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TOPOLOGY AND MODALITY:THE TOPOLOGICAL INTERPRETATION OF FIRST-ORDER MODAL LOGICSTEVE AWODEY AND KOHEI KISHIDAAbstra
t. As M
Kinsey and Tarski showed, the Stone representation theorem for Boolean algebrasextends to algebras with operators to give topologi
al semanti
s for (
lassi
al) propositional modallogi
, in whi
h the �ne
essity� operation is modeled by taking the interior of an arbitrary subset of atopologi
al spa
e. In this paper the topologi
al interpretation is extended in a natural way to arbitrarytheories of full �rst-order logi
. The resulting system of S4 �rst-order modal logi
 is 
omplete withrespe
t to su
h topologi
al semanti
s.It has been known sin
e the work of M
Kinsey and Tarski [10℄ that, by extending the Stonerepresentation theorem for Boolean algebras, topologi
al spa
es provide semanti
s to propositionalmodal logi
. Spe
i�
ally, a ne
essity operator obeying the rules of the system S4 
an be interpretedby the interior operation in a topologi
al spa
e. This result, however, is limited to propositionalmodal logi
, and the interpretation by topologi
al interior has never been extended to �rst-ordermodal logi
. The aim of this paper is to show how su
h an extension 
an be a
hieved.1. Topologi
al Semanti
s for Propositional Modal Logi
Let us review the topologi
al semanti
s for propositional S4.1.1. The System S4 of Propositional Modal Logi
. Modal logi
 is the study of logi
 in whi
hthe words �ne
essary� and �possible� appear in statements su
h as� It is ne
essary that the square of an integer is not negative.� It is possible that there are more than 8 planets.A grateful a
knowledgment goes to the inspiring dis
ussions with and helpful 
omments by Hora
io Arló-Costa,Nuel Belnap, Johan van Benthem, Mark Hin
hli�, Paul Hovda, Ken Manders, Eri
 Pa
uit, Rohit Parikh, Dana S
ott,and espe
ially Guram Bezhanishvili. We also thank the organizers, Aldo Antonelli, Alasdair Urquhart, and Ri
hardZa
h, of the Ban�Workshop �Mathemati
al Methods in Philosophy� for the opportunity to present this resear
h.Philosophy Department, Carnegie Mellon University; awodey�
mu.edu.Philosophy Department, University of Pittsburgh; kok6�pitt.edu.1



The history of modal logi
 is as old as that of the study of logi
 in general, and 
an be tra
ed ba
kto the time of Aristotle. The 
ontemporary study of modal logi
 typi
ally treats modal expressionsas sentential operators, in the same way as : is treated. That is, for ea
h formula ' of propositionallogi
, the following are again formulas:�' �It is ne
essary that '.�^' �It is possible that '.�Formulas are re
ursively generated from propositional letters p, q, r, . . . using the propositionaloperators >, ?, ^, _, !, : as usual, in addition to � and ^. Hen
e the formulas of the languagein
lude ones su
h as �(�p ! ^(�q ^ :r)).Among various axiom systems providing inferen
e rules for modal operators, the system S4of propositional modal logi
 
onsists of the rules listed below, in addition to those of 
lassi
alpropositional logi
. Here ',  are any senten
es, and > is a propositional 
onstant standing fortruth (or it stands for any theorem of propositional logi
 if the language is not assumed to have thepropositional 
onstant). Also, de�ne ^' = :�:'.�' ` '�' ` ��'�' ^ � ` �(' ^  )> ` �>'�' `  ` � 1.2. Topology. The S4 rules in Subse
tion 1.1 have been known, sin
e M
Kinsey and Tarski [10℄,to be exa
tly the rules of the interior operation on topologi
al spa
es. Given a set X, re
all that asubset O(X) � P(X) of its powerset P(X) is said to be a topology on X if it satis�es the following:� ?; X 2 O(X).� If U;V 2 O(X) then U \ V 2 O(X).� If Ui 2 O(X) for all i 2 I then[i2I Ui 2 O(X), for any index set I.Su
h a pair (X;O(X)), or often X itself withO(X) in mind, is 
alled a topologi
al spa
e. TheU � Xlying in O(X) are 
alled open sets of X, and an open set U su
h that a 2 U is 
alled a neighborhood2



of a. On the other hand, F � X su
h that X � F = f x 2 X j x < F g is an open set is 
alled a 
losedset. Now, given a topologi
al spa
e (X;O(X)), de�ne an interior operation int on P(X) as follows:for any subset A � X: int(A) = [U�AU2O(X) U:Note that int(A) is open be
ause the union of open sets is open. Thus int(A) is the largest of allopen sets U 
ontained in A. It follows that any open set U is a �xed point of int and 
an be writtenas an interior, i.e. U = int(U). Moreover, int obeys the following rules. For any A; B � X,int(A) � Aint(A) � int(int(A))int(A) \ int(B) � int(A \ B)X � int(X)A � B =) int(A) � int(B)Here, if we read A, B for senten
es and repla
e X, \, � with >, ^, `, we 
an see these rules arejust the rules of S4. In a similar manner, the 
losure 
l(A) = X � int(X � A) of A, i.e. the smallest
losed set 
ontaining A, obeys the 
orresponding S4 rules of ^.1.3. Topologi
al Semanti
s for Propositional S4. Let us now formally de�ne how a language ofpropositional modal logi
 is interpreted in a topologi
al spa
e. Suppose we are given a languageL of propositional modal logi
 and a topologi
al spa
e (X;O(X)).Propositional S4 ///o/o/o/o/o/o/o/o/o/o (X;O(X))' ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o ~'� � XAn interpretation ~�� of L is a mapping from the set of senten
es of L to P(X). It assigns anarbitrary subset ~p� of X to ea
h atomi
 senten
e p, and moreover satis�es the 
onditions below for
onne
tives and operators. Here ',  , > are the same as before, while ? is either the propositional
onstant for falsity or any senten
e whose negation is provable in propositional logi
.~:'� = X � ~'�;~' ^  � = ~'� \ ~ �;3



~' _  � = ~'� [ ~ �;~>� = X;~?� = ?;~�'� = int(~'�):We then write (X; ~��) � ' if the interpretation (X; ~��) models a senten
e ', de�ned as(X; ~��) � ' () ~'� = X:(1)Although we 
an say �' is true in a model (X; ~��)� to mean this relation, we should note it is notin general the 
ase that one of (X; ~��) � ' or (X; ~��) � :' must hold. Also note that (X; ~��) � 'entails (X; ~��) � �'.As a simple example, 
onsider X = [0; 1℄ the 
losed unit interval, and ~p� = [0; 1) the half-openinterval. Then (X; ~��) � �(p _ :p) be
ause~�(p _ :p)� = int(~p� [ [0; 1℄ n ~p�) = int([0; 1℄) = [0; 1℄:But (X; ~��) 2 �p _ �:p, sin
e~�p _ �:p� = int(~p�) [ int([0; 1℄ n ~p�) = [0; 1) , [0; 1℄:With this notion of interpretation, the 
orresponden
e between the rules of Boolean operationson sets and those of the propositional 
onne
tives, and the rules of the interior operation and theS4 rules, immediately give us soundness:Theorem 1. For any pair of senten
es ',  of L,' `  is provable in S4 =) every topologi
al interpretation (X; ~��) has ~'� � ~ �:In parti
ular,S4 ` ' =) every topologi
al interpretation (X; ~��) has (X; ~��) � ~'�:The usual 
onverse statement of 
ompleteness 
an be derived as a 
orollary of the followingeven stronger result. 4



Theorem 2 (M
Kinsey-Tarski, 1944). For any (
onsistent) theory T inL 
ontaining S4, there exista topologi
al spa
e X and an interpretation ~�� su
h that any pair of senten
es ',  of L satis�esthe following: ' `  is provable in T () ~'� � ~ �:Corollary 1. For any pair ',  of senten
es of L,S4 proves ' `  () ~'� � ~ � for every topologi
al interpretation (X; ~��):In parti
ular,S4 proves ` ' () every topologi
al interpretation (X; ~��) has (X; ~��) � ~'�:2. Semanti
s for First-Order Logi
The goal of this paper is to extend the topologi
al semanti
s in the foregoing se
tion to �rst-ordermodal logi
. In this se
tion we introdu
e some notation for the standard semanti
s of (non-modal)�rst-order logi
, whi
h will be 
onvenient for our purposes.2.1. Denotational Interpretation. Suppose we are given a language L in �rst-order logi
. L hasprimitive relation symbols Ri (i 2 I), fun
tion symbols f j ( j 2 J), 
onstants 
k (k 2 K). Then, asusual, a stru
ture M = hD;RiM ; f jM; 
kMii2I; j2J;k2K for L 
onsists of the following.� A set D, the �domain of individuals�.� A subset RiM � Dn of the appropriate n-fold Cartesian produ
t of the domain D, for ea
hn-ary relation symbol Ri.� A fun
tion f jM : Dn ! D for ea
h n-ary fun
tion symbol f j.� An individual 
kM 2 D for ea
h 
onstant 
k.Given su
h a stru
ture and elements a1; : : : ; an 2 D, for any formula '(x1; : : : ; xn) with at mostthe displayed variables x1; : : : ; xn free, the relationM � '[a1; : : : ; an℄of modeling a formula is re
ursively de�ned as usual.5



Now we extend the �denotational� point of view to �rst-order languages. Whereas we gave aninterpretation ~'� to senten
es ' in Subse
tion 1.3, here for �rst-order logi
 we give an interpreta-tion also to formulas 
ontaining free variables; so we extend the notation to in
lude interpretations~ x; y j ' �of all formulas. Here it is presupposed that no free variables appear in the formula ' ex
ept x, y,but not that x, y a
tually appear. To a senten
e � with no free variables, we give ~�� as we didbefore. We also give interpretation ~ x̄ j t � to a term t(x̄) built up from fun
tion symbols, 
onstantsand variables. First-order logi
 ///o/o/o/o/o/o/o/o/o/o/o M'(x) ///o/o/o/o/o/o/o/o/o/o/o/o/o/o ~ x j ' � � DThe interpretation of a formula ' is essentially the subset of the model M de�ned by ':~ x̄ j ' � = f ā 2 Dn j M � '[ā℄ g � Dn:That is, the set of individuals satisfying '. Then the following properties are easily derived:~ x; y j x = y � = f (a; a) 2 D � D j a 2 D g;~ x̄ j R(x̄) � = RM ;~ x̄ j ' ^  � = ~ x̄ j ' � \ ~ x̄ j  �;~ x̄ j :' � = Dn � ~ x̄ j ' �;~ x̄ j 9y' � = f ā 2 Dn j (ā; b) 2 ~ x̄; y j ' � for some b 2 D g:These properties 
ould also be used as 
onditions to de�ne the interpretation re
ursively, skipping� altogether. Then we would need to de�ne ~ x̄; y j '(x̄) � � Dn+1 also for a formula '(x̄) whi
hdoes not 
ontain the free variable y, whi
h 
an be done simply by~ x̄; y j ' � = f (ā; b) 2 Dn+1 j M � '[ā℄ g= ~ x̄ j ' � � D:Similarly, when a term t(x̄) has n arguments, its interpretation ~ x̄ j t � is the fun
tion f : Dn ! Dre
ursively de�ned from f M, 
M in the expe
ted way.6



The de�nition of interpretation of formulas 
an be naturally extended to the 
ase of n = 0 forD0 = f�g, any one-element set. That is, while a subset ~ x̄ j ' � of Dn is given for a formula ', theinterpretation of a senten
e � is in a similar manner given as a subset ~�� of D0 (a �truth value�)as follows. ~�� = f � 2 D0 j M � � g = 8>>>><>>>>:1 = f�g = D0 if M � �;0 = ? � D0 if M 2 �:Note that as in (1) we then have, for any formula ' with at most x̄ free,M � ' () ~ x̄ j ' � = Dn:(2)Now, in terms of ~��, the usual soundness and 
ompleteness of �rst-order logi
 are expressed asfollows.Theorem 3. Given a language L of �rst-order logi
, for any pair of formulas ',  of L with atmost x̄ free, ' `  () every interpretation M has ~ x̄ j ' � � ~ x̄ j  �:In parti
ular, ` ' () every interpretation M has M � ':2.2. Interpretation and Mappings. Some of the 
onditions whi
h re
ursively de�ne interpreta-tion 
an be 
onsidered in terms of images of mappings. We sum up this fa
t in this subse
tionbe
ause it will be useful shortly. First let us introdu
e some notation for images. Given a mappingf : X ! Y and subsets A � X and B � Y , the dire
t image of A and the inverse image of B underf shall be written respe
tively as follows:f (A) = f f (a) 2 Y j a 2 A g;f �1(B) = f a 2 X j f (a) 2 B g:Next we de�ne, for ea
h n, the proje
tion pn : Dn+1 ! Dn to be (ā; b) 7! ā. In parti
ular,p0 : D ! D0 = f�g has p0(b) = � for all b 2 D. Then we have~ x̄ j 9y' � = f ā 2 Dn j (ā; b) 2 ~ x̄; y j ' � for some b 2 D g = pn(~ x̄; y j ' �);~ x̄; y j  � = ~ x̄ j  � � D = pn�1(~ x̄ j  �):7



Dn+1
Dn��pn~ �EEEEEEEEE ~ �CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCC
~ x̄ j 9y' �
~ x̄; y j ' �

~ x̄ j  �
~ x̄; y j  �D D

For example, ~ y j ' � and its image under the proje
tion p0, viz. p0(~ y j ' �) = ~9y'�, are in therelation illustrated as follows.~ y j ' � , ? ks +3KS�� p0(~ y j ' �) = ~9y'� = f�g , ?KS��M � '[b℄ for some b 2 M ks +3 M � 9y'Also, be
ause in general a mapping f : X ! Y always has f (A) � B () A � f �1(B), we have~ x̄ j 9y' � = pn(~ x̄; y j ' �) � ~ x̄ j  � () ~ x̄; y j ' � � pn�1(~ x̄ j  �) = ~ x̄; y j  �;whi
h 
orresponds to the rule 9y' `  () ' `  of �rst-order logi
. Here the �eigenvariable�
ondition that y does not o

ur freely in  is expressed by ~ x̄ j  � making sense.1Moreover, the substitution of terms 
an also be expressed by inverse images. Given a formula'(z) and a term t(ȳ), with the obvious notation for substitution one has:~ ȳ j '(t(ȳ)) � = f b̄ 2 Dm j M � '(t(b̄)) g= f b̄ 2 Dm j ~ ȳ j t �(b̄) 2 ~ z j '(z) � g= ~ ȳ j t ��1(~ z j '(z) �):3. Topologi
al Semanti
s for First-Order Modal Logi
We now extend the topologi
al semanti
s reviewed in Subse
tion 1.3 to �rst-order logi
. Todo so, we require the notion of a sheaf over a topologi
al spa
e, whi
h 
ombines the topologi
alsemanti
s of propositional modal logi
 with the set-valued semanti
s of �rst-order logi
 in Se
tion2, and gives a very natural semanti
s for �rst-order modal logi
.1The observation expressed here that the existential quanti�er 9 is left adjoint to inverse image under proje
tion isdue to Lawvere [7℄. 8



3.1. Sheaves. First, re
all that a map f : X ! Y of topologi
al spa
es is said to be 
ontinuous iff �1(V) � X is open in X for every open set V � Y . Moreover, f is 
alled a homeomorphism if fhas a 
ontinuous inverse map f �1 : Y ! X; and then X and Y are said to be homeomorphi
. Fora homeomorphism f : X ! Y , open sets U = f �1(V) of X and V = f (U) of Y also 
orrespondbije
tively.De�nition 1. A sheaf over a topologi
al spa
e X 
onsists of a topologi
al spa
e F and a lo
alhomeomorphism � : F ! X, meaning that every point a of F has some neighborhood U 3 a su
hthat �(U) is open and the restri
tion �jU : U ! �(U) of � to U is a homeomorphism.2 F is 
alledthe total spa
e, and � is 
alled the proje
tion from F to X.
F
X��� (

(U
�(U)

�a
)
)

Taking a 
on
rete example, R (with its usual topology) and � : R ! S 1 su
h that �(a) = ei2�a =(
os 2�a; sin 2�a) form a sheaf over the 
ir
le S 1 (with the subspa
e topology in R2). We maysay that R draws a spiral over S 1, so that, for every a 2 R, a neighborhood U small enough ishomeomorphi
 to its image �(U).
R
S 1��� (

(
)
)U

�(U)� 12123252 012(1; 0)(�1; 0) (0; 1)2The notion of a sheaf is sometimes de�ned in terms of the notion of a fun
tor, in whi
h 
ase the version used hereis 
alled an étale spa
e. The fun
torial notion is equivalent to the version here (in the 
ategory-theoreti
al sense). Thispaper only 
onsiders sheaves over topologi
al spa
es; but the de�nition using fun
tors enables one to de�ne sheavesmore generally over various 
ategories (see e.g. [9℄ for detail) and obtain more general models of modal logi
.9



One of the properties of sheaves important for the goal of this paper is that a lo
al homeomor-phism � : F ! X is not only 
ontinuous but is also an open map, whi
h means that �(U) � X isan open subset of X for every open U � F.It is also important that we 
an 
onsider sheaves from the following viewpoint. Given a sheaf� : F ! X, take any point p of X and de�ne the �stalk� Fp � F at p as follows:Fp = ��1(fpg):Fp Fq Fr
p q r� � � F��� = Fp�� [ Fq�� [ � � �

X = fpg [ fqg [ � � �Fp is also 
alled the �ber of F over p; it is shown in the �gure above to be a single line over p.Be
ause �bers do not interse
t ea
h other, F is partitioned into �bers, so that the underlying set jFjof the spa
e F 
an be re
overed by taking the disjoint union of all �bers. That is, we 
an writejFj =Xp2X Fp;whereX indi
ates that the union is disjoint. By the lo
al homeomorphism 
ondition, ea
h �berFp forms a dis
rete subspa
e of F. In the 
ontext of semanti
s for �rst-order modal logi
, we maythink of the �bers as �possible worlds� whi
h �
hange 
ontinuously� over the spa
e X.Let us mention maps of sheaves as well. A map f from a sheaf (F; �F) to another (G; �G) issimply a 
ontinuous map f : F ! G su
h that �G Æ f = �F , i.e. su
h that the following diagram
ommutes. F�F ��////////// f //= G�G������������X10



Thus f respe
ts the �bers; i.e., the underlying map f 
an be written as a bundle of maps fp : Fp !Gp from �bers to �bers: f =Xp2X fp :Xp2X Fp �!Xp2X Gp:It is an important fa
t that maps of sheaves are ne
essarily also lo
al homeomorphisms, and hen
eare open maps.Lastly, for a sheaf � : F ! X, the diagonal map � : F ! F �X F de�ned to be a 7! (a; a) is amap of sheaves, and hen
e is an open map.3 Therefore, in parti
ular, the image�(F) = f (a; a) 2 F �X F j a 2 F g � F �X Fof F is an open subset of F �X F. We note that, for any topologi
al spa
e F, if � : F ! X is anopen 
ontinuous map with open diagonal map � : F ! F �X F, then � : F ! X is a sheaf over X.3.2. Topologi
al Semanti
s in Terms of Sheaves. Speaking �guratively, the extension of topo-logi
al semanti
s using sheaves 
orresponds to taking the �produ
t� of topologi
al semanti
s forpropositional modal logi
 and denotational semanti
s for �rst-order logi
. The topology, or the�horizontal axis,� on a spa
e X and a sheaf F gives interpretation to the modal operator �, andea
h �ber, along the �verti
al axis,� plays the role of a �possible world,� a set providing the �rst-order interpretation.Consider a language L gained by adding the modal operator � to a language of �rst-order logi
.Here, in de�ning formulas re
ursively, the usual 
onditions 
oming from �rst-order logi
 do notdis
riminate formulas 
ontaining modality from ones not (e.g., in the same way that (:')[t=z℄,whi
h is gained by substituting the term t for the free variable z in :', and :('[t=z℄), by applying: to '[t=z℄, are the same formula, we identify (�')[t=z℄ and �('[t=z℄) as the same formula �'[t=z℄).Then, in a similar manner to Subse
tion 2.1, we de�ne a stru
ture to interpret formulas of L as
onsisting of the following.4� A topologi
al spa
e X and a sheaf � : D ! X over it.� An arbitrary subset ~Ri� � Dn of the �bered produ
t, for ea
h n-ary relation symbol Ri.� A map ~ f j� : Dn ! D of sheaves, for ea
h n-ary fun
tion symbol f j.3F �X F is the �bered produ
t of the sheaf F over the spa
e X. See Appendix A for the de�nition of produ
ts ofsheaves.4See Appendix A for the de�nition of produ
ts of sheaves.11



� A map ~
k� : X ! D of sheaves from the sheaf D0 = X, for ea
h 
onstant 
k.De
omposing this stru
ture into �bers, we 
an see that, for ea
h point p 2 X, the �ber Dp gets astandard L-stru
ture hDp; ~Ri�p; ~ f j�p; ~
k�pii2I; j2J;k2Kof �rst-order logi
 as we saw in Subse
tion 2.1. (Here ~Ri�p � Dnip , ~ f j�p : Dn jp ! Dp, ~
k�p 2 Dp.)Dnp Dnq Dnr
p q r� � �DnX���n ~ x̄ j ' �~�~�~� ~ x̄ j ' � � jDnj= =Xp2X~ x̄ j ' �p Xp2X Dnp~ x̄ j ' �p � DnpSo, as for the �rst-order part of the language, we have a �berwise denotational interpretation ~��p,ea
h as in Subse
tion 2.1. We 
an extend the interpretation ~�� to all formulas ~ x̄ j ' �, �rst�berwise as in Subse
tion 2.1 to get ~ x̄ j ' �p, and then by �summing over p�:~ x̄ j ' ^  � =Xp2X~ x̄ j ' ^  �p=Xp2X(~ x̄ j ' �p \ ~ x̄ j  �p)= 0BBBBBB�Xp2X~ x̄ j ' �p1CCCCCCA \ 0BBBBBB�Xp2X~ x̄ j  �p1CCCCCCA = ~ x̄ j ' � \ ~ x̄ j  �:Taking a senten
e 9y' for example, its interpretation is~9y'� =Xp2X~9y'�p � f p 2 X j ~9y'�p , ? g = �(~ y j ' �) � X:As 
an be seen in this example, the interpretation of a senten
e � with no free variables is given asa subset of D0 = X, the �worlds� p 2 X at whi
h � is true.12



Dp Dq Dr
? f�g f�g~ �DX��� ~ y j ' �

~9y'�~�~�EEEEEEEEEEFinally, we of 
ourse use the topology of X and D to interpret the modal operator �, i.e.,~ x̄ j �' � = intDn(~ x̄ j ' �) � Dn;~��� = intX(~��) � X:Sin
e senten
es are interpreted by subsets of X, we de�ne in a similar manner to (1) and (2) ofSubse
tions 1.3 and 2.1 as follows.De�nition 2. A formula ' is true in an interpretationM = (� : D ! X; ~��) if ~ x1; : : : ; xn j ' � =Dn; i.e., M � ' () ~ x1; : : : ; xn j ' � = Dn:In parti
ular, a senten
e � is true if ~�� = X; i.e.,M � � () ~�� = X:Note that this spe
i�
ation does indeed agree with the �
lassi
al� one of M
Kinsey and Tarskiat the level of propositional modal logi
.3.3. The System FOS4 of First-Order Modal Logi
. The topologi
al semanti
s given in theprevious subse
tion is a very natural extension of the topologi
al semanti
s for the system S4 ofpropositional modal logi
 to �rst-order logi
, whi
h 
an be seen from the fa
t that a system whi
his sound and 
omplete with respe
t to it 
an be gained by simply taking the union of the axiomsand rules of �rst-order logi
 and S4.De�nition 3. System FOS4 
onsists of the following axioms and rules.1. All axioms and rules of (
lassi
al) �rst-order logi
. In applying s
hemes, formulas 
on-taining the modal operator and ones not are not distinguished. Espe
ially in the following13



axiom of identity, ' may 
ontain the modal operator.x = y ` '(x) ! '(y):2. The rules of S4 propositional modal logi
. That is, for any formulas ',  and for > asbefore, �' ` '�' ` ��'�' ^ � ` �(' ^  )> ` �>'�' `  ` � Listing some theorems of FOS4, not only do we have �9y�' ` 9y�' but also the followingproof is available. �' ` 9y�'��' ` �9y�'�' ` �9y�'9y�' ` �9y�'The last step satis�es the eigenvariable 
ondition that y does not o

ur freely in the right formula.In terms of the topologi
al interpretation, this means that the image ~ x̄ j 9y�' � under pn of anopen set ~ x̄; y j �' � is a �xed point of int (sin
e int(~ x̄ j 9y�' �) = ~ x̄ j �9y�' � = ~ x̄ j 9y�' �),i.e., it is an open set. This tells us that proje
tions pn need to be open maps in order that thesemanti
s makes FOS4 sound.Similarly, 
ontinuity is required to model substitution so that, for any formula '(z) and term t(ȳ),we will have the required equality indi
ated by ! below:~ ȳ j �'(t(ȳ)) �gggggggggggg WWWWWW WWWWWW~ ȳ j �('[t(ȳ)=z℄) � ~ ȳ j (�')[t(ȳ)=z℄ �int(~ ȳ j t ��1(~ z j ' �)) ! ~ ȳ j t ��1(int(~ z j ' �))14



Also, by substituting �x = z for '(z) in the �rst-order axiom x = y ` '(x) ! '(y) of identity,we have x = y ` �x = x ! �x = y;while ` �x = x is gained by the S4 rule from another axiom of identity, viz. ` x = x. Thereforex = y a` �x = y is provable. Thus the diagonal~ x; y j x = y � = f (a; a) 2 D �X D j a 2 D g = �(D) � D �X D;whi
h interprets identity, has to be open, and therefore the diagonal map � has to be an openmap. This, together with the ne
essity of proje
tions being open 
ontinuous maps, shows that thesoundness of FOS4 for topologi
al semanti
s a
tually requires the use of sheaves. Indeed, we havethe following.Theorem 4. For any formulas ' and  ,FOS4 proves ' `  =) ~ x̄ j ' � � ~ x̄ j  � for everytopologi
al interpretationM = (� : D ! X; ~��):Moreover we also have 
ompleteness in the strong form of Se
tion 1.Theorem 5. For any (
onsistent) theory T of L 
ontaining FOS4, there exists a topologi
al inter-pretationM = (� : D ! X; ~��) su
h that, for any pair of formulas ',  ofL with no free variablesex
ept x̄, the following holds.' `  is provable in T () ~ x̄ j ' � � ~ x̄ j  �:In parti
ular, for any senten
e �, T ` � () M � �:Corollary 2. For any pair of formulas ',  of L with no free variables ex
ept x̄,~ x̄ j ' � � ~ x̄ j  � for every topologi
al interpretationM =) FOS4 proves ' `  :Moreover, for any senten
e �:~�� = X for every topologi
al interpretationM =) FOS4 ` �:The proof of Theorem 5 is beyond the s
ope of this paper, but we provide a sket
h as an appendixfor the 
urious reader. 15



4. Examples of the InterpretationTo help understand how the 
ombination of topology and quanti�
ation works in this semanti
s,let us take an example of a 
on
rete interpretation.4.1. Ne
essary Properties of Individuals. Let us re
all the example of a sheaf given in Sub-se
tion 3.1, i.e. the in�nite helix over the 
ir
le with proje
tion � : R+ ! S 1 su
h that �(a) =(
os 2�a; sin 2�a), ex
ept that we now take D = R+ = f a 2 R j 0 < a g the positive reals instead ofR. Thus we have a spiral in�nitely 
ontinuing upward but with an open, downward end at 0; thisis also a sheaf. So letM = (�; ~��) interpret the binary relation symbol 6 by the �no-greater-than�relation of real numbers on this sheaf, as follows:~ x; y j x 6 y �p = f (a; b) 2 R+2 j a 6 b and �(a) = �(b) = p g:I.e., in ea
h �ber R+ p, the order is just the usual one on the reals.Then 
onsider the truth of the following senten
es under this interpretation:9x8y:x 6 y �There exists x su
h that x is the least.�(3) 9x�8y:x 6 y �There exists x su
h that x is ne
essarily the least.�(4)Now ~ x j 8y:x 6 y � = f a 2 R j 0 < a 6 1 g = (0; 1℄ is the set of points of R+ that are the least intheir own �bers. Thus we have ~ 9x8y:x 6 y � = �((0; 1℄) = S 1 and (3) true inM. On the otherhand, ~ x j �8y:x 6 y � = int(~ x j 8y:x 6 y �) = int((0; 1℄) = f a 2 R j 0 < a < 1 g = (0; 1):So ~ 9x�8y:x 6 y � = �((0; 1)) = S 1 � f(1; 0)g , S 1, i.e., (4) is not true.R+
S 1��� )Æ()Æ0[(�1

�2�3
(1; 0)

~ x j �8y : x 6 y �= ~ x j 8y : x 6 y � � f1g~ 9x�8y : x 6 y �In this way, 1 2 R+ is �a
tually the least� in its �ber (or �possible world�) R+(1;0) = f1; 2; 3; : : :g,but not �ne
essarily the least.� Intuitively speaking, 1 is the least in the world R+(1;0), but any16



neighborhood of this world, no matter how small a one we take, 
ontains some world (f"; 1+"; 2+"; 3 + "; : : :g for " > 0) in whi
h 1 is no longer the least. Note that here we used the notion �1 inworlds near by� for explanation. Even though 1 only exists in R+(1;0), this notion still makes sensebe
ause the lo
al homeomorphism property of the sheaf allows us to �nd an asso
iated point inany other world in a suÆ
iently small neighborhood.Finally, note that, be
ause ~9x8y:x 6 y� = S 1, we have ~�9x8y:x 6 y� = int(~9x8y:x 6 y�) =int(S 1) = S 1, and so: M � �9x8y:x 6 y;M 2 9x�8y:x 6 y;M 2 �9x8y:x 6 y! 9x�8y:x 6 y:when
eI.e., this example provides a 
ounter-model for a so-
alled �Bar
an formula� of the form ��9 !9��.Also, note that ~ x; y j x 6 y � is open, sin
e it is the union of the open diagonal ~ x; y j x = y �and ~ x; y j x < y �, whi
h is open as the restri
tion of the open half-plainf (a; b) j a; b 2 R and a < b gto the �bered produ
t R+2. Therefore ~ x; y j �x 6 y � = int(~ x; y j x 6 y �) = ~ x; y j x 6 y �. Itfollows that ~9x8y:�x 6 y� = ~9x8y:x 6 y� = S 1, and soM � 9x8y�x 6 y;M 2 9x�8y:x 6 y;M 2 9x8y�x 6 y! 9x�8y:x 6 y:when
eI.e., M is also a 
ounter-model for the Bar
an formula of the form �8� ! �8�. (In 
ontrast,�
onverse Bar
an� ��8 ! 8�� and �9� ! �9� are provable in FOS4 in a similar manner to theproof in p. 14, and are valid in the topologi
al semanti
s.)4.2. De�ning fun
tions and names. In �rst-order logi
, when a stru
tureM satis�es 8x̄9!y'(x̄; y)(�ea
h x̄ has a unique y su
h that '(x̄; y)�) a new fun
tion symbol f' 
an be introdu
ed into thelanguage and interpreted inM so thatM � 8x̄8y( f'(x̄) = y$ '(x̄; y)). Does a 
orresponding fa
thold in FOS4? 17



Consider the �
odis
rete� topologi
al spa
e 
onsisting of two points, i.e. X = fp; qg, O(X) =fX;?g. Moreover, 
onsider the sheaf over X 
onsisting of two 
opies of X, i.e.,D = X � f0; 1g = f(p; 0); (p; 1); (q; 0); (q; 1)g; O(D) = fD; X � f0g; X � f1g;?gwith � : D ! X de�ned as (u; i) 7! u. On this sheaf, let us set the interpretation of an (n + 1)-aryrelation symbol R so that~ x̄; y j R(x̄; y) �p = Dnp � f(p; 0)g; ~ x̄; y j R(x̄; y) �q = Dnq � f(q; 1)g:Call the modelM = (� : D ! X;RM). It follows for ea
h u = p; q, be
ause ~ x̄ j 9!yR(x̄; y) �u =Dnu, thatM � 8x̄9!yR(x̄; y).Then, however, we 
annot de�ne a fun
tion symbol f satisfyingM � 8x̄8y( f (x̄) = y$ R(x̄; y)),whi
h entailsM � 8x̄8y�( f (x̄) = y$ R(x̄; y)). This is implied by the fa
t thatM does not satisfythe 
onsequent of the theorem 8x̄8y�( f (x̄) = y $ R(x̄; y)) ` 8x̄9!y�R(x̄; y) of FOS4, where8x̄9!y�R(x̄; y) is short for 8x̄9y8z(y = z $ �R(x̄; z)). The same thing 
an be expressed in termsof the interpretation as follows. The interpretation ~ f � : Dn ! D of su
h f must satisfy~ f �(a) = 8>>>><>>>>:(p; 0) if a 2 Dnp;(q; 1) if a 2 Dnq;i.e., su
h ~ f � yields ~ f ��1(X�f0g) = Dnp < O(Dn) for the open subset X�f0g of D, whi
h means ~ f �would not be 
ontinuous, and hen
e not a map of sheaves. The same thing 
an be said about nameswith n = 0. That is, even whenM � 9!y'(y) holds, a name 
 su
h thatM � 8y(
 = y $ '(y))
annot be de�ned in general. For example,M in the previous subse
tion has 9!x8y:x 6 y true, but
annot have a name for su
h x.On the other hand, not only in this sheaf but in any interpretationM, a fun
tion symbol f' 
anbe de�ned so that M � 8x̄8y( f'(x̄) = y $ �'(x̄; y)) if M � 8x̄9!y�'(x̄; y). To sum up: InFOS4, a ne
essary des
ription de�nes a name, whi
h then has a 
ontinuous denotation, whereas a
ontingent des
ription need not have a 
orresponding denotation.5. Histori
al RemarkLet us 
ompare the topologi
al semanti
s to other pre
eding semanti
s for quanti�ed S4. Toprepare ourselves for the 
omparison, it is very helpful to �rst review the relation between thefollowing three semanti
s for propositional S4: 18



(1) Kripke semanti
s in whi
h possible worlds are preordered (i.e., 
onne
ted by re�exive andtransitive a

essibility relation R). Propositions are subsets of the possible worlds.(2) Topologi
al spa
es. Ea
h point 
an be 
onsidered to be a possible world. Propositions aresubsets of the spa
e (as in (1)), and � is interpreted by the interior operation int.(3) Topologi
al Boolean (or topo-Boolean) algebras, i.e., Boolean algebras equipped with anoperation int satisfying the S4 rules. Ea
h point x is a proposition, and the relation x 6 ymeans x implying y.(2) and (3) are both 
alled topologi
al semanti
s. (3) is also sometimes 
alled an algebrai
 seman-ti
s. (1) is (properly) subsumed by (2) by taking the Alexandro� (right) topology: let f y j xRy gbe a basi
 open set for ea
h world x, and generate topology with unions of su
h basi
 open sets.(Of 
ourse, not every spa
e is of this kind.) (2) is in turn subsumed by (3): The Boolean algebraof subsets of a spa
e with int forms a topo-Boolean algebra, whereas M
Kinsey and Tarski [10℄showed that any topo-Boolean algebra 
an o

ur as a subalgebra of the algebra of a spa
e.5Several ideas have been proposed to extend the semanti
s above to quanti�ed modal logi
. Oneis to extend (3) by 
ompleting the algebra, so that it is equipped with arbitrary meet (for 8) andjoin (for 9). This 
ompletion was shown by Rasiowa and Sikorski [11℄ to give a semanti
s withrespe
t to whi
h �rst-order S4 is 
omplete.Another idea is to extend (1) or (2) by equipping ea
h possible world with a domain of individ-uals. The 
urrent notion of a Kripke sheaf derives from early work in topos theory [7, 8℄, and isde�ned to be a presheaf over a preorder (W;R) (S4 Kripke frame), viz. a fun
tor from (W;R) to the
ategory Sets of sets. That is, a Kripke sheaf D over an S4 Kripke frame (W;R) assigns a �domainof individuals� D(x) to ea
h world x 2 W, and fun
torially provides a mapping Dxy : D(x) ! D(y)for ea
h x; y 2 W su
h that xRy; then for a 2 D(x) we 
an read Dxy(a) to be �a in the world y.�6Su
h a �bration of preorders 
an be equivalently written as follows:7 a Kripke sheaf 
onsists of
5M
Kinsey and Tarski [10℄ showed the dual result for 
losure algebras.6Su
h a fun
torial (presheaf) de�nition of Kripke sheaves is found e.g. in [13℄. Note that Dxy need not be aninje
tion, whereas ea
h Dxy is an in
lusion map in a 
onventioanl Kripke frame with a domain of individual.7See Shehtman and Skvortsov [12℄. 19



two S4 Kripke frames (W;R), (D; �) and a p-morphism8 � : (D; �) ! (W;R) satisfying�(a)Rx =) 9!b[a�b ^ �(b) = x℄:(�)Then ��1(x) � D 
orresponds to D(x). �(a) is �the world where the individual a lives,� and b in(�) is D�(a)x(a). QS4= (quanti�ed S4 with equality) is known to be 
omplete with respe
t to Kripkesheaves (see e.g. [12℄).The topologi
al semanti
s of this paper is the extension of (2) analogous to Kripke sheavesextending (1). In other words, the relation between (1) and (2) is preserved in the relation betweenKripke sheaves and topologi
al semanti
s: any Kripke sheaf � : (D; �) ! (W;R) be
omes a lo
alhomeomorphism by taking the Alexandro� topology both at (W;R) and at (D; �).9 More pre
isely,indeed, the 
ategory of Kripke sheaves over a preorder P and monotone maps respe
ting �bers isexa
tly the topos of all sheaves over the spa
e P with the Alexandro� topology. The approa
h ofthis paper also extends the Kripke-sheaf approa
h by extending the interpretation to fun
tions andnames, whi
h have been ignored in the existing semanti
s in terms of Kripke sheaves;10 hen
e thesemanti
s is for �rst-order, but not just quanti�ed, modal logi
.It is well known that lo
al homeomorphisms over a topologi
al spa
e (as in (2)) are 
ategori
allyequivalent to fun
torial sheaves over a spa
e 
onsidered as a 
omplete Heyting algebra (similarlyto (3)), i.e. fun
tors from the algebra to Sets satisfying 
ertain 
onditions. By virtue of this fa
t,8A map � : (D; �)! (W;R) of Kripke frames is 
alled a p-morphism whena�b =) �(a)R�(b);�(a)Rx =) 9b[a�b ^ �(b) = x℄:andare satis�ed.9The parallelism is even deeper than mentioned here. With the 
ondition (�) dropped, any p-morphism � : (D; �)!(W;R) is 
alled a Kripke bundle (see [12℄). If semanti
s in
ludes not only Kripke sheaves but also Kripke bundles,the substitution of terms is lost. In parallel to this, the substitution is lost if topologi
al semanti
s in
ludes not onlysheaves (lo
al homeomorphisms) but also bundles in general (any open 
ontinuous maps or any 
ontinuous maps).10In the Kripke framework, Dragalin's [3℄ semanti
s dealt with fun
tions and names, but for intuitionisti
 �rst-orderlogi
. This logi
 does not require the general sheaf stru
ture (whi
h FOS4 or even QS4= does); instead Dragalin usedKripke frames with in
reasing domains (with whi
h FOS4 and QS4= are in
omplete). In su
h a semanti
s, the identityof individuals a
ross worlds is given, or in other words, we need not (and Dragalin did not) make expli
it the fa
t thatfun
tions and names have to be interpreted by maps of sheaves or monotone maps.20



the semanti
s of this paper in terms of lo
al homeomorphisms 
an also be formulated as algebrai
semanti
s in terms of fun
torial sheaves, as brie�y reviewed shortly in Subse
tion 6.Histori
ally, extending (3) by fun
torial sheaves is already suggested in [12℄.11 Also, Hilkenand Rydeheard [5℄ formulated the sheaf extension of (2), and stated its 
ompleteness as an openproblem. The 
ompleteness of �rst-order S4 with respe
t to the topologi
al semanti
s is �rstshown by the authors of this paper [1℄, but in the strong form of Theorem 5, i.e., the existen
e of a
anoni
al model for every theory 
ontaining FOS4.One 
on
eptual di�eren
e between the lo
al-homeomorphism formulation and the fun
torialone is that, in the former, � is interpreted by topologi
al interior, as it was originally in M
Kinseyand Tarski [10℄. In this sense, the lo
al-homeomorphism semanti
s 
an be properly 
alled theextension of M
Kinsey and Tarski's topologi
al semanti
s. In the same way that (2) 
onne
ts thethree approa
hes (1)�(3), the topologi
al semanti
s of this paper (extending (2)) subsumes Kripkesheaf semanti
s (the extension of (1)) on one hand, and 
an be seen to 
ategori
ally subsume thealgebrai
 topologi
al semanti
s ([11℄, extending (3)) on the other hand,12 thereby giving uni�
ationto these three approa
hes to �rst-order modal logi
.6. Ba
kground and Prospe
tsThe topologi
al interpretation of this paper was originally formulated in terms of 
ategory andtopos theory; this paper has served to reformulate it purely in terms of elementary (point-set)topology. In the original expression, we 
onsider the geometri
 morphism from the topos Sets=jXjof sets indexed over a set jXj to the topos Sh(X) of sheaves over a topologi
al spa
e X indu
ed bythe (
ontinuous) identity map id : jXj ! X. The modal operator � is interpreted by the interioroperation int that the 
omonad id� Æ id� indu
es on the Boolean algebra SubSets=jXj(id�F) � P(F) ofsubsets of F. See [2℄ for more detail, where the equivalen
e between this formulation and the onein this paper is also shown. int A //���� id�id�A����id� Æ id� :: Sets=jXj id� //? Sh(X)id�oo id�F id��F // id�id�id�F11[12℄, pp. 109f. There is no mention of what logi
 is given by the extension.12See [4℄ for how su
h subsumption 
an be formulated.21



Although the topologi
al formulation presented here is more elementary and perspi
uous, thetopos-theoreti
 one is more useful for generalizations. For example, we see from it that any geo-metri
 morphism of toposes (not just id� a id�) indu
es a modality on its domain. This immediatelysuggests natural models for intuitionisti
 modal logi
, typed modal logi
, and higher-order modallogi
. Appendix A. Produ
ts of SheavesHere we review the standard de�nition of (�bered) produ
ts of sheaves (
f. [9℄). We �rst needto re
all some basi
 de�nitions in general topology.Given �nitely many topologi
al spa
es X1, . . ., Xn, we 
an introdu
e a topology on the 
artesianprodu
t X1 � � � � � Xn by de
laring produ
tsU1 � � � � � Un � X1 � � � � � Xnof open sets U1 � X1, . . ., Un � Xn to be basi
 open sets, and thereby de�ning the union of anynumber of those basi
 open sets to be an open set. This topology is 
alled the produ
t topology.Given a topologi
al spa
e (X;O(X)) and any subset S � X, we 
an de�ne another topologi
alspa
e (S ;O(S )), 
alled a subspa
e of (X;O(X)) by setting:O(S ) = fU \ S j U 2 O(X) g:Now let us de�ne the produ
t of sheaves. The produ
t of sheaves �F : F ! X and �G : G ! X isin general not the produ
t spa
e F �G of topologi
al spa
es F and G; instead we take the produ
t�over X,� written F �X G. In the same way that the underlying set of a sheaf is a bundle of �bers,the underlying set of a produ
t of sheaves is given as a bundle of produ
ts of �bers. Thus, givenjFj =Xp2X Fp and jGj =Xp2X Gp;we set jF �X Gj =Xp2X(Fp �Gp) = f (a; b) 2 F �G j �F(a) = �G(b) g:This is 
alled a �bered produ
t. Sin
e this set jF �X Gj is a subset of F �G, we 
an then de�ne thetopology on F �X G to be the subspa
e topology of the produ
t topology on F �G.The proje
tion � : F�XG ! X (i.e., from the total spa
e to the base spa
e) maps (a; b) 2 Fp�Gpto p. One 
an show that this proje
tion � : F �X G ! X is a lo
al homeomorphism if both �F and22



�G are. We 
an also 
onsider the proje
tions pF : F �X G ! F and pG : F �X G ! G (from theprodu
t to the 
omponents), whi
h map (a; b) 2 Fp �Gp to a 2 Fp and b 2 Gp respe
tively. Thenof 
ourse � = �F Æ pF = �G Æ pG. In sum, s
hemati
ally, we have the situation:F �X GpF �� pG // G�G�� Fp �GppFp �� pGp // Gp�� Fq �GqpFq �� pGq // Gq��= + + � � �F �F // X Fp // fpg Fq // fqgThe n-fold produ
t F �X � � � �X F of a sheaf � : F ! X over X is written �n : Fn ! X. We writeFnp for the �ber (Fn)p = (Fp)n. When n = 0, F0 is X itself, be
ause the 0-fold produ
t of ea
h �berFp of F is a singleton F0p = f�g: F0 =Xp2Xf�g �Xp2Xfpg = X:Hen
e the proje
tion �0 : F0 ! X is the identity map.Appendix B. Sket
h of a Completeness ProofHere we sket
h a proof for Theorem 5, viz. the 
ompleteness of FOS4 with respe
t to the topo-logi
al semanti
s. See [1℄ for the details.Theorem 5. For any (
onsistent) theory T in a �rst-order language L and 
ontaining FOS4, thereexists a topologi
al interpretationM = (� : D ! X; ~��) su
h that any pair of formulas ',  of Lwith no free variables ex
ept x̄ satis�es the following:' `  is provable in T () ~ x̄ j ' � � ~ x̄ j  �:To sket
h our proof, it is illuminating to �rst review a proof for the topologi
al 
ompleteness ofpropositional S4, be
ause our proof extends the essential idea of that 
ase.Theorem 2. For any (
onsistent) theory T in a propositional languageL and 
ontaining S4, thereexists a topologi
al interpretation (X; ~��) su
h that any pair of senten
es ',  of L satis�es thefollowing: ' `  is provable in T () ~'� � ~ �:23



Proof of Theorem 2 (sket
h). Consider the Lindenbaum algebra B of T, whi
h is a Boolean algebraequipped with the operation b : ['℄ 7! [�'℄. Next, take the setU of ultra�lters in B and the Stonerepresentation b� : B! P(U). That is,
['℄ = f u 2 U j ['℄ 2 u g:The map b� is an inje
tive Boolean homomorphism. Next, topologize U with basi
 open sets d[�'℄for all formulas '. Then int(
['℄) = d[�'℄ for the interior operation int of this topology.Bb �� // b� //= P(U)int��B // b� // P(U)Finally, give an interpretation in U to a senten
e ' by ~'� = 
['℄; this is then a topologi
al inter-pretation for whi
h we have the following:' `  is provable in T () ['℄ 6 [ ℄ () ~'� � ~ �: �Note that the topology de�ned in the proof above 
oin
ides with the usual Stone spa
e topologyon U if � is trivial, i.e. ' a` �'.More importantly, we should note that ea
h ultra�lter u in B 
an be 
onsidered a model of T,i.e. u � ' if T ` ', where we write u � ' to mean ['℄ 2 u. In other words, the essential idea ofthe proof above is to take the 
olle
tion of all (propositional) models of T and give it the topologywith basi
 open sets de�ned by extensions of all �'.Now, given any 
onsistent theory T in a �rst-order modal language L, our proof extends thiskey idea by �rst taking a suÆ
iently large setM0 of �rst-order models of T in the following way.Consider the non-modal �rst-order languageL = L [ f�' j ' is a formula of L ggiven by adding to L an n-ary basi
 relation symbol �' for ea
h formula ' of L with exa
tly nfree variables. Then Gödel's 
ompleteness theorem for �rst-order logi
 yields a 
lass M , ? ofstru
tures M for L su
h that, for any formula ',T ` ' () M � ' for all M 2M:24



While M may be too large to be a set, the Löwenheim-Skolem theorem implies that there is a
ardinal number � su
h that the setM0 = fM 2M j jjMjj 6 � g still satis�esT ` ' () M � ' for all M 2M0:ThisM0, equipped with a proje
tion � : XM2M0 jMj !M0 for jMj the domains of models M, is our�rst approximation to the topologi
al interpretation of T required in Theorem 5.M0, unfortunately, 
annot in general be topologized so that � is a sheaf in the required way. Tose
ure the ne
essary sheaf 
ondition, we need to �label�M0 so that every a 2 XM2M0 jMj has a namein the language. So, let us extend the language L toL� = L [ f 
i j i < � gby adding �-many new 
onstant symbols. Then 
onsider the following 
olle
tion of stru
tures forL�: M = fM f j M 2M0 and f : �� jMj is a surje
tion g;where M f is the expansion of M to L� with 
iM f = f (i) for all i < �. We then have the followingresult for the theory T� ofM: for every formula ' of L,T ` ' () T� ` ' () M f � ' for ea
h M f 2M:We 
an then show that, if we topologizeM and XM2M jMj with the extensions of � formulas as basi
open sets, then � : XM2M jMj ! M is a sheaf, and indeed is a topologi
al interpretation as 
laimedin Theorem 5. Referen
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