

Enforcing More with Less:

Formalizing Target-aware Run-time Monitors

Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

May 3, 2012

CMU-CyLab-12-009

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

http://www.cylab.cmu.edu/research/techreports/2012/tr_cylab12009.html
http://www.cylab.cmu.edu/

Enforcing More with Less:
Formalizing Target-aware Run-time Monitors

Yannis Mallios2, Lujo Bauer1,2, Dilsun Kaynar1, and Jay Ligatti3

1 CyLab, Carnegie Mellon University, Pittsburgh, USA
2 ECE, Carnegie Mellon University, Pittsburgh, USA

{mallios,lbauer,dilsunk}@cmu.edu
3 Dept. of Comp. Sci. and Eng., University of South Florida, Tampa, USA

ligatti@cse.usf.edu

Abstract. Run-time monitors ensure that untrusted software and sys-
tem behavior adheres to a security policy. This paper defines an expres-
sive formal framework, based on I/O automata, for modeling systems,
policies, and run-time monitors in more detail than is typical. We explic-
itly model, for example, the environment, applications, and the interac-
tion between them and monitors. The fidelity afforded by this framework
allows us to study and explicitly formulate practical constraints on pol-
icy enforcement that were often only implicit in previous models, pro-
viding a more accurate view of what can be enforced by monitoring in
practice. Moreover, we introduce two definitions of enforcement, target
specific and generalized, that allow us to reason about practical moni-
toring scenarios. Finally, we provide some meta-theoretical comparison
of these definitions and we apply them to investigate policy enforcement
in scenarios where the monitor designer has knowledge of the target ap-
plication and show how this can be exploited for making more efficient
design choices.

1 Introduction

Today’s computing climate is characterized by increasingly complex software
systems and networks, and inventive and determined attackers. Hence, one of
the major thrusts in the software industry and in computer security research
has become to devise ways to provably guarantee that software does not behave
in dangerous ways or, barring that, that such misbehavior is contained and
mitigated. Example guarantees could be that programs: only access memory
that has been allocated to them (memory safety); only jump to and execute
valid code (control-flow integrity); use no more than 10 MB of storage and 10
KB/sec network bandwidth for grid use (resource allocation); and never send
secret data over the network (a type of information flow).

A common mechanism for enforcing security policies on untrusted software is
run-time monitoring. Run-time monitors observe the execution of untrusted ap-
plications or systems and ensure that their behavior adheres to a security policy.
This type of enforcement mechanism is pervasive, and can be seen in operating

2 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

systems, web browsers, firewalls, intrusion detection systems, etc. A common
specific example of monitoring is system-call interposition (e.g., [27, 12]). Here,
given an untrusted application and a set of security-relevant system calls, a
monitor intercepts calls made by the application to the kernel, and enforces a
security policy by taking remedial action when a call violates the policy. This
idea is depicted in Fig. 1. In practice, there are several instantiations of monitors
for this general concept. Understanding and formally reasoning about specific
instantiations is as important as understanding the general concept, since in en-
ables us to reason about important details that might be lost at a higher level
of abstraction. Two dimensions along which instantiations can differ are: (1) the
monitored interface: monitors can mediate different parts of the communication
between the application and the kernel, e.g., an input sanitization monitor will
mediate only inputs to the kernel (dashed lines in Fig. 1); and (2) trace modifica-
tion capabilities: monitors may have a variety of enforcement capabilities, from
being restricted to just terminating the application (e.g., when the application
tries to write to the password file), to being able to perform additional remedial
actions (e.g., suppress a write system call and log the attempt)4.

Untrusted
application

Original
kernel

kernel space

user space

Modified
kernel

Monitor

system
call

allowed
result

allowed
system
call

system
call

result

un-mediated
result

Fig. 1: System-call interposition:
dashed line shows an input-
mediating monitor; solid line an
input/output-mediating monitor.

Despite the ubiquity of run-time monitors,
their use has far outpaced theoretical work
that makes it possible to formally and rigor-
ously reason about monitors and the policies
they enforce. Such theoretical work is neces-
sary, however, if we are to have confidence that
enforcement mechanisms are successfully car-
rying out their intended functions.

Several proposed formal models (e.g., [25,
19]) make progress towards this goal. They
use formal frameworks to model monitors and
their enforcement capabilities, e.g., whether
the monitors can insert arbitrary actions into
the stream of actions that the target wants to
execute. These frameworks have been used to
analyze and characterize the policies that are
enforceable by the various types of monitors.

However, such models typically do not capture many details of the monitor-
ing process, including the monitored interface, leaving us with practical scenarios
that we cannot reason about in detail. In our system-call interposition scenario,
for example, without the ability to express the communication between the un-
trusted application, the monitor, and the kernel in a model, it might not be
possible to differentiate between and compare monitors that can mediate all
security-relevant communication between the application and the kernel (solid
lines in Fig. 1) from monitors that can mediate only some of it (dashed lines in
Fig. 1).

4 In this paper we do not consider mechanisms that modify traces that arbitrarily
modify the target application, such as by rewriting.

Target-specific Run-time Enforcement 3

Some recent models (e.g., [20, 13]) make progress towards such more detailed
reasoning by including in the model bi-directional communication between the
monitor and its environment (e.g., application and kernel), but they do not ex-
plicitly reason about the application or system being monitored. In practice,
however, monitors can enforce policies beyond their operational enforcement
capabilities by exploiting knowledge about the component that they are moni-
toring. For example, a policy that requires that every file that is opened must
be eventually closed cannot, in general, be enforced by any monitor, because the
monitor does not know what the untrusted application will do in the future, and
thus such a policy is outside its enforcement capabilities. However, if the mon-
itored application always closes files that it opens, then this policy is no longer
unenforceable for that particular application. Such distinctions are often relevant
in practice—e.g., when implementing a patch for a specific type or version of an
application—and, thus, there is a need for formal frameworks that will aid in
making informed and provably correct design and implementation decisions.

In this paper, we propose a general framework, based on I/O automata, for
more detailed reasoning about policies, monitoring, and enforcement. The I/O
automaton model [22, 21] is a labeled transition model for asynchronous con-
current systems. Thus, we are using an automata-based formalism, similarly to
many previous models of run-time enforcement mechanisms, with enough expres-
sive power to model asynchronous systems (e.g., the communication between the
application, the monitor, and the kernel). Our framework provides abstractions
for reasoning about many practical details important for run-time enforcement,
and, in general, yields a richer view of monitors and applications than is typical
in previous analyses of run-time monitoring. For example, our framework sup-
ports modeling practical systems with security-relevant actions that the monitor
cannot mediate, rather than assuming complete mediation [16, 5]. (We discuss
more such examples in §3.)

We make the following specific contributions:

– We show how I/O automata can be used to faithfully model target applica-
tions, monitors, and the environments in which monitored targets operate,
as well as various types of monitors and monitoring architectures (§3).

– We extend previous definitions of security policies and enforcement to sup-
port more fine-grained formal reasoning of policy enforcement (§4).

– We show that this more detailed model of monitoring forces explicit rea-
soning about concerns that are important for designing run-time monitors
in practice, but that previous models often reasoned about only informally
(§5.2). We formalize these results as a set of lower bounds on the policies
enforceable by any monitor in our framework.

– We demonstrate how to use our framework to exploit knowledge about the
target application to make design and implementation choices that may lead
to more efficient enforcement (§5.3). For example, we exhibit constraints un-
der which monitors with different monitoring interfaces (i.e., one can mediate
more actions than the other) can enforce the same class of policies.

4 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Roadmap. We start by briefly reviewing I/O automata (§2). We then informally
show how to model monitors and targets in our framework and discuss some
of the benefits of this approach (§3). Next, we formally define policies and en-
forcement (§4). Then, we show several examples of the meta-theoretical analysis
that our framework enables by (a) providing some lower bounds for enforce-
able policies (§5), and (b) exposing constraints under which seemingly different
monitoring architectures can enforce the same classes of policies (§5.3).

2 I/O Automata

I/O automata are a labeled transition model for asynchronous concurrent sys-
tems [22, 21]. In this section we informally review aspects of I/O automata that
we build on in the rest of the paper. A more formal presentation can be found
in App. A. We encourage readers familiar with I/O automata to skip to §3.

I/O automata are typically used to describe the behavior of a system in-
teracting with its environment. The interface between an automaton A and its
environment is described by the action signature sig(A) of A. The signature
sig(A) is a triple of disjoint sets—input(A), output(A), and internal(A). We write
acts(A) for input(A) ∪ output(A) ∪ internal(A). We sometimes refer to output
and internal actions as locally-controlled actions.

Formally, an I/O automaton A consists of: (1) an action signature, sig(A);
(2) a (possibly infinite) set of states, states(A); (3) a nonempty set of start states,
start(A) ⊆ states(A); (4) a transition relation, trans(A) ⊆ states(A) × acts(A)
× states(A), with the property that for every state q and input action a there
is a transition (q , a, q ′) ∈ trans(A); and (5) an equivalence relation Tasks(A)
partitioning the set output(A)∪ internal(A) into at most a countable number of
equivalence classes.

If A has a transition (q , a, q ′) then we say that action a is enabled in state
q . When only input actions are enabled in q , then q is called a quiescent state.
The set of all quiescent states of an automaton A is denoted by quiescent(A).
The equivalence relation Tasks(A) is used to define fairness, which essentially
says that the automaton will give fair turns to each of its tasks while executing.

An execution e of A is a finite sequence, q0, a1, q1, . . . , ar, qr, or an infi-
nite sequence q0, a1, q1, . . . , ar, qr, . . ., of alternating states and actions such that
(qk, ak+1, qk+1) ∈ trans(A) for k ≥ 0, and q0 ∈ start(A). A schedule is an execu-
tion without states in the sequence, and a trace is a schedule that consists only
of input and output actions. An execution, trace, or schedule module describes
the behavior exhibited by an automaton. An execution module E consists of
a set states(E), an action signature sig(E), and a set execs(E) of executions.
Schedule and trace modules are similar, but do not include states. The sets of
executions, schedules, and traces of an I/O automaton (or module) X are de-
noted by execs(X), scheds(X), and traces(X).Given a sequence s and a set X,
s|X denotes the sequence resulting from removing from s all elements that do
not belong in X. Similarly, for a set of sequences S, S|X = {(s|X) | s ∈ S}.

Target-specific Run-time Enforcement 5

An automaton that models a complex system can be constructed by com-
posing automata that model the system’s components. The composition A =
A1× . . .×An of a set of compatible automata {Ai : i ∈ I} is the automaton that
has as states the cartesian product of the states of the components automata
and its behaviors are the interleavings of the behaviors of the component au-
tomata, modulo the communication (synchronization on shared input-output
actions); definitions of compatibility and some other technical details are given
in App. A. Similarly to the composition of automata is defined the composition
of modules [26].

Unlike in models such as CCS [24], composing two automata that share some
actions (i.e., outputs of one automaton may be inputs to the other) causes those
actions to be regarded as output actions of the composition. Those that are
required to be internal need to be explicitly classified as such using the hiding
operation. The operation of renaming, on the other hand, changes the names of
actions, but not their types.

3 Specifying Targets and Monitors

We model targets (the entities to be monitored) and monitors as I/O automata.
We let the metavariables T and M range over targets and monitors. Targets
composed with monitors are called monitored targets or monitored applications;
examples are the modified kernel and the safe application in Fig. 1. A monitored
target might itself be a target for another monitor.

Building on the example of system-call interposition in Fig. 3, we now show
how monitors and targets can be modeled using I/O automata. Suppose that the
application’s only actions are OpenFile, WriteFile, and CloseFile system calls;
the kernel’s actions are FD (to return a file descriptor) and the Kill system
call. The application can make a request to open a file fn, and the kernel keeps
track of the requests as part of its state. When a file descriptor fd is returned
in response to a request for fn, fn is removed from the set of the requests. The
application can then write bytes number of bytes to, or close, fd. Finally, a Kill
action terminates the application and clears all requests. Such a formalization,
where the target’s actions depend on results returned by the environment, was
outside the scope of original run-time monitors models, as identified also by more
recent frameworks (e.g., [20, 13]).

Fig. 3a shows I/O automata interface diagrams of the monitored system con-
sisting of the application and the monitored kernel.An I/O automaton definition
for this kernel is shown in Fig. 2, using the standard precondition-effect style of
writing transition relations for I/O automata.

The application’s and the kernel’s interfaces differ only in that the input
actions of the kernel are output actions of the application, and vice versa. This
models the communication between the application and the kernel when they are
considered as a single system. The kernel’s readiness to always accept file-open
requests is modeled naturally by the input-enabledness of the I/O automaton.
Paths (2) and (3) represent communication between the monitor and the kernel

6 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Signature: Input: OpenFile(fn), where fn is a file name
(type file name = nat)
WriteFile(fd , bytes), where fd is a file descriptor
(type file descriptor = nat)
(type bytes = nat)
CloseFile(fd), where fd is a file descriptor

Output: Kill(), FD(fd ,fn), where fd is a file descriptor
(type file descriptor = nat)
and fn is the corresponding file name.

States: req list : List of elements of type file name
assigned list : List of elements of type file descriptor
kill : flag of type bool

Start States: req list = nil
assigned list = nil
kill = false

Transitions: OpenFile(fn)
Effect: req list = req list@[fn]

CloseFile(fd)
Effect: assigned list = assigned list\[fn], where

(assigned list\z) denotes the function
that removes the element z from list assigned list

WriteFile(fd , bytes)
Effect: Some lower level specification of write for writing

bytes on the actual file
FD(fd ,fn)

Precondition: ¬empty(req list) and ∃(fn : file name) ∈ req list ,
where empty is a predicate on lists that returns true whenever
its argument is an empty list

Effect: req list = (req list\fn), where (req list\fn) denotes the
function that removes the element fn from list req list
assigned list = assigned list@[fd]

Kill()
Precondition: kill = true
Effect: req list = nil

assigned list = nil
and kill = false.

Fig. 2: Kernel I/O automaton definition

through the renamed actions of the kernel (using the renaming operation of I/O
automata, §2): e.g., OpenFile(x) becomes OpenFile-Ker(x), and thus irrelevant
to a policy that reasons about OpenFile actions. Renaming models changing
the target’s interface by adding hooks that allow the monitor to intercept the
target’s actions. In practice, this is often accomplished by rewriting the target in
order to inline or interpose a monitor. Finally, we also hide the communication
between monitor and the kernel so that it remains internal to the monitored

Target-specific Run-time Enforcement 7

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn) FD-Ker
Kill-Ker()

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(fd,fn)

(3)(4)

(1) (2)

(a) Input/output-mediating monitor

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn)

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(b) Input-mediating monitor

Fig. 3: I/O automata interface diagrams of kernel, application, and monitor

target (denoted by the dotted line around the monitored kernel automaton). This
is because we model a monitoring process that is transparent to the application
(i.e., the application remains unaware that the kernel is monitored).

In our system-call interposition example from §1 we described some choices
that a monitor designer can make, such as choosing the (1) interface to be moni-
tored, e.g., mediate only input actions, and (2) the trace modification capabilities
of the monitor. We next describe how to express the above choices in our model.

Modeling the Monitored Interface. By appropriately restricting the renaming
function applied to the target, we can model different monitoring architectures
(e.g., input sanitization, §1). For example, in Fig. 3b, we renamed only the input
actions of the kernel (i.e., OpenFile, CloseFile, and WriteFile). This allows us
to model monitors that mediate inputs sent to the target and can prevent, for
example, SQL injections attacks. Similarly, renaming only the outputs of the
target we can model monitors that mediate only output actions (and can prevent,
for example, cross-site scripting attacks).

Modeling Implementation Aspects of Monitors. When defining monitors of dif-
ferent enforcement capabilities, as the ones of previous models (e.g., [25, 18]), one
can realize that mapping transition functions of previous models to transition
relations of I/O automata does not suffice to uniquely identify practical imple-
mentations of monitors. The added expressiveness of I/O automata allows us to
model different implementations of monitors that might make different choices
about: whether the monitor can edit input before forwarding it to the target
application; the extent to which the monitor can ignore the application; and the
extent to which the monitor can use the application as an oracle or simulator to
discover, in a controlled way, how it would respond to different input actions.

However, if we focus on a uni-directional communication path from the target
to the monitor to the environment, then all types of monitors defined in previous
work are expressible in our framework, e.g., security automata [25] (or truncation
automata [19]), which halt targets that try to execute actions that violate the
security policy; suppression automata [18], which can ignore some actions that
the target wants to execute; and edit automata [19], which can both insert and
remove actions from the trace that the target is producing.

8 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Returning to our example: to model a truncation monitor that halts the
kernel once the kernel outputs an FD-Ker(fd,fn) with an already-assigned file
descriptor fd, we add a transition to the monitor that, upon receipt of the “bad”
action, takes the monitor to a specific “halt state”. Since the monitor is input
enabled, that transition can be made regardless of which state the monitor is in.
Once the monitor goes into this halt state, the only enabled output action will be
a “halt” action to kill the kernel. The kernel will need to have this “halt” action
as an input action, and an appropriate transition to stop its execution. Since
the monitor is input enabled, it may, even when in the halt state, still receive
invalid actions from the kernel until the kernel is halted. In previous models,
for any action that the target wanted to execute, the target would wait for the
monitor to finish considering that action before trying to execute the following
one; in other words, the target and the monitor were synchronized. However,
in our framework the monitor does not in general have such control over the
target. These issues affect the policies that are enforceable by the monitor, since
the target might try to execute a series of invalid actions before the monitor gets
a change to take corrective action; we will revisit this point in the next section.

More general, a translation of monitors from previous monitors to ours must
involve three steps that account for the added expressiveness of I/O automata.
The first two are “definitional”, i.e., they are related to the differences between
the corresponding automata definitions. First, we need to extend the transition
function of an automaton with transitions that model the input enabledness of
the I/O automata. Second, in truncation, suppression, and edit automata the
actions that the target was sending to the monitor belonged to the same action
set as the ones that the monitor was forwarding to the environment. However, in
I/O automata, the signature prohibits that, since the input and output actions
must belong to disjoint sets. To account for that we need to define a bijection
that will map the inputs of the truncation automata to fresh output actions.
The third step involves the implicit assumptions made by previous models and
exposed by our framework: a run-time monitor might not be able to control, in
practice, how the target produces actions. More specifically, in previous mod-
els, for any action that the target wanted to execute, the monitor could decide
and (perhaps) forward some action to the environment, and the target would
wait for the monitor to finish before trying to execute the next action. In other
words, the target and the monitor were synchronized. However, in our frame-
work the monitor does not have such a control over the target. This means that
the target might be producing actions without waiting for the monitor to make
synchronized decisions. For that reason, our monitors need to have some data
structure (e.g., a queue) to buffer the inputs from the target, and then, when
given the chance (by fairness assumptions, for example), dequeue the correspond-
ing actions and take appropriate action. Similarly, for truncation automata, the
monitor might not have the ability to halt the target, unless we know that the
target has some halt input action that will guarantee its termination (as in our
system call interposition, with the kill system call). Next, we provide a transla-

Target-specific Run-time Enforcement 9

tion of truncation automata [19] to I/O automata, to illustrate the above steps.
Translations of other types of monitors can be defined similarly.

We will assume that the target can be terminated by a stop action. Given
a truncation automaton AT = 〈Q,Q0, δ〉 that is defined over some action set
ΣAT

, we define a truncation monitor MT = 〈sig(MT), states(MT), start(MT),
RMT

,Tasks(MT)〉, where:

1. sig(MT) = 〈input(MT), internal(MT), output(MT)〉, where:
(i) input(MT) = ΣAT

,
(ii) internal(MT) = ∅,

(iii) output(MT) = f(input(MT)) ∪{stop},
where f : input(MT)

1−1−−−→
onto

(Σ\input(MT)).

2. states(MT) = (Q× (input(MT))?)∪ {〈halt , ε〉} , i.e., the state of automaton
together with the queue to buffer inputs from the target, plus an additional
halt state,

3. start(MT) = Q0 × {ε},
4. trans(MT) =

{〈〈q, σ〉, ι, 〈q, σ; ι〉〉 | 〈q, σ〉 ∈ states(MT) and ι ∈ input(MT)}
∪ {〈〈q, α;σ〉, f(α), 〈q′, σ〉〉 | 〈q, α;σ〉 ∈ states(MT) and δ(q, α) = q′}
∪ {〈〈q, α;σ〉, stop, 〈halt , ε〉〉 | 〈q, α;σ〉 ∈ states(MT) and δ(q, α) = halt},

5. Each action in local(MT) defines a unique equivalence class.

4 Policy Enforcement

In this section we define security policies and introduce two definitions of en-
forcement. The first defines enforcement with respect to a specific target, thus
capturing scenarios in which the designer knows where the monitor is being in-
stalled (e.g., installing a system call interposition monitor to a specific version
of a Linux kernel). The second one defines enforcement independently of the
target, thus capturing scenarios in which the monitor designer might not know
apriori the targets to which the monitor will be applied (e.g., when designing a
system call interposition that enforces policies independently of the underlying
kernel).

4.1 Security Policies

A policy is a set of (execution, schedule, or trace5) modules. We let the metavari-
ables P and P̂ range over policies and their elements, i.e., modules, respectively.
The novelty of this definition of policy compared to previous ones (e.g., [25, 19])
is that each element of the policy is not a set of automaton runs, but, rather, a
pair of a set of runs (i.e., schedules or traces) and a signature, which is a triple
consisting of a set of inputs, a set of outputs, and a set of internal actions. The

5 Our analyses equally apply to execution modules, but, for brevity, we discuss only
schedule and trace modules.

10 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

signature describes explicitly which actions that do not appear in the set of runs
are relevant to a policy. This is useful in a number of ways. When enforcing a
policy on a system composed of several previously defined components, for ex-
ample, the signatures can clarify whether a policy that is being enforced on one
component also reasons about (e.g., prohibits or simply does not care about) the
actions of another component. For our running example, if the signature con-
tains only Open, FD, and Kill, then all other system calls are security irrelevant
and thus permitted; if the signature contains other system calls (SocketRead),
then any behaviors exhibiting those calls will be prohibited.

Our definition of a policy as a set of modules resembles that of a hyperprop-
erty [8] and previous definition of policies (modulo the signature of each schedule
or trace module) and captures common types of policies such as access control,
noninterference, information flow, and availability.

Since I/O automata can have infinite states and produce possibly infinite
computations, we would like to avoid arguments and discussions about com-
putability and complexity issues: they are outside the scope of this paper. Thus,
we make the assumption that all policies P that we discuss are implementable [26],
meaning that for each module P̂ in P under discussion, there exists an I/O au-
tomaton A such that sig(A) = sig(P̂) and scheds(P̂) ⊆ scheds(A).

4.2 Enforcement

In §3 we showed how monitoring can be modeled by renaming a target T so
that its security-relevant actions can be observed by a monitorM and by hiding
actions that represent communication unobservable outside of the monitored
target. We now define enforcement formally as a relation between the behaviors
allowed by the policy and the behaviors exhibited by the monitored target.

Definition 1 (Target-specific enforcement) Given a policy P, a target T , and
a monitor M we say that P is specifically soundly enforceable on T by M
if and only if there exists a module P̂ ∈ P, a renaming function rename, and
a hiding function hide for some set of actions Φ such that (scheds(hideΦ(M×
rename(T)))|acts(P̂)) ⊆ scheds(P̂).

Here, hideΦ(M×rename(T)) is the monitored target: the target T is renamed
so that its security-relevant actions can be observed by the monitor M; hide is
applied to their composition to prevent communication between the monitor
and the target from leaking outside the composition6. If a target does not need
renaming, rename can be the identity function; if we do not care about hiding
all communication, the hiding function can apply to only some actions. For
example, suppose the monitored target from our running example (node with

6 Since Def. 1 reasons about schedules (i.e., internal actions as well as input and
output), hideΦ is redundant. We include it in this definition to expose the re-writing
process that needs to happen for run-time enforcement in practical scenarios, but
we will omit it in the rest of the paper.

Target-specific Run-time Enforcement 11

dotted lines in Fig. 3b) is composed with an additional monitor that logs system-
call requests and responses. We would then keep the actions for system-call
requests and responses visible to the logging monitor by not hiding them in the
initial monitored target.

Def. 1 binds the enforcement of a policy by a monitor to a specific target.
We refer this type of enforcement as target-specific enforcement and to the cor-
responding monitor as a target-specific monitor. However, some monitors may
be able to enforce a property on any target. One such example is a system-call
interposition mechanism that operates independently of the target kernel’s ver-
sion or type (e.g., a single monitor binary that can be installed in both Windows
and Linux). We call this type of enforcement generalized enforcement, and the
corresponding monitor a generalized monitor7. More formally:

Definition 2 (Generalized enforcement) Given a policy P and a monitor M
we say that P is generally soundly enforceable by M if and only if for all
targets T there exists a module P̂ ∈P, a renaming function rename, such that
(scheds(M× rename(T))|acts(P̂)) ⊆ scheds(P̂).

Different instances of Def. 1 and Def. 2 can be obtained by replacing sched-
ules with traces (trace enforcement), by fair schedules or fair traces (fair enforce-
ment), or by replacing the subset relation with other set relations (e.g., equality)
for comparing the behaviors of the monitored target with that of the policy [20,
5]. In this paper we focus on the subset and the equality relations, and refer to
the corresponding enforcement definitions, respectively, as sound (e.g., Def. 1)
and precise enforcement.

4.3 Comparing Enforcement Definitions

As a first example of meta-theoretic analysis in our framework, we compare these
two definitions. More specifically, one might expect target-specific monitors to
have an advantage in enforcement. If we have a monitor that enforces a policy
for any target (i.e., a generalized monitor) then the monitor also specifically
enforces the policy for some target T . However, a monitor that is “customized”
for enforcing a policy on a specific target (e.g., Linux) might not enforce the
policy on any target (e.g., Windows).

Proposition 1. Given a monitor M then:

1. ∀P : P is generally soundly enforceable by M⇒
∀T : P is specifically soundly enforceable on T by M, and

2. ∃P∃T : (P is specifically soundly enforceable on T by M)∧
¬(P is generally soundly enforceable by M).

7 Monitors of previous models, such as [25] and [19], are generalized monitors.

12 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Proofs are given in App. C. The proofs use several key I/O automata theo-
rems, such as associativity of composition, or that renaming of compatible com-
ponents can be done before or after composition. These theorems are included
in App. B.

Prop. 1 compares the two definitions of enforcement (Def. 1 and Def. 2)
with respect to the same monitor and shows that our definitions capture the
intuitive notions of enforcement, i.e., a monitor that enforces a policy without
being tailored for a specific target should enforce the policy on any target, while
the inverse should not be true in general.

However, we can get a deeper insight when trying to characterize the two
definitions of enforcement in general, i.e., independently of a specific monitor.
Surprisingly, in such a comparison the two definitions turn out to be equivalent.

Theorem 1. ∀P∀T :
∃M : P is specifically soundly enforceable on T by M ⇔
∃M′ : P is generally soundly enforceable by M′.

The left direction of the theorem is straightforward: any generalized monitor
can be used as a target-specific monitor. The right direction is more interesting
since it suggests, perhaps surprisingly, that it is possible to construct a gen-
eralized monitor from a target-specific one. More specifically, once we have a
monitor that enforces a policy on a specific target, we can use this monitored
target as the basis for a monitor on any other target. In that case, the only
security-relevant behavior of the system would be exhibited by the monitor (for-
mally, every action in every other target would be renamed to become security
irrelevant). For example, suppose we have different versions of a specific appli-
cation installed on each of our machines. If we find a patch (i.e., monitor) for
one version, then Thm. 1 implies that instead of finding patches for all other
versions, we can simply distribute the patched version (i.e., monitored target)
to all machines and modify the existing applications on those machines so that
their behavior is ignored. This approach might be relevant when reinstalling the
patched version of the application on top of other versions is more cost-efficient
than finding patches for every other version.

Thm. 1 holds because Def. 1 and 2 place no restrictions on renaming functions
(i.e., how a monitor is integrated with a target). In practice, this interaction
may be more constrained. Thus, one might argue that it would be more natural
to have the only-if direction of the theorem fail, since it erases the distinction
between target-specific and generalized enforcement. This happens only if we
restrict some elements of our definition of enforcement. For example, a constraint
that can erase that distinction are presented in the following theorem.

Theorem 2. ∃P∃T :(
∃M: P is specifically soundly enforceable on T by M

)
and

¬
(
∃M′: P is conditionally generally soundly enforceable by M′, i.e.,

for all targets T ′ there exists a module P̂ ∈P, and a renaming function
rename, such that:

Target-specific Run-time Enforcement 13

(C1) acts(P̂) ∩ acts(rename(T ′)) 6= ∅, or
(C2) range(rename) ⊆ acts(M′)

and (scheds(M′ × rename(T ′))|acts(P̂)) ⊆ scheds(P̂))
)

.

Note that in the last argument we assumed that although the monitors are
universally quantified they are still under our control, always trying to enforce
the property. I.e., the quantifier does not range over arbitrary monitors that do
not enforce the property if given the “opportunity” (such as exhibiting invalid
actions).

The first condition prohibits us from finding an element in the policy that
is irrelevant to the target that we are trying to monitor. For example, if we
have two modules one containing networking events (i.e., the signature of the
module contains only network related actions), and another one containing file-
related events (e.g., a signature similar to the one of our system call interposition
example), then if we want to enforce that policy on a network card (i.e., a target
that exhibits network actions but no file actions), we must use the former module.

The second condition ensures that the only way that we rename the target
is to match it with some interface of the monitor. In other words, we do not
arbitrarily rename the target, so that nobody can “listen” to its actions.

Although Thm. 2 enumerates a number of constraints under which the equiv-
alence between generalized enforcement and target specific enforcement fails, no
single restriction applies to all scenarios: for each constraint that erases the
distinction between target-specific and generalized enforcement, one can find
possible practical scenarios of policies and enforcement that the theorem should
fail, but because the constraint is not satisfied it becomes trivially true. In other
words, it seems (we conjecture) that there is no single set of constraints that al-
lows Thm. 2 to be universally quantified over all policies and targets, as Thm. 1
is. Since our goal is to introduce a framework that is general enough to accommo-
date as many practical scenarios as possible (even seemingly degenerate ones),
we rely on the monitor designer to impose appropriate restrictions on renaming
or monitors to better reflect on the (practical) monitors under scrutiny.

5 Bounds on Enforceable Policies

The definitions and abstractions described thus far enable rigorous, detailed anal-
yses of practical monitored systems, and also facilitate meta-theoretic reasoning
that furthers our understanding of general limitations of practical monitors that
fit this model. In this section we derive several such meta-theoretic results.

5.1 Auxiliary Definitions

I/O automata are input enabled—all input actions are enabled at all states.
Several arguments can be made in favor of or against input-enabledness. For
example, one might argue that input-enabledness may lead to better design of
systems because one has to consider all inputs that may be received from the

14 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

environment [21]. On the other hand, this constraint might be too restrictive for
practical systems [1].

In our context, we believe that input-enabledness is a useful characteristic,
since run-time monitors are by nature input-enabled systems: the monitor may
receive input at any time both from the target and from the environment (e.g.,
keyboard or network). However, a monitor modeled as an input-enabled automa-
ton can enforce only those policies that allow the arrival of inputs at any point
during execution. This is reasonable: a policy that prohibits certain inputs can-
not be enforced by a monitor that cannot control those inputs. We later combine
this and several other constraints to describe the lower bound of enforceability in
our setting. The formal definitions of these constraints can be found in App. B.

We say that a module (or policy) is input forgiving (respectively, internal
and output forgiving) if and only if it allows the empty sequence and allows
each valid sequence to be extended to another valid sequence by appending any
(possibly infinite) sequence of inputs.

Definition 3 A schedule module P̂ is input forgiving if and only if:
(1) ε ∈ scheds(P̂); and
(2) ∀s1 ∈ scheds(P̂) : ∀s2 � s1 : ∀s3 ∈ (input(P̂))∞ : (s2; s3) ∈ scheds(P̂).

I/O automata’s definition of executions allows computation to stop at any
point. Thus, the behavior of an I/O automaton is prefix-closed : any prefix of an
execution exhibited by an automaton is also an execution of that automaton.

Definition 4 A schedule module P̂ is prefix closed if and only if:

∀s1 ∈ Σ∞ :
(

s1 ∈ scheds(P̂)⇒ ∀s2 ∈ Σ? : s2 � s1 : s2 ∈ scheds(P̂)
)

.

These two characteristics are unsurprising from the standpoint of models
for distributed computation, but describe practically relevant details that are
typically absent from models of run-time enforcement. Our model, instead of
making assumptions that might not hold in every practical scenario, e.g., that
all actions can be mediated, takes a more nuanced view, which admits that
there are aspects of enforcement outside the monitor’s control, such as security-
relevant actions that the monitor cannot observe or mediate (labeled as internal
to a target), or the existence (or lack of) scheduling strategies that might not
favor the monitor. The definitions above help us explicate these assumptions
when reasoning about enforceable policies, as we see next.

5.2 Lower Bounds of Enforceable Policies

Another constraint that affects the lower bounds of enforceability and is seman-
tically specific to monitoring is that, in practice, a monitored system cannot
always ignore all behavior of the target application. Some realistic monitors
decide what input actions the application sees, but otherwise do not interfere
with the application’s behavior—firewalls belong to this class of monitors. In
such cases, a monitor can soundly enforce a policy only if the policy allows all

Target-specific Run-time Enforcement 15

the behaviors that the target can exhibit even if it receives no input. We call
these policies quiescent forgiving (recall the definition of a quiescent state from
§2). Modules contained is such policies are also called quiescent forgiving. This
definition captures one type of limitation that was understood to be present in
run-time monitoring, but that typically was not formally expressed. Quiescent
forgiving modules can be defined more formally as follows:

Definition 5 A schedule module P̂ is quiescent forgiving for some T if and
only if:
∀e ∈ execs(T) such that e = q0, a1, . . . , qn :(

qn ∈ quiescent(T) ∧
(
0 ≤ i < n : qi /∈ quiescent(T)

))
⇒(

sched(e)|acts(P̂)
)
∈ scheds(P̂) ∧ (∀i ∈ N : 0 ≤ i < n : (sched(q0, . . . , qi) |

acts(P̂)) ∈ scheds(P̂)).

The following theorem formalizes a lower bound: a policy that is not quiescent
forgiving, input forgiving, and prefix closed cannot be (precisely) enforced by any
monitor.

Theorem 3. ∀P : ∀P̂ ∈P : ∀T : ∀rename :
∃M : (scheds(M× rename(T))|acts(P̂)) = scheds(P̂) ⇒

P̂ is input forgiving, prefix closed, and quiescent forgiving for rename(T).

Thm. 3 reveals that monitors, regardless of their editing power, can enforce
only prefix-closed properties (e.g., safety). Thus, in our context, even the equiv-
alent of an edit monitor cannot enforce renewal properties (as opposed to [19]),
since when renewal properties are constrained by prefix closure they collapse
to safety. This is because, as mentioned above, our model of executions allows
computation to stop at any point. We believe that this is another helpful charac-
teristic of our model because it highlights that, in general, the system might stop
executing for reasons that we cannot control, e.g., a power outage. In contrast,
previous models (e.g., [19]) assumed that enabled actions of a monitor would
always be performed. In our framework, any similar guarantees about the runs
of the system are not built into the basic definitions but can be explicitly added
through fairness and other similar constraints on I/O automata [17]. This is
another instance of our framework making explicit the (practical) assumptions
and constraints that affect the enforcement of policies. Earlier results about the
enforcement powers of different types of monitors (e.g., that truncation monitors
enforce safety policies and edit monitors enforce renewal policies) are also prov-
able in our framework when we restrict reasoning to fair schedules and traces.

In practice, monitors typically reproduce at most a subset of a target’s func-
tionality. Hence, if a monitor composed with an application is to exhibit the
same range of behaviors as the unmonitored application, it will have to consult
the target application in order to generate these behaviors. In the system-call
interposition example, for instance, the monitor cannot return correct file de-
scriptors without consulting the kernel. Such monitors, which regularly consult
an application, cannot precisely enforce (with respect to schedules) arbitrary

16 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

policies even if they are quiescent forgiving, input forgiving, and prefix-closed.
This is because an input forwarded by the monitor to an application might cause
the application to execute internal or output actions (e.g., a buffer overflow) that
are not allowed by the policy and that the monitor cannot prevent, since these
are outside of the interface between the monitor and the target.

On the other hand, in practice it is also common for the monitor (or system
designer) to have some knowledge about the target, even if it does not have ac-
cess to its state. This knowledge can be exploited to use simpler-than-expected
monitors to enforce of (seemingly) complex policies. Although similar observa-
tions have been made before (e.g., program re-writing [15], non-uniformity [19],
use of static analysis [7]), our framework can be used to formally extend them,
as we demonstrate in the following section.

5.3 Policies Enforceable by Target-specific Monitors

As discussed in §3, the expressiveness of our model allows multiple ways to de-
fine monitors, e.g., a truncation monitor, that had a single natural definition in
previous models. Due to space limitations, rather than comprehensively analyz-
ing the policies enforceable by specific monitors, as done in previous work [25,
18–20, 15], we demonstrate two instances in which our framework enables for-
mal results that can be exploited by designers of run-time monitors who have
knowledge about the target application. The first (described in the remainder of
§5.3) is a novel analysis of how some knowledge of the target can compensate (in
terms of enforceability) for a narrower monitoring interface. The second focuses
on the trace-modification capabilities of monitors and illustrates how arguments
that were difficult to formalize in less expressive frameworks (e.g., [19]) can be
naturally discussed in our model.

In order to formalize this statement in our framework, we will first define
what it means for a monitored target to be input/output mediating and input
mediating. The definitions formalize the constraints on the renaming functions
of the monitored target, as they were described in Section 3.

Definition 6 A monitor M is input/output mediating iff: ∀T : ∀rename:

1. output(rename(T)) ⊆ input(M)
2. input(rename(T)) ⊆ output(M)
3. internal(rename(T)) = internal(T)
4. output(T) ⊆ output(M)
5. input(T) ⊆ input(M)

Constraints (1-3) force the renaming function to match the interfaces of the
target and the monitor, i.e., it does not allow to arbitrarily rename the target in-
terface, and ensure that all security relevant input/output behavior of the target
is completely mediated by the monitor. In particular, constraint (1) ensures that
all security relevant outputs will be received by the monitor, while constraint
(2) ensures that all the security relevant inputs to the target will come from the

Target-specific Run-time Enforcement 17

monitor. Constraint (3) ensures that the security relevant actions of the target
are not renamed so that we can capture the fact that there are actions that are
outside the monitor’s control: if we could rename them to some internal actions
of the monitor, then since the monitor controls its own internal actions, it would
be possible to not exhibit invalid internal actions. Finally, constraints (4) and
(5) ensure that the monitor has the ability to input and output the actions that
the original target could.

Similarly to Definition 6 we can define a monitored target to be input medi-
ating :

Definition 7 A monitor M is input mediating iff: ∀T : ∀rename:

1. input(rename(T)) ⊆ output(M)
2. internal(rename(T)) = internal(T)
3. output(rename(T)) = output(T)
4. input(T) ⊆ input(M)

Constraint (1) ensures that all the security relevant inputs to the target will
come for the monitor. Constraints (2) and (3) ensure that the security relevant
actions of the target are not renamed so that we can capture the fact that there
are actions that are outside the monitor’s control, this time including the output
actions of the target. Finally, constraint (4) ensures that the monitor has the
ability to input all the actions that the original target could.

In §3 we described two monitoring architectures: one in which the monitor
mediates the inputs and the outputs of the target, and another in which it
mediates just the inputs. Intuitively, an input/output-mediating monitor should
be able to enforce a larger class of policies than an input-mediating one, since
the former is able to control (potentially) more security-relevant actions than the
latter (i.e., the outputs of the target). In other words, there exist policies that
are enforceable by input/output mediating monitors, but not by input mediating
monitors. This can be expressed as follows:

Theorem 4. ∃P :
(P is generally precisely enforceable by some input/output-mediating M1)∧
¬(P is generally precisely enforceable by some input-mediatingM2), if the policy
does not reason about the communication between the monitor and the target8.

The constraint in Thm. 4 identifies those policies for which input/output mediat-
ing architectures are at least as powerful as input mediating architectures.If the
policy reasons about, and prohibits, (some) communication between the target
and the monitor, then the two architectures are equivalent.

For the proof we pick a policy whose elements (i.e., modules) disallow all
output actions (excluding the ones used for target-monitor communication) and
a target that performs only output actions. An input mediating monitor cannot

8 If we used trace enforcement, the constraint would be superfluous. We used schedules
to remain consistent with other theorems in the paper.

18 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

enforce that policy on that target since it does not mediate its output, and thus
it cannot generally enforce the policy. However, an input/output mediating mon-
itor will be able to enforce the policy, since whenever it receives any (renamed)
actions from the target, it will just suppress them.Thm. 4 establishes that some
policies are generally enforceable by input/output mediating monitors but not
by input mediating monitors. However, for some targets the two architectures
are equivalent in enforcement power. The following theorem characterizes the
targets for which this equivalence holds.

The theorem focuses on targets that previous research of run-time enforce-
ment (e.g., [15, 19]) has focused on, which are expected to run, and interact with
their environment, for infinitely long, such as operating systems and graphical
user interfaces. Moreover, it assumes monitors that have both static and dy-
namic knowledge about the target, i.e., the monitor knows the future possible
behaviors of the target, along with the state that the target is currently in.

Theorem 5. ∀P : ∀T :
P is specifically precisely enforceable on T by some input/output-mediating M1

iff P is specifically precisely enforceable on T by some input-mediating M2

given that:
(C1) P does not reason about the communication between the monitor

and the target9,
(C2) ∀P̂ ∈P : scheds(P̂) is quiescent forgiving for T ,
(C3) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T), i.e., the policy does not allow schedu-

les that cannot be exhibited by the target, and
(C4) ∀e ∈ execs(T) : if e has two quiescent states separated by a sequence of

local actions, and any prefix of e ending between those states violates P,
then all prefixes of e ending between those states violate P and the two
quiescent states are the same.

Constraint C2 ensures that whatever the target chooses to output in the be-
ginning of its execution, and until it blocks for some input, obeys the policy.
Constraint C3 ensures that the input/output-mediating monitor does not have
an “unfair” advantage over the input mediating one, just because the policy
requires from the monitor to output actions, even if the target would never per-
form them. Constraint C4 ensures that whenever the target receives some input
(from the monitor), then no behavior that it exhibits (until it blocks to wait for
another input) will violate the policy, or, if it does, then that behavior can be
suppressed without affecting the target’s future behavior.

The above theorem characterizes equivalence of enforcement for an impor-
tant class of targets and monitors. However, if we want to reason about the
general case, i.e, targets that might not execute “forever” and might not inter-
act with their environment infinitely long, and monitors that do not have any

9 As before, if we used trace enforcement, the constraint would be superfluous; thus
the constraint is more of a technical issue rather a key idea in the theorem. We used
schedules to remain consistent with other theorems in the paper.

Target-specific Run-time Enforcement 19

dynamic information about the (execution of) target, then the following theorem
characterizes the constraints for which the equivalence holds.

Theorem 6. ∀P : ∀T :
P is specifically precisely enforceable on T by some input/output-mediating M1

iff P is specifically precisely enforceable on T by some input-mediating M2

given that:
(C1) P does not reason about the communication between the monitor

and the target,
(C2) ∀P̂ ∈P : scheds(P̂) is quiescent forgiving for T ,
(C3) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T), and
(C4) ∀P̂ ∈P: ∀s ∈ scheds(T) :

s /∈ scheds(P̂) ⇒ ∃s′ � s :
(s′ ∈ scheds(P̂)) ∧ (s′ = s′′; a) ∧ (a ∈ input(T))
∧ (∀t � s′: t ∈ scheds(T) ⇒ t /∈ scheds(P̂)).

Thm. 5 and Thm. 6 are an illustration of how our framework can help in
making sound decisions for designing and implementing run-time monitors in
practice. For example, suppose we have a Unix kernel and want to enforce the
policy that that secret file cannot be (a) deleted or (b) displayed to guest users.
A monitor designer who wants to precisely enforce that policy cannot in general
use an input-mediating monitor: although it can enforce (a) by not forwarding
commands like “rm secret-file”, it cannot enforce (b), because it does not know
whether the kernel can, for example, correctly identify guest users and not dis-
play secret files to them. However, the designer can check if the specific kernel
meets the constraints of Thm. 5. If it does, e.g., the kernel does not display
any secret files while booting (i.e., C2), and does not display secret files to guest
users, e.g., through a correct access-control mechanism (i.e., C4), then an input-
mediating monitor suffices to enforce the policy. The correctness of such design
choices might not always be obvious, and the above example demonstrates how
our framework can aid in making more informed decisions. Moreover, such deci-
sions can have benefits both in efficiency (by not monitoring the kernel’s output
sequence at run time), and in security (since the TCB/attack surface of the
monitor is smaller).

Similarly to identifying constraints under which seemingly different monitor-
ing architectures become equivalent given some knowledge about the intended
target, we can identify constraints under which monitors of different enforcement
capabilities are equivalent.

Thm. 7 explicates the constraints under which a target-specific truncation
monitor is equivalent to a target-specific edit monitor. We remind the reader that
these monitors are not generally equivalent [19]. Before presenting the theorem,
we will provide the proof of a lemma, which formalizes in our formalism that
truncation monitors can enforce safety properties. This lemma is being used in
the proof of Thm. 7.

20 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Lemma 1. Given a schedule module P̂ and a target T , then there exists a trun-
cation monitorMT such that P̂ is specifically precisely enforceable on T by MT

if:
(C1) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T),
(C2) ∀t ∈ scheds(T) :

t /∈ scheds(P̂) ⇒ ∃s � t :
∀k ∈ (acts(T) ∪ acts(P̂))ω : s ≺ k :
k ∈ scheds(T)⇒ k /∈ scheds(P̂), and

(C3) P̂ does not reason about the communication between the target and the
monitor and the internal actions of the target.

Now, we present the theorem that explicates the constraints under which a
target-specific truncation monitor is equivalent to a target-specific edit monitor.

Theorem 7. ∀P: ∀T : P is specifically precisely enforceable on T by some
truncation monitor M1 iff P is specifically precisely enforceable on T by some
edit monitor M2, if: ∀P̂ ∈P :

(C1) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T),
(C3) ∀P̂ ∈P: ∀t ∈ scheds(T) :

t /∈ scheds(P̂) ⇒ ∃s � t :
∀k ∈ (acts(T) ∪ acts(P̂))ω : s ≺ k :
k ∈ scheds(T)⇒ k /∈ scheds(P̂), and

(C3) P̂ does not reason about the communication between the target and the
monitor and the internal actions of the target.

6 Related Work

The first model of run-time monitors, security automata, was based on Büchi
Automata and introduced by Schneider [25]. Since then, several similar models
have been proposed that extend or refine the class of enforceable policies based
on the enforcement and computational powers of monitors (e.g., [19, 11, 4, 10, 3]).
Contrary to these models, we focus on modeling, in addition to the monitors,
the target and the environment that monitors communicate with; this allows us
to extend previous analyses of enforceable policies in ways that were out of the
scope of the previous frameworks [20].

Hamlen et al. described a model based on Turing Machines [15], with which
they compared the classes of policies enforceable by several types of enforcement
mechanisms, such as static analysis and inlined monitors. The main differences
between this model with ours is that we model explicitly the communication
of the monitor with the target and the environment, and we do not consider
monitoring through rewriting the target application.

Recent work has revised these models or adopted alternate ones, such as the
Calculus of Communicating Systems (CCS) [24] and Communicating Sequen-
tial Processes (CSP) [6], to more conveniently reason about applications, the
interaction between applications and monitors, and enforcement in distributed

Target-specific Run-time Enforcement 21

systems. An example of revising existing models is Ligatti and Reddy’s Manda-
tory Results Automata, which model the (synchronous) communication between
the monitor and the target [20]. MRA’s, however, do not model the target explic-
itly, and thus results about enforceable policies in target-specific environments
might be difficult to derive.

Among the works building on CCS or CSP is Martinelli and Matteucci’s
model of run-time monitors based on CCS [23]. Like ours, their model captures
the communication between the monitor and the target, but their main focus
is on synthesizing run-time monitors from policies. In contrast, we focus on a
meta-theoretical analysis of enforcement in a more expressive framework.

Basin et al. proposed a practical language, based on CSP and Object-Z (OZ),
for specifying security automata [2]. This work focuses on the synchronization
between a single monitor and target application, although the language is expres-
sive enough to capture many other enforcement scenarios. Our work is similar to
Basin’s, however we focus more on showing how such a more expressive frame-
work can be used to derive meta-theoretical results on enforceable policies in
different scenarios, instead of focusing on the (complementary aspect) of show-
ing how to faithfully translate and model practical scenarios in such frameworks.

Gay et al. introduced service automata, a framework based on CSP for en-
forcing security requirements in distributed systems at run time [13]. Although
CSP provides the abstractions necessary to reason about specific targets and
the communication with the monitor, such investigation and analysis is not the
focus of that work.

7 Conclusion

Formal models for run-time monitors have helped improve our understanding
of the powers and limitations of enforcement mechanisms [25, 19], and aided
in their design and implementation [9, 14]. However, these models often fail to
capture many details and complexity relevant to real-world run-time monitors,
such as how monitors integrate with targets, and the extent to which monitors
can control targets and their environment.

In this paper, we propose a general framework, based on I/O automata, for
reasoning about policies, monitoring, and enforcement. This framework provides
abstractions for reasoning about many practically relevant details important for
run-time enforcement, and, in general, yields a richer view of monitors and ap-
plications than is typical in previous analyses of run-time monitoring. Moreover,
we show how this framework can be used for meta-theoretic analysis of enforce-
able security policies. In particular, we derive results that describe lower bounds
on enforceable policies that are independent of the particular choice of monitor
(Thm. 3). We also identify constraints under which monitors with different mon-
itoring and enforcement capabilities (i.e., monitors that see only a subset of the
target’s actions; and monitors that have more or less ability to correct a target’s
invalid behavior) can enforce the same classes of policies (Thm. 5 and 7).

22 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European software engineering conference. pp. 109–120 (2001)

2. Basin, D., Olderog, E.R., Sevinc, P.E.: Specifying and analyzing security automata
using CSP-OZ. In: Proceedings of the 2nd ACM symposium on Information, com-
puter and communications security. pp. 70–81. ASIACCS ’07 (2007)

3. Basin, D.A., Jugé, V., Klaedtke, F., Zalinescu, E.: Enforceable security policies
revisited. In: POST. pp. 309–328 (2012)

4. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? Inter-
national Journal of Information Security pp. 1–16 (2011)

5. Bishop, M.: Computer Security: Art and Science. Addison-Wesley Professional
(2002)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31, 560–599 (June 1984)

7. Chabot, H., Khoury, R., Tawbi, N.: Extending the enforcement power of truncation
monitors using static analysis. Computers and Security 30(4), 194 – 207 (2011)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: IEEE Computer Security
Foundations Symposium (2008)

9. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Workshop on New security paradigms (2000)

10. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? International Journal on Software Tools for Technology Transfer (STTT)
pp. 1–34 (2011)

11. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings
of the 2004 IEEE Symposium on Security and Privacy. pp. 43–55 (2004)

12. Garfinkel, T.: Traps and pitfalls: Practical problems in in system call interposition
based security tools. In: Network and Distributed Systems Security Symposium
(2003)

13. Gay, R., Mantel, H., Sprick, B.: Service automata. In: 8th International Workshop
on Formal Aspects of Security and Trust (2011)

14. Hamlen, K.: Security policy enforcement by automated program-rewriting. Ph.D.
thesis, Cornell University (2006)

15. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1), 175–205 (2006)

16. H.Salzer, J., Schroeder, M.D.: The protection of information in computer systems.
In: Fourth ACM Symposium on Operating System Principles (Mar 1973)

17. Kwiatkowska, M.: Survey of fairness notions. Information and Software Technology
31(7), 371 – 386 (1989)

18. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. In: European Symposium on Research in Computer Security (ES-
ORICS). vol. 3679, pp. 355–373 (2005)

19. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security 12(3) (2009)

20. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: European
Symposium on Research in Computer Security (ESORICS) (2010)

21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)

22. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: ACM Symposium on Principles of Distributed Computing (1987)

Target-specific Run-time Enforcement 23

23. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
Electron. Notes Theor. Comput. Sci. 179, 31–46 (July 2007)

24. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York, Inc.
(1982)

25. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

26. Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. Master’s
thesis, Dept. of Electrical Engineering and Computer Science, MIT (1987)

27. Wagner, D.A.: Janus: an approach for confinement of untrusted applications. Tech.
Rep. UCB/CSD-99-1056, EECS, University of California, Berkeley (1999)

Appendix A. I/O Automata Formal Definitions

We assume universe of program actions denoted as Σ .

Definition 8 (Action Signature) An action signature S is a triple of three
disjoint sets of actions. The disjoints sets of a signature are input, output,
and internal actions (denoted as input(S), output(S), and internal(S)). The
external actions external(S)=input(S) ∪ output(S) model the interaction of
the automaton with the evironment. Local(S)=internal(S) ∪ output(S) are the
local actions that are under the automaton’s control.

Definition 9 (I/O automata) An I/O automaton is defined by the following
components:

1. an action signature, sig(A);

2. a (possibly infinite) set of states, states(A);

3. a nonempty set of start states, start(A) ⊆ states(A);

4. a transition relation, trans(A) ⊆ states(A) × acts(A) × states(A), with
the property that for every state q and input action a there is a transition
(q , a, q ′) ∈ trans(A); and

5. an equivalence relation Tasks(A) partitioning the set Local(A) into at most
a countable number of equivalence classes.

Definition 10 (Executions) An execution e of A is either a finite sequence,
q0, a1, q1, a2, . . . , ar, qr, or an infinite sequence q0, a1, q1, a2, . . . , ar, qr, . . . of al-
ternating states and actions such that (qk, ak+1, qk+1) ∈ trans(A) for k ≥ 0.

Definition 11 (Schedules) A schedule s of an execution e of A denoted by
sched(e), is the subsequence of e consisting of only actions.

Definition 12 (Traces) A trace t of an execution e (or schedule s) of an I/O
automaton A, denoted by trace(e) (or trace(s)), is defined as the subsequence
of e (or s) consisting of all the external actions.

24 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Definition 13 (Execution module) An execution module E consists of a set
states(E), an action signature sig(E) and a set execs(E) of executions. We will
denote the set of schedules of E with scheds(E), and the set of traces or E
with traces(E). An execution module E is said to be an execution module of an
automaton A if E and A have the same states, the same action signature, and
the executions of E are a subset of the executions of A.

Definition 14 (Schedule module) A schedule module S consists of an action
signature sig(S) together with a set of schedules scheds(S).

Definition 15 (Trace module) A trace module T consists of an action signature
sig(T) together with a set of traces scheds(T).

Definition 16 (Parallel composition of I/O automata) When composing au-
tomata Si, where i ∈ I, or modules, their signatures are called compatible if
their output actions are disjoint and the internal actions of each automaton are
disjoint with all actions of the other automata. More formally, The actions sig-
natures Si : i ∈ I or called compatible if for all i, j ∈ I:

1. output(Si) ∩ output(Sj) = ∅
2. internal(Si) ∩ acts(Sj) = ∅

When the signatures are compatible we say that the corresponding automata
and modules are compatible too.

The composition A =
∏
i∈I Ai of a set of compatible automata {Ai : i ∈ I}

is defined as:

1. states(A) =
∏
i∈I states(Ai)

2. start(A) =
∏
i∈I start(Ai),

3. sig(A) =
∏
i∈I sig(Ai) =(

output(A) = ∪i∈Ioutput(Ai),

internal(A) = ∪i∈I internal(Ai),

input(A) = ∪i∈I input(Ai)− ∪j∈Ioutput(Aj)
)

,

4. trans(A) is equal to the set of triples (q , a, q ′) such that for all i ∈ I
(a) if a ∈ acts(Ai) then (qi, a, q

′
i) ∈ trans(Ai), and

(b) if a 6∈ acts(Ai) then qi = q ′i
5. Tasks(A) = ∪i∈ITasks(Ai)

Definition 17 (Parallel composition of modules) Similarly to the composition
of automata, we can define the composition of execution modules. Specifically,
given a countable collection of compatible execution modules {Ei, i ∈ I} we define
the composed execution module E =

∏
i∈I Ei as follows. The states of E are∏

i∈I states(Ei), and the action signature
∏
i∈I sig(Ei). Given a sequence x =

q0a1q1 . . . of states and actions of E we define x|Ei to be the sequence obtained
by removing ajqj if aj is not an action of Ei, and replacing the remaining qj

Target-specific Run-time Enforcement 25

with qj |Ei. The executions of E are those sequences q0a1q1 . . . such that for every
i ∈ I we have that x|Ei is an execution of Ei, and that qj−1|Ei = qj |Ei whenever
aj is not an action of Ei.

Given a countable collection of compatible schedule (or trace) modules {Si, i ∈
I} we define the composed execution module S =

∏
i∈I Si:

1. sig(E) =
∏
i∈I sig(Si),

2. execs(E) is the set of executions s such that the subsequence s ′ of s consisting
of actions of Si, is a schedule of Si for every i ∈ I.

The I/O automata definition also includes the equivalence relation Tasks(A).
This is used in the definition of fairness, which essentially says that the automa-
ton will give fair turns to each of its tasks while executing.

Definition 18 (Fairness) A task C is enabled in a state q if some action in C
is enabled in q.

An execution e of an I/O automaton A is said to be fair if for each class C
of Tasks(A): (1) if e is finite, then C is not enabled in the final state of e, or (2)
if e is infinite, then e contains either infinitely many events from C or infinitely
many occurrences of states in which C is not enabled.

Fairness abstracts the need for modeling a scheduler in the system. Specifi-
cally, when reasoning about practical systems, instead of explicitly modeling a
scheduler one can simply reason about a fair version of the system. The type of
fairness that I/O automata define is called “weak fairness, and is only one of the
many different types of fairness [17].

Given an automaton or a module A we denote the sets of fair executions,
schedules and traces by fairexecs(A), fairscheds(A) and fairtraces(A).

Definition 19 (Hiding) If S is a signature and Φ ⊆ output(S), then hideΦ(S)
is defined to be the new signature S′, where input(S′) = input(S), output(S′) =
output(S)−Φ, and internal(S′) = internal(S)∪Φ. Given an I/O automaton A
and Φ ⊆ output(A), hideΦ(A) is the automaton A′ obtained by replacing sig(A)
with sig(A′) = hideΦ(sig(A)).

Definition 20 (Renaming) An action mapping (or renaming) f is a total in-
jective mapping between sets of actions. Such a renaming is said to be applicable
to an automaton if the domain of f contains the actions of the automaton. If the
renaming f is applicable to an automaton A, then the automaton rename(A) is
the automaton with the states and start states of A; with the input, output and
internal actions rename(input(A)), rename(output(A)), rename(internal(A)) re-
spectively; with the transition relation {(q , rename(a), q ′) : (q , a, q ′) ∈ trans(A)};
and the equivalence relation {(rename(a), rename(a ′)) : (a, a ′) ∈ tasksA}.

Hiding and renaming for modules are defined similarly to Definition 19 and
Definition 20.

26 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

The following definition considers how renaming interacts with composition.
It reveals the constraints under which when composing renamed component
automata, there is some behavior-preserving way to rename the composition
of the components, and when two component automata communicate on some
action a and we rename their composition, there exists a behaviorally equivalent
composed automaton, in which the components are renamed.

Definition 21 (Composition of renaming functions) A collection {fi : i ∈ I} of
action mappings is compatible if for all actions ai and aj we have fi(ai) = fj(aj)
iff ai = aj.

We define the composition of collection {fi : i ∈ I} of compatible action
mappings to be the action mapping having as its domain the union of the domains
of the fi, and mapping the action a to fi(a) if a is in the domain of fi. The fact
that fi are compatible ensures that f is well defined.

Appendix B. I/O Automata Theorems

This appendix contains the formal expression of a collection of several important
I/O automata theorems. Their discussion and proofs can be found in [22, 26, 21].

Theorem 8. An execution of a composition induces executions of the compo-
nent automata
Let {Ai}i∈I be a collection of compatible automata and let A =

∏
i∈I Ai. If

α ∈ execs(A) then α|Ai ∈ execs(Ai) for every i ∈ I. Moreover, the same results
holds for scheds(), traces() and their fair versions.

Theorem 9. Executions of component automata can often be pasted together to
form an execution of the composition
Let {Ai}i∈I be a collection of compatible automata and let A =

∏
i∈I Ai. Suppose

αi is an execution of Ai for every i ∈ I, and suppose β is a sequence of actions in
acts(A) such that β|Ai = sched(αi) for every i ∈ I. Then there is an execution
α of A such that β = sched(α) and α=α|Ai for every i ∈ I. Moreover the
same holds for external() and traces() instead of acts() and sched(), and for
fair executions.

Theorem 10. Schedules and traces of component automata can be pasted to-
gether to form schedules and traces of the composition
Let {Ai}i∈I be a collection of compatible automata and let A =

∏
i∈I Ai. Let β

be a sequence of actions in acts(A). If β|Ai ∈ scheds(Ai) for every i ∈ I, then
β ∈ scheds(A).Moreover the same holds for external() and traces() instead of
acts() and sched(), and for their fair versions.

Theorem 11. Composition of modules correspond to composition of automata
Let {Ai}i∈I be a collection of compatible automata. Then execs(

∏
i∈I Ai) =∏

i∈I execs(Ai), scheds(
∏
i∈I Ai) =

∏
i∈I scheds(Ai), traces(

∏
i∈I Ai) =

∏
i∈I traces(Ai),

fairexecs(
∏
i∈I Ai) =

∏
i∈I fairexecs(Ai), fairscheds(

∏
i∈I Ai) =

∏
i∈I fairscheds(Ai),

fairtraces(
∏
i∈I Ai) =

∏
i∈I fairtraces(Ai). Moreover the same hold for execu-

tion, schedule and trace modules.

Target-specific Run-time Enforcement 27

Theorem 12. Commutativity and Associativity of composition of single com-
ponents
Let A, B and C I/O automata. Then:

1. A×B = B ×A
2. (A×B)× C = A× (B × C) = A×B × C

Theorem 13. Commutativity, Associativity and Congruence of automata and
modules
Let A =

∏
iAi, B =

∏
iBi and C =

∏
i Ci and D =

∏
iDi where Ai, Bi, Ci and

Di are either I/O automata or modules. Then:

1. A×B = B ×A
2. (A×B)× C = A× (B × C) = A×B × C
3. if A = B and C = D, then A×C = B ×D whenever A×B and C ×D are

defined.

Theorem 14. Hiding on Automata passes to modules
For all automata A, execution modules E, schedule modules S and sets of actions
Σ:

1. execs(hideΣ(A)) = hideΣ(execs(A))
2. scheds(hideΣ(E)) = hideΣ(scheds(E))
3. traces(hideΣ(S)) = hideΣ(traces(S))

Notice that the last two versions, also hold for automata besides execution and
trace modules.

Theorem 15. Hiding of composition corresponds to hiding of components
Let {Mi : i ∈ I} be a collection of compatible automata or modules, and let
{Σi : i ∈ I} be a collection of sets of actions. If acts(Mi) and Σj are disjoint
for all i 6= j then: hide∪iΣi

(
∏
i∈IMi) =

∏
i∈I hideΣi

(Mi) .

Theorem 16. Renaming of composition corresponds to renaming of compo-
nents
Let {Mi : i ∈ I} be a collection of compatible automata or modules, and let
{renamei : i ∈ I} be compatible action mappings. If renamei is applicable to Mi

for every i ∈ I, then (
∏
i∈I renamei)(

∏
i∈IMi) =

∏
i∈I renameiMi.

Theorem 17. Renaming on Automata passes to modules
Let rename be a renaming applicable to the automaton A, execution module E
and schedule module S:

1. execs(rename(A)) = rename(execs(A))
2. scheds(rename(E)) = rename(scheds(E))
3. traces(rename(S)) = rename(traces(S)).

Theorem 18. Sequence of hiding and renaming does not matter
hidef(Σ)(f(M)) = f(hideΣ(M)) for any automaton or module M and applicable
renaming f .

28 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Appendix C. Proofs of Theorems

Proposition 1. Given a monitor M then:

1. ∀P : P is generally soundly enforceable by M⇒
∀T : P is specifically soundly enforceable on T by M, and

2. ∃P∃T : (P is specifically soundly enforceable on T by M)∧
¬(P is generally soundly enforceable by M).

Proof. For (1), we assume that we have an arbitrary P that is generally soundly
enforceable by some M. By Def. 2, this means that:

for all targets T there exists a module P̂ ∈P, a renaming function

rename, such that (scheds(M×rename(T))|acts(P̂)) ⊆ scheds(P̂). (A)

We have to show that for all targets T ′, P is specifically soundly enforceable
on T ′ by M, which by Def. 1 means that we have ti show that for some arbi-
trary T ′ there exists a module P̂ ′ ∈P, a renaming function rename′, such that
(scheds(M× rename′(T ′))|acts(P̂ ′)) ⊆ scheds(P̂ ′).

By (A) we know that there are P̂ and rename that correspond to any T ,
and thus for T ′. Use the corresponding choices of P̂ and rename for T ′ and our
claim follows from (A) immediately.

For (2), we must exhibit a P and a T such that P is specifically soundly
enforceable on T by M and it is not the case that P is generally soundly
enforceable by M.

Let P = {scheds(M) ∪ {〈a〉 | a ∈ Σ − acts(M)}}. Also, let T be the
trivial automaton, i.e., the I/O automaton with the empty set for actions and
just a single start state. Thus, scheds(T) = {ε}. It is easy to see that P is
specifically soundly enforceable on T byM, i.e., that there exists a module P̂ ∈
P, a renaming function rename, such that (scheds(M× rename(T))|acts(P̂)) ⊆
scheds(P̂). P contains only one element, so P̂ = scheds(M) ∪ {〈a〉 | a ∈ Σ −
acts(M)} which contains all schedules thatM can produce. Moreover, let rename
be the identity function. From Thm. 8 we know that scheds(M×rename(T)) will
be the pasting of the schedules of the two components, and since the schedules of
the component rename(T) is just the empty sequence, scheds(M×rename(T)) =
scheds(M). So we have to show that scheds(M)|acts(P̂)) ⊆ scheds(M) ∪ {〈a〉 |
a ∈ Σ − acts(M)}, which is trivially true.

To prove the second conjunct of the claim, i.e., that it is not the case that P is
generally soundly enforceable byM, pick any T ′ that has as a signature only
one output action, and produces some finite sequence of repetitions of this action
of length greater than 1; i.e., scheds(T ′) = {(a; a)n | n ≥ 1 and a ∈ output(T ′)}.
Note that no matter how we rename T ′, its renamed output actions will still be
an action of P̂ , since we added all actions that are not actions of the monitor
(Σ−acts(M)). Using Thm. 8 again, we see that the schedules of the composition
will contain schedules of the component rename(T ′), which means that there

Target-specific Run-time Enforcement 29

is some sequence s = (a; a) ∈ scheds(T ′), where a ∈ acts(rename(T ′)). But
s /∈ scheds(P̂) because s /∈ scheds(M) (since M and T ′ have disjoint sets of
output actions by definition of composition of I/O automata), and s /∈ {〈a〉 | a ∈
Σ − acts(M)} since s has length > 1. This concludes the proof of our claim.

ut
Theorem 1. ∀P∀T :

∃M : P is specifically soundly enforceable on T by M ⇔
∃M′ : P is generally soundly enforceable by M′.

Proof. (⇒ direction) We assume that we are given a policy P and a target
T such that P is soundly enforceable on T by some monitor M. That is, we
assume that there exists a module P̂ ∈ P, a renaming function rename, and
a hiding function hide for some set of actions Φ such that (scheds(hideΦ(M×
rename(T)))|acts(P̂)) ⊆ scheds(P̂).

We have to show that P is generally soundly enforceable by some monitor
M′, or, by definition, that there exists monitor M′ such that for all targets T ′
there exists a module P̂ ′ ∈P, a renaming function rename′, and a hiding func-
tion hide′ such that (scheds(hide′Φ(M′ × rename′(T ′)))|acts(P̂ ′)) ⊆ scheds(P̂ ′).

Let:

1. M′ = hideΦ(M× rename(T)),

2. P̂ ′ = P̂ ,

3. rename′ be a function that maps a to a′ where a ∈ acts(T ′), a′ /∈ acts(P̂),

4. hide′Φ = hide∅.

Now it is easy to see that:
(scheds(hide′Φ(M′ × rename′(T ′)))|acts(P̂ ′)) ⊆ scheds(P̂ ′)

⇔ (scheds(hide∅(hideΦ(M× rename(T)) × rename′(T ′)))|acts(P̂)) ⊆ scheds(P̂) (by
substitution)
⇔ (scheds(hideΦ(M× rename(T))× rename′(T ′))|acts(P̂)) ⊆ scheds(P̂) (by definition
of hiding and the fact that Φ = ∅)
⇔ (scheds(hideΦ(M×rename(T)))|actsP̂)×(scheds(rename′(T ′))|acts(P̂)) ⊆ scheds(P̂)
(by Theorems 5 and 7 in App. C)
⇔ (scheds(hideΦ(M× rename(T)))|actsP̂) × ε ⊆ scheds(P̂) (by definition of rename′

and operator |)
⇔ (scheds(hideΦ(M× rename(T)))|actsP̂) ⊆ scheds(P̂) (by Theorem 7 in App. C)

Note that the last line is true from our assumption, so we are done.

(⇐ direction) We assume that we are given a policy P and a target T . More-
over we assume that P is generally soundly enforceable by some monitor M′.
That is, by definition, we assume that for all targets T there exists a mod-
ule P̂ ∈ P, a renaming function rename, and a hiding function hide such that
(scheds(hideΦ(M× rename(T)))|acts(P̂)) ⊆ scheds(P̂)

We have to show that P is soundly enforceable on T by some monitor
M. That is, we have to show that there exists a module P̂ ′ ∈ P, a renaming

30 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

function rename, and a hiding function hide for some set of actions Φ such that
(scheds(hideΦ(M× rename(T)))|acts(P̂ ′)) ⊆ scheds(P̂ ′).

This is trivially true, since we can use the module, renaming function, hiding
function, and monitor from our assumptions. Since the subset relationship is
satisfied for every target, it is also trivially satisfied by T .

ut
Theorem 2. ∃P∃T :(
∃M: P is specifically soundly enforceable on T by M

)
and

¬
(
∃M′: P is conditionally generally soundly enforceable by M′, i.e.,

for all targets T ′ there exists a module P̂ ∈P, and a renaming function
rename, such that:

(C1) acts(P̂) ∩ acts(rename(T ′)) 6= ∅, or
(C2) range(rename) ⊆ acts(M′)

and (scheds(M′ × rename(T ′))|acts(P̂)) ⊆ scheds(P̂))
)

.

Proof. To prove the theorem under (C1), pick P = {P̂}, where acts(P̂) = {a},
and scheds(P̂) = {ε}. To prove that there ∃T and ∃M such that P is specifi-
cally soundly enforceable on T byM, simply pick any compatible T andM
such that scheds(T) = scheds(M) = {ε} (any I/O automata with disjoint start
states from the rest of the states will do). Then, by using as renaming function
the identity function it is easy to see that (scheds(M′× rename(T ′))|acts(P̂)) ⊆
scheds(P̂)).

Now we have to show that it is not the case that ∃M′ such that for all tar-
gets T ′ there exists a module P̂ ∈ P, and a renaming function rename, such
that acts(P̂) ∩ acts(rename(T ′)) 6= ∅ and (scheds(M′ × rename(T ′))|acts(P̂)) ⊆
scheds(P̂))

)
. In other words, we have to show that ∀M′, ∃T ′ such that ∀P̂ ∈P,

and ∀rename, if acts(P̂)∩ acts(rename(T ′)) 6= ∅ then (scheds(M′ × rename(T ′))
|acts(P̂)) ⊃ scheds(P̂))

)
. Pick any T ′ which contains only one internal action

and exhibits finite sequences of it, i.e., input(T ′) = output(T ′) = ∅, internal(T ′) =
{x}, and scheds(T ′) = {a? | a ∈ internal(T ′)}. Then for any renaming function,
scheds(rename(T ′)) 6= ∅. Let any s that belongs to scheds(rename(T ′)), with
|s| > 1. Then, because the internal actions of the renamed target are disjoint
from the monitor’s actions (by composition of I/O automata), by Thm. 8, s ∈
scheds(M′×rename(T ′)). But, we assumed that acts(P̂)∩acts(rename(T ′)) 6= ∅,
i.e., s|acts(P̂) = s, and that the only element of P is P̂ which contains only the
empty sequence. Thus, s /∈ scheds(P̂). But because ε ∈ scheds(M′×rename(T ′)),
we derive that (scheds(M′ × rename(T ′))|acts(P̂)) ⊃ scheds(P̂))

)
.

To prove the theorem under (C2), pick P = {P̂}, where acts(P̂) = Σ,
input(P̂) = ∅, and scheds(P̂) = {〈a〉 | a ∈ acts(P̂)}, i.e., it contains all sequences
of length one. To prove that there ∃T and ∃M such that P is specifically

Target-specific Run-time Enforcement 31

soundly enforceable on T byM, simply pick T as the trivial automaton, and
M such that acts(M) = {a}, for some a ∈ Sigma, and scheds(M) = {〈a〉 |
a ∈ acts(M)} (any I/O automaton with two states and one transition suffices).
Then, by using as renaming function the identity function it is easy to see that
(scheds(M′ × rename(T ′))|acts(P̂)) ⊆ scheds(P̂)).

Now we have to show that it is not the case that ∃M′ such that for all
targets T ′ there exists a module P̂ ∈ P, and a renaming function rename,
such that range(rename) ⊆ acts(M′) and (scheds(M′× rename(T ′))|acts(P̂)) ⊆
scheds(P̂))

)
. In other words, we have to show that ∀M′, ∃T ′ such that ∀P̂ ∈P,

and ∀rename, if range(rename) ⊆ acts(M′) then (scheds(M′ × rename(T ′))
|acts(P̂)) ⊃ scheds(P̂))

)
. Pick a T ′ which contains as internal actions the ac-

tions that the monitor does not contain in its signature and exhibits finite se-
quences of them, i.e., input(T ′) = output(T ′) = ∅, internal(T ′) = Σ−acts(M),
and scheds(T ′) = {a? | a ∈ internal(T ′)}. Then for any renaming function,
scheds(rename(T ′)) 6= ∅. Let any s that belongs to scheds(rename(T ′)), with
|s| > 1. Then, because the internal actions of the renamed target are dis-
joint from the monitor’s actions (by composition of I/O automata), by Thm. 8,
s ∈ scheds(M′ × rename(T ′)). But, we assumed that the only element of P is
P̂ which contains only one-element sequences. Moreover, since we assumed that
range(rename) ⊆ acts(M′), and acts(M′) ⊆ acts(P̂), then s|acts(P̂) = s. Thus,
s /∈ scheds(P̂). Also, note that T ′ is producing all one-element sequences that
the monitor cannot produce, andM produces all one element sequences that the
property requires, since the property does not contain input actions, and thus
all the sequences can be under the monitor’s control. Thus, the superset relation
holds.

ut
Theorem 3. ∀P : ∀P̂ ∈P : ∀T : ∀rename :
∃M : (scheds(M× rename(T))|acts(P̂)) = scheds(P̂) ⇒

P̂ is input forgiving, prefix closed, and quiescent forgiving for rename(T).

Proof. We fix a policy P, a module P̂ , a hiding function hideΦ(), and a renaming
function rename(), and we assume that there exists a monitor M such that(

scheds(hideΦ(M× rename(T)))|acts(P̂) ⊆ scheds(P̂)
)

. We have to show that

P̂ is input forgiving, prefix closed, and quiescent forgiving for rename(T).
For the sake of contradiction, assume that P̂ is not input forgiving, or not

prefix closed, or not quiescent forgiving for rename(T).

Case: P̂ is not input forgiving:

Since P̂ is not input forgiving, then either ε /∈ scheds(P̂) or there exists an
s1 ∈ scheds(P̂), a finite prefix s2 of s1, and some sequence of input actions s3
such that (s2; s3) /∈ scheds(P̂). If we assume the first case of ε /∈ scheds(P̂) we
derive a contradiction since the empty sequence belongs to the schedules of any
I/O automaton by definition of executions and schedules of I/O automata. If we

32 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

assume the latter case, then we know that s2 ∈ scheds(hideΦ(M× rename(T)))
by assumption. Let qn be the state that the monitored target is at after executing
the last action of s2. By definition, every state of an I/O automaton is input en-
abled. Thus qn is input enabled, which means that ∀s ′ ∈ (input(hideΦ(M ×
rename(T))))∞: (s2; s ′) ∈ scheds(hideΦ(M × rename(T))) (remember we as-
sume no fairness thus it does not matter whether qn is quiescent or not). But
for s ′ = s3 we get that (s2; s3) ∈ scheds(hideΦ(M × rename(T))) and that
(s2; s3) /∈ scheds(P̂) which contradicts our assumption. Thus, in both cases we
derived a contradiction, and thus P̂ must be input forgiving.

Case: P̂ is not prefix closed:

Since P̂ is not prefix closed, then there exists some schedule s1 that belongs
to the schedules of P̂ , but there exists some prefix s2 of s1 that does not belong
to the schedule of P̂ , or more formally: ∃s1 ∈ Σ∞ :

(
s1 ∈ scheds(P̂)

)
∧
(
∃s2 ∈

Σ? : s2 � s1 : s2 /∈ scheds(P̂)
)
.

Without loss of generality, assume s2 is the longest strict prefix of s1, i.e.,
it is the longest prefix of s1 that does not belong to the schedules of P̂ , and
that all prefixes of s2 belong to the schedules of P̂ . If s2 = a1, . . . , an−1, an
then let s−2 = a1, . . . , an−1 and s+2 = a1, . . . , an−1, an, an+1 � s1. We know that

s−2 ∈ scheds(P̂) by assumption, s+2 ∈ scheds(P̂) because if it was not in the
schedules of the property this would be the longest invalid prefix of s1 which
contradicts our choice of s2, and thus by assumption they both also belong to
the schedules of the monitored target hideΦ(M×rename(T)). Let qn be the state
that the monitored target is after executing an−1, and qn+1 be the state before
executing an+1. In order for the automaton to transition from qn to qn+1 it must
execute some an. But then s−2 ; an = s2 ∈ scheds(hideΦ(M× rename(T))), while

we assumed that s2 /∈ scheds(P̂). This contradicts our original assumption, and
thus P̂ must be prefix closed.

Case: P̂ is not quiescent forgiving:

Since P̂ is not quiescent forgiving for rename(T), then there exists some
execution e = q0, a1, . . . , qn of rename(T) with qn ∈ quiescent(T) and qi /∈
quiescent(T) for 0 ≤ i < n such that either (sched(e)|acts(P̂)) /∈ scheds(P̂) or
some prefix t of (sched(e)|acts(P̂)) does not belong to the schedules of P̂ .

By Theorem 7 we know that if sched(e) ∈ scheds(rename(T)), then sched(e) ∈
scheds(hideΦ(M × rename(T))). Thus, (sched(e)|actsP̂) ∈ scheds(hideΦ(M ×
rename(T))). But the fact that (sched(e)|acts(P̂)) /∈ scheds(P̂) contradicts our
assumption. With the same argument we can show that even if we assume some
prefix t of sched(e) we also derive a contradiction. Thus P̂ must be quiescent
forgiving.

ut
Theorem 4. ∃P :
(P is generally precisely enforceable by some input/output-mediating M1)∧
¬(P is generally precisely enforceable by some input-mediating M2), if the

Target-specific Run-time Enforcement 33

policy does not reason about the communication between the monitor and the
target10.

Proof. Take P = {P̂}, where acts(P̂) = output(P̂) =
⋃
i∈I output(Ti) ∪⋃

i∈I renamej∈J(output(Ti)), scheds(P̂) = {ε} ∪ {〈a〉 | a ∈ acts(P̂)}, and P̂ does
not reason about the communication between the monitor and the target where
I is the set of all targets, and J the set of all renaming functions (note that in the
rest of the proof, for purposes of brevity of presentation, we are assuming that
the universes of Input, Output, Internal actions are disjoint, and that renaming
functions always map actions to fresh actions that are distinct from the Input,
Output, and Internal actions of the targets).

For proving the left conjunct of the theorem statement, we have to prove that
there exists an input/output-mediating M1 such that for all targets T there
exists a module P̂ ∈ P, a renaming function rename, such that (scheds(M1 ×
rename(T))|acts(P̂)) = scheds(P̂).

Let M1 be the input/output-mediating monitor that has as elements of its
signature the following sets: input(M1) = {

⋃
i∈I input(Ti)} ∪ {

⋃
i∈I renamej∈J

(output(Ti))}, output(M1) = {
⋃
i∈I output(Ti)} ∪ {

⋃
i∈I renamej∈J(input(Ti))},

internal(M1) = ∅, where I is the set of all targets, and J the set of all renaming
functions.

Moreover, let scheds(M1) contain no schedules that include more than one
output actions from the subset {

⋃
i∈I output(Ti)}, i.e., the monitor does not

exhibit any output behavior to the environment that contains more than one
action. This is easy to do: just exhibit the first valid output action that the
target wants to execute, and suppress all future attempts. Now it is easy to see
that for all targets T there exists a module P̂ ∈P, a renaming function rename,
such that (scheds(M1 × rename(T))|acts(P̂)) = scheds(P̂): assume otherwise,
i.e., there exists a schedule s ∈ scheds(M1 × rename(T)) that is not an element
of scheds(P̂). Since scheds(P̂) contains all possible sequences of length one that
contain the output actions of all targets (and all their possible renamings), the
only way for (s | acts(P̂)) not to be an element of the schedules of P̂ is to contain
output actions and have length larger than 1. However, this is impossible by (1)
construction of the monitor, and (2) assumption that the policy does not reason
about the communication between the monitor and the target (by Def. 6, all
output actions of the target are mediated by the monitor and thus considered
part of their communication).

For proving the right conjunct of the theorem statement, we have to prove
that it is not the case that there exists an input-mediating M2 such that for
all targets T there exists a module P̂ ∈ P, a renaming function rename, such
that (scheds(M2 × rename(T))|acts(P̂)) = scheds(P̂). In other words, we have
to prove that for all input-mediating M2, there exists a target T , such that
for all modules P̂ ∈ P, and for all renaming functions rename: (scheds(M2 ×
rename(T))|acts(P̂)) 6= scheds(P̂).

10 If we used trace enforcement, the constraint would be superfluous. We used schedules
to remain consistent with other theorems in the paper.

34 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

To prove the claim, take any target T such that ∃s ∈ scheds(T), and s
contains more than two output actions. Let s′ be the schedule of the renamed
target rename(T) that corresponds to s. Then, by Thm. 8 s′ is contained in
(scheds(M2 × rename(T)) (since the output actions of the target and the mon-
itor are disjoint). Also, s, and thus s′ contain more than two output actions.
Moreover, by definition of P̂i, acts(P̂) = output(P̂i) ⊇ output(rename(T)), for
any rename function. And since every element P̂i of P does not contain any
schedules with more than two output actions, (s′ | acts(P̂)) /∈ scheds(P̂). This
concludes the proof of the claim.

ut
Theorem 5. ∀P : ∀T :
P is specifically precisely enforceable on T by some input/output-mediating
M1 iff P is specifically precisely enforceable on T by some input-mediatingM2

given that:
(C1) P does not reason about the communication between the monitor

and the target11,
(C2) ∀P̂ ∈P : scheds(P̂) is quiescent forgiving for T ,
(C3) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T), i.e., the policy does not allow schede-

les that cannot be exhibited by the target, and
(C4) ∀e ∈ execs(T) : if e has two quiescent states separated by a sequence of

local actions, and any prefix of e ending between those states violates
P,

then all prefixes of e ending between those states violate P and the two
quiescent states are the same.

Proof. (⇒ direction) We assume that we have some arbitrary policy P and tar-
get T , and an input/output-mediatingM1 that specifically precisely enforces P
on T . We need to show that there exists an input-mediatingM2 that specifically
precisely enforces P on T .

Let M2 be such that (a) its transition relation is the subset of that of M1’s
that deals only with inputs from the environment, i.e., we ignore the part ofM1

that receives input actions from T and outputs output actions to environment,
and (b) for every input i that belongs to the set of inputs that invalidate exten-
sions we simply remove the corresponding transitions: in other words, for every
i that invalidates executions, and for every transition of the form 〈q, i, q′〉, we
remove all transitions of the form 〈q′, a, q′′〉, where a is a local action (we keep in-
put actions because of input-enabledness). We will show that if M1 specifically
precisely enforces P on T under the above constraints, then M1 specifically
precisely enforces P on T also.

First we will show that the part of M1 that receives inputs from T and
outputs actions to the environment does not do anything “non-trivial” (under
the given constraints), i.e., it either outputs nothing or it simply forwards valid
actions that T wants to execute. We do a case analysis on the actions that

11 As before, if we used trace enforcement, the constraint would be superfluous; thus
the constraint is more of a technical issue rather a key idea in the theorem. We used
schedules to remain consistent with other theorems in the paper.

Target-specific Run-time Enforcement 35

T might execute and prove that the output-mediating part of M1 is trivial.
First, observe that by (C3), M1 cannot arbitrarily add actions that T might
not execute. Second, if T wants to output some action a that obeys the policy,
then because of the precise enforcement constraint,M1 will have to (eventually)
output it. Thus in the case ofM1, a is eventually exhibited by itself, whereas in
M2, a will be exhibited directly by T . Finally,if T wants to output some action
a that disobeys the policy, then a can either be preceded by some input or not.
If it is not preceded by some input, then it must be part of quiescent behavior,
which by (C2) cannot be invalid. So a must be preceded by some input. If it is,
then until the next quiescent state all outputs will be invalid by (C4), and thus
M1 will not output any of those actions.

Note that the latter is equivalent to not forwarding i to T since the next
quiescent state is the same with the original one, so the target did not make any
“progress”. This is exactly the construction that corresponds to (b). So under
the given constraints the two monitors will both precisely enforce P on T .

(⇐ direction) We assume that we have some arbitrary policy P and target T ,
and an input-mediatingM2 that specifically precisely enforces P on T . We need
to construct an input/output-mediating M1 that specifically precisely enforces
P on T .

We use M2 to get M1. Specifically, we use the same transition relation as
M2 which we extend in a manner similar to the construction of a truncation
monitor from a truncation automaton (§3), i.e., we add a special state and a
queue that buffers the inputs that the M1 receives from T . Specifically, once
M1 receives some output rename(a) from T , it records the state it was before
starting to receive inputs. If more inputs follow, it adds them to the queue. Once
it has finished forwarding to the environment all the outputs that T wanted to
execute (i.e., forward a for each rename(a) received), it returns to the original
state to continue execution (as M2).

Since P does not reason about the communication between the monitor
and the target, it is easy to see that (scheds(M2 × rename(T))|acts(P̂)) =
(scheds(M1 × rename(T))|acts(P̂)). Every schedule that M2 × rename(T) pro-
duces is a schedule ofM1 × rename(T), since by constructionM2 does not add
any new schedules, and dually, every schedule thatM1× rename(T) produces is
a schedule of M2 × rename(T), since by construction M2 does not remove any
schedules.

ut
Theorem 6. ∀P : ∀T :
P is specifically precisely enforceable on T by some input/output-mediating
M1 iff P is specifically precisely enforceable on T by some input-mediatingM2

given that:
(C1) P does not reason about the communication between the monitor

and the target,
(C2) ∀P̂ ∈P : scheds(P̂) is quiescent forgiving for T ,
(C3) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T), and

36 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

(C4) ∀P̂ ∈P: ∀s ∈ scheds(T) :
s /∈ scheds(P̂) ⇒ ∃s′ � s :

(s′ ∈ scheds(P̂)) ∧ (s′ = s′′; a) ∧ (a ∈ input(T))
∧ (∀t � s′: t ∈ scheds(T) ⇒ t /∈ scheds(P̂)).

Proof. (⇒ direction) We assume that we have some arbitrary policy P and tar-
get T , and an input/output-mediatingM1 that specifically precisely enforces P
on T . We need to show that there exists an input-mediatingM2 that specifically
precisely enforces P on T .

We construct M2 by (a) taking the restriction of M1 that deals only with
inputs from the environment, i.e., we ignore the part of M1 that receives input
actions from T and outputs output actions to environment, and (b) for every
input i that belongs to the set of inputs that invalidate extensions we simply
remove the corresponding transitions: in other words, for every i that invalidates
executions, and for every transition of the form 〈q, i, q′〉, we remove all transitions
of the form 〈q′, a, q′′〉, where a is a local action (we keep input actions because
of input-enabledness). We will show that ifM1 specifically precisely enforces P
on T under the above constraints, thenM1 specifically precisely enforces P on
T also.

First we will show that the part of M1 that receives inputs from T and
outputs actions to the environment does not do anything “non-trivial” (under
the given constraints), i.e., it either outputs nothing or it simply forwards valid
actions that T wants to execute. We do a case analysis on the actions that
T might execute and prove that the output-mediating part of M1 is trivial.
First, observe that by (C3), M1 cannot arbitrarily add actions that T might
not execute. Second, if T wants to output some action a that obeys the policy,
then because of the precise enforcement constraint,M1 will have to (eventually)
output it. Thus in the case ofM1, a is eventually exhibited by itself, whereas in
M2, a will be exhibited directly by T . Finally,if T wants to output some action
a that disobeys the policy, then a can either be preceded by some input or not.
If it is not preceded by some input, then it must be part of quiescent behavior.
But since P is enforceable, then by Thm. 3 it must be quiescent forgiving, i.e.,
it must be valid – contradiction. So a must be preceded by some input. But, by
(C2), there is some input i that precedes a after which all extensions are invalid.
Thus, i will be the last action appearing on the schedule. This means that since
T can still communicate with M1, M1 will suppress all the security relevant
behavior following i (i.e., it will trivially output nothing).

Note that the latter is equivalent to not forwarding i to T (or any future
inputs) and just continue execution by receiving inputs from the environment.
This is exactly the construction that corresponds to (b). So under the given
constraints the two monitors will both precisely enforce P on T .
(⇐ direction)

This is the same as the ⇐ Direction in the proof of Thm. 5.
ut

Target-specific Run-time Enforcement 37

Lemma 1. Given a schedule module P̂ and a target T , then there exists a
truncation monitor MT such that P̂ is specifically precisely enforceable on T
by MT if:

(C1) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T),
(C2) ∀t ∈ scheds(T) :

t /∈ scheds(P̂) ⇒ ∃s � t :
∀k ∈ (acts(T) ∪ acts(P̂))ω : s ≺ k :
k ∈ scheds(T)⇒ k /∈ scheds(P̂), and

(C3) P̂ does not reason about the communication between the target and the
monitor and the internal actions of the target.

Proof. We will assume that the target can be terminated by a stop action. We
use a construction similar to the one that was described in §3. Let T ′ = f(T),
where f is a bijective renaming function that α-renames T .

1. sig(MT) = 〈input(MT), internal(MT), output(MT)〉, where:
(i) input(MT) = f(output(T)),
(ii) internal(MT) = ∅,

(iii) output(MT) = output(T) ∪ {stop}.
2. states(MT) = ((input(MT))∞) ∪ {halt},
3. start(MT) = {ε},
4. trans(MT) =

{〈σ, ι, σ; ι〉 | 〈σ〉 ∈ states(MT) and ι ∈ input(MT)}
∪ {〈α;σ, f−1(α), σ〉 | (α;σ) ∈ states(MT) and (α;σ) ∈ scheds(P̂)}
∪ {〈α;σ, stop, halt〉 | (α;σ) ∈ states(MT) and (α;σ) /∈ scheds(P̂)}
∪ {halt , ι, halt | ι ∈ input(MT)},

5. Each action in local(MT) defines a unique equivalence class.

It is easy to see that scheds(MT × f(T))|acts(P̂) = scheds(P̂). First, note
that by construction MT never outputs any actions that T does not want to
execute: by (C1) this guarantees that there is no schedule in the module that
the target can output and the monitor does not. Moreover, by (C3), even if the
target executes some invalid internal action, or attempts to execute an invalid
output action, this is opaque to the module. Finally, with a simple inductive
argument over the states of MT we can prove that MT maintains the invariant
that every schedule that the target wants to execute is eventually output only if
it is valid. And this is exactly what (C2) describes. Thus, the monitor outputs
every schedule that the property reasons about.

ut
Theorem 7. ∀P: ∀T : P is specifically precisely enforceable on T by some
truncation monitor M1 iff P is specifically precisely enforceable on T by some
edit monitor M2, if: ∀P̂ ∈P :

(C1) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T),
(C3) ∀P̂ ∈P: ∀t ∈ scheds(T) :

t /∈ scheds(P̂) ⇒ ∃s � t :
∀k ∈ (acts(T) ∪ acts(P̂))ω : s ≺ k :

38 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

k ∈ scheds(T)⇒ k /∈ scheds(P̂), and
(C3) P̂ does not reason about the communication between the target and the

monitor and the internal actions of the target.

Proof. (⇒ direction) This direction is easy. We have a truncation monitor M1

that specifically precisely enforces P on T , and we want to build an edit mon-
itor M2 that specifically precisely enforces P on T . The construction is the
same as described in [19]: the halting behavior ofM1 is modeled inM2 by sup-
pressing all future actions that T would execute. Thus,M2 will produce exactly
the schedules that M1 will produce. The only difference is that in the case of
the edit monitor T is not halted and might continue executing actions. But,
by constraint (C3), all internal and output actions of the target are opaque to
the policy, so the two monitored systems will produce exactly the same schedules.

(⇐ direction) For this direction we assume that we have an edit monitor M2

that specifically precisely enforces P on T , and we want to show that there
exists a truncation monitorM1 that specifically precisely enforces P on T . Let
P̂ be the element of P for which M2 specifically precisely enforces P on T .
First, we note that by constraint (C1),M2 will not insert any new actions (and
schedules) that the target would not exhibit. Also, by (C2), any schedule of
the target that is invalid, becomes invalid at some finite (discrete) point of the
schedule, and remains invalid for the rest of the schedule. This is exactly the
definition of safety [19], applied to T (instead of an arbitrary action-universe).
Thus, we know that a truncation monitorM1 that enforces P̂ exists by Lemma 1.
Note that the constraints of Lemma 1 are satisfied because of the assumptions
of this theorem. Thus, M1 specifically precisely enforces P on T .

ut

