
A language for mathematical
knowledge management

Steven Kieffer1, Jeremy Avigad2, and Harvey Friedman3?

1 Simon Fraser University
2 Carnegie Mellon University

3 Ohio State University

Abstract. We argue that the language of Zermelo Fraenkel set the-
ory with definitions and partial functions provides the most promising
bedrock semantics for communicating and sharing mathematical knowl-
edge. We then describe a syntactic sugaring of that language that pro-
vides a way of writing remarkably readable assertions without straying
far from the set-theoretic semantics. We illustrate with some examples of
formalized textbook definitions from elementary set theory and point-set
topology. We also present statistics concerning the complexity of these
definitions, under various complexity measures.

1 Introduction

With the growing use of digital means of storing, communicating, accessing, and
manipulating mathematical knowledge, it becomes important to develop appro-
priate formal languages for the representation of such knowledge. But the scope
of “mathematical knowledge” is broad, and the meaning of the word “appropri-
ate” will vary according to the application. At the extremes, there are competing
desiderata:

– At the foundational level, one wants a small and simple syntax, and a precise
specification of its semantics. In particular, one wants a specification as to
which inferences are valid.

– At the human level, one wants to have mathematical languages that are as
easy to read and understand as ordinary mathematical texts, yet also admit
a precise interpretation to the foundational level.

For ordinary working mathematicians, the foundational interpretation is largely
irrelevant, but some sort of formal semantics is necessary if the information
encoded in mathematical texts is to be used and manipulated at the formal level.
Of course, one solution is simply to pair each informal mathematical assertion
with a formal translation, but then there is the problem of obtaining the formal
translations and ensuring that they match the intention of the informal text. As
a result, it is more promising to use semi-structured languages that integrate
? Carnegie Mellon Technical Report CMU-PHIL-181. Work by Avigad and Friedman

partially supported by NSF grant DMS-0700174.

features of both the foundational and human levels. This results in a smooth
spectrum of languages in between the two extremes. At intermediate “expert
user” levels, one may want a language whose structure is close to that of the
underlying foundational framework, yet is as humanly readable as possible.

To complicate matters, there are features of mathematical knowledge that
are not captured at the level of assertions: mathematical language is used to
communicate definitions, theorems, proofs, algorithms, and problems, among
other things. At the level of a mathematical theory, language is also used to
communicate relationships between these different types of data. The formal
information that is relevant will vary depending on the application one has in
mind, be it database access and search, theorem proving, formal verification, etc.

Here we will be primarily concerned with mathematical assertions as they
are used to state definitions and theorems.4 If one is looking for a foundational
framework that is robust enough to subsume those used by most systems of
MKM, it is hard to beat the language of set theory: we know of no foundational
system other than Quine’s New Foundations that cannot be interpreted in the
language of set theory in such a way that inferences are reduced to inferences in
Zermelo-Fraenkel set theory with the axiom of choice (ZFC), or some plausible
extension (say, with large universes of sets). To be clear, we are not denying
the importance of other frameworks for more specific purposes. For example,
the theory of real closed fields is appropriate to representing many constraint
problems, and constructive frameworks are better suited to certain forms of
algorithmic reasoning. It is also important to find ways of sharing the additional
information that comes with the use of these more restricted frameworks. We
are simply singling out set theory as a unifying framework for expressing what
assertions in the various local frameworks have in common.

We extend the foundational framework in two ways. First, we allow for ex-
plicit definitions of new predicates and functions on the universe of sets. And,
second, we allow function symbols to denote functions that are only partially de-
fined, using a logic of partial terms. We call the resulting formal system DZFC .
As we observe in Section 2, this system is easily shown to be conservative over
ZFC . We argue that these extensions are not just a matter of syntactic sugar,
but, rather, are essential to adequate representation of the mathematical data:
there is a difference between assertions using defined terms and their expanded
versions, and, in mathematical terms, 1/0 really is an undefined quantity. Thus
DZFC is our proposal for a foundational language and its semantics.

Our main goal here is to show that the distance between this foundational
level and ordinary mathematical text is not as far as is commonly supposed, by
presenting a syntactically-sugared version of set theory, PST , that is simulta-

4 In passing, we note that computational proof assistants like Mizar [13], HOL [7],
Isabelle [12], Coq [3] and HOL light [8] all provide languages that can be used
to describe mathematical proofs. Of these, the Mizar and Isabelle/Isar languages
model human proof languages most closely. The Isar effort [16] shows that the proof
language is somewhat orthogonal to the assertion language; that is, Isar can be
instantiated to various foundational frameworks, subject only to minor constraints.

neously close to both. On the one hand, we show that our language is easily
parsed and translated to DZFC . On the other hand, by automatically replacing
symbolic expressions with user-provided natural language equivalents, we obtain
output that is humanly readable, and, although not exactly literary, recognizably
faithful to the original mathematical texts.

We support this last claim with examples from Suppes’s Axiomatic set theory
[14] and Munkres’s Topology [11]. In each case, we present our formal input with
both DZFC and our natural language translations. Indeed, the appendices to
Kieffer [9] provide a corpus of 341 definitions, taken from Chapters 2–6 of Suppes
and Sections 12–38 of Munkres. Examples of the natural language translations
can be found in Appendix B, below. These examples show that PST offers a
promising target semantics for mathematical markup languages, like OMDoc
[10].

To illustrate the utility of PST , we describe two pieces of software that take
advantage of both the formal structure of the definitions and their proximity
to the informal text. First, we describe statistical studies of the complexity of
definitions in our corpus, measured in various ways. Our analysis shows, not
surprisingly, that expanding definitions to the pure language of set theory yields
formulas that are huge. Perhaps more surprisingly, quantifier complexity of def-
initions remains remarkably low, even when they are expanded to DZFC . We
also describe software that makes it possible to explore definitional dependen-
cies, expanding and compressing nodes via a graphical interface. To be sure,
data like this can be mined from contemporary formal verification efforts.5 But
mathematical developments are often changed significantly in the process of for-
malization; what distinguishes the data presented here is the extent to which it
faithfully represents the informal texts it is supposed to model.

Our “user-friendly” version of set theory is based on Friedman [6]; see also
an earlier version in Friedman [5]. Most of the work described here, including
the implementation of the parser, the entering of the data from Suppes’s and
Munkres’s books, and associated software, constitute Kieffer’s MS thesis [9],
written under Avigad’s supervision. The thesis and code described here, as well
as additional samples of the natural language translations, can be found via
Avigad’s web page.6

2 ZFC with definitions and partial terms

It is widely acknowledged that Zermelo-Fraenkel axiomatic set theory with the
axiom of choice, ZFC , is robust enough to accommodate ordinary mathematical
arguments in a straightforward way. The most notable exceptions are category-
theoretic arguments which rely on the existence of large universes with suitable
closure properties; but these can be formalized in extensions of ZFC with suitable
large cardinal axioms, or by restricting the closure properties of the universes in
question.
5 See, for example, the MPTP challenges, http://www.cs.miami.edu/∼tptp/MPTPChallenge/
6 Specifically, see http://www.andrew.cmu.edu/user/avigad/Papers/mkm/.

In this section, we describe a conservative extension DZFC of ZFC . This
theory incorporates two features that allow for a more direct and natural math-
ematical modeling:

– it accommodates partially defined functions, and hence undefined terms; and
– it allows the introduction of new function and predicate symbols to stand

for explicitly defined functions and predicates.

We describe each of these extensions, in turn.
To start with, DZFC is based on a free logic, with a special predicate E(t).

This is usually written t↓, and can be read “t is defined” or “t denotes.” The
axioms governing the terms are presented as the “logic of partial terms” in
Beeson [2], E+ logic in Troesltra and Schwichtenberg [15]; see also the very
helpful explanation and overview in Feferman [4]. The basic idea is that variables
in the language range over objects in the intended domain (in our case, sets),
but, as function symbols may denote partial functions, some terms fail to denote.
So, for example, the axioms for universal instantiation are given by ∀x ϕ(x) ∧
t↓ → ϕ(t). The basic relation symbols of ZFC , which we take to be ∈ and
=, are assumed only to hold between terms that denote; thus we have axioms
s ∈ t → s↓ ∧ t↓ and s = t → s↓ ∧ t↓. Partial equality s ' t is defined as usual by
the axiom s ' t ↔ (s↓ ∨ t↓ → s = t).

Next, the syntax of ordinary set theory is extended to include definition de-
scriptions, à la Russell. Formally, for each formula ϕ(x), the expression (ιx)ϕ(x)
is a term whose free variables are just those of ϕ, other than x. These terms are
governed by the axioms

y = (ιx)ϕ(x) ↔ ∀z (ϕ(z) ↔ z = y).

Thus in DZFC one can show that (ιx)ϕ(x) is defined if and only if there is a
unique y satisfying ϕ(y), in which case, (ιx)ϕ(x) is equal to that y.

Finally, one is allowed to introduce new function symbols and relation sym-
bols to abbreviate formulas and terms. That is, for each formula ϕ(x, ȳ), one can
introduce a new function symbol f(ȳ) with the axiom

f(ȳ) ' (ιx)ϕ(x, ȳ),

and for every formula ψ(ȳ) one can introduce a new relation symbol R(ȳ) with
the axiom

R(ȳ) ↔ ψ(ȳ).

It is not hard to show that adding the usual axioms of set theory to this frame-
work yields a conservative extension:

Theorem 1. DZFC is a conservative extension of ZFC .

The proof amounts to an interpretation of partial functions and elimination
of definitions that is by now standard; details can be found in [15, 9]. Note,
however, that the usual method of eliminating defined function symbols and
relation symbols by replacing them by their definiens can result in an exponential
increase in length.

3 The language of practical set theory, PST

We now describe a more flexible language, Practical set theory, or PST , designed
by Friedman. This language has two key features:

– The language incorporates a healthy amount of syntactic sugar, making it
possible to express ordinary mathematical definitions and assertions in a
natural way.

– The language is easily and efficiently translatable to DZFC .

In this section we describe some of the features of PST and the translation to
DZFC . A full and precise specification of the PST and its DZFC semantics can
be found in [9, 6], where it was called the Language of Proofless Text, or LPT .
The claims of naturality will be supported with examples in the next section
and in Appendix B.

The starting point for PST is the usual syntax of first-order logic. We adopt
conventions to distinguish between variables, defined functions, and relations;
application of a defined relation REL to terms t1, . . . , tk is written with square
brackets REL[t1, . . . , tk], while application of a defined function Fun is written
with parentheses, Fun(t1, . . . , tk). The usual language of first-order logic is aug-
mented with a significant amount of “syntactic sugar,” to make the expression
of mathematical notions as convenient as possible. These include the following.

Function application for sets. Any term may be used as though it were a function,
of any arity (including “infix”). For example, one may quantify a variable f , and
then proceed to use it as though it were a function. In PST , f(x) denotes the
unique u such that the ordered pair 〈x, u〉 is in f , assuming there is such u.
The following definition of the unary predicate FCN therefore asserts that f is a
function if it is a set of ordered pairs 〈x, u〉 in which no x occurs more than once
as the first component of a pair.

DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] ↔ f = {〈x, y〉 : f(x) = y}.

Finite sets and tuples. In the previous example, we saw a finite tuple; namely,
the ordered pair 〈x, y〉. Tuples of any finite length are terms in PST .

A finite set can be denoted by simply listing all of its elements. For example, in
defining the Wiener-Kuratowski ordered pair, we may use the term {{a}, {a, b}}.

Set-builder notation. The example above illustrates the use of set-builder nota-
tion. In PST , the term {t : ϕ} denotes the set of all values of t(x1, . . . , xn), where
the variables x1, . . . , xn occurring in t range over tuples satisfying ϕ(x1, . . . , xn).
Note that this involves an essential use of partiality; for example, in the intended
semantics, the term {x : x = x} is undefined.

Suppose we wish to define Image(f) to be the set of all f(x) such that
x ∈ Dom(f). The expression

Image(f) ' {f(x) : x ∈ Dom(f)}

is not what we want, because f on the right-hand side is taken to be a bound
variable ranging over the universe of sets. Instead, PST has us write

Image(f) ' {f(x) : x ∈ Dom(f), f fixed}

to indicate that the expression depends on a fixed value of f .

Defined function symbols. We use an exclamation mark in place of Russell’s ι as
a definite description operator. It is used in the next example, where we define
an infix function, +Q, for addition on the rational numbers. Every infix function
is given a precedence number, for use in determining order of operations.

DEFINITION FS.5.25: Infix function +Q. x +Q y ' (!z)(x, y, z ∈Q∧(∃a, b, c)
(a∈x ∧ b∈ y ∧ c∈ z ∧ a +SUB b = c)). Precedence 40.

A definition may be composed of any number of “If ... then ...” clauses, and
may end with one “Otherwise ...” clause, which allows definition by cases, as in
the example below. In this example the ‘Otherwise’ clause introduces a condition
under which the function is undefined. For this we use the predicate ↑, and this
allows for the definition of partial functions.

DEFINITION FS.2.3: 1-ary function Dom. If BR[R] then Dom(R) ' {x : (∃y)(x R y)}.
Otherwise Dom(R)↑.

Defined relation symbols. As with functions, we may define infix relations, as in
the definition of < on the rational numbers, below.

DEFINITION FS.5.24: Infix relation <Q. x<Q y ↔ (∃z, w)(x, y ∈Q∧z ∈x ∧
w∈ y ∧ z <SUB w).

Lambda notation. PST includes a lambda operator which can be used to bind
variables and thereby denote functions. In the example below, we define a binary
function called Cartespow (for “Cartesian power”). This function maps a pair
of sets A, B to the set AB ; i.e., a product of B-many copies of A. The definition
relies on a previously defined function, Cartesprod (for “Cartesian product”), a
binary function taking a map f and a set C to the product over c ∈ C of the sets
f(c). The definition of Cartespow uses lambda abstraction to define the constant
function b 7→ A on the fly, to serve as the first argument to Cartesprod.

DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B) '
Cartesprod((λb∈B)(A), B).

Infix relation chains. Infix relations may be chained together in the usual way,
as with the <R relation in the example below.

DEFINITION MunkTop.13.3.a.basis: 0-ary function Stdrealtopbasis.
Stdrealtopbasis ' {U ⊆R : (∃a, b∈R)(U = {x∈R : a<R x <R b})}.

Bounded quantifiers. Quantified variables and variables used in set-builder no-
tation may be bounded by any infix relation, as in the example above.

The translation from PST to DZFC is not difficult. Since our grammar for
PST is not LL, we used the ACCENT7 compiler-compiler, which implements
Earley’s algorithm. The latter can parse any context-free grammar in cubic time,
and runs in quadratic time when the grammar is unambiguous [1].

Appendix A contains a number of examples of PST definitions, together
with their translations to DZFC . In each case, we present the PST input, a
LATEXrepresentation of that input generated by the parser, and the translation
to DZFC . A much larger corpus of examples — 183 definitions from Suppes’s
Axiomatic Set Theory [14] and 148 definitions from Munkres’s Topology [11] —
can be found in [9]. In practice, the translation took at most a few seconds to
process a file containing a dozen large definitions. Comparing the (Latex) DZFC
output with the (Latex version of the) PST input yields a factor of about 0.91,
which is to say, the DZFC translations are actually slightly shorter.

4 Natural language output

The examples of PST input in the last section are readable, but not attractive.
It is hard to remember meaning of symbols “BR” or “TOPSP”; it would help
to have phrases like “is a binary relation” or “is a topological space.” In fact,
even for logical connectives like ∧, natural language equivalents like “and” are
generally easier to read. In an ordinary mathematical language text, however,
words are not always favored over symbols. For example, defined functions are
usually given symbols: gcd(x, y) instead of “the greatest common divisor of x
and y.” Binary relations like = and < are usually preferred to “equal to” and
“less than.” On the other hand, unary relations often represent concepts that
are expanded to words, as shown by the examples above.

In light of these observations, we chose to output natural language equivalents
for the connectives, and allow the user to input natural language equivalents for
defined symbols. For example, with the entry

TOPSP:2@
reln:$(#^0,#^1)$ is a %e?topological space%ee?@
negn:$(#^0,#^1)$ is not a topological space@
plur:%$(#^0,#^1)$% are topological spaces@
nplu:%$(#^0,#^1)$% are not topological spaces@@

7 http://accent.compilertools.net/

the user can specify the natural language that should be used in place of the
TOPSP relation.

In some cases, either symbols or a natural language equivalent can be used,
as in {x ∈ N | . . .} or “the set of x ∈ N such that” It is usually awkward to
have natural language occur as a subterm of a symbolic expression; for example,
consider “1 + the greatest common divisor of x and y.” Thus we incorporate a
monotonicity rule: once a subterm of a term has been expanded to natural
language, natural language versions are favored from then on. This choice yields,
for example, {x ∈ N | a < x < b}, but also “the set of x in N such that a < x < b
and x is even.”

Accordingly, the user supplies two clauses for a defined function or relation
for which symbols are preferred over words:

\wp:1@
symb:$\wp(#^0)$@
word:the power set of #0@@

whereas if words are the desired default then just one clause is needed:

Stdrealtop:0@
word:the standard topology on \mathbb{R}@@

Appendix B provides examples of natural language output. We emphasize
that these were generated directly from the PST input, using the additional
natural language data, supplied by the user, described above. Although the defi-
nitions are not exactly literary, they are surprisingly readable, and close to ordi-
nary mathematical text. It is certainly the case that additional heuristics could
be used to render the output more attractive, and additional markup from the
user would result in improvements. In other words, there is a lot more that can
be done along these lines; our claim here is only that PST offers an auspicious
start.

5 Exploring definitions

Among the benefits of having a database of definitions is the ability to explore
those definitions interactively. We designed two simple programs with which to
demonstrate some of the possibilities.

Our first program allows the interactive display and manipulation of directed
acyclic graphs (dags) of conceptual dependencies, as depicted in Figure 1.

With a second program we gathered statistics on these graphs. Associated
to each definition is the dag of all definitions on which it depends; by the size of
this dag we mean the number of vertices, and by the depth of this dag we mean
the length of its longest directed path. Table 1 shows the maximum and mean
values for all definitions in our database.

Additional statistics, including data on the quantifier complexity of defini-
tions in our corpus, can be found in Appendix C.

Fig. 1. Exploring the definition dag for the Stone-Čech compactification.

Table 1. Max and mean dag sizes and depths

Max Mean

All Depth 32 10.77
Size 110 29.56

Suppes Depth 26 10.09
Size 77 25.91

Munkres Depth 32 12.25
Size 110 36.01

6 Conclusions

We have argued that one should adopt a language close to definitional set theory
as a uniform language to support communication and exchange of mathematical
results. The particular language we describe here, Practical set theory, fares well
in that regard: it is easy and natural to work with, providing a high-degree of
readability while remaining close to a clear foundational semantics.

Appendix A: Examples of PST input and DZFC
translations

We consider a few examples of formal definitions, highlighting the natural-
ity of PST over DZFC . (The $0 function appearing in the DZFC transla-
tions is a function defined to take (a, b) to the Wiener-Kuratowski ordered pair
{{a}, {a, b}}.)

Example 1. Here the description operator is used in PST to bind an ordered
pair, so that we are able to refer to “the unique ordered pair 〈Y, T ′〉 such that....”
This translates to a much clumsier expression in DZFC , requiring two additional
bound variables.

PST input:
DEFINITION MunkTop.29.4: 2-ary function Oneptcompactification.
If TOPSP[X,T] then Oneptcompactification(X,T) \simeq
(!<Y,T’>)(

COMPACTIFICATION[Y,T’,X,T] \wedge Y \less X \approx_{C} 1_{N}
).

PST rendered in LATEX:

DEFINITION MunkTop.29.4: 2-ary function Oneptcompactification. If
TOPSP[X, T] then Oneptcompactification(X,T) ' (! 〈Y, T ′〉)
(COMPACTIFICATION[Y, T ′, X, T] ∧ Y \X ≈C 1N).

DZFC translation:

Oneptcompactification(X, T) ' (ιy0)(TOPSP[X, T] ∧ y0 ' (ιx0)(∃Y, T ′)(x0 =
$0(Y, T ′) ∧ (COMPACTIFICATION[Y, T ′, X, T] ∧ ≈C[\(Y, X), 1N])))

Example 2. Next observe what happens in DZFC , where we cannot match
the brevity of expression used in our definition of the FCN[f] predicate in PST
(which says that f is a function).

PST input:
DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] \iff
f = {<x,y> : f(x) = y}.

PST rendered in LATEX:

DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] ↔ f = {〈x, y〉 : f(x) = y}.

DZFC translation:

FCN[f] ↔ f = (ιz0)(∀y0)(y0 ∈ z0 ↔ (∃x, y)(y0 = $0(x, y) ∧ ((ιx0)($0(x, x0) ∈
f) = y)))

Example 3. Here we see how important the lambda operator is:

PST input:
DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B)
\simeq Cartesprod((\lambda b \in B)(A),B).

PST rendered in LATEX:

DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B) '
Cartesprod((λb∈B)(A), B).

DZFC translation:

Cartespow(A,B) ' Cartesprod((ιz0)(∀y0)(y0 ∈ z0 ↔ (∃b, x0)(y0 = $0(b, x0) ∧
x0 = (A) ∧ b ∈ B)), B)

Appendix B: Examples of the natural language translations

In some cases our natural language generating program pst2nl produces output
that is quite close to what a human being might write. For example, from the
following PST input,

DEFINITION MunkTop.13.2: 2-ary function Basisgentop. If TOPBASIS[B, X]
then Basisgentop(B, X) ' (!T ⊆℘(X))((∀U ⊆X)(U ∈T ↔ (∀x∈U)(∃B ∈B)
(x∈B ∧B⊆U))).

we get the following NL (natural language) output:

Definition: If B is a basis for a topology on X then the topology on X
generated by B is the unique T ⊆ ℘(X) such that for every U ⊆ X, U ∈ T if
and only if for every x ∈ U , there exists B ∈ B such that x ∈ B and B ⊆ U .

What is more common is that the output of pst2nl reads nicely except for
a “run-on” sound, resulting from insufficient punctuation. For example:

Definition: If R is a strong simple order on X then the basis for the order
topology on (X,R) is the set of U such that there exist a, b ∈ X such that U =
(a, b) or a is a first element in X and U = [a, b) or b is a last element in X and
U = (a, b].

Heuristics, combined with additional user markup, could eventually be incor-
porated to help improve the flow and punctuation of the translations. We have
implemented one easy improvement already, whereby adjacent assertions of a
common predicate are combined into a single assertion using plural form. Thus,
from the PST input,

DEFINITION MunkTop.12.4.a: 3-ary relation FINERTOP. If TOPSP[X, T] ∧
TOPSP[X, T ′] then FINERTOP[T ′,T , X] ↔ T ′⊇T .

we obtain:

Definition: If (X, T) and (X, T ′) are topological spaces then T ′ is finer
than T on X if and only if T ′ ⊇ T .

We consider a final example.

DEFINITION MunkTop.13.3.c: 0-ary function Krealtop. Krealtop '
Basisgentop(Stdrealtopbasis∪{V ⊆R : (∃W ∈ Stdrealtopbasis)
(V = W\{InclFrR(1N /n) : n∈N})},R).

The NL output is as follows:

Definition: The K-topology on R is the topology on R generated by the
standard basis for a topology on R union the set of V ⊆ R such that there exists
W in the standard basis for a topology on R such that V = W \ {1/n : n ∈ N}.

There are two sets mentioned in this definition: the set of V ⊆ R such that ...,
and the set of 1/n such that According to the “monotonicity rule” described
in Section 4, the latter is rendered in symbols since it has no subterm in words;
the former is rendered in words since its subterm, “the standard basis for a
topology on R” has no symbolic form, and is displayed in words by default.

Another feature of pst2nl is apparent in this last example, where the word
“in” appears before “the standard basis....” We get this preposition rather than
the incorrect phrase “is in,” thanks to the final clause in the user-supplied natural
language equivalents for the ∈ relation:

\in:infix@
symb:#0 \in #1@
nsym:#0 $\not\in$ #1@
reln:#0 is %e?in%ee? #1@
negn:#0 is not in #1@
plur:%#0% are in #1@
nplu:%#0% are not in #1@
prep:#0 in #1@@

Finally we note that the user is free to suppress artifacts of formalization,
in the NL output. In the PST above there is an inclusion function InclFrR, and
the number 1 is subscripted as 1N. None of this shows up in the NL output.

Appendix C: Data on quantifier complexity and length

Our database of definitions entered in PST consists of 183 definitions from Sup-
pes’s Axiomatic Set Theory [14] and 148 definitions from Munkres’s Topology
[11].

Quantifier complexity data. For each definition in our database, we measured
quantifier complexity in eight different ways. In the first place, we considered
both alternating quantifier depth, and non-alternating. Secondly, we considered
each definition in four different states: (1) as given in PST ; (2) as translated
into DZFC ; (3) the expanded version of the DZFC , that is, with all definienda
replaced by their definiens, recursively, until the process halts; and (4) a par-
tially expanded version of the DZFC in which certain low-level, foundational
definienda were left unexpanded, namely: the union, intersection, and set differ-
ence operations, the ordered pair, and powerset functions, the empty set, and
the subset and superset relations. The maximum and mean depths are presented
in Table 2.

Table 2. Max and mean quantifier depths

Max Mean

PST 4 0.66
unexpanded DZFC 5 1.31

fully expanded DZFC 1235 78.68
partially expanded DZFC 552 38.54

PST alternating 3 0.63
unexpanded DZFC alternating 5 1.18

fully expanded DZFC alternating 422 36.19
partially expanded DZFC alternating 239 22.16

It has been said that among actually occurring definitions in mathematics
texts, the maximum alternating quantifier depth is three. Insofar as PST comes
close to what actually occurs in textbooks, the maximum alternating depth of 3
tends to confirm this conjecture.

Note that the maximum depth after translating into DZFC goes up to 5. This
reflects what we saw in Appendix A, where a definition that used no quantifiers
in PST turned out to require them after translation into DZFC .

The maximum depth of 1235 for a fully expanded definition confirms the
necessity of using definitions to package information into manageable chunks.
Meanwhile, the contrast between the total expansion maximum, and the partial
expansion maximum of 552, demonstrates that the lowest, most foundational
definitions, lend quite a bit of this complexity.

The ratio 78.68/36.19 ≈ 2.17 of the mean fully expanded depth to the mean
fully expanded alternating depth suggests that quantifiers often occur in runs
of two, before alternating, when definitions are written in pure set theory. The

somewhat lower ratio of 38.54/22.16 ≈ 1.74 for the partially expanded cases
indicates the extent to which the lowest-level concepts contribute to this doubling
of consecutive quantifiers.

The mean depth for PST alternating (again, what comes closest to what
we ordinarily think of as quantifier depth in textbooks) shows that, while the
maximum is three, the most common depths are 0 and 1. The exact number of
occurrences are presented in Table 3.

Table 3. Quantifier depth frequencies in PST

Occurrences

Depth PST PST alternating

0 178 178
1 118 120
2 30 35
3 14 8
4 1 0

Length data. As was expected, there is rapid blowup in the size of definitions
when they are expanded. In collecting our data we set a maximum of 231 − 1
before we stopped counting, and this maximum was often reached.

In particular, since the development of the real numbers taken from Sup-
pes [14] involves such deep definition trees, any definition mentioning the real
numbers will have enormous expanded length. For example, the definition of the
basis for the standard topology on the reals (see Section 3) is just 303 symbols
long after initial translation into DZFC , but blows up to over 231 − 1 symbols
after expansion.

The longest definition we formalized from Suppes [14] was 526 symbols, and
the longest from Munkres [11] was 714.

References

1. Alfred V. Aho and Jeffrey D. Ullman The Theory of Parsing, Translation, and
Compiling, volume 1. Prentice-Hall, Englewood Cliffs, N. J., 1972.

2. Michael J. Beeson. Foundations of Constructive Mathematics. Springer, Berlin,
1985.

3. Yves Bertot and Pierre Castéran. Interactive theorem proving and program devel-
opment: Coq’Art: The calculus of inductive constructions. Springer, Berlin, 2004.

4. Solomon Feferman. Definedness. Erkenntnis, 43(3):295–320, 1995. Varia with a
Workshop on the Foundations of Partial Functions and Programming (Irvine, CA,
1995).

5. H. Friedman and R. C. Flagg. A framework for measuring the complexity of
mathematical concepts. Adv. in Appl. Math., 11(1):1–34, 1990.

6. Harvey Friedman. Proofless text. Manuscript, September 29, 2005.

7. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher-order logic. Cambridge University Press, 1993.

8. John Harrison. HOL light: a tutorial introduction. In Mandayam Srivas and Albert
Camilleri, editors, Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design, pages 265–269, 1996.

9. Steven Kieffer. A language for mathematical knowledge management. Master’s
thesis, Carnegie Mellon University, 2007.

10. Michael Kohlhase. OMDoc: An open markup format for mathematical documents,
volume 4810 of LNAI. Springer, Berlin, 2006.

11. James R. Munkres. Topology. Prentice Hall, Upper Saddle River, N.J., second
edition.

12. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer, Berlin, 2002.

13. P. Rudnicki. An overview of the Mizar project. In 1992 Workshop on Types for
Proofs and Programs. Chalmers University of Technology, Bastad, 1992.

14. Patrick Suppes. Axiomatic Set Theory. Van Nostrand, Princeton, 1960.
15. A. S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge

University Press, Cambridge, second edition, 2000.
16. Makarius Wenzel. Isabelle/Isar — a generic framework for human-readable proof

documents. Studies in Logic, Grammar, and Rhetoric, 10(23), 2007. From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, edited by R. Matuszewski
and A. Zalewska.

