On a class of non-linear elliptic boundary value problems

Charles Vernon Coffman
Carnegie Mellon University, cc0b@andrew.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/math
ON A CLASS OF NON-LINEAR ELLIPTIC
BOUNDARY VALUE PROBLEMS

Charles V. Coffman

Report 68-5

February, 1968
On a Class of Non-linear Elliptic Boundary Value Problems

Charles V. Coffman

1. Introduction. In [5], a theorem is proved which asserts the existence of a non-trivial solution to the problem

\[Ay + yF(y^2, x) = 0 \quad \text{in } \Omega, \quad y|_{\partial \Omega} = 0, \]

where \(A \) is the Laplace operator, \(\Omega \) is a bounded region in \(\mathbb{R}^N \) for which the Dirichlet problem is solvable, and \(F \) is a function locally Hölder continuous on \(\mathbb{R}^N \times \mathbb{R} \) satisfying, for some \(\epsilon > 0 \) and all \(x \in \Omega, \)

\[0 < n_1 F(r_1 x) \leq F(r_2 x), \quad \text{for } 0 < r_1 \leq r_2 < \infty, \]

and also, for all \(x \in \Omega, \)

\[F(\eta x) \leq c \eta^y + \text{or}, \quad 0 < \eta < \infty, \]

where \(c, a \) and \(y \) are positive constants, \((N-2)y < 2\). This result is the analogue of a result of [8] concerning a boundary value problem for a non-linear ordinary differential equation. The result of [5] concerning (1) was obtained by treating the integral equation equivalent to (1) by methods similar to those used in [9].

In this note we shall derive from the results of [5] an existence theorem for a boundary value problem of the form

\[TU = uF(u^2, x) \quad \text{in } \Omega, \quad D^\alpha |^\alpha = 0, \quad |\alpha| < m-1, \]
where r is an elliptic operator of order $2m$, \[D = \frac{\partial^2 |\alpha|}{\partial \alpha_1 \ldots \partial \alpha_N}, \]

$|a| = a_1 + \ldots + o^\infty$; $m \geq 1$, $N \geq 1$. The result obtained here was suggested by the main theorem of Berger's study, [4], of a non-linear elliptic eigenvalue problem.
2. The differential operator. We shall assume throughout this section that Q, is a region of class C^{2m} (see def. 9.2, [3]) and that the differential operator r, given in the form

$$\tau = \sum |\alpha| |\beta| \leq m \alpha \beta \alpha \beta (x) D^\alpha \beta,$$

has real coefficients satisfying

$$a_{\alpha \beta} (x) \in C^{m} (Q), \quad \text{all } \alpha, \beta.$$

In addition we assume that T is uniformly strongly elliptic in C_1 and that there exists a positive constant c_0 such that

$$B [\varphi, \varphi] \geq c_0 \| \varphi \|^2, \quad \text{all } \varphi \in C^{2m} (Q),$$

where

$$B [\varphi, \varphi] = \int_0^1 \sum |\alpha| |\beta| \leq m \alpha \beta \alpha \beta \varphi (x) D^\alpha \beta \varphi (x) dx.$$

We shall use standard notation. For $r > 1$, $\| \ldots \|_m, r$ is the Sobolev norm defined as follows,

$$\| \phi \|_{m, r} = \left(\int_\Omega |\phi (x)|^r dx \right)^{1/r}$$

for ϕ having strong L^r-derivatives of order up to m in Q; $W^{m, r} (Q)$ is the space of all such functions (because of the smoothness assumption concerning C_1 this is equivalent to the more usual definition of $W^{3n+1} (a)$); $W^{m, r} (\Omega)$ is normed by $\| \ldots \|_{m, r}$.

Finally, $W^{m, r} (Q)$ is the closure of $C_0^0 (Q)$ in $W^{m, r} (\Omega)$.

Without exception the function space considered here will be
understood to consist of real valued functions.

By a standard result, see Theorem 8.2, [3], the generalized Dirichlet problem with zero boundary data

\[B[p,u] = (p,f), \quad \text{all } p \in C^0(0), \]

has a unique solution \(u \in V^q(0) \) for each \(f \in L^q(0) \). Actually the same is true for \(f \in L^q(0) \) provided

\[q > q_0 = \max(1,2N/(N+2m)), \quad q < 2. \]

This follows from the fact that, because of the Sobolev imbedding theorem, \(W^{1,2} \) is stronger than \(L^p(0) \) when \(\frac{1}{p} + \frac{1}{q} = 1 \) and (8) holds. Thus for \(f \in L^q(0) \), \(p \in V^{q^2}(0) \),

\[(9) \quad |(p,f)| \leq \|f\|_{L^q(0)} \|f\|_{W^{1,2}(0)} \leq \text{const}. \]

The same proof as in the case where \(f \in L \) then works for \(f \in L^q \).

We define an operator \(A \), whose domain is \(U > L^q(0) \) and whose range is contained in \(V^q(0) \), by

\[B[p,Af] = ((0,f), \quad \text{all } p \in V^{q^2}(0), \]

upon taking \(p = Af \) in (10) it follows from (7) and (9) that \(A \) acts as a bounded operator from \(L^q(0) \) to \(W^{1,2}(0) \) for each \(q > q_0 \).

We shall require the following results from [1] and [2].

(*) If \(f \in L^r(0), \ r > q_0 \) then \(A f \in W^{2m,r}(0) \), and there exists a constant \(k^r \) such that

\[(11) \quad \|Af\|_{2m,r} \leq k^r \|f\|_r + H^{1,f}_r \|f\|_r. \]
(**) II. \(f \in L^0 (Q) \) and \(u = Af \), then (after modification on a set of measure zero) \(u \in C^{2m} (O) \) and \(u \) satisfies the boundary conditions

\[
D^a u = 0, \quad \text{on } \partial Q, \quad |a| < m.
\]

(***) if \(f \in C^\infty (n) \) and if

\[
\text{for some } \eta: 0 < \eta < 1, \text{ then } u = A f \in C^m (O) \text{ and } u \text{ satisfies } (12).
\]

\(C^{\infty} (f2) \) is the space consisting of those functions in \(C^k (O) \) whose \(k \)-th order derivatives are uniformly Holder continuous of order \(\eta \) in \(Q \).

The first assertion^\(^(*)\), follows from Theorem 8.2, [2]; the proof of (**) is also in [2]; (***) follows from Theorem A5.1, Appendix 5, [1]. Although we do not use the fact here it is interesting to note that the assertion (**) is equivalent to the assertion that for \(r > q \) \(0 \), a function \(u \) belongs to \(W^{2m, r} (O) \) if and only if it is the limit in \(W^{2m, r} (O) \) of a sequence \((u_n) \), where, for each \(n \), \(u_n \in C^{2m, 1} (O) \) and \(u = u_n \) satisfies (12).

If \(r > 0 \) then \(TU \) can be defined for \(u \in W^{2m, r} (O) \), if \(r > q \) \(0 \) then \(W^{2m, r} \) can be imbedded in \(W^{m, \infty} \), we shall denote by \(A \) for \(r > q \) \(0 \) the operator in \(L^2 (C) \) whose domain is \(\mathcal{M}^r = W^{2m, r} (O) \) and which sends \(u \) - \(TU \). Since

\[
B(\varphi, \psi) = (\omega, \tau \psi) = \langle \varphi, \psi \rangle, \quad \text{for } \varphi \in C^\infty (O), \psi \in \mathcal{M}^r,
\]

1 Actually this is not so unless (6) is strengthened. An adaptation of the arguments in [2] to the case where the operator is given in divergence form gives a result implying (*) under condition (6).
it follows that

\[A^r u = u, \text{ for } u \in M. \]

On the other hand, by (*) , \(A \) maps \(L^r(Cl) \) into \(M^r \) so

\[B[p, A^r] = ((p, *^r Af), \text{ for } p \in C^0_{(d)}, f \in L^r(Q), \]

thus

\[*^r Af = f, \text{ for } f \in L^r(Q). \]

We put \(A_r = A|L^r(O) \).

Lemma 1. For each \(r > q \),

\[A_r : L^r(O) \rightarrow M^r \]

is a bijection. Moreover there are positive constants \(c_r \) such that for \(f \in L^r(O) \)

\[\|f\|_{L^r} \leq c_r \|f\|_{W^{2mr}(a)} \]

Proof. We have shown that \(A_r \) and \(A_r \) are inverses of one another. It readily follows from (6) that

\[\|f\|_{L^r} \leq \text{const}, \|u\|_{L^s} \leq c_r \|u\|_{L^r} \]

which implies the second inequality of (16). \(M \) is a subspace of \(W^{2mr}(a) \) so the first inequality of (16) follows from the open mapping theorem.

Lemma 2. Let \(r > q \). If \(2mr < N \) then \(A \) maps \(L^r(O) \) compactly into \(L^s(Q) \) for

\[1 < s < \frac{Nr}{N-2mr}; \]

\[\text{OrK'112}. \]
if $2mr > N$ then A can be regarded as a compact mapping of $L^r(0)$ into $C(JT)$.

Proof. Let $q_0 < r$, then by Lemma 1 A maps $L^r(Cl)$ into $W^{2m,r}(0)$. If $2mr < N$ then, by Sobolev's theorem, $W^{2m,r}(Q)$ can be imbedded compactly in $L^s(Cl)$ for any s satisfying (17). If $2mr > N$ then $W^{2m,r}(f2)$ can be imbedded compactly in $C(\Omega)$.

The following lemma will simplify matters by making the results of [5] applicable, as they stand, to the problem considered here.

Lemma 3. Let $a = N/(N-2m)$ or let $a^* = OD$ according as $N > 2m$ or $N < 2m$. There exists a measurable function $G(x,t)$ on 0×0 such that the mapping

$$ x - G(x, \cdot) $$

is uniformly continuous from 0 to $L^a(0)$ for $1 < a < a_0$, and

$$ \text{ess sup} \int_{x \in \Omega} G(x,t) \frac{a}{s} dt < \infty, \quad \text{ess sup} \int_{t \in \Omega} |G(x,t)| \frac{a}{r} dx < \infty, $$

for $1 < a < a_0$. For $f \in L^r(0)$, $r > q_0$,

$$ [Af](x) = \int_{\Omega} (G(K,t)f(t))dt, \quad \text{a.e. in } 0. $$

Proof. Let $2mr > N$, so that A can be regarded as a map of $L^r(Q)$ into $C(C2)$. By a well known representation theorem, (Theorem VI. 7.1, [6]) there is a continuous map $x - \cdot G(x, \cdot)$ of SI into $L^a(Q)$, where $\frac{1}{r} + \frac{1}{a} = 1$, such that (19) holds everywhere.
in \(Q \) for \(f \in L^r(f) \). It is easily seen that the function \(G(x,t) \) is independent of the particular choice of \(r \). Let

\[
(20) \quad r^* = \sum |\beta| \cdot D^\beta a \cdot g(x) \cdot D^\alpha,
\]

(notice the symmetry of (6)), and let \(A^* \) be defined by

\[
(21) \quad B[A^*f,0] = (\xi, \psi), \quad \psi \in \mathcal{E}'(\Omega), \quad \xi \in L^q(\Omega), \quad q > q_0.
\]

It follows that for \(f \in L^q(f) \), \(q > q_0 \), we have

\[
(22) \quad (A^*g,f) = (\xi, \Phi)\cdot (\xi, A_f).
\]

Because of the symmetry of (6), \(A^* \) has an integral representation analogous to (19) for \(f \in L^r(f) \), \(2mr > N \); let \(G^*(x,t) \) denote the corresponding kernel. It follows then from (22) that

\[
\int_{\Omega} G^*(t,x) f(x) g(t) \, dx \, dt = \int_{\Omega} G(x,t) f(x) g(t) \, dx \, dt,
\]

for \(f, g \in L^r(\Omega) \), \(2mr > N \). Thus we have

\[
G^*(t,x) = G(x,t), \quad \text{a.e. in } Q \times O,
\]

and from the uniform continuity of \(x \mapsto G(x,*) \) and \(t \mapsto G^*(t,*) \) as mappings from \(Q \) to \(L^a(Q) \), \(1 < a < a_0 \), follow the inequalities (18).

It remains to show that (19) is valid for \(f \in L^r(f) \) when \(r > q_0 \), and \(2mr \leq N \). In this case however it follows from (18) and Theorem 9.5.6, [7], that the right hand side of (19) defines a compact mapping from \(L^r(f_2) \) to \(L^{q>(Q)} \) for

\[
1 < s < \frac{Nr}{N-2mr}.
\]
Thus since (19) is valid for f in a dense subset of $L^r(Q)$, (namely for $f \in L^1(Q), 2m \geq N$), it follows from Lemma 2 that it is valid for $f \in L^r(Q)$.

3, The non-linear problem. Let O and r be as in Section 2. The main result of this note is the following.

Theorem. Suppose that (13) holds, for some positive μ less than 1 and that F is uniformly Hölder continuous on $\mathbb{R} \times Q$. Suppose also that F satisfies (2) for some $e > 0$ and that (3) holds, for all $x \in I$, with positive constants C, α and γ where

\begin{equation}
0 < \gamma, \quad \gamma(N-2m) < 2m.
\end{equation}

Finally assume that r is formally self-adjoint. Then there exists a function $u \in C^{2}(O; \mathbb{R})$ which is not identically zero and satisfies (4) (in the ordinary sense).

Proof. We consider the operator equation

\begin{equation}
u = AuF(u^2, x),
\end{equation}

where A has the same meaning as in Section 2. By Lemma 3 this is equivalent to an integral equation

\begin{equation}
u(x) = \int_{O} G(x, t) u(t) F(u^2(t), t) dt,
\end{equation}

where, since r is formally self-adjoint, $G(x, t)$ is symmetric; (18) holds for $1 < a$, $a(N-2m) < N$. It readily follows from (7) that A, regarded as an operator in $L^p(O)$, is positive definite; the range of A contains $C^\infty_0(O)$ and is therefore dense in $L^p(O)$ for any $p > 1$. Now from Theorems 1 and 3 of [5] it follows that (25) has a non-trivial essentially bounded solution u; see also the remarks following the statement of Theorem 2 of [5]. From the equivalence of (24) and (25) it follows that u
satisfies (24). By (3), \(u(x)F(u^2(x), x) \) is essentially bounded and thus, by (**) \(ueC^{2,1/1}([0]) \) and \(u \) satisfies (12). From the differentiability of \(u \) and the hypothesis concerning \(F \) it follows that \(u(x)F(u^2(x), x) \) is uniformly Hölder continuous in \(Q \). Finally by (***) we conclude that \(ueC^2(0) \) and is an ordinary solution of (4). This completes the proof.
References

