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ABSTRACT

This paper shows that in dructural flowsheet optimization problems that are formulated as
mixed-integer nonlinear programming (MINLP) problems, modelling can have a great impact in
the quality of solutions that are obtained, as well as on the computational efficiency. A
modelling/decomposition drategy is proposed to exploit the special dructure of flowsheet
synthesis problems that are to be solved with the OA/ER algorithm. The objective of this
procedure is to reduce the computational effort required to solve the MINLP optimization
problem, and to reduce the effect that nonconvexities can have in cutting-off the globa optimum.
The modelling drategy eliminates nonconvexities in the interconnection nodes through linear
congraints and valid outer-approximations. The decompostion drategy has the important
feature of only requiring the NLP optimization of the current candidate flowsheet Nonexisting
units in the superdructure are suboptimized through a Lagrangian decomposition scheme.
Application of the proposed modelling/decomposition procedure is illustrated with severa
examples, including the synthesis of the HD A toluene process.




INTRODUCTION

The Use of mathematical programming techniques for process synthess has received
increasing attention over the last few years. For instance, linear programming (UP) models have
been proposed for synthesizing heat exchanger networks (Cerda and Westcrberg, 1983,
Papoulias and and Grossmann, 1983), mixed-integer linear programming (MHP) modes for
distillation_ sequences (Andrecovich and Westerberg, 1985) and total processing systems
(Papoulias and Grossmann, 1983), nonlinear programming (NL P) techniques for heat exchanger
networks (Floudas et al, 1986), and separation sequences (Floudas, 1987) and mixed-integer
nonlinear programming (MINLP) models for gsructural flowsheet optimization (Kocis and
Grossmann; 1987,1988a). The major reason for this increased interest lies in the fact that
mathematical programming techniques provide a sysematic framework for process synthesis,
actually complementing the heurigtic and thcrmodynamic tar geting appr oaches (see Grossmann,
1985; Roquet ctal., 1988).

At the same time there has been subgantial progress in methods and software for solving
optimization problems. Thisisprimarily due to increases in the efficiency of optimization codes
(MPSX [IBM, 1979] for LP/MILP , MINOS [Murtagh and Saunders, 1985] for LP/NLP),
advances in optimization algorithms (interior point methods [Karmarkar, 1984] for LP,
successive quadratic programming algorithms [Han, 1977; Powell, 1977] for NLP), development
of powerful modelling languages (General Algebraic Modelling System, GAMS [Kendrick and
Meeraus, 1985]), and technological advancesin computing.

In addition to progress in solving LP, MILP, and NLP problems, an important recent
development is the Outer-Approximation (OA) algorithm (Duran and Grossmann, 1986a) and its
extension with .the Equality-Relaxation (OA/ER) drategy (Kocis and Grossmann, 1987) for
solving mixed-integer nonlinear programming (MINLP) problems. Other available methods for
solving MINLP problems include branch and bound procedures, Generalized Benders
Decomposition (GBD) (Benders, 1962; Geofftion, 1972), and the feasbility technique by
Mawengkang and Murtagh (1986); Mawengkang (1988).

However, even with the improved optimization tools that are available, one cannot expect
efficient and reliable performance on arbitrary optimization problem formulations for process
synthesis. Often, for a given problem, there are several different formulations which appear
equivalent but in fact require sgnificantly different computational effort in ther solution.




Furthermore, one formulation may lead to the global optimum while another may lead to only a
suboptimal solution. )

Recently, researchers have investigated the importance of the formulation/reformulation of
MHJP problems and reported results which clearly verify that the problem formulation can be
critical for efficient solution. The main idea isto tighten the problem through reformulation so as
to reduce the gap between the solution of the MELP problem and that of the L P relaxation of the
original problem (integrality gap). A tight formulation is important because the computational
success of a branch and bound algorithm (common method used to solve MILP problems) often
depends on the size of the integrality gap. Martin and Schrage (1985), Crowder, Johnson, and
Padberg (1983), and Van Roy and Wolsey (1983 ,1984) have recently proposed special methods
toreduce the integrality gap in MILP problems.

It is also well known that care mugt be exercised when formulating NLP problems. Nonlinear
terms in the objective function and congraints should be continuous and differentiable over the
complete range of variable values. The modd should be as linear as possible and it is preferable,
to have nonlinearity in the objective function rather than in the congraints (Drud, 1985). In
order to guarantee that the solution found is the global optimum, the problem mug be cast as a*
convex programming problem whenever possible (eg. through convexifying transformations).

Finally, as one might expect, the particular form of an MINLP formulation can have a great
impact on the performance of the algorithm and the global optimality of the solutions obtained.
In this paper, it will firsd be shown that draightforward. MINLP formulations for process
synthesis problems can often be trapped into local solutions. The first example illugtrates that a
sour ce of potential problems for the OA/ER, GBD and branch and bound methods arises when
units described by nonlinear models are driven to zero in the optimization of a flowsheet
uperdructure. A second example illustrates the difficulty which can occur when the OA/ER
algorithm is applied to an MINLP problem involving sream splits.  Although in principle one
can include congraints to avoid zero flows and resort to MINLP techniques for handling
nonconvexities that are present in these problems (Kocis and Grossmann, 1988a), it is clearly
advisable to determine whether alternative formulations can actually circumvent these
difficulties. * o

A special modelling / decompostion drategy is proposed in this paper for the effective® «
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application of die OA/ER algorithm to dructural flowsheet optimization problems. The
procedure exploits the separability of the MINLP for process supersructures by partitioning the
superstructure into nodes for process units and interconnection units. Special model equations
are developed for interconnection units which provide exact representations or valid outer-
approximations of the nonconvex functions associated with these units. Also, a decompostion
scheme is developed which has the important feature of requiring only the NLP optimization of
the flowsheet selected at each iteration of the OA/ER algorithm, rather than optimization of the
entire supersructure. Disappearing process units in the flowsheet superdructure are handled by
a Lagrangian suboptimization procedure to generate linearizations of good quality for the MILP
mager problem. Furthermore, linearizations for this problem are modified for zero value flow
and design variable selections. Application of the proposed procedure isillustrated with several
example praoblems, including the synthesis of a toluene hydrodealkylation process.

BACKGROUND

Since the proposed modelling/decomposition scheme will be applied to within the OA/ER
algorithm, only a brief review of this method will be given in the context of the process synthess
problem. A more extensive discussion can be found in Kocis and Grossmann (1987, 1988a,b)
and Duran and Grossmann (1986a). The chemical process synthesis problem involves selecting
the optimal flowsheet dructure as well as the parameters which describe the operation of a
desred process. This problem can be formulated as an MINLP problem. In order to define the
search space of candidate flowsheet alternatives, one should firg perform a preiminary
screening (e.g. see Rudd e al., 1973; Mahalec and Motard, 1977; Douglas, 1988;) usng
engineering indight, heurigtics, and/or thcrmodynamic targets to select a flowsheet
superdructure. This flowsheet superdructure contains several potentially attractive flowsheet
alternatives from which the optimal process flowsheet is to be identified. The solution of the
resulting MINLP problem yields both the dructure of the process flowsheet as well as the
parameters (operating conditions, sream flowrates, ect) that describe the process operation.
The process synthesis problem givesriseto an MINLP problem of the general form:




Z =min c'y+/(x)
st. h(x)=0
gx)s0
AX*a (MINLP)
By+Cx£d
X€ X={x|X€ R* xLgx <xV}

ye Y={ylye {0,1)® Ey<e)

The continuous variables x represent flows, operating conditions, and design variables. The
binary variables y denote the potential existence of process units. These variables typically
appear linearly as they are included in the objective function to represent fixed charges for the
purchase of process equipment (in the term c'y) and in the constraints to enforce logical
conditions (in the constraints By + Cx £ d and Ey £ €). The term/(x) is often a linear term .
involving purchase costs for process equipment (cost coefficients multiplying equipment
capacities or sizes), raw material purchase costs, product/by-product sales revenues, and utility -
costs. The nonlinear performance and sizing equations correspond to h(x)=0 and the inequality
constraints g(x) £ O include design specifications which are typically linear inequalities. Finally,
the linear equations include mass balances and relations between the states of process streams.

The solution to the above MINLP optimization problem can be obtained with the OA/ER
algorithm (Kocis and Grossmann, 1987). This agorithm can be classified as a decomposition
scheme in which the continuous optimization and the discrete optimization are performed
separately. The continuous optimization is performed through NLP subproblems that arise for
fixed choices of y in problem (MINLP). The NLP subproblem solution provides an upper
bound on the solution to problem (MINLP) as well.as values for the continuous variables x and
Lagrange multipliers for relaxing the nonlinear equations in the master problem. The discrete
optimization is performed via an MILP master problem which is intended to predict lower
bounds on the solution of problem (MINLP). In the master problem, the nonlinear functions in

(MINLP) are replaced by an accumulation of linearizations derived at the solution of the NLP* *

subproblems. The steps of the iterative bounding procedure in the OA/ER agorithm are formally

-+



dated in Appendix A. It should also be noted that sufficient conditions for obtaining the global
optimum require convexity of/(x), g(x)s and quasiconvexity of the relaxation of the equations

h(x)=0.

EXAMPLES

The following two small examples will illugrate difficulties that can be encountered when
modelling MINLP optimization problems in process synthesis. The first example shows that
graightforward formulation of an MINLP for the selection of reactors, that are described by
nonlinear models, can cause the OA/ER algorithm, GBD, and a branch and bound procedure to
find a suboptimal solution. The second example addresses a problem which can arise when
applying the OA/ER algorithm to an MINLP problem containing nonconvex (bilinear) sream
splittersequations.

EXAMPLE 1.

Figure 1 contains a very simple example of a superdructure for a problem of selecting from
among two candidate reactors the one that minimizes the cost of producing a desred product
The MINLP formulation bf thisproblem is given as (EX1):




min COST=75yl +55y2+7vl+6v2+ 5x
st. 4 »09][1 - exp<-05vl)] jd
© 22»0.8[1 - exp(-0.4v2)] x2
Xl +x2-x«0
zl + 22« 10 | (EX2)
vl £ 10yl
v2 £ 10y2
xI £ 20yl
x2 £ 20y2
yl +y2=1
xl,x2,zl,z2,vI,v2 £0
yl,y2«0o0r 1
Thebinary variablesy 1 and yl denote the existence (nonexistence) of reactors 1 and 2 when their
vaueis 1 (0). Inthe objective function, there are fixed charges for purchasing reactor 1 (7.5) or *
reactor 2 (5.5), linear terms in vl and v2 (reactor volumes), and die purchase price for raw
materia x. The two nonlinear equations are the input-output relations for the reactors which
define the output flows (zI and z2) in terms of the input flows (x| and x2) and the reactor
volumes. Theraw materid x is split into the reactor input flows x| and x2; atota demand of 10
units must be met by the output flows zI, z2. The next four inequalities are logicad congraints

which insure that if a given reactor does not exist (eg. yl=0), then the corresponding volume and
feed stream are zero. Thelast constraint requiresthat either reactor 1 or reactor 2 be sdected.

The optimad solution to this MINLP problem is COST*=99.240 a (yI*,y2*)=(l,0),
(xI* x2*M 13.428,0.0), and (vI*, vZ2*)=(3.514,0.0). The suboptima solution corresponding to
(yl,y2=(0,1) has an objective function vdue of 107.376 a (x|,x2)=(0.0,15.0) ad
(vl,v2M0.0,4.479). If the OA/ER dgorithm is applied to the MINLP problem (EX1) with
(yl,y2MO,l) sdected as the initid point, then the agorithm terminates after only one mgor
iteration and fails to find the optimal solution. The MILP master problem is infeasible during -
iteration 1, causing termination at a suboptima solution with COST=107.376.



The reason that the optimal solution was not found lies in the MILP mager problem and the
linearizations derived at die solution to the firs NLP subproblem. The relaxed inequalities for
thefirg-oider linearizations of the two nonlinear equations are given by:

4 £0 1)
7 <> 0.666x2 + 0.800v2 - 3.584

Note that the linearization of the input-output reation for reactor 1 hasreduced to zl less than or
equal to zero due to the fact that the point of linearization isx1=0.0,vI=0.0. At these values, the
derivatives of the nonlinear term 0.9[1-exp(-0.5vI)JxI with respect to xI and vl are both zero.
Hence, the nonconvexity has caused the linearization to underestimate the nonlinear feasble
region and the point of linearization has magnified the problem. Theinteger cut congraint in the
mager problem forcesyl = 1 andyl = 0. At yl =0, the logical congtraints with the nonnegativity
congraints yield x2=0and v2 =0. At these values, however, the linearization for reactor 2
cannot be satisfied since 2 is nonnegative. The mager problem has no feasble solution and the
OA/ER algorithm terminates.

It isinteresting to observe how this problem formulation also affects the performance of GBD
and branch and bound methods. Applying GBD to (EX1) with the initial point (y1,2)=(0,1)
results in convergence to the suboptimal (COST* 107.376) solution in one major iteration
because the MILP mager problem (the integer cut, y2-yl £ 0, was included) predicted the
lower bound 109.376, which failsto underestimate the global optimum. The problem with GBD
occurred because the Lagrange multipliers for the four logical congraints were all zero. These
multipliers are used to formulate the Lagrangian in the maser problem of GBD (see Kocis and
Grossmann, 1987).

The formulation of this problem also was found to have an effect on the behavior of a branch
and bound procedure. The influence was seen at the level of the rdaxed NLP problem, the
MINLP problem with the integrality conditionson yl and yl relaxed (i.e. O £yl £ 1). Usng
formulation (EX1), the solution to the relaxed NLP was found to depend on the initial point
selected. Two local solutions were obtained: COST=107.376 at (ylj2)=(0,l) and COST=97.939
at (ylj£)*(0.3475,0.6525). In the case of the first local solution, which yieldsinteger values, the
branch and bound procedure would terminate with a suboptimal MINLP solution. The second
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local solution of the relaxed NLP leads to the optimal MINLP solution. It will be shown later -

how the difficulties in the MINLP problem (EX1) can be avoided with the proposd
modelling/decomposition strategy.

EXAMPLE 2.

Condder the problem of selecting the optimal separation scheme to be used to separate a
multicomponent process gream into a set of product streams with given purity specifications.
For smplicity we present a system which contains two components (A and B) which ait
available in feedstreams Fl and F2. The compositions of these sreams are 55% A /45% B and
50% A/50% B, respectively and the desred product dreams axe Pl and P2. Purity
specifications are a minimum of 80% A in product Pl and a minimum of 75% B in P2. Upper
bounds are specified for the amounts of these products. Hence, there is the possibility of
producing as much as these amounts, or at the other extreme not to produce any product if the

separation scheme proves to be unprofitable.

Figure 2-a is a supergructure of alternative separation schemes which can be used to deliver

the desred product streams. Alternatives embedded in this supergructure include:  flash »

separation with blending, digtillation with blending, flash separation and digtillation in paralld,
or the eimination of the complete separation process. As seen in Figuré 2-a, dreams Fl and F2
are firg mixed to yield greem F3 which enters a smple sream splitter. The gream is split into
four dreams (F4, F5, F6, and F7). F4 and F5 are input sreams to the flash sgparator and
digtillation column, while F6 and F7 bypass the sgparation units and are blended with the top and
bottom sreams from the flash and column, respectively. Simple linear models are used for the
flash separator and digtillation column where fixed recoveries are assumed. The nonlinearity in
this problem isthen Iimitéd to the gream splitter as can be seen in the MINLP formulation given
in Appendix B. Note that the equations describing the sream splitter contain bilinear terms (i.e.
F4A x E4). The objective function to be maximized is profit which is given asrevenues - costs.
Revenues include the sales of PI and P2, while costs include purchase costs for FI and F2 as
well as costs for the flash sparator and distillation column. '

Applying the OA/ER algorithm to this nonconvex MINLP problem yieldstheresultsin Table!l - -

which were obtained from each of the 4 different garting points for the binary variables. Note

that. since the objective function is the maximization of prafit, the NLP subproblems yield lower *

-



bounds while the MILP mager problems predict upper bounds on the solution to the MINLP
problem. As seen in Figure 2-b, the optimal solution corresponds to die segparation scheme which
oMt use of both the flash separator and the column (i.e. YD»YF*1 indicating that both the
digtillation column and flash exist). The optimal objective function value for this gructure has a
profit of $511.87x10fyr. Theresultsin Table | show that only 1 of the 4 initial points leads to
the global solution, and that this garting point is YF*Y D* 1, which is the optimal solution. The
reason why the other 3 initial poinfs lead to suboptimal solutions is that the bilinear condraints
for the sream plitter introduce nonconvexities into the MINLP problem (see also Wehe and
Wecsterberg, 1987). Thus, the upper bound predicted by the MILP mager problem is not
necessarily avalid bound and thereis no guarantee that the OA/ER algorithm will find the global
solution. It will be shown later that this difficulty can be over come by developing a linear mode
for the magter problem. This linear modd provides valid outer-approximations to the nonconvex
bilinear equations of the splitter, which are used in place of the function linearizations to define
the magter problem of the OA/ER algorithm.

DISCUSS ON

The example problems demongrated two very important points about MINLP formulations for
process synthesis and ther solution. Firstly, both problems involve nonconvexitiesin the model
equations which cause the OA/ER mader problem to predict invalid lower bounds. Secondly,
the linear approximations in the master problem were derived at points which are far from the
conditions that would prevail if the disappearing units were selected. In example 1, the magser
problem failed to provide a valid lower bound since the linearization of the input-output relation
for reactor 1 occurred at xI=vl=0 (sincereactor 1 did not exist in the sructure optimized in the
NLP subproblem). In example 2, an inherent characterigic of the bilinear functions in the
splitter modd is that very often the point of linearization is such that one or more of the split
fractions (eg. E4, E5, or E6) is equal to 0, hence leading to poor linearizations. These are
representative difficulties which can be encountered in solving MINLP process synthess
problems.

One alternative to circumvent these problemsis to mode splitters so as to avoid zero flows in
the supergructure and handle nonconvexities with the two-phase drategy for the OA/ER
algorithm (see Kocis and Grossmann, 1988a). In particular, the splitter can be modeled by
specifying bounds on the split fractions” through the inequalities
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e< sy(1-28)+e  i»,2,...N 2

whereeist small tolerance (eg. 0.01) and y; is a binary variable that denotes the existence of a
process unit in branch i of a splitter. In this way if y*O, the above inequalities reduce to 2*=¢,
and if yj*U the split fraction is bounded ase££] £1-& The bounds provided by these
inequalities represent a smple means of avoiding linearization at conditions of zero flows and
split fractions. However, since the value of % can become small as £ approaches zero, the
derivative values can also become small, resulting in linearizations which provide poor
approximations to the nonlinear functions.

Alternatively, it will be shown that by exploiting the separable dructure of the process
synthesis MINLP problem and undersganding the role of the MHJP mager problem of the
OAJ/ER algorithm, a procedure can be developed to increase the rdiability of finding the global
optimum while greatly reducing the computational expense of solving the NL P subproblems.

SPECIAL STRUCTURE OF THE PROCESS SYNTHESIS MINLP

The superdructure of the MINLP problem has a special feature in that it corresponds to a .
network of connected nodes. There are two basic types of nodes in this network, process unit
nodes (e.g. reactors, columns, compressors) and interconnection nodes (dream splitters and
mixers). The arcs in the network represent process sreams flowing from one node to another.
The process equipment nodes can be thought of as forming subsystems which are linked together
by the inter connection nodes to form the supersructure (see Figure 3).

To define more specifically the MINLP for the network supergructure, let UandN denote the
set of process units and interconnection nodes with elements u and n, respectively. Also, let S
denote the set of process sreams in the supersructure with dements s.  Finally, let 1" and
OVM represent the set of input and output streams for process unit u and I"W and OW
represent the set of input and output streams for interconnection node n. Having sated these
definitions, consder the MINLP formulation (PF) of a flowsheet supersructure
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The variables in problem (PF) include x, dy, z* and y = {yws @€ t/}. Xs is a vector of
variablesfor each d¢ream 5 € 5 (eg. component flowr atcs, temperature, pressure, etc.), where x£
denotes the subvector of flowrate components. d; denotes a vector of decision/sizing variables,
Zg denotes a vector of internal/performance variables, for each process unit u € U, and d*
denotes a vector of decision/sizing variables for each interconnection node. (For example, if
process unit u isa CSTR, then &, would be the reactor volume and z; the conversion.) Finally,
yu are the binary variables which denote the existence or nonexistence of each process unit u in
the flowsheet supergructure.

In the objective function of problem (PF) thereisaterm for each process unit u which includes
afixed-chargecost (c,) and a cost ter m/, which is a function of the decision/sizing variable d,.
The second part of the objective function represents the purchase cost or sales revenue (cs) for
the process sreams. Note that this objective function is sgparable in the process units and in the
process sreams.

The congraintsin MINLP (PF) are partitioned into two sets which are associated with the two
types of nodes, process units nodes and inter connection nodes. For each process unit u € U, the
mode includes a vector of linear and nonlinear equality and inequality congraints, hy,gy,
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involving the continuous variables dy, %# and Xs (S € 1")kJO">). In genera, linear
equations will correspond to component mass balances', while the nonlinear equations will
correspond to performance (phase equilibrium, converson reations) and design equations.
Also, it is necessary to have linear inequalities for each process unit to insure that the input
flowrate to this unit, x£, and its design variables, djg are zero if the unit does not exist (i.e. the
associated binary variabley, =* 0). Note that in these congtraints, x£'°" and dj-" are condtants
that represent upper bounds on these variables when the process unit exists. Finally, for each
interconnection node n € N, there isavector of equality congraints, r*, which relates the output
greams to the input streams through the decision variables d; For instance, for the splitter in
example 2, the split fractions correspond to d * (E4, E5, Ed) and the linear and nonlinear mass
balance equations comprise the congraints r=0 (see Appendix B).

OUTLINE OF MODELLING / DECOMPOSTION STRATEGY

The proposed drategy for solving the MINLP process synthesis problems with the OA/ER
algorithm is aimed at reducing the computational effort in solving the NLP subproblems,
providing good information to the MRP mager problem, and reducing the effect of ~
nonconvexitics. Thebasicideaisto exploit the sructure of problem (PF) as follows:

1. Inter connection units

a. For splitters and mixers for which only a single nonzero outlet and inlet
dream is to be chosen, respectively, linear models will be developed to
eliminate nonconvex equations for these nodes.

b. For splitters and mixers for which several nonzero outlet and inlet sreams
can be selected, respectively, valid outer-approximations will be developed
for the MHJP mager problem. These will replace linearizations of the
nonconvex eguations.

2. Process units,

a.-The NL P subproblems will be defined and solved for only the existing units
in the selected flowsheet sructure The solution will be used as a basis for
deriving linearizations of the existing process units to be included in the
madter problem.

b. Linearizations of nonlinear equations for nonexisting process units will be
obtained at nonzero flow conditions usng a Lagrangian decomposition
scheme.

'Since the OA/ER algorithm is favored by having as many linear constraints as possible, it is assumed that mass
balances are formulated in terms of component flowraies rather than compositions.
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a Linearizations of all process units will be modified to satisfy the conditions
that the values of the input and output flow and design variables can be
driven to zero when a unit does not exist in the solution to the M RP master
problem.

The motivation behind the above scheme is as follows. Interconnection nodes play a critical
role in the selection of process configurations and hence, effects of nonconvexities in these nodes
must be eliminated by appropriate convexified model equations. In this way, the problem of
linearizations in the OA/ER master problem underestimating the nonconvex feasible region of
these models and destroying the validity of the predi cted bound will be eliminated

As for the process units, the decomposition scheme will Iéad to the solution of areduced NLP
subproblen and a the same time provide a good point of linearization for the entire
superstructure.  The nonlinear models for existing units will be linearized at the NLP solution
point To avoid linearizing the disappearing process unit models at zero flows, these units wilt be
suboptimized to provide good points for linearization in the sense that these points correspond to
conditions that are close to the ones that are likely to prevail if the units are selected. Also, all
linearizations will be modified to be consistent with zero flow and design variable values when
units are not selected.

It should be noted that the justification behind this linearization scheme is that in the master
problem of the OA/ER algorithm, nonlinear functions need not be linearized at the same point
Furthermore, the linearizations can be modified accordingly to provide vaid outer-
approximations.

INTERCONNECTION NODES

The interconnection nodes in the flowsheet superstructure are comprised of stream splitters
and mixers. The corresponding equations for the interconnection nodes include heat and material
bal ances and these models axe relatively simple as compared to models for process units. Thus, it
IS possible to draw on physical observations in order to derive simplified models which will
either provide an equivalent representation, or a valid outer-approximation of the nonconvex
nonlinear model.

First, we address the stream splitter with N output streams. The heat balance implies that the
temperature of each outlet stream equals the inlet stream temperature, and hence these equations
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do not require special treatment The material balances for the sream splitter may appear to be
trivial, but this is only true for the case of an input sream which has fixed compostion or
contains only a single component For the case of unknown compositions, $ream compodtions
variables, xi °°“'? ** defined and set equal to each other for the input stream and output
dreams. However, these variables must be related to the sream bulk flowrates (Fy) and
component flowr ates (*{):

=f1F;  j=1,2..C, i=1,2,.N 3)

It is preferable to avoid such equations since the denominator becomes zero when a bulk flow is
zero. Gearly, the above equation can berearranged through multiplication of both sides by Fiy
but thisintroduces a bilinear term.

The samerdationsin (3) can be described through the use of split fractions £;, i «l ,2,...JV-1,
which also leads to a formulation with bilinearities.

=% j=12,.C, i=1,2,.N1
N
fg=2" 4 j=1.2,.C @) -

0s§<1  i=1,2,.N-1

Wherefiddenot$ the flowrate of componenty in the inlet sream. Example 2 illustrated the use of
this moddl as well as the difficulty which the resulting nonconvexities can cause. These
difficulties will be overcome by replacing linearizations with valid outer-approximations which
will be derived later in the paper.

SINGLE CHOICE INTERCONNECTION NODES

STREAM SPLITTER MASS BALANCE MODEL

A special case of the sream splitter that occurs very frequently in a flowsheet supergructure is
the dtuation where only one of the outlet sreams can be chosen to be nonzero. For example,
refer to Figure4 whereoneinput sream (FQ) is split into 5 output streams (Fj through Fs) which
are then sent as input sreams to the 5 process units. Consder now that a single choice between

the 5 competing process units must be made o that the following congraint applies:
Y+ Y+ Y3+, +¥g=1 ¢
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where Y, denotes the existence/nonexistence of process unit L In addition, if a unit does not exist
then the corresponding input sream mug be O (asin problem (PF)):
Fi-pYiSO i=1,2..5

1n.-0,1 i«l,2,...5 (6)

where p is a valid upper bound. Given an input sream with unknown compositions, it is
possible to make use of the binary variables defined to denote the existence of the process units
in deriving a linear mode for the multicomponent splitter. In general, for a ream splitter with
inlet sream Fq and outlet streams Fy ,F», ..J*y, of which exactly one can exist, the following
linear model describes the plitter (where f{ denotes the flowrate of component
jin greami*for/=l,2,...C and 1=0,1,2,.JV):

c
F;zeeYfi i-0,1,2,..3V 7
1= ()
. N
=L y=l2.C ©®
Fi-p¥; <0 i=1,2,.N )
N

This modd makes use of the binary variables of the process units in a way that the mass
balance in the plitter is represented by a selection procedure (i.e. equating the input dream to
the output s¢ream which exists). This can be verified by. observing the implication of the
congraint ££i Y=I. Let Y; denote the binary variable whose value is 1, thus from (9) and the
nonnegativity condition for this variable, FAMfC.  Equation (7) in turn implies that
/f=0for i> / and/=1,2,...C. Finally, from equation (8),/;,'=/j fory=I,2,...C.




MIXER HEAT BALANCE MODEL

A gmilar line of reasoning can be applied to the sream mixer with a minor variation to *
account for an additional complication which arises. In the mixer, the mass balance equations are
linear while the heat balance involves nonlinearities. Let F; and T; for z=l ,2,.JV denote the
bulk flowrates and temperatures of the N input sreams and F, and T, denote the outlet Sream
flowratc and temperature in the following model:

[os
F,= i«0,1,2,..3V 11
i ;f‘f (12)
N
fnglf{ >-1.2...C : (12)
Fo Cpo To = z F‘- Cp‘ Tl' (13)

where Cpi is the heat capacity of gream i. Equation (13) is nonconvex since it contains N+l
bilinear terms, productsof F and T.

Consder a mixer with precisely one nonzero input stream, the analogy of the splitter with one )

nonzero outlet stream (refer to Figure 4). Again let | denote a single stream from Z=1,2,..JV
which exists (i.e. F; * j=Q) in which case (13) reducesto:
FoCpoTo=FiCpy Ty (14)

Since only one inlet stream exists, it follows that Fo = Fj and also Cpg = Cpy. In this case (14)
can bereduced further to yield To = Tj. Thus, the nonlinear heat balance relation can be replaced
by alinear relation that equates the temperature of the mixer outlet sream to the temperature of
the existing inlet sream F+. A linear modd for the heat balance of a mixer with a single inlet
sream can then be developed asfollows:

Tho2T,-p(1-Y) i=1,2,.N

TpsT;+p(1-r) 1«1.2,.JV (15)

N
2Y,-=l

where Yj*1 if input sream i exists (and O otherwise) and p is a large scalar congant which

renders the above inequalities redundant whenever 1;=0. It can be seen that for Yj*I the above * '

inequalitiesreduce to T, £ Tyand T, £ 7,, which isequivalent to 7, = T,
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The above modésin (7>(10) and (15) are extremely ussful in the context of the MINLP (PF)
for a flowsheet superdtructure, because interconnection nodes appear frequently where only one
of the N outlet or N inlet sreams exists. Potential difficulties for the NLP subproblem and MILP
mager problem of the OA/ER algorithm are then diminated by replacing the common
nonconvex models composed of bilinear terms with the proposed linear models.  For
computational efficiency in die MILP problem, it is important to select the smallest possible
values for the valid upper bounds p. This will have the effect of tightening the LP relaxation
problem.

MULTIPLE CHOICE INTERCONNECTION NODES

Although single choice interconnection nodes treated above appear frequently in a flowsheet
upedructure* there is also the need to treat gream splitters and mixers where several nonzero
outlet and inlet sreams can be chosen, respectively. For instance, refer back to example 2 where
one alternative (and actually the optimal sructure) made use of two units operating in paralld,
the flash separator and the didtillation column. Ancther need for the general sream splitter
would be a Stuation where a gream needs to be split into three streams, one of which will be
purged, one is to be recycled, and the third sream is to enter a separation system. These are
examples where 2 or more streams leaving a splitter are nonzero and analogous Stuations exist
for the mixer. The procedure for handling multiple choice interconnection nodes is based on
replacing linearizations of nonconvex heat and material balances with valid outer-
approximations in the MILP magter problem of the OA/ER algorithm.

STREAM SPLITTER MASS BALANCE MODEL
Firg consder the sream splitter, which will be limited to the mass balance equations in (4)
since the heat balance can be handled trivially. The nonlinear mass bsdance model for the gream
splitter is shown below: '
A=f%  j=12,.C, i=1,2,..N1

%"%fi  y-1.2,..C (4
o*n*1 i»l,2,.3V-I
where” isthe split fraction for each outlet stream.

A valid outer-approximation of the above modd is given by equation (7), the mass balance in
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each sream, and by equation (8), the mass balance for each component: However, since this
relaxation yields a very weak outer-approximation, additional congraints will be developed that -
maintain therelative order of component flowrates while providing an exact representation at the
NL P solution points.

From (4) a difference relation can be derived for each sreami» 1,2,..W-1 which rdates the

flowrate of componenty with that of componenty+1 for'ysl¢2,..,C-I:
A==y 7-1.2-C-1 . 1-1.2..AM (16)

Assume that the difference relation for componentj and y+1 in the splitter inlet dream satisfies
the following inequality (i.e. the flowrate of component j exceeds the flowrate of component
y+1):

y=f; *o (17

Then it can be seen from (16) and (17) that valid lower and upper bounds on the difference
relation for componentsj and y+1 in outlet Sreamsi» 1,2,...AM are obtained when » lies at its _
lower and upper bound respectively (i.e. 0 and 1). The following relaxation of the difference
relation can then bederived:

0 Zfi-f?t * fJo-ff' i=1,2,.JV-l (18)
Qo1

On the other hand if the difference rdation for component./ and;4-1 in the splitter inlet gream
satisfies the following inequality:
N £] £0 (19)

then a smilar relaxation thhe difference rdation can be obtained:
0 a /J-Zf-1 * fff *=[,2,...iV-l (20)

The bounds derived above for the difference reation can be interpreted as a means of
enforcing a basc physical phenomenon. For ingance in (18), whenever the flowrate of
component y exceeds that of component y+1 in the splitter inlet sream (/3, the lower bound of 0
onf{-/j* ! insuresthat the flowrate of component y will ‘exceed that of component y+1 in each
outlet sream 1. The upper bound insures that the flowrate of component y will not exceed the'
flowrate of component y+1 by an amount greater than the difference quantity in the inlet sream. .
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An equivalent interpretation existsin (20) for the case where flowrate of component y+1 exceeds
that of component y'in the splitter inlet sream. In both Stuations, an ordering is preserved and
allowable differences are established

It isthen possible to develop a linear model which provides a valid outer-approximation to the
nonconvex splitter mass balance model The mode which incorporates the proposed bounds in
(18) and (19) requires the use of new binary variables.

prafi 1T je2,0m @1
0 otherwise

Through the use of these C-1 new binary var'iables, the following modd represents the bounds
developed above:
-p(-YM) S fi-ff1 < fi-fM 4+p(1-YP) | i=1.2,..N-1

pYi*t 2 fi-fitl > ff-fi*l —pYH y=I,2,...C-I (22)

where one can easily verify that if W+= 1, the first equation above reduces to:
0 S/J-13+* = gfft i'=1,2,...AM,y=I,2,...C-I (23)

while the second equation becomesredundant Similarly, when YJ+=Q, the firs equation become
redundant and the second equation reduces to (20).

An interesting feature of this linear modd occursin the limiting case When/;l" -/{’-1 =0. This
is the stuation wher e the flowr ates of component/‘and y+1 entering the dream plitter are equal.
The above modd then reducesto:

-p(1=Y#)y < fl-/j* 1 * p(I-YI+) ) 1=1,2,..AM

pYR 2 fi~fi+ * ~pYJ+ s 7-1,2....C-l ()

For 17 =0o0r 1, the above equationsreduceto/j-/1**-0for all j-1,2,..JV. Thus, in this limit,
the flowrate of component j is forced to equal the flowrate of component y+1 in each outlet
dream i. This corresponds to an exact representation of the distribution of componentsj and y+1
in the splitter outlet sreams. On the other hand, as the magnitude of I'J '-f6]+l becomes large, the
boundson/j -/~ * become increasingly weak. A scaling procedure can be used to strengthen
the bounds in this linear mode for cases where the magnitude of fﬁj -/’;"'1 islarge.




20

The badic idea in the scaled model is to make use of previous information for the inlet
component flowrates in attempt to avoid weak approximations when difference reations have
lar ge magnitudes. In particular, consder that K points with nonzero inlet component flows fi,
fory=1,2,...C,**I,2,..jr are given (e.g. from the NLP subproblems). Through the following
variation of the mode developed above, tighter bounds on f\-/|+' can be derived (see
Appendix Q:

. Lo f M \
-p(1-Y§{) = i fiel fi-‘fﬁ”’“'w) i=1,2,..N-1
Joit Jodt ‘oit Ok
£ , j=1,2,..C-1 (25)
1
pYi 2 f_f_f_ﬁf 5 I:'_t _pr{ k=1,2,..K
fo f 4w /
Ok QJt
where
vip={L ¥ RI7,2 BIL je12,041 k=12, @6) "
0 otherwise

The inequalities in (25) have the important feature that they provide an exact representation of
the splitter when inlet component flowrates are such that the feed compostion equals the
composition of one of the K scaling points (see in Appendix Q.

The inequalities in (22) and (25), together with the mass balance equationsin (7) and (8), are
valid outer-approximations that can be used in the magter problem in place of the linearization of
the nonconvex mass balance equationsin (4). There is also the choice of using only the unsealed
approximations in (22), or only the scaled approximations in (25). The latter, however, will in
general provide tighter approximations since they provide an exact representation of the splitter
mass balance equations if inlet compositions are identical to the composition of 1 of the K points
fluﬁsee Appendix C for an illustrative example). Note that the scale factors for the inequalities in
(25) at iteration k are given by the value of nonzero inlet component flowrates in the solution to
the preceding NL P subproblem.
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EXAMPLE 2 REVISITED

At this point it is useful to revisit example 2 to illustrate the model developed above for the
general sream splitter. Recall that in this problem, the only nonlinearities involved were the
bilinear terms in the stream splitter model. These nonconvexities caused the linearizations in the
master problem to underestimate the nonlinear feasible region which caused the OA/ER
algorithm to fail to find the global solution from 3 of the 4 starting points. By replacing the
linearizations of the nonconvex splitter model with valid outer-approximation, the OA/ER
algorithm is guaranteed to find the global optimum of this MINLP problem.

The results obtained using the scaled outer-approximations in (25) in place of the linearization
for the bilinear splitter equations are given in Table 11. Notice that regardless of the initial point
selected, the OA/ER agorithm converges to the global optimum of $511.87x1(P/yr. Note that to
accomplish this desirable feature, the computation effort is increased somewhat First, since the
master problem is providing a valid bound, additional iterations are required to reach the
termination criterion (2 or 3 iterations versus 1 or 2 iterations when using linearizations in the
MILP master problem). Also, the master problem is larger in terms of constraints and number of
binary variables, but it contains fewer continuous variables.

The original MINLP formulation involves 2 binary variables and 27 continuous variables in 24
linear constraints, 6 nonlinear constraints, and a linear objective function. If the master problem
of the OA/ER agorithm is derived based on function linearizations, then the number of
constraints at iteration K is given as. Nx =24+ IXK (6 linearizations and 1 integer cut
constraint). The number of variables in this master problem remains unchanged (27 continuous
and 2 binary variables).

When the valid outer-approximations in (25) are used in place of the linearizations the number
of constraints in the master problem is: Nx =24 + 13XAT (12 constraints for the 6 nonlinear
equations and 1 integer cut). The number of continuous and binary variables in the master
problem at iteration K are given as. #£* 24 and N$=2 + K. Note that 3 continuous variables
which appear in the MINLP problem do not appear in this MILP master problem (the split
fractions E4, E5, and E6). A single additional binary variableisrequired at each iteration.

Finally, it should be noted that the inequalities in (22) and/or (25) could be used to solve
nonconvex NLP optimization problems for separation systems such as those described in Wehe
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and Westerberg (1987) and Floudas (1987). In this case, one would solve an NLP for a given
starting point and pose the master problem of OA/ER, using die valid outer-approximations, to
supply a new initial guess. The procedure would be terminated when the lower bound predicted
by the master problem exceeds the best NLP solution. Wehe and Wcsterberg (1987) developed
an LP-based computational scheme which makes use of similar relaxations that are specific to
the separation problem which they address.

MIXER HEAT BALANCE MODEL

A similar strategy can be used to develop an approximate model for the mixer heat balance
which is a valid linear outer-approximation to the nonconvex nonlinear model. In this case it
will be assumed that each mixer has only two inlet streams. Mixers with N inlet streams are then
represented by a succession of N-I two-inlet mixers. Valid lower and upper bounds can be
established for the outlet stream temperature Tq in terms of only the inlet temperatures, Ty and
To:

min{T,,T)) ST,S max(T,Ta} (27)

The following linear constraints can be used in place of the min and max operations.

Tp-p(1=Yp) S 1y s 70 +pa-iv) >3
rp= {1 ifTAT,

0 otherwise

where p is valid bound If Yr= Q the second constraint becomes redundant and the first
constraint reduces to Tj £ 7o £ T,. For Y= 1 the first constraint becomes redundant and the
second constraint bounds T, between T,and T, Thus, the inequalities in (28) provide valid
outer-approximations to the outlet temperature in the two-stream mixer.

It is interesting to again examine the performance of the model in (28) for the limiting cases. It
can be seen that when T, =T, and r,=0o0r 1, (28) reduces to T, =T, =T,. However, as the
magnitude of T, - T, becomes large, then the lower and upper bounds on T, become weak and
the approximation can perform poorly.

In general, the actual outlet stream temperature is a function of not only the inlet stream
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temperatures, but also of die flowrates, and heat capacities. Assuming constant heat capacities, it
is possible to develop a linear modd which reflects the effect of the sream flowr ates as well as
gream temperatures, and at the same time providesvalid outer-appr oximations to the nonconvex
mixer heat balance equations-(seeAppendix D for thederivation).

The valid outer-approximations for the mixer heat balance can be embedded in a linear modd
through the introduction of the following binary variables.

Y =J1 if T|Cp|AT2Cp2
Cp {0 otherwise

(29)

YFt'{l it FylFg2 Fy./Fgy k=1,2,..K
' 0 otherwise

The linear congraints which enforce the correct reation between the mixer outlet sream
temperature, TQ, and the approximate temperature, T, are given below.

TiCp-T:Cp2 s pYrgy, ] (30)
TxCpx-T:Cp2 2 p(Yrgp—1)
Fl Fy,
KKkA #7re
F. Fx
y k=1,2,..K

To 2 "aAk~ P(2=Yrep=Yry)
To < TA,k+p(l-YT,Cp+YF.k)
To < TA.t+p(l+YT.CP-YF.k)

\KOPVTE D PRk P2
0k PO * ok %Pd /

where Tay »

The firgt four condraints determine the values of the binary variables Yj-c, and Yg . The

remaining congtraints activate either the lower or upper bound on 7'o when Ta x provides a valid
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underestimation or overcstimation of TQ, respectively. An exampleispresented in Appendix D to
illustrate the application of this model.

Themodd in (30) can then be used to predict valid upper or lower bounds on the mixer outlet
dream temperature which can replace the linearization of the nonconvex nonlinear heat balance
in the magter problem of the OA/ER algorithm. Thus, at each iteration of the OA/ER algorithm,
the proposed linear approximations are derived at the point A ci' A1, * '~ * Whichis provided by
the solution to the NL P subproblem. The linear model in (28) can also be included in the magter
problem to provide both an upper and lower bound on TQ.

PROCESS UNIT NODES

In the previous sections, the special dructure of the mode equations for the interconnection
nodes was exploited in such a way that difficulties introduced by nonconvexities in the
associated modelling equations could be eiminated. The key point was that the models which
describe the heat and material balances for the inter connection nodes wer e known in advance and
" thus, special linear models could be developed The remaining nodes in the flowsheet '
superdructure network are classified as process unit nodes and the nonlinear modelling
equations for these units are not assumed to have any special sructure. It will only be assumed
that linear component mass balances are specified for each unit.

Example 1 illustrated that disappearing units can cause problems when applying the OA/ER
algorithm to an MINLP formulation of a flowsheet supersructure because nonlinear reations
describing the disappearing unit are linearized at a point where the corresponding design and
flow variables are equal to 0. A second issue, which did not appear sgnificant in this small
example, can become very important when applying the OA/ER algorithm to large-scale MINLP
problems. At the level of the NL P subproblem, one hasto solve the optimization problem for the
entire supergructure with process units activated for the particular flowsheet to be analyzed. It
would clearly be preferable to optimize only the NLP corresponding to the actual flowsheet of
existing units. However, if the disappearing units are not included in the NL P subpraoblem, then
itisnot clear at which point the linear approximations for these units are to be derived.

The issues discussed above can be addressed through a decomposition strategy which exploits
the separability of problem (PF) with respect to the process unit nodes. Furthermore, a smple
but effective scheme will be presented to ensure that linearizations do not prevent flow and .'
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design variables to be driven to zero for disappearing units. The goals of the decompostion
scheme axe then to reduce the effort required to solve the NL P subproblems and to improve the

quality of the approximation of the MINLP problem provided by MILP mage problem,
respectively.

To accomplish the above goals, a key property of the OA/ER algorithm that will be exploited
is the fact that when deriving the MELP master problem, the linearizations of all functions need
not be performed at the same point This follows from the fact that the magter problem is based
on a primal representation whose outer-approximations can be derived at any point (see Duran
and Grossmann, 1986a). Ancther feature that will be exploited is that when deriving

linearizations of process unit equations, the equations of the interconnection nodes need not be
satisfied.

In order to perform the desred decomposition, consder a partitioning of the subset of process
units, £/, into a subset of existing process units, UE for which y,=U and a set of nonexisting
process units, UN for which y,*4) (u=UEKJ UN). From (PF), the resulting NLP subproblem
for the supersructure is given as:

Z « nun -g\_(v! ‘f ¢ + fy(dy) ), +:¥'s CuX, (31)
st. Idy.z,.x,,x) =0 ue U,pe V@, o oUW

8.(d,.2,.X,. X)) S 0

0sxf sxfUP 054, <dff - ue UE , pe [VEW

xf=0,d,»0 u€ UN , te UMW

f,(d..!,.!qjso ne N,pe M® 4 ¢ OV

X£eX,d,e Dydye Dy,z.€Z, seS,uelU,neN

where xf corresponds to the dream flowrates in the superdructure that are inputs to the
nonexisting units. Since these units do not affect the performance of the existing flowsheet
gructure, the NLP subproblem can be reduced to include the modelling equations (h=0 and
g £0]) and variables (d,z) for only the existing process units. The optimization of the current
flowsheet gructure for a given assgnment of binary variables can then be performed by solving
the following reduced NL P subproblem.
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Zepin 3 (G L@))+ T ax 32)
St. ll.,(d..z,,.x':.xq,)iﬂ |
£.(d,.2,.%,,x) S0 | ue UE,pe [VEW) 4 e QUEW
osg s
O£dy SAFF
xf=0 ue UN , te [YNW)
ra(d, X,,X,) = 0 ne N,pe N 4 ¢ OV®
X%€X,, di€Dyr dh€Dnr 2" €2 seS,ueUE,neN

The solution of the reduced NLP subproblem has two important advantages over the solution
of the NLP problem for the entire supergructure. Firstly, the reduced NLP leads to a smaller
optimization problem. Secondly, by excluding the nonlinear functions of the nonexisting process -
units, the potential of singularities is greatly reduced. These singularities often arise because
nonlinear equations of disappearing units are functions of flow and size variables which are '
forced to zero, introducing many zero entriesin the Jacobian matrix.

The role of the MILP mager problem is to identify, from among the remaining alternatives
within the supergructure, the new flowsheet sructure with the least lower bound on the objective
function value. In order for the magter problem to select such a sructure, linearizations of the
nonexisting units as well as the existing units must be included in the mager problem. In
addition, the quality of the linear approximations is a function of where the linearization is
derived, making the selection of the pdint of linearization very important. For existing units, the
logical choiceis the optimal point obtained in the NLP subproblem for that flowsheet sructure
For the nonexisting units, "good" linearization points can be determined via Lagrangian
suboptimization of the disappearing process units as described below.

After solving the NLP subproblem for the existing process units, information is available
concerning the optimal flowrates and conditions of the process streams. Furthermore, Lagrange -
multipliers are also available for the equations (r=0) of the existing interconnection nodes
(splitters and mixers). These multipliers reflect the marginal prices of the stream variables (x) ~ .
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associated with these nodes. As an example, consider the stream mixer shown in Figure 5.
Assume that the flow F,=0 since it isthe output from a process unit which did not exist in the
current flowsheet structure. The component mass balances for the mixer arc given as:

- +

Let lij denote the Lagrange multiplier of equation r.. Thus:

uj._gz j=1,2,.C (34)

F)

For fixed values of the existing streams, (1;t and/l'o if follows that 8r. = -8/,‘A Hence,

82

— j=1,2,..C 3
sf{ J <S>

By =
meaning that Jy is the price of the flowrate of component y for inlet stream 2. Similarly, the
prices of other variables in x (pressure and temperature) can be determined (see Appendix E).
This information can be used as follows to generate good suboptimal operating points for the

nonexisting process units which will then be used in deriving linearizations for the MILP master
problem.

Since disappearing units, or subsystems, are connected in the superstructure through the
interconnection nodes (see Figure 6), Lagrange multipliers are available from the equations r=0.
Therefore, a suboptimizarion problem can be formulated for the disappearing process units based
on the prices of the variables x at the interconnection nodes. Also, in order for the
suboptimization problem to generate nonzero conditions where nonexisting units are "likely" to
operate had they existed in the current flowsheet, the input stream variables of the nonexisting
subsystems can be set to the optimal values of the input variables of the interconnection nodes.
For example, in Figure 6, the variables associated with stream 2 (x;) can be set equal to the
optimal value of XQ.

Denoting by x; the fixed inlets to the splitter nodes obtained in the solution to the NLP
subproblem, the suboptimization problem for the disappearing process unitsis then given by:
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“mb g cath(e) ¢, JhM A SLM LY, (39)
5L ll,(du.x,,,xp.xe)‘-o ue UN,pe IV  o¢ QUMW)

8u(4y2,.X,,x) S 0

X=X ue UN , p € IUNW | ¢ a [NOW)

‘x,€X,,d,eD,,d.eD,,z,¢Z, ue UN,se 0°"Kne N

This problem provides in general a good estimation of conditions which would prevail if a
nonexisting unit was included in the flowsheet gructure Hence, the solution to this NLP
problem yields a good point for deriving the linearizations for the MILP mader problem. It
should also be noted that very often the above problem will decompose into subsystems that can
be solved independently. Furthermore the inequalities gyw£0 can be reaxed to avoid
infeasibility in this optimization problem (see Kocis and Grossmann, 1988a). Finally, for
splitters that are pan of the deleted subsystem, inlet sreams are split in equal amounts to
generate nonzero flows.

Although this suboptimization procedure will in general violate the mass balance equations of
the interconnection nodes, recall that the suboptimization procedure is only used to generate
points for linearizing the nonexisting process units. Also, it is clear that this decomposition
scheme is somewhat smilar in nature to multilevel optimization methods that use Lagrange
multipliers to decompose sgparable problems (eg. see Lasdon (1968), McGalliard and
Weserberg (1972)). However, there are two very dgnificant differences between these
decomposition strategies. Firgt, the proposed suboptimization scheme is used only to determine
good points of linearization for deriving the MILP magter problem in the OA/ER algorithm. The
procedure is not iterative since the goal is not to optimize exactly the nonexisting units, but to
estimate the optimal operation of the nonexisting process units. Secondly, values for the
marginal prices are provided by the NL P subproblem of the existing flowsheet meaning that ther
iterative calculation is not required asin a multilevel approach.

The purpose of this suboptimization schemeis primarily to initialize the MILP master problem
by providing information for the nonexisting process units. One option is to then perform the > -
suboptimization at only at iteration 1 and theresfter, linearizations are included in the master
problem for only the units existing in the flowsheet optimized in each NLP subproblem. e |
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Alternatively, the suboptimizarion procedure can be applied at each iteration of the OA/ER
algorithm to derive linearizations of nonexisting process units. The former alternative has been
adopted in thiswork since it hasthe advantage of reducingthe size of the MILP mager problem.

As affnal point, it is important to undergand that in the above scheme, the linearizations for
both the existing and nonexisting process units will in general provide good approximations at
conditions which prevail when the units exist in the MILP mager problem solution. However,
for units which are not selected in the mager problem, there is no guarantee in general that
nonconvex condraint linearizations will be satisfied when the corresponding flow and design
variables are set to zero. In order to avoid this potential difficulty, the linearizations can be

modified so as to ensure feagbility at zero values for flow and design variables when a process
unit does not exist.

Congder firg a nonlinear equation /i(d,x)=0 involving only design and flow variables which
are related to a single binary variable y. The relaxed linearization of this equation at iteration k
will be given by (see Appendix A):

I* (Vgh'd +V,hTx) £ t(Vgh' d* + Vih' x¥) (37)

-1 ifx< 0

k=l+1 i >0

0ifxk=0
where X is the Lagrangc multiplier for h and d* x* are the optimal solution points of the NLP
subproblem at iteration k. From (37), i_t is clear that if the right hand side coefficient is negative
then the inequality cannot be satisfied at d=0,x=0. To circumvent this difficulty, the binary

variable y associated to the existence of nonzero values of d,x can be utilized to diminate the
right hand sideterm. That is, (37) can bemodified as:

Q¥ (VehTd +V,h'x) £ 3% {VehTd* + hTx) y (39)

In this way, if M), which implies that d=0 and x=0, then (38) is satisfied trivially. Hence, the
linearization does not cut-off the zero value solution even if the correspond condraint is




nonconvex.

For the case when the equation h(djLj)=Q also involves the performance variables z, a Smilar
modification can be performed based on nonzero boundsi®°® and TP'.

AV A+V AT x+V hT2) S EV T &+ V ATxk+ VaT2) ys
& (VT8 (1-y) (39)

whee zf= J*f° ' tdk/di, < O
- 2PP it tdhidii > O

For y=0, the modified linearization in (39) can be satisfied at d=0 and x=0 for any value of z
within its lower and upper bounds. A smilar trestment can be applied to the linearizations of
nonlinear inequalities #(d,x,z) £ 0in the MILP master problem of the OA/ER algorithm.

Qualitatively, the significance of the above modified linearization scheme is as follows. If the
MILP mager problem activates a process unit by setting the corresponding binary variable to
one, the linearization is activated to provide an approximation of the performance of this unit On
the other hand, if the binary variable is set to zero, the linearization is deactivated since the -
nonlinear performance equation of the nonexisting process unit becomes irrelevant In this case,
linear congraints (e.g. component mass balances, regrictions on flows, sizes, and operating
conditions) ensure that basic conditions in the supersructure are satisfied.

EXAMPLE 1 REVISITED

The solution of the MINLP problem in example 1 was shown to present problems for the
OA/ER algorithm, GBD, and a branch and bound solution method. The application of the
proposed modelling/decomposition scheme in the OA/ER algorithm will now be illustrated by

resolving this nonconvex MINLP problem to show that valid bounds can be obtained with this
scheme.

It should be noted that since this problem is quite small, the benefit of the decompostion
scheme reducing the effort reguired in solving the NLP subproblems will not be obvious. Since
the superdtructure involves only single component process streams, the splitter mass balance is -
linear. Also, heat effects have not been considered, eiminating the need for a heat balance at the
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mixer. Therefore, it will not be necessary to make use of the proposed models for single choice
intcr connectioa nodes. '

The problem addressed in example 1 was the selection of the minimum cost reactor to produce
a desred amount of a given product The problem formulation was given as (EX1) and the
global optimum had an objective function value of COST**99.240 at (yI*,y2*)=(l:0). Condder
the application of the proposed decomposition scheme in solving this problem with the OA/ER
algorithm using the same initial point as selected before, (yl ,y2)»(0,1).

Since reactor 1 has not been selected in iteration 1, the feed sream to this unit (xI) and the
reactor volume (vl) mug be 0. This implies that the reactor outlet, zl, is also zero. The NLP

subproblem to be solved at iteration 1 isthen given as:
min COST=55+6v2+5x

st. 4 =081 - exp(-0.4v2)] *2
zI+22=10 (40)
xl1+x2=x
vli=*0,jd=0,zl=0
*2,z22,v2 Z0

The solution to this NLP is COST=107.376 at x=x2=15 and v2=4.479 and the Lagrange
multiplier for the mixer mass balance (zl +z2=10) is|i=-7.5.

Having solved the NLP problem for the existing reactor, the next step is to perform the
suboptimization of the nonexisting reactor. Asin (36), the feed gream for this process unit is
fixed at the optimal value of the splitter inlet sream in the above NLP problem (x= 15) and the
Lagrange multiplier |i for the mixer mass balance is used to derive a price for the reactor outlet
gream (zl). From (36), the resulting suboptimization problem for the nonexisting reactor is then
given as.
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miit COST=7.5+7vl+5x1~-7521
sL 2 »09][1- exp(-<X5vl)] x

x| * 15 (41)
vl £ 10

xl,zl,vl SO

The solution of the above optimization problem yields v1=3.957; zl=11.633. The relaxed
linearizations in the MILP magter problem derived at the solution of the NLP subproblem (40)

for the existing reactor, and at the solution of the suboptimization problem (41) for the
nonexisting reactor are given then by:

A £ 0.776x1 + 0.9333Vl - 3.6933 (42)
22 <£ 0.666x2 + 0.800v2 - 3.584

Note that through the use of the suboptimization procedure, the above linearizations have been
derived at nonzero values for flow and size variables. Thus, one would expect these
linearizations to provide good approximations to the nonlinear reactor performance equations at
nonzero conditions. However, note that if a reactor is not selected in the mager problem, the
corresponding volume and feed sSream are forced to zero. In this case, the linearizations in (42
cannot be satisfied (i.e. vl =xI = 0impliesthat 2\ £ -3.6933).

To avoid the stuation where the linearization cuts into the nonlinear feasible region at zero
flow and size values, the above linearizations can be modified as in (38) to yield the following
linearizations to be includéd in the OA/ER MILP mager problem:

2 <> 0.776x1 + 0.9333vl - 3.6933y!I (43)

z2 £ 0.666x2 + 0.800v2 - 3.584y2

The solution to the resulting magter problem has an objective function value of 95.78 at the
point 01 ,y2)=(1,0). Thus, the magter problem has predicted a valid lower bound on the global
solution of the MINLP problem. Also, the values of the binary variables corresponds to the
optimal solution. At iteration 2, the solution to the NLP subproblem with (yl ,y2) fixed at (1,0)
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yields an objective function value of COST* 99,240. This solution corresponds to the global
optimum of problem (EX1). The magter problem at iteration 2 isinfeasble since both reactors
have been examined, and the OA/ER algorithm terminates.

Thus, by applying the suboptimization scheme and modifying the linearizations to enforce
consistency at zero flow and size conditions, the linearizations in the MILP mager problem
provided good approximations to the nonlinear congraints describing both the existing and
nonexisting reactors. Notice that the master problem predicted a very tight lower bound, 98.44,
on the global solution of 99.24. Thus, despite the presence of nonconvexities, this maser
problem predicted a valid lower bound on the global solution to the MINLP problem. Asareault,
the OA/ER algorithm converged to the global solution.

SUMMARY OF MODELLING/DECOMPOSTION SCHEME
It will be assumed that the synthesis problem is formulated so as to take the form of problem
(PF), where preferably most of the congraints should be formulated linearly (e.g. in terms of
component mass flowrates rather than compositions). The suggested modelling/decomposition
schemefor the OA/ER algorithm can then be summarized as follows:
Step 0  Identify single choice splitters and mixers and replace their mass and energy
balancesin the equations r=0in (PF) by the linear congraints (7>(10) and (1S).

Step 1  Set K=l. Select an initial flowsheet through the binary variablesy\, u e U.

- i -—
Setzy ® =°°, Au” o>

Step 2 Solve the NL P subproblem for the flowsheet defined by y*=I ,ue UE asgiven
by 32) to yield ZK. If ZX < Z, then set Z;; = ZX and y, =X, u € U.

Step 3 Based on the multipliers of the existing inter connection nodes and the inlet
flows to the splitters, solve the NL P suboptimization problemsin (36) to

generate " good" pointsfor linearization for nonexisting process unitsue UN.

Step4  Set up the MILP mager problem asfollows:_ ‘
a) Incorporate the process unit linearizations obtained at Steps2 and 3
and modify theright hand sde coefficients asin equations (38) and (39).
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"~ b) Derivethevalid outer-approximations for heat and mass balances of
multiple choiceinterconnection nodesasin (7), (8)g (22), (25), (28), and (30).

Step5  Solvethe MELP master problem to predict the lower bound ZE and to provide
new valuesfor the binary variables, yz+', u € U.
JfZ£zZ, then STOP. The optimal solution is the flowsheet corresponding
toy*,, u € U with objective function Z,.
Otherwise go to Step 6.

Step6 Set K«K+1 and perform Step 2 to solve the next NLP subproblem foryf=I, u e UE.
Then execute Step 4 asfollows:
a) Derivelinearizations for existing process units at the NL P subproblem solution.

b) Add new outer-approximations for the multiple choice inter connection nodes.
Perform Step 5 to select new binary variable values and to predict the lower bound.
Repeat Step 6 until the stopping criterion is satisfied in Step 5.

It should be noted that in this procedure, the MINLP problem is modelled first in Step 0 so as
to try to replace as many of nonlinear splitter and mixer equations by linear congraints as -
possible. Secondly, a major advantage is that the NL P subproblem at each iteration only requires
the optimization of the specified flowsheet (Step 2), and not the optimization of the entire
superdructure. Thirdly, the Lagrangian decomposition scheme in Step 3 provides linearizations
of the nonexisting process units to initialize the MILP mager problem. Lastly, in Step 4, the
MELP master problem is formulated such that linearizations ait consstent with zero flow and
design variables conditions and bounded performance variable conditions, while incorporating
valid outer-approximations for the nonconvex multiple choice inter connection node models.

Even with all the above provisions, there is no rigor ous guarantee that the global optimum will
be found since no special dructure has been assumed for the nonlinear process unit models.
However, the proposed procedure significantly increases the likelihood of the OA/ER algorithm
converging to the global optimum. Finally, it should be recognized that the proposed procedure
can be combined with the two-phase drategy of the OA/ER algorithm for solving general
nonconvex MINLP problems.
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PROCESS SYNTHES SEXAMPLE

The proposed modelling/decomposition scheme will be illustrated with a large-scale synthesis
problem. This example problem will demondrate the use of the special models developed for
single choice interconnection nodes, the decompostioii/suboptimization scheme, and the
modification of linearizations to account for zero flow and size conditions. The use of the
proposed linear models for single choice interconnection nodes will reduce grestly the
nonlinearity of the MINLP problem, and avoid a significant number of potential nonconvcexities.
The suboptimization scheme will be used to initialize the linearizations in the MILP maser
problem by providing good points for -linearizing noncxisting process units. Finally, by
modifying the linearizations to deactivate linearization corresponding to a process unit not
selected in the mager problem (asin (38) and (39)), the problem of linearizations of nonconvex
congraints cutting into the nonlinear feasible region will be reduced Comparison with the
original OA/ER algorithm will also be presented.

The process chosen for this example is the hydrodealkylation of toluene (HDA) process to
produce benzene which is described extensively in Douglas (1988). The problem addressed is
the selection of the flowsheet gructure and operating conditions that maximize profit. Given a
flowsheet superdructure of alternatives, this problem can be formulated as an MINLP problem.
The solution of the resulting optimization problem yields the flowsheet with the maximum profit
from among the alter natives embedded in the supergructure.

The superdructure selected for this problem is shown in Figure 7. The sdection of this
supergructure was motivated by a flowsheet design and suggested alternatives from Douglas
(1988). The dedred reaction in the HDA process is toluene + hydrogen -» benzene + methane.
An undesred reversble reaction also occurs. 2 benzene Jj diphenyl + hydrogen. The
conditions for these gas phase reactions art a pressure of 3.45 MPa (500 psia) and a temperature
between 895 and 980 K (1150 and 1300 F). At lower temperatures, the toluene reaction is too
slow and at higher temperatures hydrocracking takes place. Also, aratio of at least 5:1 moles of
hydrogen to moles of aromatics is required to prevent coking. Kinetic data for the toluene
reaction (see McKetta, 1977) indicates that the reaction is firg order in toluene and one-half
order in hydrogen. Since hydrogen is present is excess, its concentration can be assumed
constant and the rate then reduces to a first-order reaction.

A hydrogen raw material dream is available at a purity of 95% (the remaining 5% is methane).
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A membrane separator can be used to yield a higher purity feed sream by removing methane
(note that membrane separation is typically an expensive process). A toluene fresh feed sream
is also available. These feed dreams are combined with recycle hydrogen and toluene sreams
which then mugt be heated before being fed to the reactor. (Not shown in thisfigureis a heat
exchanger (prior to the furnace) which matches the furnace feed sream with thereactor effluent
gream following the quench process, s0 as to reduce the heating requirement in the furnace)
Thé exothermic reaction can be carried out in a plug flow reactor operating ether adiabatically
or isothermally (the isothermal reactor is a more expensive piece of equipment due to the need
for heat removal). The reactor product sream will contain unreacted hydrogen and toluene as
well as the desired benzene product and undesired diphenyl and methane. This greem mug be
guenched immediately to prevent coking from taking place in the heat exchanger. The dream
will be cooled further in order to condense the aromatics which will then be separated from the
non-condensable hydrogen and methanein aflash separator (flash #1).

The vapor dream leaving the flash separator contains valuable hydrogen which can be
recycled. However, this sream also contains methane since mediane entered the process in the
hydrogen feed stream, and is also produced in the toluenereaction. Thus, part of this sream must
be purged to avoid accumulation of methane. One possibility contained in the superdructureisto .
purge a fraction of this recycle sream. Alternatively, a membrane sgparator can be used to
minimize the hydrogen loss in the purge stream. Another alternative in Figure 7 is to treat the
flash separator vapor sream in an absorber to recover benzene lost in the flash separator.
Toluene feed can be used asthe liquid sream in this absorber to avoid introducing an additional
component into the liquid separation system.

A portion of the flash separator liquid stream is used to quench thereactor product $ream and
theremainder is sent to the liquid separation system. Since this stream may contain hydrogen
and methane, it is necessary to remove these components using a stabilizing column, or
alternatively, a second flash separator (flash #2) operating at a lower pressure than the firg flash.
The trade-off between the expense of a distillation column and the desired degree of separation is
not known at this stage. Having removed the hydrogen and methane, the liquid sream now
contains benzene, toluene, and diphenyl.

The benzene product stream is specified to be at least 99.97% benzene, at a production rate of ]
583 kg-mal/hr. A digtillation column isrequired to yield a product stream of this purity. The
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bottom sream leaving the benzene column contains primarily toluene, with a small amount of
diphenyl (depending on extent to which the undesred reaction occurs) and possbly some
benzene. Prior to recycling the unreacted toluene, diphenyl should be removed The plit
between toluene and diphenyl is a relatively easy split which can be accomplished in a flash
separator (flash #3) or a column. The additional expense of a column may be justified since a
high purity diphenyl sream isof value as a by-product

The supergructure for thisHDA process was modelled as an MINLP using smplified modes
(see Douglas 1988). Assuming that the hydrogen concentration in the reactor is congant
(resulting in afirg-order kinetics), the isothermal plug flow reactor mode can be developed. For
the adiabadc reactor, the arithmetic average of the inlet and outlet temperatures is used as the
reaction temperature. The phase equilibrium reations in the flash separators were based on
Raoult's law and vapor pressures were predicted using the Antoine equation. For the columns,
Fenske's equation was used to relate the minimum number of trays to the separation factor and
Underwood's equation for the minimum reflux ratio. Again, the Antoine equation was used to
predict vapor pressures as a function of temperature. The absorber model was developed based
on the Kremser equation. The mass balance equationsin the membrane separator were smplified
by assuming an arithmetic average of inlet and outlet driving forces (difference in partia
pressures in the permeate and nonpermeate sreams). Finally, compressors were modelled
assuming isentropic compression of an ideal gas. Although it is recognized that these models
may not be very accurate, they should be adequate to use for the preiminary synthess sage.

The objective function selected is the maximization of annualized profit which is given as the
difference between revenue and annualized cost Revenue is primarily based on the sales of
benzene (main product) and diphenyl (by-product). Fue values are also assgned to purge
greams. Codis indude raw-material costs, utility costs (electricity, sseam for heating, water for
cooling), and invetment costs for equipment (membrane separators , reactors, digtillation
columns, compressors).  Economies-of-scales can be captured in the invesment costs for
equipment by using power law correlations, but these introduce nonconvexities into the objective
function. Alternatively, by using 0-1 variables, linear fixed-charge cost models can be used to
approximate these functions (see Grossmann, 1985). The latter approach was used in this
example where coefficients in the fixed-charge cost models were derived based on Gurthries

correation. The remaining objective function terms (raw material costs, sales revenues, and
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utility costs) are also linear. A summary of the cost datais given in Table HI.

The resulting MINLP optimization problem contains a linear objective function and 678
constraints (607 equations and 71 inequalities), of which 140 are nonlinear equations. The
MINLP involves 13 binary variables and 672 continuous variables. The number of nonlinear
constraints in the problem has been kept to a minimum through the use of the proposed linear
models for the single choice interconnection nodes, and through the use of linear component
mass balances. The superstructure contains 8 stream splitters of which 6 are single choice
splitters. If the nonlinear mass balance modelsin (4) were used for al 8 splitters, the formulation
would contain 60 additional nonlinear equations.

The MINLP optimization was solved using the proposed modelling/decomposition scheme for
the OA/ER algorithm. The NLP subproblems were solved with MINOS (Murtagh and Saunders,
1985), and the MILP master problems were solved with MPSX (IBM, 1979) on and IBM-3083
mainframe. The problem formulation was performed through the modelling system GAMS
(Kendrick and Meeraus, 1985). (At this point, an efficient implementation of the
dccomposition/suboptimization scheme has not been fully automated.) The algorithm was -
applied making use of the proposed suboptimization and linearization modification procedures.
The suboptimization was performed only at iteration 1 in order to initialize the linearizations in
the master problem. At other iterations, linearizations were derived for only the process units
which exist in the NLP subproblem for the corresponding flowsheet For comparison, the
OA/ER algorithm (as presented in Kocis and Grossmann, 1987) was aso applied without
performing the suboptimization of noncxisting process- units nor the modification of
linearizations as in (38) and (39). In both methods, the special modelling strategy was exploited
~ for the single choice interconnection nodes to eliminate the nonconvex splitter mass balances in
(4) and mixer heat balancesin (13).

Step 1 of the proposed procedure requires the selection of initial values for the binary
variables, which coiresponds to the selection of an initial flowsheet structure. The initial point
selected is the flowsheet design developed in Douglas (1988), which is shown in Figure 8. (Note
that simultaneous heat integration and optimization as described by Duran and Grossmann
(1986) was not applied, although it could be included in this MINLP formulation.) This

flowsheet includes the reactor feed pit-heat furnace, the adiabatic reactor, and the first flash .

separator. A fraction of the flash vapor stream is purged and the remainder comprises the
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hydrogen recycle stream. The liquid separation system in this flowsheet includes die three
distillation columns (stabilizer, benzene column, and toluene column) with the top product from
the toluene column being the toluene recycle stream.

In Step 2, die NLP subproblem of this flowsheet structure was solved and the optimal
objective function value was a profit of $4814 x 10fyr, which represents a lower bound to the
optimal MINLP solution. Since the objective function in this MINLP problem is the
maximization of profit, the NLP subproblems provide lower bounds and the master problems
predict upper bounds. The nonexisting process units which require subopdmization for Step 3
include both membrane separators, the second and third flash separators, and the absorber (as
well as various heat exchangers and compressors). The nonlinear constraints for the existing
process units were linearized at the NL P solution point, while the nonexisting process units were
linearized at the solution of the subopdmization problems. In setting up the master problem at
Step 4, al linearizations were modified to insure feasibility at zero flow and size conditions
when aprocess unit is not selected.

The solution for the MILP master problem (Step 5) predicted a new flowsheet structure (see
Figure 9) that had an upper bound of $6074 x KP/yr. Since this value is greater than the current
lower bound ($4814 x K”/yr), iteration 2 is performed (Step 6). The NLP subproblem was then
solved for the flowsheet in Figure 9 yielding an optimal profit of $5887 x Kp/yr. This vaue is
greater than the lower bound, thus the lower bound is updated to $5887 x 10-Vyr. Linearizations
were derived for the existing process units at the NLP subproblem solution point and these
linearizations were modified as in (38) and (39). The solution to the second MILP master
problem had an objective function value of $5788 x ICP/yr, which is less than the current lower
bound ($5887 x ICPlyr),.thus satisfying the termination criterion of the OA/ER. Hence, the
optimal flowsheet structure (see Figure 9) has a profit of $5887 x ICP/yr. (The word optimal will
be used loosely to refer to the best known solution of this MINLP problem. Due to
nonconvexities, no guarantee of global optimality is possible.)

The optimal flowsheet has a structure very similar to the initial flowsheet The only structural
difference is that the membrane separator has been placed on the methane purge stream. The
hydrogen-rich permeate stream also requires a compressor as this stream is to be recycled for
further reaction at a pressure of 3.45 MPa. The operation of this flowsheet is quite different than
the initial flowsheet structure. The membrane separator reduced significantly the loss of
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hydrogen in die purge stream, hence reducing the flowr ate of the hydrogen feed sream by 50%.
Also, the conversion per pass (62.8%) in this flowsheet is higher than that of the initial flowsheet
dructure(56.6%).

For comparison, the original verson of the OA/ER algorithm was applied with DICOPT
(Kocis and Grossmann, 1988b) without performing the suboptimization of nonexisdng units nor
the linearization modification scheme. Theresultsin Table 1V-a, show the this magter problem
failled to overestimate the profit at iteration 1 ($4661 x KP/yr). Therefore, the algorithm
converged to the suboptimal solution of $4814 x KP/yr. These results can be explained by the
fact that nonconvexities are present in the MINLP formulation of this problem, meaning that the
OA/ER is not guaranteed to converge to the global optimum. Also, as seen in example 1,
linearizations derived for noncxisting process units at zero flow and size conditions can often
provide poor approximations to the nonlinear congraints. In addition, linearizations derived at
nonzero conditions may violate the zero flow and size conditions which prevail when a process
unit is not selected.

Table 1V-b contains the results obtained when the proposed suboptimization procedure and
linearization deactivation scheme were used. By performing the suboptimization of nonexisting
process units, linearizations in the mager problem provide a good approximation of the
nonlinear performance of the selected process units. The linearization modification scheme
allows the linearizations to be deactivated when a process unit is not chosen. Thus, consstency
IS maintained between the performance of nonexisting process units in the MHJP master problem
and the nonlinear performance of nonexisting process units. This results in a master problem
which approximates closely the original MINLP problem and increases the likelihood of
converging to the global optimum despite the presence of nonconvexities. Finally, note that the
total CPU time required with the proposed procedure was only 214.3 seconds (1BM-3083),
where the solution of the NLP subproblems required 76.9 seconds and the MILP mager
problemsrequired 137.4 seconds. (Note that due to current implementation limitations, the NLP
subproblems solved correspond to the entire superdructure with nonexisting process units
deactivated, rather than the flowsheet of existing units.)

A comparison of the computational effort requi'red to solve the NLP of the entire *

superstructure versus the NLP for the flowsheet of existing process units (for the firsd mgor
iteration) isgiven in Table V. The NLP for the flowsheet is consderably smaller in terms of the ’
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number of variables and constraints, and required less than one sixth of the CPU times used to
solve the NLP for the superstructure. The suboptimization of the nonexisting process units
decomposed into six NLP problems which together required only 557 CPU seconds
(IBM-3083X The total time used to solve the NLP of the existing flowsheet and the
suboptimization problems for the nonexisting process units was 16.66 seconds, which is less than
25% of the CPU time used to solve the NLP of the superstructure.

CONCLUSONS

This paper has presented a modelling/decomposition scheme that exploits specia features in
structural flowsheet optimization problems to enhance the performance of the OA/ER algorithm.
The proposed procedure reduces the computational effort required to solve large-scale problems
and increases the likelihood of converging to the globa optimum.

Linear models have been developed for single choice interconnection nodes which replace
nonconvex splitter mass balances and mixer heat balances. Valid outer-approximations have also
been derived for the nonconvex equations of the multiple choice interconnection nodes. At the
level of the NLP subproblem, a procedure has been proposed which allows one to solve the NLP
optimization problem for only the existing process flowsheet rather than the entire
superstructure. A Lagrangian suboptimization/decomposition scheme has also been developed
which has the feature of providing good points for deriving linearizations of nonexisting process
units to be included in the MELP master problem. When these are included at only the first mgor
iteration, this scheme also alows to reduce the size of the master problem . Finadly, a
linearization modification procedure has been proposed to deactivate linearization associated
with process units not selected in the master problem. This modification establishes the
feasibility of the linearizations at zero flow and size conditions when a process unit does not
exist

Process synthesis example problems have been used to illustrate these points. The nonconvex
MINLP problem in example 1 was shown to cause difficulties for the OA/ER agorithm, GBD,
and a branch and bound method. With the suboptimization procedure, coupled with the
linearization modification scheme, the modified OA/ER algorithm was shown to converge to the
global solution. The nonconvex splitter mass balance equations in example 2 caused the OA/ER
algorithm to converge to a suboptimal solution from 3 of 4 initial points. The use of the vaid
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outer-approximations, derived for the multiple choice interconnection nodes, in place of
linearizations in the modified OA/ER mager problem led to the global solution of this problem
firom each of the 4 initial points Finally, the combination of effective moddling, the
wboptimizatioo/decomposition' scheme, and the linearization modification procedure was
demongrated through the solution of a large-scale MINLP formulation for the HDA process

gynthess problem. Efforts are currently underway to automate the proposed drategy in a
flowsheet synthesis package. '
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APPENDIX A. OUTER-APPROXIMATION/EQUALITY-RELAXATION

The step* in die outer-approximation/equality relaxation algorithm for solving problem
MINLP can be stated as follows assuming that the NLP subproblems in Step 2 have a feasble
solution!

Stepl  Selectinitia binary assignment y*, set K=I.
Initialize lower and upper bounds, Z"ar««  Zyyuwe,

Step2  Solve (NLI*) for fixed y* in (MINLP). Thisproblem yields Z(y*), x, and X"
IfZCyK)", then sety*-y*, x*-x", and Zu«Z(y").
Define die diagona direction matrix TX as:

-1iako
F={+1¢A>0 i=12,.r
Oi/Xf=0

where X*are the Lagrange multipliers for the nonlinear equations tij(x)=0, i=I,2..J.

Derive at x* dielinear approximations for f(x), h(x), and g(x) as follows and
set up die master program given by problem (M*).

¢
lw

st. (whlx—p<wj
TrREx < Tt k=1,2...K
Skx < ot
Ax=a MK
By+Cx”"d
i;My‘sw“}-l k=1,2...K

xeX,yeY,peRl!




wh= Vixt)  wh= VDT [x*] - f(xb)
R* » Vh(x*)" r* = Vh(x*)" [x*]
St=VgxhT o = Vg [xt] - g(xb)

The objective function value z£is the predicted lower bound at iteration K, and \i is the largest
linear approximation to the nonlinear objective function. The index sets in the integer cut
constraints are such that for any integer combination y*, B¥={j:yl=1) and Nk-[j:y}%O].

Step 4  Solve the master program (M®):
[a] If asolution y*+* exists with objective value Z<Z; set K=K +1, go to Step 2.
[b] 1f ZEEZJJor no feasible solution exists, stop. Optimal solution isZy at y* x*.
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APPENDIX B. MINLP FORMULATION OF EXAMPLE PROBLEM 2

MAX WWDI Ul - 35 F1A« 30 F2B - 10 Fl - 8 F2 - F4A -  F4B
- 4 F5A- 4 F5B- 2 YF - 50 YD

M XER 1 F3A - 0.55 F + 0.50 F2
F3SBB - 0.45 H + 0.50 F2

SPLI TTER FAA - E4 F3A
FAB - E4 F3B
FSA » E5 F3A
FSB - E5 F3B
F6A * E6 F3A
F6B - E6 F3B
FFA - F3A - F4A - F5A - F6A
F/ B - F3B - F4B - F5B - FGB

FLASH FBA - 0.85 F4A
F8B - 0.20 F4B
FOA * 0.15 F4A
FOB - 0.80 F4B

DI STI LLATI ON FI0A - 0.975 F5A
F1I0B * 0.050 F5B
F11A * 0.025 F5A
F11B - 0.950 F5B
M XER 2 F1IA * F8A 4 FI0A + F6A
PIB - ESB 4- F10B + F6B
M XER 3 P2A * F9A + F11A + F7A
P2B - F9B + F11B + F7B
LOQ CAL FAA + F4B >m 2.5 YE
FAA + F4B <m 25. YF
ESA + F5B >m 2.5 YD
FSA + F5B .. 25. YD

SPEC FI CATIONS P1A > 4. P1B
P2B > 3. P2A
PIA + P1B <a 15.
P2A + P2B <. 18.

BOUNDS E4 , E5, E6 <» 1.0
FIl , F2 <- 25.
YD, YF - 0,1
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APPENDIX C. DERIVATION OF THE SCALED
OUTER-APPROXIMATIONS FOR THE MULTIPLE CHOICE SPLITTER
MASSBALANCE

The nonlinear constraints which describe the general stream splitter mass balances were given

before as:
fimj & -1.2..C, /-1.2...AM (C-1)

where " isthe split fraction for outlet stream i” Thiscongtraint can be written as:

fi f%
}j?niy . :=1.2,..Cc, [-1.2...AM (C-2)

by dividing both sides by the quantity fliu(assjming this quantity is nonzero). In the same
manner as before, a difference relation can be derived for each sream i=1,2,.JV -l which
relates the flowrate of component ;' with that of component *+I| for y* 1,2,...C-l. This
difference will be denoted as a scaled difference because it is based on the above scaled relation.

fi o P |*!

Assume that the scaled difference relation for component j andy'+l in the splitter inlet stream
satisfies the following inequality:
4 D e N (C-4)
1 il
fD.t fﬂ.&
Then it can be seen that valid lower and upper bounds on the scaled difference reation for
components,/ and/+l in outlet sreamsi=I,2,..JV-| are obtained when * lies at its lower and
upper bound respectively (Le. 0 and 1). The following relaxation of the scaled difference reation
can then bederived:
fi fivi £ M
Of£ ;p-4T*4--% »=l,2,...1V-| (C-5)
f£ fow fi, £+

Smilar inequalities apply when the component flowr ates in the litter feed dream are such that:
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fi M
5 S0 (C-6)
ur Wk
The valid inequalities for the scaled mode (presented in the section Multiple Choice
I nter connection Nodes) are then given as.

frl }"l Y
-p(1-Y{) s - ey s ; M +p(1-Y§") i=1,2,..N-1
Jout fcu f
>y-1,2,...C-I (C-7)
Lo f o A
pYE 2 —-—— —-—-—l--p Y{ &=12...%
S AT Fi¢ .
where

ri={s 0 o/ f2 SR jet2,.01, k=126 (CB)
0 otherwise

It was assumed, in deriving these inequalities, that the scalefactorslg;are nonzero. Since these
coefficients are given by the splitter inlet component flowrates at the solution to NLP
subproblem k, the value of the scale factors can be 0. In this case, the scaled difference reation
for this component flowrate and its neighbors (i.e. component /-1 andy+1) can be derived usng
an arbitrary value for the scale factor (e.g. 1.), without destroying the validity of the inequalities.

It was stated previoudy that the scaled difference relations in (C-7) will provide an exact
representation of the sream splitter if the scale factors are such that the composition of 1 of the
K points equals the composition of the splitter inlet sream. One can verify that if:

fi  fi+l
= i'ﬁ j=1,2,..C-1 (C-9)
‘ogt: fQJt

then for y*equal Oor 1, the modd in (C-7) reducesto:
OJJ 1t

ﬂ"‘l j=1,2,..C-1,i=1,2,..N~1 (C-10)

which insures that all components C in each of the N outlet sreams have the same composition




astheinlet sream.

In order to clarify the use of the valid outer-approximations for the sream splitter (both the
unsealed and scaled difference relations), consider the following examples. For simplicity,
assume that an inlet sream (FA) containing 2 components (A and B) is to be split into 2 outlet
dreams (F, and F,). Using the unsealed model and selecting a value of p=10 as an upper bound,
the splitter would be represented in the NOLP master problem asfollows:

-10(1-YA") < A5 £ [*x_/* +10(]-Y4®
11 0 0

IOYA a /¥ a /6 -[e-10Y*+
raradi v aprags

0 otherwise

(C~11)

Let the splitter inlet component flowrates bequ:5.5 /*=4.5 0 that Y*+=| and the above
inequalitiesreduceto:
0 */r-/’l‘ * 1 (C-12)
10 £ flA -fBl Z 1-10 (redundant)

Note that the exact nonlinear relationship between I:A and ff would maintain that the
composition of outlet stream 1 is55% A which lead to:
/A 1.222/* (C-13)

Figure C-I shows the comparison between the exact relation (C-13) and the approximate model
(C-12). Note that the exact rdation is linear due to the fact that the splitter inlet stream
component flowrates have been given fixed values. The figure shows that the unsealed
difference relations provide a good approximation to the exact splitter model. This is true
because the difference between the component flowrates in the inlet sream was small,

N
If the component flowrates of the splitter inlet dream are EA:9 ,/E:I, then the linear

inequalities for the unsealed differencerdationsare
0O ~I*-IF * 8 (C-14)

10 fo\-fBl £ 8-10 (redundant)

The exact nonlinear relationship for these inlet component flowratesis:
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fl"‘ =9 fl' (C-15)

Figure C-2 shows the comparison between the exact relation (C-15) and the unseded
approximate model (C-14). This figure shows that the unsealed difference relations provide a
wesk approximation to the exact splitter model since the difference between the component
flowrates in the inlet stream was large.

The scaled model can be used to provide atighter approximation in such cases. Assume that at

iteration k, the actual inlet flows are/” «8 ,/* «2, which are then used as scale factors. The
01 01

scaled difference is then 0.62S (9/8-1/2) which is positive forcing Y*+=I. The linear
approximations from the scaled difference relations become:

0 ZM1%-f42 £ 0625 (C-16)
10 */%#/8-/*/2 2 0.625-10 ~ (redundant)

The second congtraint is redundant and the flrst can be rearranged through multiplication by 8 as:
0] 1:—‘,/1c —4/:“ £5 ' (C-17)

Figure C-2 illustrates the relation between these scaled inequalities and the exact splitter model
in (C-15). It is clear that the scaled version of the difference relation model gives a much tighter
approximation to the actual stream splitter model than the unsealed model. This will generally
be the case whenever the scaling reduces the magnitude of the difference in the splitter inlet
component flowrates with respect to the unsealed difference. (Recall that the scaled difference
was 0.625 as compared to an unsealed difference of 8.) On the other hand, the scaling procedure
can yield a weaker approximation when the opposite situation occurs. For example, if the scale
factors are/_’f_:O.S ,/f“:9.5, then the scaled difference is 17.895 (9/0.5 -1/9.5). In this case, the
unsealed relation would provide a tighter approximation. Thus, the model which yields the
tightest approximation to the nonconvex splitter model, while providing a valid outer-
approximation, is acombination of the unsealed and scaled difference relations. At iteration K of
the OA/ER agorithm, the MILP master problem would contain the inequalities of the unsealed
model and K sets of inequalities derived at the K values for the scale factors (as given by the
solution points of the K- NLP subproblems).
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APPENDIX D. DERIVATION OF VALID OUTER-APPROXIMATIONS
FOR MULTIPLE CHOICE MIXER HEAT BALANCE

Congder a gream mixer with 2 nonzero inlet sreams (a mixer with N inlet streams can be
treated as N-| 2-sream mixers), FI and F2, which enter the mixer at 71 and 77, respectively.
The outlet stream temperature can be calculated as follows:

Fx Cpx Tx FoCp.T,

e D-1
0CPo FoCpy -

Assuming that Cp, are constants, the above relation is nonlinear in FQ, FigF,, T, and T,. Let
Ta, denote an approximation of T, which is given by the following linear equation:

- » ThkCP\"\ | FIkCP2'2

Ak (D-2)
"QkPO F0,k“PO

where Fi; * Fi ~ and F5 » are constants.

Based on (D-1) and (D-2), adifference relation between T, and Fa kCan be derived:

T(Cpy Fi Fy. 7, Cpy .F2_F2.k
CPO | H) Fo,k' CPO | FO Fo’k

T T } (D-3)

Substltutlng Fo - Fx for F, ad F.Ok - F||‘( for F, k yldds.

To-T, = 171 i‘.-h]-p___rzchlﬁ'_f-fl]
07 AL""Chy Fy Foyu Cpo * Fox Fo

which can be rearranged as.

TiCpy  ThCpy AN

To—T, 1= —_ (D—4)
0™ ‘AL [ Cpo Cpy ] [ Fo, §

Let r* and F? denote the the 2 bracketed tennsin (D-4) and rearrange the above equation as:
o=r4**nr? (D-5)

One can then determine the relationship between the actual outlet temperature, T,, and the
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approximate value, T, by examining the sign of the quantities F! and f2 For example, if bath
r* and r? are positive (or negative) then their product is also positive and T, £ Tp; In this
case, the following inequality provides a valid lower bound on T,:

Fi,Cn T,y . Fp:Cp2 Ty

T, 2 LE-P1°1 "2k "72 2
0 FoxCpPo Fo1Cpg

(D-6)
On the other hand, if one T is positive and the other is negative, then Tq £ Ta x and a valid upper
bound on T, results.

The valid outer-approximations fOT the mixer heat balance can be embedded in a linear mode
through the introduction of the following binary variables.

Yre,=d i If  TxcptToCh (P-1)

P {O otherwise

yna{| if F1/Fg2 Fy/Foy *=1,2, AT
' 0 otherwise

The linear congraints which enforce the correct rdation between the mixer outlet sream

temperature, TQ, and the approximate temperature, T, are given below.

TICp-TLCp2 = PYrg (0-8)
TiCp-T:Cp>  * p(¥rgp=1)
. Flk <,
o Fok
FlF
To 2 Typ=p (Yrep+ e ) k=1,2,..K

PYrs

To 2 Ty - p (2-Yrcp~Yr )

-~

The firg four condraints in (D-8) maintain the definitions of the binary variables
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YT-Cp**** *\/ * o AN remaining congtraints activate ether the lower or upper bound on T, when
TA’k provides avalid underestimation or over estimate of TQ, respectively.

To darify the application of .the linear heat balance modd in (D-8) (also (30)), consder a
simplified case where Cp$=Cp,«€p” Also, assume that K=1 and Fj =F; (=Foj/2. In this
case, Ta x=(Tj+72)/2, meaning that the approximate outlet stream temperature is given by the
arithmetic average of the inlet dream temperatures. The linear modd derived from the single
point K=1 isgiven as:

I’In I’2 * PYT-Cp

F
=== 2 p(¥Yp-1) (D-9)

To 2 Ty 1 =p(Yrep+¥r )
To 2 Ty =P (2-Y7cp-Yr 1)
o < TA'1+p(l—YT£p+YF.i)
Ty s TA,1+p(l+YT.Cp_YF.l)

If the stuation occurs such that Tj * T, and Fx/Fo”* 1/2, then the value of the binary
variables mug be Yj-CprFAN 'Physically, this means that ¢reem 1 is the hotter of the 2
greams and that, relative to the base point (where Fi=F), the flowrate of sream F; is the larger
of the 2 inlet greams. Intﬂitively, one would then expect the temperature of the outlet sream to
exceed the arithmetic average of the inlet sreams. Referring to the linear model, the only bound
on 7Q which is activated when Yj-cp"Yp’.\ =1is:

To p-J TA,] -p (Z-YT_CP—YF.I) (D""'IO)

which reducesto To * TAV
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APPENDIX E. DERIVATION OF SUBOPTIMIZATION PRICES FROM
INTERCONNECTION NODE LAGRANGE MULTIPLIERS

The relation between the Lagrange multiplier for the mixer mass balance equation and the
marginal price of die component flowrate was given in the Process Unit Nodes section. In order
to apply the suboptimization procedure, it is also necessary to determine marginal prices for the
remaining components of the sream variable x (eg. temperature and pressure) associated with
the disappearing process units. This information can be extracted from the Lagrange multipliers
of the corresponding equations of the interconnection nodes as shown below.

Firg consder the sream mixer for which the marginal price of the component flowrates has
already been established. The heat balance for the mixer was presented previoudy as.

N
"HB'-?FonoTO—ZFAPJAO (£‘1)

The Lagrange multiplier for thisequation can be int_erpreted as.
up__ 82 E-2
H 5,75 (E-2)

For fixed values of the AM mixer inlet temperatures (T;) and the outlet temperature (7Q), aswell
as fixed values of all N inlet flowrates (F;) and the outlet flowrate (FQ), if follows that
818 = _FjCpfiTj (heat capadities®/?;*, arc assumed to be constant). Thus,

8Z

HB

B e——— (E-S)
W= FCoeT,

which can berearranged as:

HB F.Cp, = 2= -
where Tj denotes the 1 inlet temperature that is not fixed. In this way, the marginal price of this
variable can be determined from the Lagrange multiplier of the heat balance equation.

Finally, the marginal price of the sream pressure for an inlet sream / can be derived from the
L agrange multipler of the following equation:
r/IL/>o-1>,=0 i»l,2,..JV (£-5)

since for fixed Po, Srf=-8P,.. The Lagrangc multiplier can then be interpreted as:




uf-_- 3.’3; i=1,2,..N (E-6)

Marginal pricescan also be determined for the component flowr ates, temperature, and pressure
of the dream plitter outlet sdreams. Beginning with the component flowrate, consder the
over all component mass balance equation for the gream splitter.

N
rf‘B-fg—gf{=° J-1.2.-.C - (£-7)

For fixed values of AM outlet component flowrates (fj) and inlet component flowrate (fj), the
i 0

following relations must hold:

&}P=-51
me_ 8Z -
v o7 j=1,2,..C (E-8)

wher e/}" denotes the component flowrate which is not being fixed.

The heat balance and pressure relation equations for the sream splitter have the same form as

the pressurerdation equation of the stream mixer.
rf-Po-P~0 1=12,..N (E-9)

rf-rn-Tj-O J-1.2...N

As before, for fixed P, and T,, it follows that 8r/°=-5P;- and dV~-ST~. The Lagrange
multiplier can then be interpreted as:

P % 5=1,2,...N £-10
Wy 3—?: » ( )
6Z ,
2 =l,2,...N
5T,
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TableL Resultsof Applying OA/ER to Example 2

ITERATION 1 2

INITIAL POINT SOLUTION

YD=O,YF=O  NLP 0 0
MILP infeasible

YD=1,YF=O  NLP 477.88 488.43 488.43
MILP 665.87 479.85

YD=O,YF=1  NLP 488.43 488.43
MILP 487.61

YD=1, YF=l  NLP 511.87 511.87*

MILP 482.69

* denotes the optimal MINLP solution



TablelL Resultsof Solving Example 2 with OA/ER Usng Valid Outer-Approximations

ITERATION 1 2 3

INITIAL POINT SOLUTION

YD=0,YF=O NLP 0 511.87 488.43 511.87*
MILP 562.88 546.41 478.93

YD=1LYF=O NLP 477.88 488.43 511.87 511.87*
MILP 546.31 512.03 0

YD=0,YF=l NLP 488.43 511.87 511.87*
MILP 521.87 478.93

YD=1,YF=1 NLP 511.87 488.43 511.87*
MILP 546.41 478.93

* denotes die optimal MINLP solution




Tablem. Cogs Data for HDA Problem

Feedstock or
Product/Byproduct Costs/Price (%kg-mole)
Hydrogen Feed 95% Hydrogen 2.50

5% Methane

Toluene Feed 100% Toluene 14.00
Benzene Product £ 99.97% Benzene 19.90
Diphenyl Product 11.84
Hydrogen Purge (hesting vaue) 108
Methane Purge (hesting value) 3.37
Utilities Costs
Electricity ) $0.04/KW-hr
Heating (steam) .0t&V
Cooling (water) $0.7/106 kJ

Fuel $4.0/100kJ




Investment Costs (Vfityr)

Fixed-Charge Cost

Linear Coefficent

Absorber

Compressor
Stabilizing Column
Benzene Column
Toluene Column
Furnace

Membrane Separ ator
Reactor (adiabatic)

Reactor (isothermal)

13.0

7.155

1.126

16.3

3.90

6.20

43.24

74.3

92.875

1.2 x number of trays
3.0 x vapor flowrate

0.815 x brake horsepower (kw)
0.375 x number of trays

155 x number of trays

112 x number of trays

1.172 x heat duty (10%kj/yr)
49.0 x inlet flowrate

1.257 x reactor volume (m°)

1571 x reactor volume (m°)




TablelV. Results of the OA/ER Algorithm for HDA Problem

Without Suboptimization and Lineariation Modification

INITIAL POINT ITERATION 1 2
(103$/yr)
vl NLP 4814.
’ MILP 4661.

With Suboptimization and Lineariation Modification

INITIAL POINT ITERATION 1 2
(IOH/yr)
y! NLP 4814. 5887.

MILP 6074. 5788.




TableV. Comparison of Computational Effort in NLP for Supersructurevs. Flowsheet

SUPERSTRUCTURE FLOWSHEET
EQUATIONS 678 386
CONTINUOUS
VARIABLES 672 375
CPU SEC (IBM-3083) 67.77 11.09
SUBOPTIMIZATION OF NONEXISTING UNITS
CPU SEC! 557
TOTAL CPU SEC 67.77 16.66

'Suboptimization of nonexisting units decomposed into 6 optimization problems.




Figure 1. Superstructure for Example 1
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Figure 2-a. Superstructure for Example 2
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Figure 2-b. Optimal Separation Scheme
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Figure 3. Special Structure of Flowsheet Superstructure
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Figure 4. Example of Special Class of Interconnection Node
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Figure 5. Role of Interconnection Node in Suboptimization
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Figure 6. Suboptimization of Disappearing Process Units
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Figure C-1. Unsealed Difference Relation (5.5,4.5)

B
f, A .B
0 < f1 - f1
L A B
£ =1.222 1.
T A _B
f,-f, <1
——t——
1 2 3 4 5



* Figure C-2. Unsealed Versus Scaled Difference Relation (9,1)
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