For each meeting, SmartNotes (Banerjee and Rudnicky, 2008) was used to record both the audio from each participant as well as his notes. The meetings were transcribed both manually and using a speech recognizer; the word error rate is around 44%. In this paper we use 10 meetings held from April to June of 2006. On average each meeting had about 28 minutes of speech. Across these 10 meetings there were 6 unique participants; each meeting featured between 2 and 4 of these participants (average: 3.7). Total number of utterances is 9837 across 10 meetings. In this paper, we separate dev set (2 meetings) and test set (8 meetings). Dev set is used to tune the parameters such as \(\alpha, \beta, w \).

The reference summaries are given by the set of noteworthy utterances. Two annotators manually labelled the degree (three levels) of “noteworthiness” for each utterance, and we extract the utterances with the top level of “noteworthiness” to form the summary of each meeting. In following experiments, for each meeting, we extract top 30% number of terms as the summary.

3.2 Evaluation Metrics

Automated evaluation will utilize the standard DUC evaluation metric ROUGE (Lin, 2004) which represents recall over various n-grams statistics from a system-generated summary against a set of human generated peer summaries. F-measures for ROUGE-1 (unigram) and ROUGE-L (longest common subsequence) can be evaluated in exactly the same way, which are used in the following results.

3.3 Results

Table 1 shows the performance achieved from all proposed approaches. In these experiments, damping factor, \((1 - \alpha - \beta) \) in (8), is empirically set to 0.1. Row (a) is the baseline, which use LTE-based statistical measure to compute the importance of utterances \(I(U,d) \). Row (b) is the result only considering lexical similarity; row (c) only uses topical similarity. Row (d) are the results additionally including speaker information such as TopicSim\((U_i, U_j)\). Row (e) is the result performed by integrated random walk (with \(\alpha \neq 0 \) and \(\beta \neq 0 \)) using best parameters from dev set.

3.3.1 Graph-Based Approach

We can see the performance after graph-based recomputation, row (b) and (c), are significantly better than baseline row (a) for both ASR and manual transcripts. For ASR transcripts, topical similarity and lexical similarity give similar results. For manual transcripts, topical similarity performs slightly worse than lexical similarity, because manual transcripts don’t contain the recognition errors, and that word overlap can accurately measure the similarity between two utterances. However, for ASR transcripts, although topical similarity is not as accurate
Table 1: Maximum relative improvement (RI) with respect to the baseline for all proposed approaches (%).

<table>
<thead>
<tr>
<th>F-measure</th>
<th>ASR Transcripts</th>
<th>Manual Transcripts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROUGE-1</td>
<td>ROUGE-L</td>
</tr>
<tr>
<td>(a) Baseline: LTE</td>
<td>46.816</td>
<td>46.256</td>
</tr>
<tr>
<td>(b) LexSim ($\alpha = 0, \beta = 0.9$)</td>
<td>48.940</td>
<td>48.504</td>
</tr>
<tr>
<td>(c) TopicSim ($\alpha = 0.9, \beta = 0$)</td>
<td>49.058</td>
<td>48.436</td>
</tr>
<tr>
<td>(d) Intra-Speaker TopicSim</td>
<td>49.212</td>
<td>48.351</td>
</tr>
<tr>
<td>(e) Integrated Random Walk</td>
<td>49.792</td>
<td>49.156</td>
</tr>
</tbody>
</table>

MAX RI +6.357 +6.269 +4.706 +4.839

Figure 2: The performance from integrated random walk with different combining weights, α and β ($\alpha + \beta = 0.9$ in all cases) for ASR transcripts.

as lexical similarity, it can compensate recognition error so that they have similar performance. Thus, graph-based approaches can significantly improve the baseline results.

3.3.2 Effectiveness of Intra-Speaker Modeling

We find that modeling intra-speaker topics can improve the performance (row (c) and row (d)), which means speaker information is useful to model the topical similarity. The experiment shows intra-speaker modeling can help us include the important utterances for both ASR and manual transcripts.

3.3.3 Integration of Topical and Lexical Similarity

Row (e) is the result from proposed approach, which integrates topical and lexical similarity into a single graph, considering two types of relations together. For ASR transcripts, row (e) is better than row (b) and row (d), which means topical similarity and lexical similarity can model different types of relations because of recognition errors. Figure 2 shows the sensitivity of combining weights for integrated random walk. We can see topical similarity and lexical similarity are additive, which can compensate each other, improving the performance by integrating two types of edges in a single graph. Note that the exact values of α and β do not matter so much for the performance.

For manual transcripts, row (e) cannot perform better by combing two types of similarity, which means topical similarity can dominate lexical similarity, since without recognition errors topical similarity can model the relations accurately and additionally modeling intra-speaker topics can effectively improve the performance.

In addition, Banerjee and Rudnicky (2008) used supervised learning to detect noteworthy utterances in the same corpus, performing 43% (ASR) and 47% (manual) for ROUGE-1. Compared to it, our unsupervised approach performs better especially for ASR transcripts.

Note that the performance of ASR is better than manual transcripts. Because a higher percentage of errors is on “unimportant” words, the recognition errors are harder to obtain high scores; then we can exclude the utterances with more errors to get better summarization results. Some recent works also show better performance for ASR than manual transcripts (Chen et al, 2011; Kong and Lee, 2011).

4 Conclusion and Future Work

Extensive experiments and evaluation with ROUGE metrics showed that intra-speaker topics can be modeled in topical similarity and that integrated random walk can combine the advantages from two types of edges for imperfect ASR transcripts, where we performed more than 6% relative improvement. We plan to model inter-speaker topics in the graph-based approach in the future.

Acknowledgements

The author was supported by the Institute of Education Science, U.S. Department of Education, through Grants R305A080157 and R305A080628 to Carnegie Mellon University.

References

Y. Chen et al. 2011. Spoken lecture summarization by random walk over a graph constructed with automatically extracted key terms. Proc. of Interspeech.

J. Glass et al. 2007. Recent progress in the MIT spoken lecture processing project. *Proc. of InterSpeech*.

