Watching Together: Integrating Conversation with Video

Justin D. Weisz
Carnegie Mellon University

Sara Kiesler
Carnegie Mellon University

Hui Zhang
Carnegie Mellon University

Yuqing Ren
Carnegie Mellon University

Robert Kraut
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/hcii
Watching Together: Integrating Conversation with Video

*Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15232
{jweisz, kiesler, hzhang, yren, kraut}@cs.cmu.edu

**University of Minnesota
200 Union Street SE
Minneapolis, MN 55455
konstan@cs.umn.edu

ABSTRACT
Watching video online is becoming increasingly popular, and new video streaming technologies have the potential to transform video-watching from a passive, isolating experience into an active, socially engaging experience. However, the viability of an active social experience is unclear: both chatting and watching video require attention, and may interfere with one another and detract from the experience. In this paper, we empirically examine the activity of chatting while watching video online. We examine how groups of friends and strangers interact, and find that chat has a positive influence on social relationships, and people chat despite being distracted. We discuss the benefits and opportunities provided by mixing chat and video, uncover some of the attentional and social challenges inherent in this combination of media, and provide guidance for structuring the video-watching experience.

Author Keywords
Video, television, communication, chat, strangers, friends.

ACM Classification Keywords
H.5.3 Group and Organization Interfaces

INTRODUCTION
Watching video online is becoming an extremely popular activity. Google Video and YouTube allow people to watch hundreds of thousands of user-contributed videos, as well as rate them and leave comments. Some video content is even being produced specifically for the Internet [10], and recently, traditional media companies such as ABC and CBS have been experimenting with streaming television shows online (e.g. http://abc.go.com/fes). New media companies such as ManiaTV.com produce television solely for the Internet, and provide real-time chat for viewers.

However, despite the growing popularity of online video, and especially video-centered interactions, to our knowledge there is no research that examines how people experience video broadcasts with conversation. Conversation is one of life’s most enjoyable experiences, but it also consumes considerable attentional resources. Anyone who has attempted to watch a movie while others are talking knows of the effort in, and distraction that results from, trying to listen to the dialogue, follow the story line, and listen to (or fend off) the chatter of others.

In this paper, we report our studies of people’s experience of watching videos online while simultaneously conversing with others. We asked if user experience and relationships would be enhanced or harmed by this activity. If interactions with friends or strangers are interwoven with watching video, will viewers be unable to submerge themselves in the video? Will social interaction be fun because people are sharing an interaction, or will it prove annoying to most people? How might the video experience be structured to leverage both watching and chatting?

We find these questions important to HCI for several reasons. First, HCI has a history of interest in the human capacity for processing parallel streams of information (as noted above), and in understanding the effects of interruption on computer use experiences (e.g. [6]). Second, the effect of shared video watching on relationships has direct implications on the potential to use this computer-mediated communications tool to build social capital [15]. Finally, the nature of our study yields design implications for those who are already constructing chat with video systems.

We conducted two studies to pursue these questions. The first was an exploratory study designed to answer some preliminary questions about live video and chat. Would strangers chat during a movie? Do they enjoy the experience, or find it too distracting? From this study, we learned that people do chat, but chat was distracting while watching the movie. Our second study evaluated two methods of reducing distraction: inserting intermissions in between video content, or reserving a period for discussion after the video. This study also examined the social
experience of watching together: how are people's relationships affected, is this an activity that promotes conversation among strangers, and how does conversation affect evaluations of the video itself? We found that chat had a positive influence on relationships of both friends and strangers, the presence of the media was a large influence on conversations, and the intermissions did reduce feelings of distraction without affecting the amount of chat that occurred.

The rest of this paper is organized as follows. We first motivate the need to study the integration of chat with video. We then present the results of our two studies. We conclude by summarizing the lessons we learned about the integration of chat with video, and discuss implications of likely changes in video and chat technology in the future.

VIDEO AND INTERNET TELEVISION
Live streaming video online not only gives people control over the timing and location of their video consumption but also enables them to partake in a shared experience. For instance, members of an online political group could watch their candidate as part of a connected community event, and discuss the event on community forums. However, real-time communication may enhance these experiences even further, because it contains a level of intimacy unlike asynchronous forms of communication [14]. In coming together for interaction around a shared experience, people signal their mutual interest and trust with one another, which in turn creates a sense of unity in the group [1]. Further, interaction drives liking of others (e.g., [4]), and in online communities, interaction with others is a major determinant of the extent to which people build relationships with one another [12,18]. Attachment increases if members have a sense of virtual co-presence, or a subjective feeling of being together with others [16] and synchronous interaction fosters the formation of relationships between strangers [21]. Hence, the combination of live streaming video with social interaction promises a wide range of benefits for the creation and maintenance of ties between people online.

Until recently, publishing live streaming video on the Internet has been costly. Server-based video solutions have required significant server and network capacity, are rather expensive, and are feasible only for large companies and organizations. New peer-to-peer video streaming technologies [5] can provide high-quality streaming video at a lower cost, by taking advantage of the network resources available among viewers. Thus, it is now possible for member-controlled online communities to provide live video and chat events for their members. We believe that these technologies will change how people experience video, transforming a passive viewing experience on a TV into a more active one, watching online with a community of other viewers.

It might be argued that video is not meant to be a social, or at least, an interactive experience. Previous work suggests that people who are alone greatly enjoy media content from television, movies, and music sources, and that doing so is often used as an escape from everyday cares [8,11]. However, for others, sharing video experiences could enhance their enjoyment of both the video content and one another. Brown and Barkhuus [2] studied people's television-watching behaviors and found that one motivation for downloading TV shows was to keep up with Internet discussion forums. Voida et al. [19] studied coworkers' behaviors with sharing iTunes music. They found that sharing music and learning about other people's musical tastes added a sense of intimacy to existing relationships. In both of these studies, however, conversation either followed or preceded viewers' media experience, rather than occurring during the media experience.

Perhaps the closest analogue of shared media experiences are shared gaming experiences. Brown and Bell [3] studied 'There', an online virtual world where players socialize and interact with one another and the environment. These authors reported that shared activities were an important part of the game, and that the open-ended nature of 'There' promoted creating and sharing new activities and styles of play, as well as interaction among strangers. Similarly, Nardi and Harris reported that, in World of Warcraft, spontaneous collaborations among strangers were prevalent, and the shared activity of playing together promoted social connections among friends playing in the same room, as well as friends playing in different cities [13].

Distraction in Simultaneous Video and Chat?
Considerable research shows that people cannot pay close attention to verbal information from two sources simultaneously, and that they cannot fully process material from an auditory and a visual source, such as conversation with a partner and onscren dialogue [20,22]. Further, if people watch videos or TV as an escape [8], conversing with others might interfere with their immersion in the content. Thus, it seems possible that watching live video online while chatting with others could end in frustration, rather than the positive experience that seems plausible based on the individual desirability of video entertainment and conversation.

MOVIELENS MOVIE NIGHT
To explore the issue of chat and video, we conducted an initial exploratory study in a movie recommendation community called MovieLens (http://www.movielens.org). We showed MovieLens members a series feature films, using the End System Multicast software ([5], http://esm.cs.cmu.edu/). ESM enabled us to deliver live streaming video to participants who lived around the world, so everyone who signed up could watch the movies at the same time. ESM also provided an IRC-based chat feature, allowing people to chat while watching the movies.
We recruited fifteen MovieLens members to participate in our preliminary study, through a series of email invitations and website advertising. Participants tuned into two movies on average, and the 10 assembled chat groups had an average of four people. Multiple chat groups were formed per showing.

Chat Usage
Our primary question was whether or not participants would chat while watching the movie. We found that they would; the chat groups each produced an average of about 190 lines of chat over the course of a 2.5 to 3 hour movie. This corresponds to about 1.1 lines of chat each minute. Thus, while chat occurred at a very relaxed pace, participants nonetheless chatted.

At the end of the study, participants were asked to rate their enjoyment of the chat on a 7-point Likert scale. They reported moderate enjoyment on average (M = 4.3, SD = 1.6). As suggested by the large standard deviation, some participants greatly enjoyed the chat, and felt that it helped their understanding of the video content.

"It was very fun - it was helpful that someone who actually understood the movie could help me understand it - very much increased my enjoyment of it." (ML1)

"I'm also responding positively to the notion of there being a community of people out there sharing my experience." (ML3)

"For me the chat feature was a big part of what made me tune in to the movies ... If the chat hadn't been there, I think I could just as well watch a movie on the TV, or downloaded a movie in advance." (ML14)

Others felt that the chat was distracting, and one did not see any value to the chat feature at all.

"I'm not interested in chatting online, especially not during watching a movie." (ML6)

"[I] disliked that [the chat] was somewhat distracting; had there been more chatter it could have become annoying." (ML5)

"[I] just didn't find it possible to concentrate on movie and chat. If I'm watching a movie, I don't want/need other stimuli." (ML2)

Finally, one participant felt that, with practice, the distraction might become less bothersome.

"[I] don't find it too distracting--I'm taking an online class where we have audio and chat going at the same time, so I'm getting used to multitasking like this" (ML13)

These comments about distraction speak directly to the research on attentional resources cited above. Thus, the preliminary data show a tradeoff does exist in this technology — the fun of sharing and discussing the video with others versus the potentially negative impact of distraction on perceiving and processing video content. To understand this tradeoff better, and to investigate whether it could be mitigated, we carried out a controlled experiment.

Cartoon-Watching Experiment

Based on our observations in the MovieLens study, we formulated three main research questions about the shared video experience. First, would chat enhance the media experience? Prior research suggests that people love interacting when they are engaged in a mutually entertaining activity, e.g., [13], but does this interaction enhance the value of the entertainment? Decades of research suggest that social interaction increases liking (e.g. [4]). Thus, does chat with video increase peoples’ liking for one another?

Second, how would chat affect relationships with strangers versus friends? We raised this question out of curiosity about video with chat as a way to introduce newcomers to one another in online communities. Would watching together be an effective mechanism for breaking the ice?

Third, we wondered if structuring the video experience might reduce distraction. Both the video and the chat require mental processing of verbal material: one must look at the video to see and hear what goes on, and one must attend to chat to keep track of what others have said and to formulate responses. We reasoned that perhaps the information lost in multitasking occurs mainly in one direction at a time. Processing chat may cause one to miss what occurs in the video, but processing video only causes one to miss what people are saying when they say it.

Because chat (as we studied it, in text form) has a history log, viewers can catch up with the conversation when the complexity of the video is low (e.g., when there is no dialogue). Alternatively, viewers can wait for periods of low complexity or a break, and resume chat during those periods. If all viewers are watching at the same time, coordinating periods of chat with viewing is not impossible. Nonetheless, we speculated that a structured experience with break periods designated for conversation might aid the coordination of viewing and chat, and reduce distraction. Our idea is akin to intermissions in a play, or breaks in a sporting event.

From these arguments, we made the following predictions.

H1. Chat will enhance the media experience. That is, in comparison to watching with others without chat, viewers with chat will have more fun; they will rate the content better; they will enjoy talking; and they will like the other people watching with them better.

H1a. Chat will increase liking mainly among strangers, because friends already like one another.

H2. Chat will be distracting while watching a video.

H2a. As chatting during the video is distracting, viewers will take advantage of intermissions as a time to chat without being distracted.
H2b. Intermissions will reduce feelings of distraction.

We used cartoons as our source of video content in this study because they are representative of the kinds of videos seen on YouTube or Google Video: they are a few minutes long, and it is easy to insert intermissions between them.

METHOD

We studied shared viewing and chat in a controlled laboratory experiment in which small groups assembled to watch a series of cartoons. Participants were separated to simulate the experience of watching videos remotely on the Internet. The order of the cartoons was randomized between groups.

Experimental Design

To test the effect of chat on user experience (H1), we compared groups where people were able to chat with one another (two Chat conditions) with a control condition (No Chat condition), where groups watched the cartoons without the chance to chat with one another.

To test whether chat would have more impact on groups of strangers (H1a), we assembled groups of strangers and groups of friends for the study.

To test the effects of structuring the video experience (H3), we compared two forms of chat. In the Intermission condition, each cartoon was separated by a brief intermission, to give participants a period of silence where they could chat without a video distraction. In the End Break condition, participants were given extra time to converse after all of the cartoons had played. In both cases, our structuring was entirely voluntary and suggestive; participants could chat whenever they wanted.

This experiment used a 3 X 2 between-groups factorial design with Video Structure (No Chat, Intermissions, End Break) and Group Composition (Friends, Strangers) as the independent variables (Table 1).

Participants

The sample was 85 participants in 30 groups. Participants were recruited in groups of two to four people (M = 2.8) from the psychology experiment directory at the local university. To recruit groups of friends, we asked that people interested in the experiment find two friends to participate with them. To recruit strangers, participants simply signed up in one of the time slots we offered. Group size did not differ significantly among the experimental conditions (F [3,16] = .6, n.s.).

The average age of the participants was 24.3 years (SD = 7.3 years); approximately half were female. Seventy-five percent of participants were students, five percent were faculty or staff, and the rest were alumni, retired or did not list their affiliation. Participants were paid $15 each for their participation, which took approximately one hour.

Overall, watching video was a popular activity for our participants. Fifty-six percent of participants reported watching videos on YouTube or Google Video, and 61% reported watching movies or television more than once a week in the past month. Thirty-nine percent of participants reported renting movies from vendors like NetFlix and Blockbuster.

Procedure

Upon arrival at the lab, participants were seated in an arrangement such that they were visually separated from one another. Participants were informed that they would watch a series of cartoons on the computer, and take a survey at the end.

As this study was conducted using laboratory machines on a LAN, we used Windows Media Player to play streaming video from a server on the LAN. Everyone watched the same content at the same time. We also used the mIRC IRC client (http://www.mirc.com/) for chat, and collected chat logs using an open-source IRC server, instrumented to log timestamps, message senders and the contents of each line of chat. A picture of the typical arrangement of a participant’s screen is shown in Figure 1.

We showed participants seven cartoons. The cartoons were found through a popular online video podcast (channelfrederator.com). Story lines followed themes of education, humor, love, character struggles, and a music
The podcast encourages its members to rate cartoons on a 5-point Likert scale, and we chose cartoons that were well liked by the community (M = 4.0, range = 3.8 to 4.3). Each cartoon lasted between three and six minutes. In the Intermission condition, one-minute intermissions were placed in between each cartoon. In the End Break condition, participants were given a six-minute period for discussion at the end of the cartoons.

In both chat conditions, participants were told that they would be able to chat with other participants, and that they could chat at any time during the cartoons or break periods, about any topic. In the No Chat condition, participants did not have the chat feature and did not receive these breaks.

Measures

All participants rated each cartoon immediately after it had finished, to avoid difficulties in recall. These ratings were made on 5-point Likert scales, representing how much they liked each cartoon. All participants also completed a final survey consisting of 10 questions about chat, the watching experience, and the other people in their group (several questions were omitted for participants without chat).

<table>
<thead>
<tr>
<th>Scale</th>
<th>Items</th>
<th>Example item</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fun and enjoyment</td>
<td>2</td>
<td>“I had fun watching the cartoons”</td>
<td>.93</td>
</tr>
<tr>
<td>Chat enjoyment</td>
<td>3</td>
<td>“I enjoyed chatting with other people”</td>
<td>.89</td>
</tr>
<tr>
<td>Liking of others</td>
<td>4</td>
<td>“I liked them”</td>
<td>.81</td>
</tr>
<tr>
<td>Closeness</td>
<td>Up to 3</td>
<td>“During the study, how close did you feel to Participant X?”</td>
<td>.84</td>
</tr>
</tbody>
</table>

Table 2. Scales used in experiment. Items were rated on a 5-point Likert scale (strongly disagree to strongly agree).

Exploratory factor analysis revealed that four factors accounted for most of the item variance and thus four scales were constructed (Table 2).

RESULTS

We first briefly present data pertaining to the usage and pace of the chat. We then discuss tests of the hypotheses. We also describe the conversations that occurred in the groups, to give a sense of the experience of watching together, from our participants’ perspectives.

Chat Amount and Pace

On average, the 20 groups with chat produced an average of 233 (SD = 174) lines of chat, at a rate of approximately 5 lines of chat per minute. Not surprisingly, groups of friends (M [SD] = 337 [158] lines) chatted more than groups of strangers (M [SD] = 129 [123] lines; F [1,15] = 8.5, p = .01). Video Structure did not affect the amount of chat (intermission M [SD] = 205.1 [161.3] lines, end break M [SD] = 261.4 [190.6] lines, F [1,16] = .74, n.s.).

Chat among friends occurred at a rapid pace, with an average message inter-arrival time of 8.1 seconds (SD = 14.2 sec., median = 5 sec.). In stranger groups, chat occurred at about half the rate, with an average message inter-arrival time of 15.7 seconds (SD = 37.0 sec., median = 7 sec.). This difference was statistically significant (F [1,4625] = 7.6, p < .01). Inter-arrival times were computed for each message.

For strangers, intermissions slowed the pace of chat. Stranger groups with intermissions had an average message inter-arrival time of 27.7 seconds (SD = 60.5 sec., median = 11 sec.), and stranger groups with an end break had an average message inter-arrival time of 9.9 seconds (SD = 12.7 sec., median = 6 sec., F [1,4641] = 176.9, p < .001). Chat pace in friend groups was not affected by intermissions (F [1,4641] = .94, n.s.).

Effects of Chat on the Media Experience

Our first hypothesis (H1) was that chat would enhance the media experience; people would have more fun watching the cartoons together with chat, they would rate the content higher, they would enjoy using the chat feature, and they would like the other people in their group better. To test this hypothesis, we examined cartoon ratings, and the scales measuring fun and enjoyment, chat enjoyment, liking, and closeness. The analyses discussed are ANOVAs using Group Composition (Friends vs. Strangers) and Video Structure (No Chat vs. Intermissions vs. End Break) as independent variables. Because each group had multiple members, we included group as a random effect. In some cases, we perform contrasts between groups with chat (Intermissions and End Break) and groups without chat.

Overall, we found that chat neither enhanced nor detracted from the enjoyment of the experience, but it did have significantly positive effects on people’s relationships with others in the group.
Cartoon Ratings

On average, cartoons received a rating of 3.3 out of 5 (5 highest). Treating the individual cartoon ratings as a scale, a principle components analysis revealed three components with an Eigenvalue greater than 1: two “poor” cartoons (M [SD] = 2.5 [1.1]), three “okay” cartoons (M [SD] = 3.3 [1.1]), and three “good” cartoons (M [SD] = 3.8 [7.7]). The correlation of our participants’ ratings and the ratings from channelfrederator.com was .62. To account for these differences, and because cartoon ratings were correlated with other aspects of the experience (Table 3), we included a factor of cartoon quality, with three levels, in the ANOVA as a control variable.

We found a marginally significant interaction between Video Structure and cartoon quality (F [4,213] = 2.3, p = .06) on the cartoon ratings (Figure 2). A contrast between the groups with and without chat indicates that poor cartoons were enjoyed more by groups with chat than groups without chat (F [1,213] = 4.5, p = .03). Thus, chat can supplement poor material by making the experience of watching it more enjoyable.

Fun and Enjoyment

Fun was significantly correlated with participants’ average cartoon ratings (Table 3). However, the ANOVA predicting fun from Group Composition and Video Structure showed no significant main effects or interactions.

Chat Enjoyment

Video Structure (Intermissions vs. End Break) did not affect enjoyment of chat (F [1,37] = .11, n.s.). However, friends enjoyed the chat more than strangers (friends M [SD] = 4.4 [.57], strangers M [SD] = 4.0 [.67], F [1,34] = 4.0, p = .05).

Liking and Closeness

As shown in Figure 3, there was a significant main effect of chat on liking. Participants with the chat feature liked their other group members more (M [SD] = 4.2 [.7]) than participants without the chat feature (M [SD] = 3.5 [.7]), F (1,49) = 15.7, p < .001. As expected, friends liked each other more (M [SD] = 4.4 [.43]) than strangers (M [SD] = 3.6 [.8]), F (1,49) = 24.5, p < .001. Friends with chat also liked each other more (M [SD] = 4.5 [.54]) than friends without chat (M [SD] = 4.0 [.61]), F (1,49) = 5.2, p = .03.

The ANOVA on closeness (Figure 4) also showed a significant main effect of chat. Participants with chat felt closer to others in the group (M [SD] = 3.6 [.8]) than those without chat (M [SD] = 2.2 [.5]), F (1,54) = 21.5, p < .001. Further, friend groups felt closer with chat (M [SD] = 4.9 [1.3]) than without (M [SD]= 3.0 [1.6]), F (1,54) = 21.3, p < .001. Stranger groups also felt closer with chat (M [SD] = 2.1 [.94]) than without chat (M [SD] = 1.3 [.44]), F (1,54) = 4.0, p = .05. Finally, friends felt closer (M [SD] = 4.3 [.7]) than strangers (M [SD] = 1.9 [.90]), F(1,54)=73.7, p < .001.

Table 3. Correlations of the cartoon ratings and scales.

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
<th>Fun</th>
<th>Enjoy</th>
<th>Like</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartoon ratings</td>
<td>1.0</td>
<td>.47†</td>
<td>.23</td>
<td>.26*</td>
<td>.24*</td>
</tr>
<tr>
<td>Fun & enjoyment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chat enjoyment</td>
<td>1.0</td>
<td>.58‡</td>
<td>.39†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liking of others</td>
<td>1.0</td>
<td>.63‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closeness</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .05, † p < .01, ‡ p < .001

N = 84 for all scales, except N = 54 for Chat enjoyment.
Chat and Distraction

As in the MovieLens study, participants in this study mentioned being distracted by the chat. Intermissions and the end break were added to this study in order to give people an opportunity to chat without missing video content. Participants took advantage of these breaks, conducting roughly 33% of their chat during the breaks, even through the breaks only accounted for about 10% of the time spent in the experiment. However, the majority of chat (62%) occurred during the cartoons, which accounted for about 70% of the time in the experiment. The remaining 5% of chat was spoken either before the cartoons began, or after they ended. The type of break (Intermission vs. End Break) did not influence how much chat occurred during the cartoons or the breaks (during the cartoons, F[1,190] = 3.7, p = .06, n.s.; during the breaks, F[1,16] = .01, n.s.).

Although the structure of the breaks did not influence when participants chatted, it did influence how distracted they felt. Participants were asked how distracted they felt from the chat feature, on a 7-point Likert scale (1 = not distracted at all, 7 = very distracted). Participants with intermissions reported feeling less distracted (M [SD] = 3.6 [1.9]) than participants with an end break (M [SD] = 4.1 [2.0]). This difference is marginally significant, F (1,54) = 3.7, p = .06, suggesting that intermissions tended to reduce feelings of distraction from the chat. Further, the average distraction of End Break groups was significantly correlated with the amount of chat that occurred during the cartoons (r = .8, p = .006), whereas the average distraction of Intermission groups was not correlated with the amount of chat that occurred during the cartoons (r = .07, n.s.).

One explanation for the difference in distraction is that groups with intermissions simply chatted less than groups with an end break, and thus felt less distracted. However, Intermission groups didn’t produce a significantly different amount of chat (M [SD] = 205.1 [161.3] lines) as End Break groups (M [SD] = 261.4 [190.6] lines), F (1,18) = .5, n.s. Further, Intermission groups did not differ significantly from End Break groups in the amount of chat during the cartoons (intermission M [SD] = 129.5 [117.3] lines, end break M [SD] = 161.3 [134.8] lines, F[1,16] = .4, n.s.).

Break Preferences

As mentioned earlier, introducing intermissions into a sequence of cartoon videos is analogous to introducing commercials in sports programming during breaks in play. While they take advantage of the natural breaks in the game, they can fragment the experience, and may frustrate viewers who wish the breaks were shorter or nonexistent. We asked participants about their opinions of the break periods, and which type of break they would prefer. The results were overwhelming: 100% of participants with intermissions reported preferring intermissions, and 52% of participants with an end break reported wanting an intermission. Further, there was no difference in break preferences between friends and strangers (χ² = 9, n.s.).

On the other hand, participants also wanted flexibility for when they chatted. Of the 57 participants with chat, the majority reported that they preferred to chat throughout the entire experience (63%), rather confining their chat to just the break periods (23%), just the cartoons (9%), or not chatting at all (5%). This finding suggests that people would not like enforced chat periods, and their behavior confirms it (62% of the lines of chat spoken during the experiment were spoken during the cartoons).

Chat Content

For both friend and stranger groups, the cartoons were a major topic of conversation. Favorite chat topics included “the cartoons themselves” (C16), “the music and the quality of the drawings” (C22), “the rating” (C23), “how good each cartoon was” (C27) and “[the] artistry of videos” (C58).

Participants also made jokes and talked about their lives. For example:

“We discussed some stuff about our professors by comparing them to the characters. One was related to [two] professors who are a couple and that was hilarious.” (C1)

“I liked chatting with my friends about our inside jokes. It may appear that we don’t like each other, but there is so much love between the three of us that it is hard for a stranger to imagine.” (C4)

Stranger groups were able to find common ground with each other, and their favorite topics included “information about graduate school” (C13), “smoothies at Lulu’s” (C53, referring to a local restaurant) and “rating the cartoons” (C56).

To follow up on these informal impressions, we conducted a detailed coding of the chat logs to understand how much participants spoke about different topics. We used the “line of chat” as our unit of coding, but as the content in a single line was not always enough to determine an adequate code, we considered each line of chat in its context.
Table 4. Examples of chat in each coding category. Lines of chat were coded into one of these categories, except for laughter, which included lines of chat either solely consisting of laughter (7.4%), or containing other content (9.4%).

<table>
<thead>
<tr>
<th>Category</th>
<th>Example chat (original form)</th>
<th>% chat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartoons</td>
<td>“the colors are pale looks like a bad chinese cartoon of the late 80's” (C21)</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>“i thought the penguin one had really good music too” (C34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“the dots are supposed to represent human activity and thier choas + beauty” (C59)</td>
<td></td>
</tr>
<tr>
<td>Evaluations</td>
<td>“[this] music is awesome” (C20)</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>“hmm so far i actually like the penguin one the best” (C34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“That was a bit gross although it was a bit funny” (C15)</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>“im doing sociology and urban studies” (C34)</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>“it is supposed to rain this evening?” (C59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“what's the Catholic deal with separation...I know divorce is a big no no” (C11)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>“im so happy we're doing this, this is a bonding experience” (C5)</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>“we only have 2 more [cartoons], Im kinda sad about it” (C45).</td>
<td></td>
</tr>
<tr>
<td>Laughter</td>
<td>“:D”, “haha”, “lol” and many variations thereof</td>
<td>7.4 solo</td>
</tr>
<tr>
<td></td>
<td>“haha, happy endings are overrated” (C16)</td>
<td>9.4 mixed</td>
</tr>
<tr>
<td>Greetings & partings</td>
<td>“hi”, “hello”, “yo”, “bye” and many variations thereof</td>
<td>1.8</td>
</tr>
</tbody>
</table>

We developed our coding scheme iteratively, developing codes by reading through the chat logs, coding a subset of the chat, and then resolving discrepancies by clarifying the definition of the category, or adding or removing categories. The check on reliability was performed by the first author and an independent coder on 12% of the chat lines. We achieved a good inter-rater reliability after four iterations (Cohen’s Kappa = .78).

The categories were: the cartoons, evaluations and ratings of the cartoons, personal topics, laughter, study chat, and greetings & partings. Each line of chat was coded under only one of these categories, except for laughter, which frequently co-occurred with other chat, and thus was coded separately. A breakdown of the amount of chat in each coding category is shown in Table 4.

Cartoon, Personal and Evaluation Chat

A large majority of the lines of chat, 41.6%, were about the cartoons, as well as references to the cartoons to people’s lives. For example, one participant (C59) said, “this is my husband at work on our house,” another (C2), “we must ask lisa if this is [what] happened to her home today” (both in reference to the Plumber cartoon).

Participants also spoke about their personal lives during the chats without reference to the cartoons, talking about their course of study, the weather, sporting events, roommates, and even marriage. About 23% of chat was personal and unrelated to the video.

We performed ANOVAs on the percentages of chat in these categories, controlling for the duration of the chat. There were no effects of the independent variables on the cartoon category, but End Break groups tended to have more personal chat (M [SD] = 24.6% [17.0%]) than Intermission groups (M [SD] = 11.8% [10.8%]), F (1,16) = 4.0, p = .06.

About 14% of the chats were about participants’ evaluations of the cartoons. Strangers chatted about the cartoon ratings about twice as much as friends (30% vs. 15%), but this difference was not statistically significant (F [1,16] = 2.6, n.s.).

Laughter

Spontaneous laughter occurred frequently in the chats. We coded laughter by looking for strings of “lol”, “haha”, etc. We also coded happy smiles such as :) and :D, as they were often used to express positive emotions. In total, 7.4% of the lines of chat solely consisted of laughter, and 9.4% of the lines of chat contained some form of laughter. Strangers did not differ from friends in their laughter (F [1,16] = .83, n.s.).

Chat Likes and Dislikes

In the survey, participants were asked what they liked and disliked about the chat feature, and several themes emerged across participants. Fifty-four participants listed reasons for why they liked chat, including: chat was entertaining, it made the experience more fun, and enabled them to make jokes (18); chat promoted sharing and discussion, and learning other people’s opinions (22); and chat made boring material more fun (5).

Fifty-two participants listed reasons for not liking the chat: chat was distracting (16); it was hard to think about chat topics, they felt forced to chat, or they were unsure of what to say to strangers (7), or complaints about the user interface (4). Nineteen participants simply wrote “nothing”, suggesting they were satisfied with the chat.
DISCUSSION
We set out to learn about the activity of watching video together and to understand the role of communication while watching a video. Our first study, in the MovieLens online community, showed that strangers would watch video and engage in chat with others. For some, chat added a sense of community and awareness of others. For others, chat was a burden; another source of information to be monitored in addition to the video. Understanding this tradeoff and how to mitigate it was the focus of our second study.

Effects of Chat on the Viewing Experience
For the cartoon study, we made several predictions based on our experience with the MovieLens study. The first was that chat would enhance the experience of watching together (H1); people would have more fun, they would rate the content higher, they would enjoy using the chat, and they would like the other people watching with them better. In turn, we found that while people did enjoy using the chat, chat did not have a significant effect on fun; participants with and without chat both had fun in the study. One possible explanation for this null result is a ceiling effect. Because we selected highly rated cartoons from the online video podcast, watching the cartoons was already fun for most participants.

We also found that chat made poor content better (Figure 2), perhaps best described by a comment made in one of the chat groups, “I feel bad...I really am paying more attention to the chat than the cartoons...primarily because we are so much more entertaining” (C11). Some participants also described this effect when they listed benefits of chat.

We also predicted chat would have positive effects on social outcomes, primarily among strangers (H1a). With chat, both friends and strangers increased their liking and closeness to one another with chat. However, our results are from between-groups comparisons; thus, we cannot know exactly how much chat improved liking and closeness, nor can we estimate the duration of these effects.

Chat, Breaks and Distraction
Our second hypothesis (H2) predicted that people would be distracted while chatting and watching a video, and we found that this was the case. However, participants did not confine their chat to solely the break periods (H2a), and the amount of laughter chat shows that chatting in real-time had some benefits. Social laughter is known to increase people’s enjoyment and evaluations of material [9,17] and many participants enjoyed making jokes in the chat.

Intermissions did reduce feelings of distraction (H2b), even though they did not influence the extent to which people chatted during the cartoons. Overall, intermissions did not have a negative impact on participants’ enjoyment of chat, and participants overwhelmingly preferred intermissions – all participants with intermissions preferred them to an end break, and over half of the participants with an end break would have preferred intermissions.

Lessons Learned
Our research, although an initial investigation into shared video and conversation, suggests that chat during video benefits friends, making them feel closer to one another as a result. Shared activities are often used as a way to cement friendships, because they provide friends something to talk about [7].

Chat during video also seems to benefit strangers because they can use this opportunity to form new relationships. The video does provide common ground (65% of their chat was about cartoons or evaluations), although it isn’t perfect, and some people run out of things to say and feel awkward. We speculate that moderated discussions may be beneficial for strangers, especially when coupled with an end break to reduce distraction.

Finally, we learned that structuring the video experience with intermissions during natural break periods contributes to a reduced experience of distraction.

Limitations and Future Work
Many questions are raised by our studies. First, although we have found one approach to reducing feelings of distraction from integrating chat and video, there are possibly many others. One might structure the experience through more clever user interface design, for example, by timing the onset of chat windows for more ideal times (e.g. during non-dialogue parts of the video) or by minimizing the amount of switching between windows. Clutter and other human factors issues would need to be addressed.

Genre seems to play an important role in the shared video experience, and it is important to understand how techniques for reducing distraction interact with genre. We found that intermissions worked well in-between different short cartoons. However, many television programs place commercials in the midst of the drama, and it is unclear how interaction during this period would help or harm the experience.

Finally, our results pertaining to strangers must be taken with care. We brought strangers to the laboratory for purposes of chatting while watching cartoons, and they did just that. Participants in the MovieLens study were also strangers to one another, and in that study it was clear that for some people, chatting while watching was not an activity in which they were interested. Thus, understanding their reasons for disinterest, as compared to the enjoyment of strangers in the cartoon experiment, are of importance to media producers and online community leaders, so they can appeal to and engage a wider audience.

CONCLUSION
New peer-to-peer video streaming technologies promise to fundamentally change how we experience media. No longer will the experience be passive, or confined to social boundaries imposed by the physical world. Watching video online enables us to actively engage with each other as we engage with the video, but active engagement comes at a
cost. Attention is a limited resource, and we have shown that whereas chatting and watching simultaneously is fun, and has social benefits, it is also distracting. Intermissions can help reduce this distraction, although we speculate that they may not be appropriate for all types of content. Therefore, it will be important in future research to gain a better understanding of the viewing experience, and understand what factors contribute to a successful experience and successful interactions.

ACKNOWLEDGMENTS
We would like to thank the ESM and MovieLens teams for their support. We would also like to thank our anonymous coder for his help in coding the chat transcripts.

REFERENCES