
A Granular Concurrency Control for Collaborative Scientific Workflow Composition

Xubo Fei∗, Shiyong Lu∗, Jia Zhang†
∗Department of Computer Science, Wayne State University, Detroit, MI, USA

{xubo, shiyong}@wayne.edu
†Department of Computer Science, Northern Illinois University, Detroit, MI, USA

jiazhang@cs.niu.edu

Abstract—Collaborative scientific workflow composition has
recently been proposed to support collaborative scientific re-
search projects, which require intensive collaboration among
scientists with diverse expertise. A collaborative scientific
workflow management system allows participating scientists to
design and compose common scientific workflows concurrently.
Concurrency control has become one of the key challenges
in collaborative scientific workflow composition, which aims
to facilitate collaboration while ensuring the correctness and
consistency of the results generated from concurrent opera-
tions. We have previously proposed a locking scheme to support
simple scientific workflow compositions, in which workflows are
flat (not hierarchical). In this paper, we take a step forward
to propose a new granular scientific workflow locking scheme,
which captures dependency relationships between workflows,
to support general hierarchical workflow compositions. We also
conduct several experiments to evaluate the performance of the
concurrency control.

Keywords-collaborative scientific workflow; concurrency con-
trol; granular locking.

I. INTRODUCTION

Scientific workflow has been recognized as a key tech-
nique to support data-intensive scientific research - from data
capture and data curation, to data analysis and final data
product visualization [1]. Modern data-intensive scientific
research projects often require intensive collaboration among
scientists with diverse expertise. Collaborative workflow
composition is one important step in the lifecycle of col-
laborative scientific workflow management [2], [3].

Although several scientific workflow management sys-
tems (SWFMSs) have been developed, including Tav-
erna [4], Kepler [5], Triana [6], VisTrails [7], Pegasus [8],
Swift [9], and VIEW [10], they are designed mainly for
single users. The collaboration between distributed scientists
are not effectively supported by the existing systems. We
summarize two current collaboration patterns as follows:
first, scientists can collaboratively design a scientific work-
flow in a sequential order such that only one scientist
can work on the workflow composition at one time and
once finished, she can send it to the next scientist. Such
a sequential pattern may become extremely time-consuming
for larger scientific research projects which involve multiple
scientists. Second, scientists can work separately on sub-
workflows and a coordinator integrates them together to

form a whole workflow. This pattern is more efficient but
cannot be adopted when multiple scientists intend to design
or modify the same subworkflow. Therefore, there is a need
to establish a new infrastructure and develop a collaborative
scientific workflow composition system.

A collaborative scientific workflow management system
allows participating scientists to design and compose a
common scientific workflow. However, in this type of sys-
tems, conflicts may occur when concurrent operations are
performed from multiple scientists to change the same work-
flow. Such conflicting operations may interfere with each
other and result in inconsistency, which is a typical problem
in transaction processing [11] [12]. Therefore, concurrency
control has become one of the key challenges in collabora-
tive scientific workflow composition, which aims to increase
the system throughput while ensuring the correctness and
consistency of the results generated from concurrent opera-
tions.

We have previously presented a database locking scheme
in [13] to support simple workflow composition, which is a
directed acyclic graph (DAG) consisting of a set of workflow
tasks and a set of data links. All workflows are consid-
ered independent from each other. However, a hierarchical
scientific workflow is usually composed of several sub-
workflows, each of which in turn might consist of other sub-
workflows. The traditional locking schemes are not efficient
to support such a hierarchical organization because a lock
on a hierarchical scientific workflow leads to many locks
on all of its descendants. Each such access incurs compu-
tational overhead of setting and waiting for locks and the
storage overhead of maintaining locks. Granular locking [14]
provides a hierarchical locking scheme which allows users
to set locks on arbitrary nodes of the hierarchy. If one
transaction is granted with a lock to a particular node, then
the transaction has access to the node and implicitly to each
of its descendants. However, existing database granularity
locking mechanisms are insufficient to support collaborative
scientific workflow applications, because the locking granu-
larity in relational databases and that in scientific workflow
systems are different. While relational databases apply locks
on pages, tables, rows, and cells, the granularity considered
in scientific workflows are typically workflows and tasks
with an arbitrary hierarchy. Therefore, a lock on a scientific

Workflow
Engine

Data Product
M anager

Provenance
M anager

Task
M anager

Workflow
M onitor

RC_fcw

 2PL

 2PL_Update

Concurrency
Control

Central Collaboration Server

W orkflow
R epository

(a) (b)

StorageWorkbench

Figure 1. (a) Reference architecture for SWFMSs; (b) a central collaboration server.

workflow might affect multiple tables in different pages and
cannot be implemented with an existing database granular
locking scheme.

In this paper, we take a step forward to propose a new
granular scientific workflow locking scheme, which captures
dependency relationships between workflows, to support
general hierarchical workflow compositions. The remainder
of the paper is organized as follows. Section II extends
the reference scientific workflow architecture to support
collaborative scientific workflow composition. Section III
proposes a granular scientific workflow locking scheme and
its associated algorithms. Section IV presents experimental
results. Section V discusses related work. Section VI draws
our conclusions.

II. COLLABORATIVE SWFMSS

A. An Architecture for Collaborative SWFMSs

We have previously proposed a reference architecture for
scientific workflow management systems [10]. As shown
in Figure 1.(a), a scientific workflow management system
consists of six loosely-coupled subsystems: a Workflow
Engine to execute workflows, a Task Manager to manage
and execute tasks, a Workflow Monitor to display system
status and handle exceptions, a Provenance Manager to store
and query workflow provenance, a Data Product Manager to
store and manage data products, and a Workbench to visually
design and modify workflows, present data product and
provenance, and manage subsystems. Here, we extend the
previous architecture, which supports only single users, to
support multiple users for collaborative scientific workflow
compositions.

While in the single-user mode, a scientist composes a
workflow on a visual designer and the workbench translates
the graphical composition into a scientific workflow specifi-
cation based on a well-defined scientific workflow language;
in the collaborative mode, multiple scientists are allowed to
collaborate to edit a common scientific workflow application.
As shown in Figure 1.(b), scientists can design, modify,
and compose a common scientific workflow concurrently

using distributed workbenches and their operations will be
sent to a central collaboration server and applied on the
same workflow specification that is stored in a workflow
repository. The central collaboration server consists of two
components as follows:

• A workflow repository stores workflow specifications.
The workflow repository can be implemented using
either relational databases or file repositories.

• A concurrency control layer to ensure the correctness
and consistency of the results generated by concurrent
operations.

Different concurrency control schemes can be applied to
ensure different isolation levels of the system for different
scientific workflow models, such as strict two-phase lock-
ing (2PL wait0 or 2PL in short), strict two-phase locking
with update lock (2PL update) and READ COMMITTED
with first-committer-win (RC fcw) [15]. However, existing
locking schemes cannot effectively capture dependencies
between workflows. Therefore, we propose a new granular
scientific workflow locking scheme in the next section.

B. A Dataflow-based Scientific Workflow Composition
Model

Our proposed locking scheme is based on our previous
dataflow-based scientific workflow composition model [16].
Here, we consider workflow-level composition, in which
workflows are the only operands for workflow composition.
A set of workflow constructs including unary constructs
have been proposed in [16], such as Map, Reduce, Tree,
Conditional, Loop, and Curry. These constructs transform
workflows to new workflows. In addition, A workflow
definition includes a workflow interface and a workflow
body. A workflow interface declares the workflow identi-
fier, workflow name, description, and input/output ports. A
workflow body defines the implementation of the workflow.
There are currently three kinds of implementations: primitive
workflow body, unary-construct based workflow body, and
graph-based workflow body. Primitive workflows are the
basic building blocks of our model which are constructed

Figure 2. Relational database schema for our scientific workflow composition model.

from tasks. Unary-construct based workflows are created
by applying unary constructs on existing workflows. Graph
based workflows are defined from a workflow graph which
are constructed from a set of workflows and a set of data
link constructs.

We realize our model in a relational database schema
as shown in Figure 2. The WORKFLOW table holds the
general information including the workflow identifier, name
and description. The INPUTPORTS and OUTPUTPORTS
tables hold the information of the workflow interface and
include a foreign key workflowID to relate ports to cor-
responding workflows. The TASKBASEDBODY, TASKIN-
PUTMAPPING, and TASKPUTMAPPING tables defines the
task based workflow bodies including the task identifiers and
the input/output mapping between the task and task based
workflow. The UCONSTRUCTBASEDBODY table defines
the type of unary construct as a gateway to the MAP,
REDUCE, TREE, CONDITIONAL, LOOP, and CURRY ta-
bles, which hold the definitions of the corresponding unary
constructs. Because a unary construct defines a one-to-
one mapping, the input/output mappings are by default and
abbreviated. The NODEWORKFOW and DATALINK tables
define the workflows and data link constructs that constitute
the workflow graphs. The GRAPHINPUTMAPPING and
GRAPHOUTPUTMAPPING tables define input/output map-
ping between the workflow graph and graph based workflow.
The GRAPHBASEDBODY table manages the URLs of files
that defines graphical information to visualize the workflow
graph in workbench.

For each scientific workflow application, the collaboration
server maintains two in-memory tables. First is a Depen-
dency table maintaining the dependency graph constructed
from the scientific workflow application. The dependency
table will be updated only when an insert or delete operation

is performed. Second is a Locking table maintaining the
current workflow and construct locking status based on the
algorithms to be proposed in the next section.

III. A GRANULAR SCIENTIFIC WORKFLOW LOCKING

SCHEME

Formally, a scientific workflow composition is a tuple <
W,C >, representing a finite set W of workflows and a finite
set C of constructs. A construct c : W → w is a mapping
from a set of workflows W = {W1, ...,Wn}, which is a
subset of W, to a workflow w. A set of workflow constructs
are introduced in [16].

Definition III.1. (Scientific Workflow Dependency) A
scientific workflow w depends on scientific workflow w ′,
denoted as w′ ← w, if they satisfy one of the following
conditions:

• There exists a construct c : W → w and w ′ ∈ W . Then
w is a parent of w′, and w′ is a child of w.

• There exists a sequence of workflows w1, w2, ..., wk

such that w′ ← w1, w1 ← w2,, wk ← w. Then w is
an ancestor of w′.

A scientific workflow is a composite workflow if it has at
least one child and a workflow is a primitive workflow if it
has no children. A scientific workflow is a root workflow if it
has no parents. The dependency relationships of a scientific
workflow application can be represented in a scientific
workflow dependency graph, which is defined below.

Definition III.2. (Scientific Workflow Dependency
Graph) A scientific workflow dependency graph is a finite
set W of nodes and a finite set D of edges (a subset of
W ×W), such that each node represents a workflow and
each edge represents a dependency relationship. A scientific

W0

W2W1 W3
W4

T1:IX, T2:IS, T3:IX

W5 W6 W8

 T1:X

 T1:IX, T2:IS T1:IX

 T2:S

 T3:X

o1

W 2

i1
C

W 1
o1

i1

i2

i1

i2 W 4

ik

o1i1i1

i2

o1

W 8

(a) (b)

o1i1 W 5
o1i1 W 6

i1 i1

o1

o1

o1

W 3

i1 o1i1 W 7
o1i1 W 6

i1 i1

o1

o1

W 0
W7

Figure 3. Example of workflow locking.

workflow dependency graph is well-formed if it contains
exactly one root node.

A valid scientific workflow composition must contain one
and only one root workflow because there must exist a
main workflow as the entry of the composition. Therefore a
scientific workflow dependency graph generated by a valid
scientific workflow composition is well-formed.

Given a well-formed scientific workflow dependency
graph with a root workflow wr, for any node workflow
w ∈ W, there must exist at least one path from wr to
w, represented as {(wr, w1), (w1, w2), ..., (wk, w)}, where
each pair belongs to the set of dependencies D. Figure 3.(b)
illustrates an example of a scientific workflow dependency
graph generated from a hierarchical scientific workflow in
Figure 3.(a).

If two scientific workflows w and w′ have a dependency
relationship w′ ← w, then w′ is one of the building blocks of
w and any locks applied on w should be inherited by w ′. For
example, when locking a graph based workflow, the system
must lock all the node workflows belonging to the graph as
well either explicitly or implicitly, so that other users cannot
modify the node workflows. Conversely, when a transaction
requests to lock a node workflow, the system must first
verify that the graph workflow does not contain a conflicting
lock. As a result, if a lock is granted on a workflow with
a large number of component workflows, other transactions
will have to wait or abort. Therefore, the concurrency of
the system is determined by the dependency relationships
between workflows. We define the dependency degree of a
scientific workflow in order to measure the concurrency level
of a scientific composition:

Definition III.3. (Dependency Degree) The dependency
degree of a scientific workflow w, denoted as φ(w), is
the cardinality of the set {w′|w′ ∈ W ∧ w′ ← w}. The
dependency degree of a scientific workflow composition is
then Σ∀w∈Wφ(w).

The dependency degree of a scientific workflow w defines
the number of workflows that depend on w. The dependency
degree thus affects the quantity of data locked by a particular
transaction. If a lock is granted on a workflow with a

high dependency degree, then a large number of component
workflows will inherit this lock. Therefore, intuitively, high
dependency degree of a scientific workflow composition will
decrease its concurrency for collaborations. We will conduct
some experiments to validate this hypothesis.

Following the definitions in [12], the lock modes are
M = {NULL, IS, IX, SIX, S, U,X}, in which NULL
stands for no locks, IS stands for intent shared locks, IX
stands for intent exclusive locks, SIX stands for shared with
intent exclusive locks, S stands for shared locks, U stands
for update locks, and X stands for exclusive locks. Lock
compatibility is defined in Table I and represented by the
function LC : M×M → {Y es,No}. For example, suppose
a workflow is already locked by transaction T1 in mode
S, and now two requests are generated by transaction T2

and T3: T2 requests for an S lock and T3 requests for an
X lock. Then the request from T2 can be granted because
LC(S, S) = Y es, but the request from T3 will be rejected
because LC(S,X) = No.

Table I
LOCK COMPATIBILITY MATRIX

��������Req
Granted

None IS IX S SIX U X

IS + + + + + - -
IX + + + - - - -
S + + - + - - -

SIX + + - - - - -
U + - - + - - -
X + - - - - - -

A transaction can also upgrade its previously granted
locks. Lock upgrading is defined in Table II and represented
by the function UC : M×M →M . For example, a transac-
tion can first request an S lock to read a workflow and later
upgrade the lock to the X mode because UC(S,X) = X .
UC is idempotent, which means that a lock can be upgraded
with the same request multiple times and still leads to the
same result.

Definition III.4. (Workflow locks) The workflow locks of a
transaction T are a mapping from workflows to lock modes
WLOCKT : W �→ M indicating the locks granted to a
particular workflow.

Table II
LOCK UPGRADE MATRIX

��������Req
Granted

None IS IX S SIX U X

IS IS IS IX S SIX U X
IX IX IX IX SIX SIX U X
S S S SIX S SIX U X

SIX SIX SIX SIX SIX SIX U X
U U U U U U U X
X X X X X X X X

The workflow Locks satisfy the following two constraints:

• If WLOCKT (w) ∈ {IS, S, U}, then either w
is the root workflow, or WLOCKT (wp) �=
NULL for all parent p of w (equivalently
WLOCKST (p) ∈ {IS, IX, SIX, S,X}). By
induction, WLOCKST (a) ∈ {IS, IX, SIX, S,X}
for all ancestors a of w (on all paths from wr to w).

• If WLOCKT (w) ∈ {IX, SIX,X}, then either
w is the root workflow, or WLOCKT (wp) ∈
{IX, SIX,X} for all parents p of w, By induction,
WLOCKST (a) ∈ {IX, SIX,X} for all ancestors a
of w (on all paths from wr to w).

The first constraint states that in order to get an IS, S, or
U lock on a non-root workflow, the transaction must get
a lock in {IS, IX, SIX, S,X} for all parent workflows.
Therefore, other transactions cannot modify any parent
workflows. Similarly, the second constraint states that in
order to get an IX , SIX , or X lock to a non-root workflow,
the transaction must get a lock in {IX, SIX,X} for all
parent workflows so that other transactions cannot modify
or read any parent workflows.

As shown in Figure 3.(b), Locks are set from the
root workflow to the leaf workflows (primitive workflows).
Transaction T1 is currently working on workflow W6 and
has locked it in the X mode. Transaction T2 is currently
reading workflow W5 and has locked it in the S mode.
Suppose now a new transaction needs to read workflow W3

and requests an S lock, then the new transaction must wait
until transaction T1 finishes the updating of W6 and releases
the lock. Transaction T3 is currently updating workflow W4

as a whole and has locked it in the X mode. Although
there is no lock on workflow W8, it is implicitly locked
by transaction T3. Hence, other transactions cannot access
it until T3 releases the exclusive lock on workflow W4.

Definition III.5. (Construct locks) The construct locks of a
transaction T are a mapping from constructs to lock modes
CLOCKT : C �→ M indicating the locks granted to a
particular construct.

The construct locks satisfy the following constraint:

• Given the construct C : W → w, if
M ∈ {IX,X, SIX} then WLOCKST (w) ∈
{IX,X, SIX}) and for all w′ ∈ W
WLOCKST (w

′) ∈ {IX, SIX,X}).

This constraint states that in order to get an exclusive lock
on a construct, the transaction must be granted with exclu-
sive locks on all related workflows so that other transactions
cannot modify them.

Based on the proposed schemes, we designed four algo-
rithms for workflow locking, workflow releasing, construct
locking, and construct releasing.

Algorithm Lock Workflow (L(T, w, m))
Input: A transaction T requests a lock m on a workflow w.
Begin
1. If m = WLOCKT (w) Then do nothing;
2. Else
3. Begin Transaction:
4. For each transaction T’
5. If LC(WLOCKT ′ (w),m) = No Then abort
6. End If
7. End For
8. If m ∈ {IS, S, U}
9. Then
10. For each parent w’
11. If WLOCKT (w

′) �= NULL Then do nothing
12. Else Call L(T,w′, IS)
13. End If
14. End For
15. Else If m ∈ {IX,X, SIX}
16. Then
17. For each parent w’
18. If WLOCKT (w

′) ∈ {IX, SIX,X} Then do nothing
19. Else Call L(T,w′, IX)
20. End If
21. End For
22. End If
23. WLOCKT (w) ⇐ UC(WLOCKT (w),m)
24. End Transaction
25. End If
End Algorithm

Figure 4. Workflow locking algorithm.

Figure 4 presents a workflow locking algorithm. To lock a
workflow, the system will first check whether the requested
lock already exists on the workflow, if so then nothing needs
to be done. Then the system will check the compatibility
between the requested lock and the current granted locks
from other transactions. If the requested lock is compatible
with existing locks, the system will request to recursively
lock each parent workflow based on the workflow locking
constraints. Finally, the requested lock will be granted to
this workflow.

Figure 5 presents a workflow lock releasing algorithm. To
release a workflow lock, the system will first check whether
the lock to be released is the one currently on the workflow,
if not then nothing needs to be done. Then the system will
release the requested lock and also release all corresponding
intent locks on parent workflows.

Figure 6 presents a construct locking algorithm. To lock
a construct, the system will first check whether the required
lock already exists on the construct, if so then nothing needs
to be done. Then, the system will check the compatibility
between the requested lock and the granted locks from other

Algorithm Release Workflow (R(T, w, m))
Input: A transaction T releases a lock m from a workflow w.
Begin
1. If WLOCKT (w) �= m Then do nothing;
2. Else
3. Begin Transaction:
4. WLOCKT (w) ⇐ NULL
5. If m ∈ {IS, S, U}
6. Then
7. For each parent w’
8. Call R(T,w′, IS)
9. End For
10. Else If m ∈ {IX,X, SIX}
11. Then
12. For each parent w’
13. Call L(T,w′, IX)
14. End For
15. End If
16. End Transaction
17. End If
End Algorithm

Figure 5. Workflow lock releasing algorithm.

Algorithm Lock Construct (L(T, c, m))
Input: A transaction T requests a lock m on a construct c,

which is a mapping from a set of workflows W to
a workflow w.

Begin
1. If m = CLOCKT (c) Then do nothing;
2. Else
3. Begin Transaction:
4. For each transaction T’
5. If LC(CLOCKT ′ (c),m) = No Then abort
6. End If
7. End For
8. If m ∈ {IS, S, U}
9. Then
10. If CLOCKT (w) ∈ {IX,SIX,X} Then do nothing
11. Else Call L(T,w, IX)
12. End If
13. For each workflow w′ ∈ W
14. If CLOCKT (w

′) ∈ {IX, SIX,X} Then do nothing
15. Else Call L(T,w′, IX)
16. End If
17. End For
18. End If
19. CLOCKT (c) ⇐ UC(CLOCKT (c),m)
20. End Transaction
21. End If
End Algorithm

Figure 6. Construct locking algorithm.

transactions. If the requested lock is compatible with existing
locks, the system will lock on related workflows based on
the construct locking constraints. Finally, the requested lock
will be granted to this construct.

Figure 7 presents a construct lock releasing algorithm. To
release a construct lock, the system will first check whether
the lock to be released is the one currently on the construct,
if not then nothing needs to be done. Then, the system will

Algorithm Release Construct (R(T, c, m))
Input: A transaction T releases a lock m from a construct c,

c is a mapping from a set of workflows W to a workflow w.
Begin
1. If m �= CLOCKT (c) Then do nothing;
2. Else
3. Begin Transaction:
4. CLOCKT (c) ⇐ NULL
17. If m ∈ {IX,X, SIX}
10. Then
20. Call R(T,w, IX)
18. For each w′ ∈ W
20. Call R(T,w′, IX)
22. End For
23. End If
26. End Transaction
27. End If
End Algorithm

Figure 7. Construct lock releasing algorithm.

release the requested lock and also release all corresponding
intent locks on related workflows.

IV. EXPERIMENTAL STUDY

In Section III, we proposed a hypothesis that the per-
formance of our proposed locking scheme depends on the
structure of a workflow dependency graph. More specifically,
the increase of the dependency degree will reduce the
concurrency of transaction processing. We designed and
conducted several experiments to test our hypothesis.

We created three synthetic scientific workflow compo-
sitions. Each composition consists of 20 workflows but
the workflows are constructed with different structures as
follows:

• A VLinear workflow composition, in which workflows
are dependent one on another and each workflow has
exactly one parent workflow except for the root work-
flow. The dependency graph is then a connected line.

• An HLinear workflow composition, in which there are
no dependencies between workflows. The dependency
graph is empty.

• An HBinary workflow composition, in which each non-
leaf workflow contains exact two child workflows. The
dependency graph is a balanced binary tree.

The experiment is to test the performance of the proposed
locking scheme by varying the number of collaborators for
the three scientific workflow compositions. Each collabora-
tor was simulated by an independent (Java) thread, which
iteratively reads a randomly selected workflow, waits a time
period (5 seconds) for thinking and modification, and then
updates the workflow. The experiments are repeated with
different number of collaborators from 10 to 150 to validate
the scalability of the locking scheme with regard to the
number of collaborators.

The experimental results are reported in Figure 8. Fig-
ure 8.(a) shows the comparison of throughput for three

Figure 8. (a) Comparison of the throughput on three workflow composi-
tions; (b) comparison of the failure rate on three workflow compositions.

scientific workflow compositions, measured as the number
of successful task updates by all collaborators per minute.
Figure 8.(b) shows the comparison of failure rate for three
scientific workflow compositions, measured as the number of
aborts by all collaborators per minute. Our locking scheme
is scalable on all three compositions as the number of
updates increases steadily with the increase of the number of
collaborators. However, the performance between different
workflow compositions are significantly different, which
validated our hypothesis. The VLinear composition has the
lowest throughput and the highest failure rate because it has
the highest dependency degree of 19!, while the HLinear
composition has the highest throughput and the lowest
failure rate because it has the lowest dependency degree of
0.

V. RELATED WORK

SWFMS is a system that supports the specification, mod-
ification, execution, and monitoring of a scientific workflow,
as well as the management of resource, data products,
and provenance [10]. SWFMSs have become fundamental
instruments for current and future scientific research and
collaboration. Several SWFMSs have been proposed and
many scientific workflows have been created. Taverna [4]
provides a rich repository of services for bioinformatics
data analysis and processing. The Taverna system supports
hierarchical compositions by encapsulating a subworkflow
in a composite task. Kepler [5] inherited various models
of computation from the Ptolemy system. In Kepler, each
workflow is assigned with a director, which is a computation

model that controls the execution of a workflow. The Kepler
system supports hierarchy in workflows and subworkflows
encapsulated in different composite actors can have different
directors and thus be executed under different models. Tri-
ana [6] is based on the Grid Application Prototype Interface
(GAP Interface) which can bind with various services, such
as Web services, Grid services, and peer-to-peer services.
Triana also supports hierarchical composition by grouping
tasks into a GroupTask, which can be used to compose
with other tasks. VisTrails [7] is featured with workflow
provenance, which maintains a complete history of workflow
composition. Pegasus [8] provides a graphical interface to
compose abstract workflows as a DAG and then maps
them to concrete workflows that are executable on the grid.
Swift [9] implements a scripting language called SwiftScript,
which is designed to support large-scale computations over
a Grid environment. The VIEW system [10] is designed
and implemented using service oriented architecture (SOA)
consisting of six loosely coupled subsystems. The system
features a purely dataflow based workflow composition
model [16] and provides a set of workflow constructs to
facilitate various data processing patterns. Most of these
existing systems support some forms of task-level collabora-
tion features. For example, scientists can publish their work-
flows or programs as services and their collaborators can
reuse those services to compose more advanced workflows.
However, these scientific workflow management systems
cannot allow multiple scientists to concurrently design and
modify a common scientific workflow application.

For the first time, our previous work reported Confu-
cius [13], a tool capable of supporting multiple scientists
in designing and composing scientific workflows collabo-
ratively, either synchronously or asynchronously. Without
reinventing the wheel and as a proof of concept, our Con-
fucius system extends the single-user oriented Taverna [4]
into a multi-user version. This paper reported our continuous
efforts on Confucius, aiming to propose a granular concur-
rency control scheme and its associated algorithms that can
handle hierarchical workflow composition.

Concurrency control is a well-known problem in transac-
tion processing [11] and locking is a general solution to this
problem. Gray et al. [14] introduced intent locks to solve
the hierarchical locking problem in trees or directed acyclic
graph (DAG), and formalized a granular locking theorem
and protocol. Chen et al. [17] proposed an instant locking
scheme for a realtime collaborative graphics editing system
called GRACE, in which users coordinate their activities,
and conflict is very rare. Therefore, the traditional locking
scheme is relaxed and independent operations are allowed to
operate on the same object concurrently. Bächle et al. [18]
proposed a tailor-made lock protocols for a fine-grained
transaction isolation on XML document trees. Although
many current scientific workflow systems realize their lan-
guages in the XML format, some workflow dependencies

are implicit and cannot be captured by the XML model. For
example, a unary construct based workflow is defined by a
unary workflow construct and a base workflow. However,
the base workflow is previously defined and only the work-
flow identifier is referenced in the definition of the unary
construct based workflow. As a result, those two workflows
are recorded as sibling nodes in an XML specification
although they have a logical dependency. Therefore, an XML
locking scheme is not suitable for concurrency control in
collaborative scientific workflow compositions.

In [13], we proposed a READ COMMITTED with first-
committer-win (RC fcw) scheme, as an extension of READ
COMMITTED with the first-committer-win feature from the
SNAPSHOT isolation level, to support currency control
for simple workflow compositions, in which workflows are
considered independent. In this paper, we take a step for-
ward to propose a granular locking scheme, which captures
dependency relationships between workflows and constructs,
to support general hierarchical workflow compositions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we extended the reference architecture
of SWFMS to support collaborative scientific workflow
composition. We then proposed a formal granular scientific
workflow locking scheme and proposed four algorithms
for locking and releasing workflows and constructs. We
conducted experiments to study its performance. While our
proposed scheme guarantees the correctness of concurrent
workflow update, in the future, we plan to propose tech-
niques to further validate the consistency of the resulted
workflow compositions. We also plan to study runtime issues
of collaborative workflow orchestration and coordination.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
under grants NSF IIS-0959215 and IIS-0960014. The au-
thors thank Sha Liu for her participation in the implemen-
tation of the experiments.

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,”
Science, vol. 323, no. 5919, pp. 1297–1298, 2009.

[2] S. Lu and J. Zhang, “Collaborative scientific workflows,” in
Proc. of ICWS, 2009, pp. 527–534.

[3] J. Zhang, “Co-Taverna: A tool supporting collaborative sci-
entific workflows,” in Proc. of SCC, 2010, pp. 41–48.

[4] T. Oinn, M. J. Addis, J. Ferris, D. Marvin, M. Senger,
T. Carver, M. Greenwood, K. Glover, M. Pocock, A. Wipat,
and P. Li, “Taverna: a tool for the composition and enactment
of bioinformatics workows,” Bioinformatics, vol. 20, no. 17,
pp. 3045–3054, 2004.

[5] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow
management and the Kepler system,” Concurr. Comput. :
Pract. Exper., vol. 18, no. 10, pp. 1039–1065, 2006.

[6] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robin-
son, M. Shields, I. Taylor, and I. Wang, “Programming scien-
tific and distributed workflow with Triana services,” Concurr.
Comput. : Pract. Exper., vol. 18, no. 10, pp. 1021–1037, 2006.

[7] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and
H. Vo, “VisTrails: visualization meets data management.” in
Proc. of SIGMOD, 2006, pp. 745–747.

[8] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob,
and D. Katz, “Pegasus: a framework for mapping complex
scientific workflows onto distributed systems,” Scientific Pro-
gramming Journal, vol. 13, no. 3, pp. 219–237, 2005.

[9] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde,
“A notion and system for expressing and executing cleanly
typed workflows on messy scientific data,” SIGMOD Record,
vol. 34, no. 3, pp. 37–43, 2005.

[10] C. Lin, S. Lu, X. Fei, A. Chebotko, Z. Lai, D. Pai, F. Fotouhi,
and J. Hua, “A reference architecture for scientific workflow
management systems and the VIEW SOA solution,” TSC,
vol. 2, no. 1, pp. 79–92, 2009.

[11] K. Eswaran, J. Gray, R. Lorie, and I. Traiger, “The notions
of consistency and predicate locks in a database system,”
Commun. ACM, vol. 19, no. 11, pp. 624–633, 1976.

[12] J. Gray and A. Reuter, Transaction Processing - Concepts
and Techniques. Morgan Kaufmann, 1993.

[13] J. Zhang, D. Kuc, and S. Lu, “Confucius: A scientific collab-
oration system using collaborative scientific workflows,” in
Proc. of ICWS, 2010, pp. 575–583.

[14] J. Gray, R. Lorie, G. Putzolu, and I. Traiger, “Granularity
of locks and degrees of consistency in a shared data base,”
in IFIP Working Conference on Modelling in Data Base
Management Systems, 1976, pp. 365–394.

[15] S. Lu, A. Bernstein, and P. Lewis, “Correct execution of
transactions at different isolation levels,” TKDE, vol. 16,
no. 9, pp. 1070–1081, 2004.

[16] X. Fei and S. Lu, “A dataflow-based scientific workflow com-
position framework,” TSC, in press, 2011. [Online]. Available:
http://www.cs.wayne.edu/∼shiyong/papers/tsc11.pdf

[17] D. Chen and C. Sun, “Optional instant locking in distributed
collaborative graphics editing systems,” in Proc. of ICPADS,
2001, pp. 01–09.

[18] S. Bächle, T. Härder, and M. Haustein, “Implementing and
optimizing fine-granular lock management for XML docu-
ment trees,” in Proc. of DASFAA, vol. 5463, 2009, pp. 631–
645.

