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Abdract

This paper presents a multiperiod MILP mode for the optimal selection and expansion
of processes given time varying forecads for the demands and prices of chemicals. To reduce
the computational expense of solving these long range planning problems, several drategies are
investigated which include the use of integer cuts, srong cutting planes, Benders decomposition
and heuristics. These procedures, which have been implemented in the program MULPLAN, are

illustrated with several example problems. Asis shown, the proposed modd is especially useful
for the study of a variety of different scenarios.
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Chemical companies are increasingly concerned with acquiring and managing more
efficiently the resources that they will need to survive and progper in a very competitive
environment. Therefore, they mug evaluate ther options from two perspectives. Fird, they
mugt assess the potential benefits of new resources when these are used in conjunction with
existing processes, but accounting for ther effect over the long term. Second, companies mugt
identify and assess the potential impact on ther busness of important uncertainties in the
external environment. Included are uncertainties regarding demand, prices, technology, capital,
markets, and competition. In sdlecting new resources, companies should seek to develop long
term strategies for hedging againgt these uncertainties, and to provide contingency plans to be
put into effect as the uncertainties are revealed. Therefore, due to increasing competition,
changing economic environment and fluctuating demands of chemicals, there is an increasing
need of quantitative techniques for planning the selection of new processes, the expanson and
shut-down of existing processes, and the production of chemicals (see Hirshfeld, 1987).

Uncertainties in planning models a*e however, difficult to handle. Random coefficients
are often replaced by ther expected values in the planning models which might lead to
mideading solutions (Kallberg et al> 1982). Using a single determinigtic value other than the
mean can also lead to large inaccuracies (Birge, 1982). In these cases, a stochastic optimization
model for random coefficients should be ideally used for the planning model.

However, since stochastic programs are in general very difficult and expensive to solve,
an alternative approach is to use a deterministic multiperiod optimization model. Thismoded can
be used to account for predicted changes over a given time horizon and also to account for a
finite number of different scenarios which can be associated with discrete probabilities.

A rather large number of papers has been reported in the Operations Research literature
on capacity expansion problems in several areas of application. A recent survey can be found in
Luss (1982), In the chemical engineering literature dynamic programming has been applied to
chemical plant expansions (Roberts, 1964), but this decomposition technique becomes quite
ineffective for large scale problems. Alternative approaches include the NLP formulation by
Himmelblau and Bickel (1980), the multiperiod MILP formulation by Grossmann and
Santibanez (1980), the goal programming approach of Shimizu and Takamatsu (1985) and the
recursve MILP technique by Jiménez and Rudd (1987). However, these approaches are often
limited to the size of problems that they can handle.




It is the purpose of this paper to present a multiperiod MILP model for long range
planning that can be used either in a strictly deterministic fashion or as an approximation to the
stochastic optimization problem. Several solution strategies which include the use of integer
cuts, strong cutting planes and Benders decomposition, are presented for reducing the
computational expense of solving the MILP problem. These strategies, which have been
implemented in the computer program MULPLAN, will be illustrated with several example

problems.

Problem Statement

The specific problem that is addressed in this paper assumes that a given network of
processes and chemicals is given. This network includes an existing system as well as potential
new processes and chemicals. Given are also forecasts for prices and demands of chemicals, as
well as investment and operating costs over a finite number of time periods within along range
horizon. The problem then consists of determining the following items that will maximize the

net present value over the given time horizon:

a) Capacity expansion and shut-down policy for existing processes,
b) Selection of new processes and their expansion capacity policy;
¢) Production profiles;

d) Sales and purchases of chemicals at each time period.

Linear models are assumed for the mass balances in the processes, while fixed-charge
cost models are used for the investment cost. Also, limits on the investment cost at each time
period can be specified, as well as constraints on the sales and purchases. As will be shown in
the next section, the above problem can be formulated as a multiperiod MILP problem.

Multiperiod MILP Modéel

A network consisting of a set of NP chemical processes that can be interconnected in a
finite number of ways is assumed to be given. The network also involves a set of NC chemicals
which include raw materials, intermediates and products. This network can then be represented
by two types of nodes: one for the processes and the other for the chemicals. These nodes will
be interconnected by a total of n streams to represent the different alternatives that are possible
for the processing, as well as the purchases and sales from different markets.




Also, a finite number of NT time periods is consdered where prices and demands of
chemicals vary, as well as the investment and operating costs of the processes. The objective
function to be maximized is the net present value of the project over the specified horizon
consisting of NT time periods.

It will be assumed for the modelling that the material balances in each process can be
expressed linearly in terms of the production rate of the main product, which in turn defines the
~ capacity of the plant. Asfor the investment costs of the processes and their expansions, it will be
considered that they can be expressed linearly in terms of the capacities with a fixed charge cost
to account for the economies of scale.

In the formulation of this problem the variable Q;; represents the total capacity of the
plant of processi that is available in period t, t=I,NT. The parameter Q;, represents the existing
capacity of a process at time t=0. QE;, representsthe capacity expansion of the plant of process i
which isingtalled for garting its operation in period t. If y;; are the 0-1 binary variables which
indicate the occurrence of the expansions at each time period and for each process, the
condraintsthat apply are

Y/QE, < QEq<Q$yi i=1,NP, t=1,NT @)
yi‘ = Ovl
Qu= Qi1+ QE; i=1,NP, t=INT @)

In equation (1), QE.l] and QE", arelower and upper boundsfor the capacity expansions. It
must be noted that a zero-value in the binary variables y;; for ces the capacity expansion at period t
to zero, i.e. QE;=0. If the binary variable is equal to one the capacity expansion is performed.
Equation (2) smply defines the total capacity Q;; that is available at each time period t.

It should be noted that the above representation for expansions requires fewer
continuous variables and condraints than the one presented by Grossmann and Santibanez
(1980). Since these authors did not define the total capacity variables, production amounts and

capacities had to be defined for each potential expansion. This problem can be avoided easily as
shown below.




The amounts of the chemicals being consumed and produced in period t of the plant of
process i are represented with the variables

WFrZO kel 1=1JJP t=INT 3) .

where L; is the index of the subset of n streams corresponding to inputs and outputs of process i,
and U"fj' Lj ={l,2,...n}. Let stream n*eL.} correspond to the main product produced by processi.
Then the amount produced of that product cannot exceed the installed capacity; that is

Qu*Wr  1=I#P  t=\INT 4

The case of shut-down of an existing plant results when the variable W,,; takes a value of zero
after a given time period t.

The material balances in each plant are given by the linear relations

Ykt = MKYmf to&i AW? A 1A (5)
where \i* are positive constants characteristic of each processi.

As for the raw materials, intermediates and products, they will be represented by NC
nodes of chemicals where purchases and sales are considered in one of several markets, / = 1,
NM. If the corresponding variables are represented, respectively, in each period by the variables
M, SJ,j=1,...NC, they must satisfy the inegualities

4 sPsdf
FINC, =INT, ¢=1NM (6)
4 s s 4’

where q'/*, a£” are the lower and upper bounds on the availabilities, and d*, ~f are lower and
upper bounds on the demands.

Defining 1(j) as the index set of output streams of plants that produce chemical j, O(j) as
the index set of input streams of plants that consume chemical j, the mass balances in these
nodes will be given by

NM

) P+ > W =Ng; $+ “);b Wy JRLNC 1=LNT @




Finally, the net present value of the project is given by

NP NT

QEit+ B:tyu) z Z
NM NC NT

P> 2( 2; (Yﬁg;‘ MFi) ®

where the parameters cXj, (5 represent respectively the variable and fixed terms for the
investment cost, 5" is the unit operating cost, and y,-: Xj: are the unit costs of sales and purchases
of the chemical | in market L> t= 1LNM. All these parameters are discounted at the specified
interest rate and include the effect of taxes in the net present value.

In order to determine the optimal planning of the network the multiperiod MILP model
consists in maximizing the objective function in (8), subject to the constraints (1)-(7).

Additional constraints that can be considered include:
a) Limit on the number of expansion

" ¥, S NEXPG) i=1 NP 9)

=1

b) Limit on the capital available for investment at each time period

i@‘QEir*“ Biyi) < CI(t) 1=1NT .

where 3, Et are non-discounted cost coefficients corresponding to period t.

Finally, for the case when shut-downs are modelled explicitly, the constraints discussed
in Appendix A can be included.

Solution Strategies

The MILP model given in the previous section can typically be solved directly with
branch and bound enumeration procedures (Garfinkel and Nemhauser, 1972) such as the ones
that are implemented in standard computer packages (e.g. MPSX, APEX, LINDO, ZOOM). For
large networks, however, the computational expense can be high. For example, a network with




40 processes, 50 chemicals, 2 markets and 5 time periods would involve 200 0-1 variables, and
approximately 1000 continuous variables and 1200 constraints. Since most of the alternatives
embedded in such a model are feasible, a large number of branches must usually be examined.
Therefore, there is a clear incentive to develop efficient computational strategies and
approximate procedures since this then allows the examination at a greater variety of scenarios in

the planning model. In the following section four numerical schemes will be described.

Bounding and Integer Constraints

In this section it will be assumed that there are no limitations in the capital investment at
each time period. A simple bounding constraint that can then be generated for the MILP
problem is to solve the relaxed LP and determine the two following solutions that correspond to

lower bounds to the net present value:

LB, - relaxed LP solution with non-zero binaries set to one

LB, - relaxed LP solution with non-zero binaries of first active
period set to one, and with maximum required capacity at that
time period.

In other words LB, corresponds to a feasible solution where expansions are performed
as determined by the relaxed LP solution. LB, corresponds to a feasible solution where only one
expansion is considered at the first active period determined from the relaxed LP. These bounds,
which are very easy to determine, can then be incorporated into the MILP with the following

inequality
NVP 2 max{LB,, LB,} an

Additional constraints that can reduce the computational effort in the branch and bound
procedure are integer constraints that place a limit on the number of expansions in a process.
Again, assuming no limitation in the investment cost, the maximum number of expansions
NEXP(i) can be determined by calculating the maximum number of expansions whose cost is
less or equal to the maximum cost of any given expansion. This then leads to the following

MILP problem for each process i:



NT
NEXP()=max Yy,
=1

NI
st. MOItQEN + M) <, imaxQi maz * Bimax

NT
Y. 0y =0, pax (12)

f=]

QEly.<>QE; < QEyy,  1=1,.NT
Y= 0,1, Ej; 20, =1, .NT

Note that the firg inequality smply sates that the cost of the expansions cannot exceed the
investment cost of processi at maximum capacity with the "worg" cost coefficients. Due to the
discount factors, these usually correspond to period 1. Asfor the maximum capacity Qj max this
can be determined from the upper bounds on capacity expansion, or else through an LP by
maximizing Q;j; in the network at the corresponding time period and by removing the 0-1
congraintsin (1).

From the solution of the above small-scale MILP'sin (12), the congraintsin (9) can be
added to the multiperiod MILP. Both congraints (9) and (11) will usually help in reducing the
gap between therelaxed LP and MILP solutions so as to decr ease the computational effort of the
branch and bound method. However, for large-scale problems these provisions may not be
aufficient. Furthermore, when the congraints (10) on capital investment are present, the problem
in (12) will often underegimate the maximum number of expansions. Therefore, it is worth
consdering the use of srong cutting planes that can srengthen the lower bound of the relaxed
L P problem when the investment congraintsin (10) are present.

Strong Cutting Planes

Recently, a new approach to the solution of large scale ILP and MILP problems has
darted to emerge (Crowder et aU 1983; Van Roy and Wolsey, 1984). Theidea in this approach
isto try to generate from the relaxed LP tighter formulations of 0-1 polyhedra by adding cutting
planes that describe facets or faces of high dimension of the convex hull of these polyhedra. The
gap between the MILP and its LP reaxation is thereby often reduced (if not completely
eliminated) and the subsequent use of branch and bound or any other algorithm is made more
economical.




At each iteration the procedure garts by finding (x*, y*), the optimum continuous and
0-1 variables of the LP relaxation of the current MILP formulation. Then a separation problem
is solved by using only part of the model (typically some network flow type constraints), to
generate additional valid inequalities which attempt to chop off the point (x*, y*) from the
solution space of the LP relaxation polyhedron. The procedure is then repeated until an integer
solution to the new LP redaxation is found, or else until there is a small improvement in
srengthening the L P relaxation bound.

The above procedure, for which details can be found in Van Roy and Wolsey (1984),
can be applied to the multiperiod MILP with capital invessment congtraints as follows. Fird,
network substructures of the model are identified; namely equations (1) and (10) for each time
period t, t=I,NT:

NP -—
S = UQEy> £ (0"QE., + $yi) < CI(1),

(13)
YitQE" < QEi < QE%yi, yee {01} i=1NP}
To seethe network gtructure we subgtitute
Xy, =0, 0, + By
4 =0, OF,+By }i=1NP (14)
=0, QE; + By
and obtain
, HP
S,={G»: Z‘( x; S CI®,
(15

4y, < X <. uffiy . e {01} M.OT}

For this gructure two families of valid inequalities have been derived (Van Roy and
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Wolsey, 1983)). The Simple Generalized Flow Cover inequality

J DX+ (ueX)" (1-y,) ] < CLY (16)

and the Extended Generalized Flow Cover inequality:

+ Z’ [*i = @A) *y, ] < C10)
where (\¢{ 1,2,...NP} is a generalized cover, i.e.,
l,=; u,—-C1(0>0;
and  Lc{\X»NP} u-t_: maxuip\
itC
Uit = maX(iUrUit) tyk = maX(0$) Endut>Xt>0.
Note that u;;is given in (14).

The exact separation algorithms for the Smple and the Extended Generalized Cover
inequalities correspond to Knapsack problems parameterized in #, 1%, (* that maximize the
violation of the relaxed binary solutions y%, This can lead to the following Knapsack problem
for each time period t:

NP
max J,=Z {-—(l-y__)z,— }

NP

st. Xuia>CI (0 | (18)
20,1} i=1NP

where z" | if ieCy; Zi=0 otherwise. The violated inequalities (16) and (17) are derived whenever
Ji >-1. Theindicesi that are included in the set 1" for the inequality in (17) mugt satisfy the
condition, x} - (ij; - ty+yk £0.

The cutting plane algorithm is then as follows:
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StepO. Solve the LP relaxation of the multiperiod MILP. Set NPV = NPV
(optimum from relaxed LP).

Step 1. For each time period t, solve the separation problem (18). Here the problem
is only approximately solved using some from of the greedy heuristic (see
Appendix B).

From the solution to the Knapsack problem, determine the cover C; and add
the violated inequalities (16) and (17) to the current MILP formulation.

Step 2. Solve the new LP relaxation. If NPV'-NPV>tolerance, then set NPV'=NPV
and repeat Steps 1 and 2. Otherwise start the branch and bound procedure or
any other algorithm to find the optimum to the current formulation.

The algorithm has the advantage that no attempt is made to generate al the facets of the
0-1 polyhedron at once which is an NP-hard problem. Instead, cuts are added at each iteration in
an attempt to reduce the LP relaxation gap. On the other hand it must be pointed out that it
suffers from the following. Firstly, the information is extracted only from an isolated part of the
model and secondly, the separation problem has been relaxed to a computationally effective
form which might not always generate an optimum cut. Therefore, it is to be expected that the
LP relaxation gap will not be completely eliminated. Nevertheless, since the method is
computationally very cheap and at the same time effective in the initia iterations, it can be used
to reformulate the initial multiperiod MILP model to one which is more easily solved by other
methods like branch and bound and decomposition schemes.

Bender s Decomposition

A standard decomposition technique that can be applied to the multiperiod MILP
problem is Benders decomposition method [Benders (1962), Geoffrion (1972)]. In this
algorithm the MILP problem is solved through a sequence of LP subproblems and MILP master
problems, with the former providing lower bounds to the net present value and the latter
providing upper bounds. The definition of the LP subproblems and master problems depends,
however, on the partitioning of variables that are used.

In its most natural form the variables of the multiperiod MILP are partitioned as follows:

a) Complicating variables for the master problem: y;;
b) Remaining variables for the LP subproblem:




u= [Q]p QE ¥ 's;p Iip Wkl]

The basic steps in Benders decomposition method are then the following:

Algorithm |
Step 1. Select y£; set NPVY =~ NPV = -co, K = 1.
‘Step 2. a) By fixing the variables y£, solve the multiperiod MILP problem as an LP
to determine NPV" and u.
b) Update the lower bound by setting NPV = max {NPV", NPV®)
Step 3. To determine new values y¥** for the 0-1 variables and an upper bound to
NPV solve the pseudo-integer master problem
NP VE = max \i
Yirk

st. \LsLyp) k=LK

HeR' , y,=0,l (19)
where the lagrangian L*(yi) = NPV (yi;, u*) +

gg [1?* (QE;~ A) + V\/QQE —QEp] (20)

and NPV (yi, u“) is the NPV function with all continuous variables u* fixed
except the y;; and X"y X%* 4 are the Lagrange multipliers of constraint (1) in
the LP solution of Step 2.

Step 4. If NPV = NPV stop. Otherwise set K = K + 1, and return to Step 2.
Although the above agorithm has the advantage of involving an integer programming
problem with only one continuous variable |i in the master problem of Step 3, the disadvantage is

that this problem is often too relaxed. This will then have the tendency of yielding initialy very
high values for the upper bound NPV", and hence require a large number of iterations.

In order to strengthen the bounds predicted by the master problem, one can redefine the
partitioning as follows,

a) Complicating variables for the master problem: yi;, Qi, QEi;
b) Remaining variables for the LP:




=[S Pio Wi ]
In this way the basic steps in algorithm |1 for this partitioning are similar to algorithm |

except for the following:

a) In Step 2.ayj, Qj, QEj are fixed for solving the LP in which constraints (1) and
(2) can beremoved.

b) In Step 3, the master problem corresponds to the following MIL P problem

M VY= maxi
yitiQil’QEit!\i (21)
st. \i £ Ly, Qu,QE.ifi) k=1K
QE{'-.)','; SQE, < QEgy,-,
i=1l,NP
Q=01 + QE, t=1NT

QuQEit £ 0 , peRl ¥;=0,1

NP NT
c) where Lk(yit,Qit,QEitAANPV(Yu>Qit,QEiAh + % % Py (Wm.-"QUS

and NPV (yi;, Qit, QEi, U) is the NPV function with the variables u® fixed, and p;
are the Lagrange multipliers of constraint (4).

As will be shown later in the results, agorithm Il predicts stronger upper bounds and
hence requires fewer iterations. In addition, the subproblems can now be solved as a sequence of
independent problems (one for each time period).

Heuristic Procedurewith Bounds

The procedures in the previous sections are aimed towards the exact solution of the
multiperiod MILP model. It is useful, however, to aso consider heuristic methods for which the
quality of the solution can be asserted as shown in this section.

Due to the effect of the discount factors many instances of the optimal solution of the
multiperiod MILP problems involve only one expansion, especialy if there are no limits in the
capital investment. Such a solution corresponds often to the lower bound LB, described
previously in the paper. Since thisbound is easy to obtain, asisin fact the lower bound LBg the
higher of these two can be used as a heuristic estimate of the optimal solution. The question that
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then arises, however, is how good these estimates are.

In order to answer the above question a tight upper bound must be generated. An easy
to compute upper bound is the solution of the relaxed LP which will be denoted by UB,. Since
this bound might not be very strong, the following procedure can be used to generate a second
bound UB,. Consider that only one expansion will be performed at period 1 but with the lowest
coefficients of the investment cost o nin.

multiperiod MILP will then simplify as follows for this upper bound:

B; min (usually the ones of the last time period). The

NP '
UB, = max - 2’ (%iminQE; + BiminYs)

NP AT NM NC NT
';ZIS’""W""" + ; J;; ('ﬂ ,S,’-, _ x; 'P;‘)
st Q;=0,+QE; -
QELy; < QE; < QEUy; i=1,NP

Q; 2 Wm“ i=1,NP t=1NT
Constraints (3), (5), (6) and (7).

Note that the above MILP only involves NP 0-1 variables instead of (NP)-(NT) and it
has NP(NT-1) fewer constraints. Therefore, this MILP is easier to solve than the multiperiod
MILP given by (1)-(8).

Having determined UB, from (22), the heuristic solution can be set to

NPVH = max (LB,, LB,) (23)
and the upper bound to
UB = min (UB,, UB,} (24)

Hence the maximum gap of the heuristic solution with respect to the optimal MILP solution will
be given by
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UB-NPV"
8<2P UB— (25)

This gap can be expected to be small in many instances.

MUL PLAN

In order to automatically formulate and solve the multiperiod MILP model, the computer
program MULPLAN has been developed. Given data on the structure of the network, mass
balance coefficients and other economic information and constraints, the program formulates the
problem using the modelling system GAMS (Kendrick and Meeraus, 1985). In its simplest
form, the multiperiod MILP problem is solved directly with the branch and bound method.
However, provisions are available in this program to use as alternate solution strategies the
methods described previously in this paper. Also, a special version is available that can interface
with any MILP solver through MPS files (e.g. MPSX, LINDO, ZOOM, APEX).

In the following sections two examples will be first presented to illustrate the application
of the multiperiod MILP model. A comparison of the performance of the computational
strategies will then be given in another section.

Examples

Example 1

In example 1, the network indicating all the alternativesis shown in Figure 1. Product 3
Is to be produced by process 2 or 3 with the feedstock to process 2 and 3 either bought or
manufactured in process 1. This problem spans over three periods with the lengths being 2, 3,
and 5 years. Limits on investment are specified at each time period and process 2 has an existing
capacity of 50 kton/yr.

Three scenarios of this example are considered and they differ from each other in the
following way: Scenario 2 differs from scenario 1 by 20% reduction in sales prices of product 3;
scenario 3 differs from scenario 2 by reducing the investment bound in period 2 to 0 and
increasing by 20% the cost of chemical 1 and reducing by 20% the cost of chemical 2. Scenario
3 also differs from 1 and 2 in that the upper bounds for the availability of chemical 2 were
doubled. In both cases a maximum number of 3 expansions was considered with limits on
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investment cost at each time period. The economic data for all three scenarios and the congtants
for material balance equations and the demand for chemicals are given in Chathrathi (1986).
The corresponding MILP problem involves 9 0-1 variables, 42 continuous variables and 58 rows.

Some of the results of the three scenarios obtained with MULPLAN are presented in
Tables 1 to 4. The analysis of these results indicates that the optimal solution of scenario 1
involves shutting down process 2 in period 2 and 3 and installing process 3 in period 2 (see
 Figure 2). Process 1 should beingtalled in period 1. As seenin Table 1 all processes operate
below maximum capacity in periods 1 and 2. The net present value for scenario 1 is $1697.61 x
10°. Though the results for scenario 2 are identical (see Figure 3, Table 2) the net present value
is reduced to $1063.01 x 10° indicating the effect of the reduction in sales price. The optimal
solution of scenario 3 involves ingtalling process 1 in period 3, process 3 in period 1 and shutting
down process 2 in periods 1 and 2 (see Figure 4, Table 3). The net present value in this caseis
$2236.38 x 10°. This increase was mainly due to the larger availability of chemical 2 which
allowed for a larger production of chemical 3. Purchases and sales for the three scenarios are
given in Table4.

Example 2

Example 2 involves a larger chemical complex, which has a network of 10 processes.
None of these processes is assumed to have an existing capacity. The network showing all the
alternatives for this complex is shown in Figure 5. Product 6 isto be produced in 4 periods each
with alength of 2 years and various congraints on the chemical demands and prices.

The alternatives presented in Figure 5 are as follows: Product 6 can be produced by
processes 8, 9, and 10 which use chemical 3 asraw material. Chemical 3 can be purchased or
produced by processes 2, 3, and 4 using chemical 2 as raw material, or by process 7 using
chemical 5 asraw material. Chemicals 2 and 5 can be purchased or produced by process 1, and
5 or 6, respectively. Process 1 uses chemical 1 as raw material, and processes 5 and 6 use
chemical 4 as raw material. Two scenarios are consdered in this example, the firs has no
investment bounds and the second scenario has investment bounds. Also in both cases a
maximum number of 2 expansions per process was consdered. The economic data and chemical
prices, the constants for material balance equation, and the demand for chemicals are given in
Chathrathi (1986). The corresponding MILP modd involves 40 0-1 variables, 174 continuous
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variables and 198 rows.

Some of the results of the problem that were obtained with MULPLAN are presented in
Tables 5 to 8 for both scenarios. These results indicate that the optimum net present value of
$51,027.1 x 10° can be obtained for scenario 1 by using the following configuration as seen in
Table 5; the optimal configuration does not use processes 2, 3, 5 and 10; the capacity of process
7 and 8 is expanded in period 2. In this configuration process 6 operates below maximum
capacity, in period 4; process 9 would be shut down in period 2 and 3, and reused in period 4.
This optimal configuration is shown in Figure 6, and the sales and purchases in Table 6.

The optimum NPV for the second scenario with the bounds on investment costs at each
time period is $45,244.50 x 10°. This configuration does not use processes 2, 5, and 10. The
details of the capacity expansions and production profiles are shown in Table 6 and Figure 7.
Note that this second scenario features 3 processes with expansions versus the 2 for the first
scenario.

Computational Results

The three scenarios of example 1 were solved with MULPLAN using the following
techniques as seen in Table 9a: branch and bound, cutting planes followed by branch and bound,
Benders decomposition (algorithms | and 1), cutting planes followed by algorithm Il of Benders
decomposition. It can be seen that branch and bound required the smallest CPU times. The
explanation of thisis the fact that example 1 is arelatively small multiperiod problem. However,
the following general trends can be identified.

Firstly, cutting planes reduce the gap between the relaxed LP solution (Z, p) and the
optimal MILP solution (Zjp) as seen in Table 10. Although in exarhple 1, the benefits of this
reduction were rather marginal in terms of reduction at branches and pivot operations, scenario 2
of example 2, which is a larger MBLP model exhibits a more substantial reduction in these two
items. Also note from Table 9b that the CPU time is dightly higher with the use of cutting
planes.

As for Benders decomposition, even though all provisions were taken so as to restart the
subproblems at each iteration from the previous solution, the performance is not very
encouraging as seen in Tables 9a, 11 and 12. However, here it is clear that the modified
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formulation of algorithm |1 is much better than the one in algorithm | asit requires almost 40%
fewer iterations due to the modified magter problem. Also the reduction of time is roughly 35%
as seen in Table 9. In this case, however, the use of cutting planes has only a small effect in
speeding up the solution of algorithm IL It is also interesting to note that algorithm | of Benders
has the tendency of introducing far too many expansions in the initial iterations as seen in Table
12,

Although the above computational results are somewhat limited, they seem to indicate
that the use of strong cutting planes followed by branch and bound should be a more promising
technique for solving larger multiperiod MILP problems than Benders decomposition. In the
following section a larger example is presented to illustrate the heurigtic techniques and the other
bounds.

Example 3

The network of a proposed petrochemical complex is shown in Figure 8. Four time
periods are consdered each of 2 years. In this case processes 12, 13, 16 and 40 are assumed to
exist with capacities 39.9, 25, 300 and 200 10° ton/year, respectively. These processes are
assumed to have possibilities of expanson garting in period 2, while all the other nonexisting
processes could be installed garting in period 1. There are a total of 38 processes and 25
chemicals. The economic data and the congtants for material balance equations are given in
Fornari and Grossmann (1986). No bounds are specified for the investment cost at each time
period. Theproblem has 148 integer variables, 768 continuous variables and 739 condraints.

Due to the large size of this MCLP an approximate solution was obtained. From the
analysis of the solution of the relaxed problem lower bounds were obtained for the objective
function. These lower bounds are L Bj = $2408.1 x 10° (obtained by making 1 all the non-zero
binary variables in the rdlaxed problem solution) and LB, = $2530.6 x 10° by ingtalling only
once the selected processes. Clearly the latter yields a better lower bound and can be regarded as
a good suboptimal solution.

Results from the MILP problem (12) show that the maximum number of expansions for
all processes is 1, except from processes 2 and 10, for which 2 is the maximum number of
expansions. Adding congraints (9) and (11) after 2 hs of CPU time with branch and bound in
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LINDO on aVAX 11/780 the optimal solution was not reached. In thiscase the best NPV value
found was $2381.5 x 10°.

The relaxed problem solution, however, gives a valid upper bound for the optimal
solution of the problem (UBj = $2761.3 x 10°), and hence the gap with respect to the lower
bound of $2530.6 x 10° is 84%. We can reduce this gap to obtain a tighter upper bound by
solving the MDLP (22) assuming only initial expansions and with invessment cost of last period
of time. Thisyields alower upper bound UB, = $2606.4 x 10°. With this new ubper bound the
gap isreduced to 2.9%.

The solution corresponding to the lower bound LB = $2530.6 x 10° is as follows. The
selected processesare 1, 3,4, 5,6, 8,12, 13,14,16,20,23,26, 27,28, 33, 36 and 40. Note that
since 12, 13, 16 and 40 are existing processes, these are the only ones whose capacity is
expanded in period 2. All the other broc&s%s are ingalled in period 1 with an initial capacity
that remains constant throughout the 4 periods. Since this solution has a gap of only 2.9%, it can
be regarded as a good suboptimal solution.

It should be noted that the problem was also solved to optimality with the MPSX code
on the IBM-3090 supercomputer at the Corndl Theory Center. Thetotal CPU timerequired was
35 minutes. It was also found that the branch and bound requirements were reduced to only 9.5
minutes after addition of the limits on investment congraints (10) and that the application of the
grong cutting plane algorithm along with the above mentioned constraints reduced even more
the branch and bound requirements to only 8 minutes. This clearly shows that new
developments in computer technology and optimization theory are making it computationally
feasible to solve large-scale multiperiod MILP problems. On the other hand, since oneis usually
interested in the sudy of different scenarios there is ill an incentive to develop methods that

can greatly reduce the computational expense.

Conclusions

This paper has presented a multiperiod MILP modéd for long range planning of capacity
expansions and process selection. The incorporation of this mode in the computer program
MULPLAN makes this model especially useful for the ‘study of different scenarios as was
illugtrated in the example problems.
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A number of solution strategies have been presented to reduce the computational burden
of solving the corresponding MILP problems. Based on the results obtained, it would seem that
a combination of strong cutting plane generation and branch and bound is the most promising
strategy for solving these problems to optimality. Benders decomposition in its various forms
would seem to have little promise. Finaly, the last example illustrated the usefulness of the
heuristic procedure for which the quality of the solution can be predicted.
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Appendix A: Modelling Shut-Downs

It is sometimes desirable to account for a penalty when a process is shut down or when
an installed process is not operated for a period of time. In other cases it is desirable to operate
an installed process at a minimum level of operation. In order to account for these
considerations let €;, be a binary variable that will take the value 1 if process i is decided to be
excluded from any further consideration (installation, expansion or operation) starting at the
beginning of time period t. Also let d;, be equal to the available plant capacity at the time of shut

down (i.e. when g; = 1).

The constraints that apply for €;, and d, are:

diy < Q;0 i=1,NP, t=1,NT+1 (Aan
d, <Uyeg, i=1,NP, t=1,NT+1 (A2)
Qi < ditU; . (1-€) (A3)
where =0, + Y QEf’ . Equation (A2) will force d;; to zero for as long as €, = 0. When

g, =1, equatmns (A1) and (A3) enforce d;; = Qi,l-l' Note that when a process is selected and not
shut down at anytime €; N,1=1, while for a process that is never selected €; ;=1. In addition,

one has to include the following constraints that relate the variables € to the rest of the model

Yr<1-g, i=1,NP, T2, t=1,NT (A4)
W, rS(UtQED(—€,)  i=LNP, T2, =ILNT  (A5)

According to (A4) no expansion is allowed, and according to (AS) no operation is allowed once

process i is decided not to be considered after time t.

In order to enforce operation of a process at a prespecified percentage of the installed

capacity the following simple constraint is sufficient

Wons 2 % Oy i=1,NP, t=1,NT (A6)

where x;, is the prespecified percentage.
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If it isdedrable to operate an installed process i during time period t in such away o0 as
to process at least an amount of L;; units of the main product,

Wpe2Ly (1-" &) i=LNP, =LNT, for QuX) (A7)
W, 2L (yﬂ—ie,,l) i=1,NP, t=1,NT, TSt, for Q=0 (A9)
Il=l

A penalty (or profit, eg. when scrapping the process) term can be included in the
obj ective as a function of the installed capacity at the time of shut-down:

NP NT+

8 X (o + Bgy)

where au and $J are discounted cost coefficients. In the case of profit then o* > 0 and p;a =0
and congraint (A3) isredundant for the maximization problem.

In the case where an installed processis not operated for a period of time, a penalty term
can be included in the objective to account for the expenses of maintaining the idle plant:

NP NT

; ; pen; QP

along with the following congtraint

that will force QP;; to be equal to the ingtalled capacity of the process. Here pen;; are again
discounted coefficients. Finally, the decision to shut down a process is applied exactly once for
each process, and therefore

NT+1

3 =1 =LA (A10

which gives rise to Special Ordered Sets of type 1. Therefore the additional computational
requirements of the modelling presented in this appendix should not be excessive.
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Appendix B: Solution to the Separation Problem
The separation problem has been shown to be the following Knapsack problem:
NP

maX|r&|u/\)/\) (Bla)

NP
s.L. 2 u;z; > C1() (B1b)

£ .

z;e{0,1} i=1,NP

where Zj= 1 if ieCj, Z= 0 otherwise. Here y*, corresponds to the solution from the relaxed LP and
the u;; are given by (14). |

The heuristic developed for the solution of this problem takes advantage of the fact that
we are interested only in solutions for which J > -1 (because only in this case a violated
inequality is derived).

The algorithmis as follows:

Step 1. Set ZI= 1 fori such that yj = 1. Set Z= O for i such that y* = 0. If constraint
(Bib) is satisfied, Exit.
Step 2. Examine if by setting to 1 only one of the remaining z”s, constraint (Bib) is

satisfied. If so, set thisto 1 and Exit. Ties are broken by choosing the i for
which -(1 - y* ) isthe maximum coefficient in the objective (Bla).

Step 3. Apply the greedy heuristic in the following manner
1) Sort theremaining i'sin order of decreasing (1 - y*,).
i) Select z= 1 one at atime in the order found in (i) until (Bib) is
esatisfied.
In Step 1 the variables Zj are assigned to avoid -1 terms in the objective J,. Step 2 has
been included because in most examples solved, the optimum solution had only one nonzero z,
It was found that the algorithm gave the optimum in all cases in the examples solved.
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Tabl e 1* Exanple i . scenario 1

Sel ect ed Process and Production Prof 11ee

Process Period (Kton/Year)
1 2 - |
s Capacity 7.76 7.76 7.76
Production - 6.41 9.79 7.76
2 Capacity 60.00 - 60.00 - 60. 00 -
Production 20.92 0 o
s Capacity 0 36. 96 36.96
Production 0 30.72 36. 96
Table 2. Exanple | - Scanarlo 2
Sel ected Process and Production Profiles
Process Period (Kton/Year)
1 2 3
1 Capaelty 7.76 7.76 7.76
Production 6.41 9.79 7.76
2 Capacity 60. 00 - *60.00 - 60.00 -
Production 20. 92 0 0
Capacity 0 36. 96 36. 96
3 .
: Production 0 30. 72 36. 96
Tabl e 3. Exanple 1 - Scenario 3
Sel ected Process and Production Profiles
Process Period (Kton/Year)
1 2 3
Capaol ty 0 O 7.76
1 Production 0 ¢} 7.76
Capael ty 60.00 - 60.00 - 60.00 -
2 Producti on 0 ¢} 11. 62
Capaol ty 61.14 61.14 61.14
3

Production 39.10 49. 67 61.14

* Extating Capacity




Tabl e 4. Exanpl e i - Purchases and Sal es
Chomi Cal Period (Kton/year)
1 2 3
Scenario 1 - Purchases
1 6. 00 7.60 8. 60
2 20. 0O 25. 60 30. 00
Sal es '
3 20. 82 30.72 35.95
Scenario 2 - Purchases
1 6. QO 7.60 8. 60
2 20. 00 25.50 30. 00
Sal es
3 20. 82 30.72 35.95
Scenario 3 - Purchases
: 0 ) 8.6d
2 40.00 61.00 60.00
Sales
3 38.10 48.64 "62.66




Table 5. Example 2 - Scenario 1

Selected Pr 3 and Production Proflles
Process Perlod (Kton/yr)
1 2 3 4
Capaclity 99.10 89.10 99.10 $9.10
! Production 40.564 87.67 89.19 99.10
Capaclty [} o o
2 Production o o (o] (<]
Capaclity o o o o
3 Production o) o o o
Capaclty 94.38 94.38 94.38 94.38
4 Production 74.48 64.35 84.94 94.38
Capaclty (o] o o] o
s Production o o o o
Capacity 67.687 67.687 67.687 67.87
e Production 40.54 87.587 67.567 25.18
Capaclty 100.00 128.72 128.72 128.72
7 Production 81.47 121.18 128.00 128.72
Capaclty 100.00 200.00 200.00 200.00
° Production 81.47 176.00 199.00 200.00
Capaclty 45.00 45.00 45.00 45.00
° Production 45.00 o o 10.00
1 Capaclty (] o o ]

Production (o] [¢] o o




Tabl e 6.. Exanple 2 - Scenario 1

Purchases and Sal es

Cheni cal Period (Kton/yr)
1 . 2 3 4
Pur chases
1 *45.00 76. 00 99. 00 110. 00
2 37. 67 0 0 0
3 0 0 0 0
4 45. 00 75. 00 ’ 75. 00 27.92
6 45. 00 69. 64 64.73 110. 00
Sal es

6 145. 00 176. 00 199. 00 210. 00




Table 7. Exanple 2 - Scenario 2

Sel ected Process and Production Profiles

Process Period (Kton/yr)
1 2 3 4
Capaclty o} 67.67  99.10 99. 10

! Producti on (0] 67.57 89. 19 99. 10

5 Capaclty 0 0 : (6] O
Production 0 0 (0] (0]

3 Capacity (0] 63. 20 63. 20 63. 20
Production- 0 63. 20 42.08 51. 62
Capaclty 42.86 42.86 42. 86 42. 86

“ Production 42.86 42. 66 42. 86 42. 86

. Capacity o (0] 0 O

’ Producti on ) 0 e} o)
Capaclty o) 0 34. 66 34. 66

° Producti on 0 0 34. 66 26. 47

- Capacity 54. 63 64. 63 129. 97 129. 97

/ Production 42.86 64. 63 127. 20 129. 97
Capacity 100. 00 176. O 176. GO 176. OO

8 Production 100.00 175. 00 176. 00 176. 0O
Capacity O o] 35.00 35. 00

v Product i on 0 o) 24.00 35.00
Capaclty [0} (0] (0] (0]
10 Producti on o (0] o} O




Tabl e 8.

Exanple 2 - Scenario 2

Pur chases and Sal es

Cheni cal Period (Kton/yr)
1 2 3 4
Pur chases
1 0 75. 00 99. OO 110. 00
2 45. 00 33.29 o 0
3 20. 29 34.82 @) 0
4 0 0 , 38.’36 29.38
6 45. 00 67.36 99. OO 110. 00
Sal es
6 100. 00 175. 00 199. O 210. O




*
Table 9. CPUtines for exanples 1 and 2

a) Exanple 1
Scenario 1 Scepario 2 Scenario 3
Branch and bound 2.62 3.00 2.55
Branch and bound/ cuts 4.39 4.43 4.37
Benders deconposition | 68. 20 76. 79 49. 81
Benders deconposition |1 43. 32 48. 70 35.33
Benders deconposition Il/cuts 39.15 43. 81 31. 82
b) Exanple 2 _
Scenario 1 Scenario 2
Branch and bound 7.81 11. 99
16. 34

Branch and bound cuts

*CPU seconds on | BM 3083. M LP and LP sol ver:

MPSX.



Table 10. FEffect of addition of cuts on branch and bound"
Branch_and Bound Branch and Bound/Qits
4p 21p No. Branches No. Pivots Z| p No . Branches No. Pivots
(no?) ($10°) ($10%)
Exanple 1
Scenario 1 1,697 1,898 1 145 1,874 1 160
Scenario 2 1,063 1,246 13 142 1,223 12 19
Scenario 3 2,236 2,540 7 151 2,472 6 %
Exampl e 2
Scenario 2 45, 248 46, 540 183 8580 46, 236 140 5182

*LI NDO conputer code.



Table 11. MNunber of iterations of Benders deconposition for exanple 1

Benders | Benders || Benders I1/Quts 4p Zip

($10°)
Scenario 1 17 11 10 1,898 1, 697
Scenario 2 19 12 10 1, 246 1, 063

Scenario 3 12 9 9 2, 540 2,235




Table 12, Iterations for alternative Benders deconposition schemes in example 1, scenario 2
Benders deconposition | Bende!s deconposition |1 Benders deconposition I1/cuts
Iteration # ZL 7" Selected 7 s ZL 7" Sel ected y's ZL 7" Sel ected y's
0 —00 +o0 00 oo 00 +o
1 684.5 1246.5 684.5 12465 4 684.5 1223.2 y
2 899.7 1246.5 W32 746.8  1246.5 ¥31 ' Y32 892. 1223..2 Yn - 7s
3 899.7 1246.5 y4. 733 746.8  1246.5 M| - Ta3 892. 1223..2 Yn ' v13'v31%Y32
4 899.7  1246.5 V19 ' V39 914.3  1246.5  y15 .7y 892. 1223..2 Yn 32
5 980. 1246.5  y1p . ¥31 1033.8  1163. Y| *¥32 1027. 1184.3 yy5 31
6 1057. 1246.5  y,,. 721.v31 1033.8  1075.5 N 1033. 1071,.4 V12 >V31
7 1057. 1246.5 ) - Ta 1033.8  1069.5 v1p »Tsi 1033. 1067.,2 Y1132
8 1057. 1246.5  y,,.731. 73 1033.8  1067.3 Y1132 1040.9 1065..5 Y1 722
9 1057. 1246.5 Y11»Y13'v31 1039.5  1065.5 'y ;. 732 1054.4 1063., Y112 732
10 1057. 1246.5 Y| ' Y13'931 - 192 1054.4  1063.8 v13 - Ta1 1063.
1 1057. 1246.5  y,,. 710 ¥31 1054.4  1063. Y11°V32
12 1057. 1246.5 Y11 T12.v31 ' V32 1063.
13 1057. 1246.5 Y11 T12- 931 >33
14 1057. 1246.5 ;4. 71 V13 >V32' Y33
15 1057. 1246. 5 TRREY.
16 1063. 1105. ¥11'933
17 1063. 1095. 4 V13 Y39
18 1063. 1091.7 v13 - 75l
19 1063" 1063.
“ptimmz = 1063, 5 yy = yg = 1
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