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Abstract

This paper presents a multiperiod MILP model for the optimal selection and expansion

of processes given time varying forecasts for the demands and prices of chemicals. To reduce

the computational expense of solving these long range planning problems, several strategies are

investigated which include the use of integer cuts, strong cutting planes, Benders decomposition

and heuristics. These procedures, which have been implemented in the program MULPLAN, are

illustrated with several example problems. As is shown, the proposed model is especially useful

for the study of a variety of different scenarios.
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Chemical companies are increasingly concerned with acquiring and managing more

efficiently the resources that they will need to survive and prosper in a very competitive

environment. Therefore, they must evaluate their options from two perspectives. First, they

must assess the potential benefits of new resources when these are used in conjunction with

existing processes, but accounting for their effect over the long term. Second, companies must

identify and assess the potential impact on their business of important uncertainties in the

external environment. Included are uncertainties regarding demand, prices, technology, capital,

markets, and competition. In selecting new resources, companies should seek to develop long

term strategies for hedging against these uncertainties, and to provide contingency plans to be

put into effect as the uncertainties are revealed. Therefore, due to increasing competition,

changing economic environment and fluctuating demands of chemicals, there is an increasing

need of quantitative techniques for planning the selection of new processes, the expansion and

shut-down of existing processes, and the production of chemicals (see Hirshfeld, 1987).

Uncertainties in planning models â e, however, difficult to handle. Random coefficients

are often replaced by their expected values in the planning models which might lead to

misleading solutions (Kallberg et al> 1982). Using a single deterministic value other than the

mean can also lead to large inaccuracies (Birge, 1982). In these cases, a stochastic optimization

model for random coefficients should be ideally used for the planning model.

However, since stochastic programs are in general very difficult and expensive to solve,

an alternative approach is to use a deterministic multiperiod optimization model. This model can

be used to account for predicted changes over a given time horizon and also to account for a

finite number of different scenarios which can be associated with discrete probabilities.

A rather large number of papers has been reported in the Operations Research literature

on capacity expansion problems in several areas of application. A recent survey can be found in

Luss (1982), In the chemical engineering literature dynamic programming has been applied to

chemical plant expansions (Roberts, 1964), but this decomposition technique becomes quite

ineffective for large scale problems. Alternative approaches include the NLP formulation by

Himmelblau and Bickel (1980), the multiperiod MILP formulation by Grossmann and

Santibanez (1980), the goal programming approach of Shimizu and Takamatsu (1985) and the

recursive MILP technique by Jimenez and Rudd (1987). However, these approaches are often

limited to the size of problems that they can handle.



It is the purpose of this paper to present a multiperiod MILP model for long range

planning that can be used either in a strictly deterministic fashion or as an approximation to the

stochastic optimization problem. Several solution strategies which include the use of integer

cuts, strong cutting planes and Benders decomposition, are presented for reducing the

computational expense of solving the MILP problem. These strategies, which have been

implemented in the computer program MULPLAN, will be illustrated with several example

problems.

Problem Statement

The specific problem that is addressed in this paper assumes that a given network of

processes and chemicals is given. This network includes an existing system as well as potential

new processes and chemicals. Given are also forecasts for prices and demands of chemicals, as

well as investment and operating costs over a finite number of time periods within a long range

horizon. The problem then consists of determining the following items that will maximize the

net present value over the given time horizon:

a) Capacity expansion and shut-down policy for existing processes;

b) Selection of new processes and their expansion capacity policy;

c) Production profiles;

d) Sales and purchases of chemicals at each time period.

Linear models are assumed for the mass balances in the processes, while fixed-charge

cost models are used for the investment cost. Also, limits on the investment cost at each time

period can be specified, as well as constraints on the sales and purchases. As will be shown in

the next section, the above problem can be formulated as a multiperiod MILP problem.

Multiperiod MILP Model

A network consisting of a set of NP chemical processes that can be interconnected in a

finite number of ways is assumed to be given. The network also involves a set of NC chemicals

which include raw materials, intermediates and products. This network can then be represented

by two types of nodes: one for the processes and the other for the chemicals. These nodes will

be interconnected by a total of n streams to represent the different alternatives that are possible

for the processing, as well as the purchases and sales from different markets.



Also, a finite number of NT time periods is considered where prices and demands of

chemicals vary, as well as the investment and operating costs of the processes. The objective

function to be maximized is the net present value of the project over the specified horizon

consisting of NT time periods.

It will be assumed for the modelling that the material balances in each process can be

expressed linearly in terms of the production rate of the main product, which in turn defines the

capacity of the plant. As for the investment costs of the processes and their expansions, it will be

considered that they can be expressed linearly in terms of the capacities with a fixed charge cost

to account for the economies of scale.

In the formulation of this problem the variable Qit represents the total capacity of the

plant of process i that is available in period t, t=l,NT. The parameter Qio represents the existing

capacity of a process at time t=0. QEit represents the capacity expansion of the plant of process i

which is installed for starting its operation in period t. If yit are the 0-1 binary variables which

indicate the occurrence of the expansions at each time period and for each process, the

constraints that apply are

QEit<Q$tyit (1)

Qu =

In equation (1), QEJJ and QEU
U are lower and upper bounds for the capacity expansions. It

must be noted that a zero-value in the binary variables ylt forces the capacity expansion at period t

to zero, i.e. QEit=0. If the binary variable is equal to one the capacity expansion is performed.

Equation (2) simply defines the total capacity Qit that is available at each time period t.

It should be noted that the above representation for expansions requires fewer

continuous variables and constraints than the one presented by Grossmann and Santibanez

(1980). Since these authors did not define the total capacity variables, production amounts and

capacities had to be defined for each potential expansion. This problem can be avoided easily as

shown below.



The amounts of the chemicals being consumed and produced in period t of the plant of

process i are represented with the variables

WfrZO keL( i=lJJP t=l,NT (3)

where Li is the index of the subset of n streams corresponding to inputs and outputs of process i,

and U f̂j Lj = {l,2,...n}. Let stream n^eL} correspond to the main product produced by process i.

Then the amount produced of that product cannot exceed the installed capacity; that is

Qu*Wmf i=l#P t=\JNT (4)

The case of shut-down of an existing plant results when the variable Wm t takes a value of zero

after a given time period t.

The material balances in each plant are given by the linear relations

Wkt = ^ikWmf to&i ^W? ^ 1 ^ (5)

where \i^ are positive constants characteristic of each process i.

As for the raw materials, intermediates and products, they will be represented by NC

nodes of chemicals where purchases and sales are considered in one of several markets, / = 1,

NM. If the corresponding variables are represented, respectively, in each period by the variables

Py,, SJ,, j=l,...NC, they must satisfy the inequalities

(6)

where a'/*, a£ a are the lower and upper bounds on the availabilities, and d^ , ^f are lower and

upper bounds on the demands.

Defining I(j) as the index set of output streams of plants that produce chemical j, O(j) as

the index set of input streams of plants that consume chemical j, the mass balances in these

nodes will be given by

NM NM M



Finally, the net present value of the project is given by

NP NT NP NT

NM NC NT

where the parameters cxjt, (5it represent respectively the variable and fixed terms for the

investment cost, 5^ is the unit operating cost, and yjr Xjt are the unit costs of sales and purchases

of the chemical j in market L> t = 1,NM. All these parameters are discounted at the specified

interest rate and include the effect of taxes in the net present value.

In order to determine the optimal planning of the network the multiperiod MILP model

consists in maximizing the objective function in (8), subject to the constraints (l)-(7).

Additional constraints that can be considered include:

a) Limit on the number of expansion

NT

(9)

b) Limit on the capital available for investment at each time period

NP _

(10)

where a i t, p i t are non-discounted cost coefficients corresponding to period t.

Finally, for the case when shut-downs are modelled explicitly, the constraints discussed

in Appendix A can be included.

Solution Strategies

The MILP model given in the previous section can typically be solved directly with

branch and bound enumeration procedures (Garfinkel and Nemhauser, 1972) such as the ones

that are implemented in standard computer packages (e.g. MPSX, APEX, LINDO, ZOOM). For

large networks, however, the computational expense can be high. For example, a network with



40 processes, 50 chemicals, 2 markets and 5 time periods would involve 200 0-1 variables, and

approximately 1000 continuous variables and 1200 constraints. Since most of the alternatives

embedded in such a model are feasible, a large number of branches must usually be examined.

Therefore, there is a clear incentive to develop efficient computational strategies and

approximate procedures since this then allows the examination at a greater variety of scenarios in

the planning model. In the following section four numerical schemes will be described.

Bounding and Integer Constraints

In this section it will be assumed that there are no limitations in the capital investment at

each time period. A simple bounding constraint that can then be generated for the MILP

problem is to solve the relaxed LP and determine the two following solutions that correspond to

lower bounds to the net present value:

LBj - relaxed LP solution with non-zero binaries set to one

LB2 - relaxed LP solution with non-zero binaries of first active
period set to one, and with maximum required capacity at that
time period.

In other words LBj corresponds to a feasible solution where expansions are performed

as determined by the relaxed LP solution. LB2 corresponds to a feasible solution where only one

expansion is considered at the first active period determined from the relaxed LP. These bounds,

which are very easy to determine, can then be incorporated into the MILP with the following

inequality

NVPZmax[LBvLB2) (11)

Additional constraints that can reduce the computational effort in the branch and bound

procedure are integer constraints that place a limit on the number of expansions in a process.

Again, assuming no limitation in the investment cost, the maximum number of expansions

NEXP(i) can be determined by calculating the maximum number of expansions whose cost is

less or equal to the maximum cost of any given expansion. This then leads to the following

MILP problem for each process i:



NT

s.t. ^(OitQEn + ^i,) <, aimaxQi

NT

it <> QEit

Note that the first inequality simply states that the cost of the expansions cannot exceed the

investment cost of process i at maximum capacity with the "worst" cost coefficients. Due to the

discount factors, these usually correspond to period 1. As for the maximum capacity Qj max this

can be determined from the upper bounds on capacity expansion, or else through an LP by

maximizing Qit in the network at the corresponding time period and by removing the 0-1

constraints in (1).

From the solution of the above small-scale MILP's in (12), the constraints in (9) can be

added to the multiperiod MILP. Both constraints (9) and (11) will usually help in reducing the

gap between the relaxed LP and MILP solutions so as to decrease the computational effort of the

branch and bound method. However, for large-scale problems these provisions may not be

sufficient. Furthermore, when the constraints (10) on capital investment are present, the problem

in (12) will often underestimate the maximum number of expansions. Therefore, it is worth

considering the use of strong cutting planes that can strengthen the lower bound of the relaxed

LP problem when the investment constraints in (10) are present.

Strong Cutting Planes

Recently, a new approach to the solution of large scale ILP and MILP problems has

started to emerge (Crowder et aU 1983; Van Roy and Wolsey, 1984). The idea in this approach

is to try to generate from the relaxed LP tighter formulations of 0-1 polyhedra by adding cutting

planes that describe facets or faces of high dimension of the convex hull of these polyhedra. The

gap between the MILP and its LP relaxation is thereby often reduced (if not completely

eliminated) and the subsequent use of branch and bound or any other algorithm is made more

economical.



At each iteration the procedure starts by finding (x*, y*), the optimum continuous and

0-1 variables of the LP relaxation of the current MILP formulation. Then a separation problem

is solved by using only part of the model (typically some network flow type constraints), to

generate additional valid inequalities which attempt to chop off the point (x*, y*) from the

solution space of the LP relaxation polyhedron. The procedure is then repeated until an integer

solution to the new LP relaxation is found, or else until there is a small improvement in

strengthening the LP relaxation bound.

The above procedure, for which details can be found in Van Roy and Wolsey (1984),

can be applied to the multiperiod MILP with capital investment constraints as follows. First,

network substructures of the model are identified; namely equations (1) and (10) for each time

period t, t=l,NT:

St = UQE,y> £ (o^QE., + $ityi() < Cl(t),

(13)

yitQE^ < QEit < QE%yit, yit e {0,1} i=

To see the network structure we substitute

and obtain

HP

(15)

< xu <. uffiu . yit e {0,1} M.OT }

For this structure two families of valid inequalities have been derived (Van Roy and



Wolsey, 1983)). The Simple Generalized Flow Cover inequality

J [xit + (uit-X)+ (1-y,,) ] < Cl (t) (16)

and the Extended Generalized Flow Cover inequality:

where (\ c{ 1,2,...NP} is a generalized cover, i.e.,

and Ltc{\X»NP}\ ut= maxuit\
itCt

uit = max(jurUit) ty* = max(0$) andut>Xt>0.

Note that uit is given in (14).

The exact separation algorithms for the Simple and the Extended Generalized Cover

inequalities correspond to Knapsack problems parameterized in ^, 1 ,̂ (^ that maximize the

violation of the relaxed binary solutions y*. This can lead to the following Knapsack problem

for each time period t:

NP

NP

s.t. Xu l A >CI(0 (18)

where z ^ l if ieCt; Zi=0 otherwise. The violated inequalities (16) and (17) are derived whenever

Jt > -1. The indices i that are included in the set 1^ for the inequality in (17) must satisfy the

condition, x* - (ijt - ty+y* £ 0.

The cutting plane algorithm is then as follows:
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StepO. Solve the LP relaxation of the multiperiod MILP. Set NPV = NPV
(optimum from relaxed LP).

Step 1. For each time period t, solve the separation problem (18). Here the problem
is only approximately solved using some from of the greedy heuristic (see
Appendix B).

From the solution to the Knapsack problem, determine the cover Ct and add
the violated inequalities (16) and (17) to the current MILP formulation.

Step 2. Solve the new LP relaxation. If NPV'-NPV>tolerance, then set NPV'=NPV
and repeat Steps 1 and 2. Otherwise start the branch and bound procedure or
any other algorithm to find the optimum to the current formulation.

The algorithm has the advantage that no attempt is made to generate all the facets of the

0-1 polyhedron at once which is an NP-hard problem. Instead, cuts are added at each iteration in

an attempt to reduce the LP relaxation gap. On the other hand it must be pointed out that it

suffers from the following. Firstly, the information is extracted only from an isolated part of the

model and secondly, the separation problem has been relaxed to a computationally effective

form which might not always generate an optimum cut. Therefore, it is to be expected that the

LP relaxation gap will not be completely eliminated. Nevertheless, since the method is

computationally very cheap and at the same time effective in the initial iterations, it can be used

to reformulate the initial multiperiod MILP model to one which is more easily solved by other

methods like branch and bound and decomposition schemes.

Benders Decomposition

A standard decomposition technique that can be applied to the multiperiod MILP

problem is Benders decomposition method [Benders (1962), Geoffrion (1972)]. In this

algorithm the MILP problem is solved through a sequence of LP subproblems and MILP master

problems, with the former providing lower bounds to the net present value and the latter

providing upper bounds. The definition of the LP subproblems and master problems depends,

however, on the partitioning of variables that are used.

In its most natural form the variables of the multiperiod MILP are partitioned as follows:

a) Complicating variables for the master problem: yit

b) Remaining variables for the LP subproblem:
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The basic steps in Benders decomposition method are then the following:

Algorithm I

Step 1. Select y£; set NPVU = ~, NPVL = -co, K = 1.

Step 2. a) By fixing the variables y£, solve the multiperiod MILP problem as an LP

to determine NPVK and uK.

b) Update the lower bound by setting NPVL = max {NPVL, NPVK)

Step 3. To determine new values y*+1 for the 0-1 variables and an upper bound to
NPV solve the pseudo-integer master problem

max \i

s.t. \L<Lk(yit) k=l

HeR1 , y/r=0,l (19)

where the lagrangian Lk(yit) = NPV(yit, u
k) +

NPNT

? A W^ (20)
and NPV(yit, u

k) is the NPV function with all continuous variables uk fixed
except the yit and X^9 X%*9 are the Lagrange multipliers of constraint (1) in
the LP solution of Step 2.

Step 4. If NPVL = NPVU stop. Otherwise set K = K + 1, and return to Step 2.

Although the above algorithm has the advantage of involving an integer programming

problem with only one continuous variable |i in the master problem of Step 3, the disadvantage is

that this problem is often too relaxed. This will then have the tendency of yielding initially very

high values for the upper bound NPVU, and hence require a large number of iterations.

In order to strengthen the bounds predicted by the master problem, one can redefine the

partitioning as follows,

a) Complicating variables for the master problem: yit, Qit, QEit

b) Remaining variables for the LP:
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In this way the basic steps in algorithm II for this partitioning are similar to algorithm I

except for the following:

a) In Step 2.a yj , Qj , QEj are fixed for solving the LP in which constraints (1) and
(2) can be removed.

b) In Step 3, the master problem corresponds to the following MILP problem

M>V t /= max\i
yit,QirQEit,\i (21)

s.t. \i £ Lk(yu,Qu,QEu,ifi)

Qit,QEit £ 0 ,

NP NT

c) where Lk(yit,Qit,QEit^^NPV(yu>Qit,QEi^h + % % Pit (Wm.-Qu>

and NPV(yit, Qit, QEit, u
K) is the NPV function with the variables uK fixed, and p i t

are the Lagrange multipliers of constraint (4).

As will be shown later in the results, algorithm II predicts stronger upper bounds and

hence requires fewer iterations. In addition, the subproblems can now be solved as a sequence of

independent problems (one for each time period).

Heuristic Procedure with Bounds

The procedures in the previous sections are aimed towards the exact solution of the

multiperiod MILP model. It is useful, however, to also consider heuristic methods for which the

quality of the solution can be asserted as shown in this section.

Due to the effect of the discount factors many instances of the optimal solution of the

multiperiod MILP problems involve only one expansion, especially if there are no limits in the

capital investment. Such a solution corresponds often to the lower bound LB2 described

previously in the paper. Since this bound is easy to obtain, as is in fact the lower bound LB l9 the

higher of these two can be used as a heuristic estimate of the optimal solution. The question that
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then arises, however, is how good these estimates are.

In order to answer the above question a tight upper bound must be generated. An easy

to compute upper bound is the solution of the relaxed LP which will be denoted by UB^ Since

this bound might not be very strong, the following procedure can be used to generate a second

bound UB2. Consider that only one expansion will be performed at period 1 but with the lowest

coefficients of the investment cost otj n^nJ $x ̂  (usually the ones of the last time period). The

multiperiod MILP will then simplify as follows for this upper bound:

NP

-Ji {aiminQEi + p
NPNT NMNCtTT

s.t. Qi = Q0 + QEi (22)

yt -

Constraints (3), (5), (6) and (7).

Note that the above MILP only involves NP 0-1 variables instead of (NP)-(NT) and it

has NP(NT-l) fewer constraints. Therefore, this MILP is easier to solve than the multiperiod

MILP given by (l)-(8).

Having determined UB2 from (22), the heuristic solution can be set to

NPVH = max {LBV LB2) (23)

and the upper bound to

UB = min{UBl,UB2} (24)

Hence the maximum gap of the heuristic solution with respect to the optimal MILP solution will

be given by
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UB-NPV"
8<2P UB— ( 2 5 )

This gap can be expected to be small in many instances.

MULPLAN

In order to automatically formulate and solve the multiperiod MILP model, the computer

program MULPLAN has been developed. Given data on the structure of the network, mass

balance coefficients and other economic information and constraints, the program formulates the

problem using the modelling system GAMS (Kendrick and Meeraus, 1985). In its simplest

form, the multiperiod MILP problem is solved directly with the branch and bound method.

However, provisions are available in this program to use as alternate solution strategies the

methods described previously in this paper. Also, a special version is available that can interface

with any MILP solver through MPS files (e.g. MPSX, LINDO, ZOOM, APEX).

In the following sections two examples will be first presented to illustrate the application

of the multiperiod MILP model. A comparison of the performance of the computational

strategies will then be given in another section.

Examples

Example 1

In example 1, the network indicating all the alternatives is shown in Figure 1. Product 3

is to be produced by process 2 or 3 with the feedstock to process 2 and 3 either bought or

manufactured in process 1. This problem spans over three periods with the lengths being 2, 3,

and 5 years. Limits on investment are specified at each time period and process 2 has an existing

capacity of 50 kton/yr.

Three scenarios of this example are considered and they differ from each other in the

following way: Scenario 2 differs from scenario 1 by 20% reduction in sales prices of product 3;

scenario 3 differs from scenario 2 by reducing the investment bound in period 2 to 0 and

increasing by 20% the cost of chemical 1 and reducing by 20% the cost of chemical 2. Scenario

3 also differs from 1 and 2 in that the upper bounds for the availability of chemical 2 were

doubled. In both cases a maximum number of 3 expansions was considered with limits on
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investment cost at each time period. The economic data for all three scenarios and the constants

for material balance equations and the demand for chemicals are given in Chathrathi (1986).

The corresponding MILP problem involves 9 0-1 variables, 42 continuous variables and 58 rows.

Some of the results of the three scenarios obtained with MULPLAN are presented in

Tables 1 to 4. The analysis of these results indicates that the optimal solution of scenario 1

involves shutting down process 2 in period 2 and 3 and installing process 3 in period 2 (see

Figure 2). Process 1 should be installed in period 1. As seen in Table 1 all processes operate

below maximum capacity in periods 1 and 2. The net present value for scenario 1 is $1697.61 x

105. Though the results for scenario 2 are identical (see Figure 3, Table 2) the net present value

is reduced to $1063.01 x 105 indicating the effect of the reduction in sales price. The optimal

solution of scenario 3 involves installing process 1 in period 3, process 3 in period 1 and shutting

down process 2 in periods 1 and 2 (see Figure 4, Table 3). The net present value in this case is

$2236.38 x 105. This increase was mainly due to the larger availability of chemical 2 which

allowed for a larger production of chemical 3. Purchases and sales for the three scenarios are

given in Table 4.

Example 2

Example 2 involves a larger chemical complex, which has a network of 10 processes.

None of these processes is assumed to have an existing capacity. The network showing all the

alternatives for this complex is shown in Figure 5. Product 6 is to be produced in 4 periods each

with a length of 2 years and various constraints on the chemical demands and prices.

The alternatives presented in Figure 5 are as follows: Product 6 can be produced by

processes 8, 9, and 10 which use chemical 3 as raw material. Chemical 3 can be purchased or

produced by processes 2, 3, and 4 using chemical 2 as raw material, or by process 7 using

chemical 5 as raw material. Chemicals 2 and 5 can be purchased or produced by process 1, and

5 or 6, respectively. Process 1 uses chemical 1 as raw material, and processes 5 and 6 use

chemical 4 as raw material. Two scenarios are considered in this example, the first has no

investment bounds and the second scenario has investment bounds. Also in both cases a

maximum number of 2 expansions per process was considered. The economic data and chemical

prices, the constants for material balance equation, and the demand for chemicals are given in

Chathrathi (1986). The corresponding MILP model involves 40 0-1 variables, 174 continuous
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variables and 198 rows.

Some of the results of the problem that were obtained with MULPLAN are presented in

Tables 5 to 8 for both scenarios. These results indicate that the optimum net present value of

$51,027.1 x 105 can be obtained for scenario 1 by using the following configuration as seen in

Table 5; the optimal configuration does not use processes 2, 3, 5 and 10; the capacity of process

7 and 8 is expanded in period 2. In this configuration process 6 operates below maximum

capacity, in period 4; process 9 would be shut down in period 2 and 3, and reused in period 4.

This optimal configuration is shown in Figure 6, and the sales and purchases in Table 6.

The optimum NPV for the second scenario with the bounds on investment costs at each

time period is $45,244.50 x 105. This configuration does not use processes 2, 5, and 10. The

details of the capacity expansions and production profiles are shown in Table 6 and Figure 7.

Note that this second scenario features 3 processes with expansions versus the 2 for the first

scenario.

Computational Results

The three scenarios of example 1 were solved with MULPLAN using the following

techniques as seen in Table 9a: branch and bound, cutting planes followed by branch and bound,

Benders decomposition (algorithms I and II), cutting planes followed by algorithm II of Benders

decomposition. It can be seen that branch and bound required the smallest CPU times. The

explanation of this is the fact that example 1 is a relatively small multiperiod problem. However,

the following general trends can be identified.

Firstly, cutting planes reduce the gap between the relaxed LP solution (ZLP) and the

optimal MILP solution (Zjp) as seen in Table 10. Although in example 1, the benefits of this

reduction were rather marginal in terms of reduction at branches and pivot operations, scenario 2

of example 2, which is a larger MBLP model exhibits a more substantial reduction in these two

items. Also note from Table 9b that the CPU time is slightly higher with the use of cutting

planes.

As for Benders decomposition, even though all provisions were taken so as to restart the

subproblems at each iteration from the previous solution, the performance is not very

encouraging as seen in Tables 9a, 11 and 12. However, here it is clear that the modified
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formulation of algorithm II is much better than the one in algorithm I as it requires almost 40%

fewer iterations due to the modified master problem. Also the reduction of time is roughly 35%

as seen in Table 9. In this case, however, the use of cutting planes has only a small effect in

speeding up the solution of algorithm IL It is also interesting to note that algorithm I of Benders

has the tendency of introducing far too many expansions in the initial iterations as seen in Table

12.

Although the above computational results are somewhat limited, they seem to indicate

that the use of strong cutting planes followed by branch and bound should be a more promising

technique for solving larger multiperiod MILP problems than Benders decomposition. In the

following section a larger example is presented to illustrate the heuristic techniques and the other

bounds.

Example 3

The network of a proposed petrochemical complex is shown in Figure 8. Four time

periods are considered each of 2 years. In this case processes 12, 13, 16 and 40 are assumed to

exist with capacities 39.9, 25, 300 and 200 103 ton/year, respectively. These processes are

assumed to have possibilities of expansion starting in period 2, while all the other nonexisting

processes could be installed starting in period 1. There are a total of 38 processes and 25

chemicals. The economic data and the constants for material balance equations are given in

Fornari and Grossmann (1986). No bounds are specified for the investment cost at each time

period. The problem has 148 integer variables, 768 continuous variables and 739 constraints.

Due to the large size of this MCLP an approximate solution was obtained. From the

analysis of the solution of the relaxed problem lower bounds were obtained for the objective

function. These lower bounds are LBj = $2408.1 x 106 (obtained by making 1 all the non-zero

binary variables in the relaxed problem solution) and LB2 = $2530.6 x 106 by installing only

once the selected processes. Clearly the latter yields a better lower bound and can be regarded as

a good suboptimal solution.

Results from the MILP problem (12) show that the maximum number of expansions for

all processes is 1, except from processes 2 and 10, for which 2 is the maximum number of

expansions. Adding constraints (9) and (11) after 2 hs of CPU time with branch and bound in
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LINDO on a VAX 11/780 the optimal solution was not reached. In this case the best NPV value

found was $2381.5 x 106.

The relaxed problem solution, however, gives a valid upper bound for the optimal

solution of the problem (UBj = $2761.3 x 106), and hence the gap with respect to the lower

bound of $2530.6 x 106 is 8.4%. We can reduce this gap to obtain a tighter upper bound by

solving the MDLP (22) assuming only initial expansions and with investment cost of last period

of time. This yields a lower upper bound UB2 = $2606.4 x 106. With this new upper bound the

gap is reduced to 2.9%.

The solution corresponding to the lower bound LB = $2530.6 x 106 is as follows. The

selected processes are: 1, 3,4, 5,6, 8,12, 13,14,16,20,23,26, 27,28, 33, 36 and 40. Note that

since 12, 13, 16 and 40 are existing processes, these are the only ones whose capacity is

expanded in period 2. All the other processes are installed in period 1 with an initial capacity

that remains constant throughout the 4 periods. Since this solution has a gap of only 2.9%, it can

be regarded as a good suboptimal solution.

It should be noted that the problem was also solved to optimality with the MPSX code

on the IBM-3090 supercomputer at the Cornell Theory Center. The total CPU time required was

35 minutes. It was also found that the branch and bound requirements were reduced to only 9.5

minutes after addition of the limits on investment constraints (10) and that the application of the

strong cutting plane algorithm along with the above mentioned constraints reduced even more

the branch and bound requirements to only 8 minutes. This clearly shows that new

developments in computer technology and optimization theory are making it computationally

feasible to solve large-scale multiperiod MILP problems. On the other hand, since one is usually

interested in the study of different scenarios there is still an incentive to develop methods that

can greatly reduce the computational expense.

Conclusions

This paper has presented a multiperiod MILP model for long range planning of capacity

expansions and process selection. The incorporation of this model in the computer program

MULPLAN makes this model especially useful for the study of different scenarios as was

illustrated in the example problems.
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A number of solution strategies have been presented to reduce the computational burden

of solving the corresponding MILP problems. Based on the results obtained, it would seem that

a combination of strong cutting plane generation and branch and bound is the most promising

strategy for solving these problems to optimality. Benders decomposition in its various forms

would seem to have little promise. Finally, the last example illustrated the usefulness of the

heuristic procedure for which the quality of the solution can be predicted.
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Appendix A: Modelling Shut-Downs

It is sometimes desirable to account for a penalty when a process is shut down or when

an installed process is not operated for a period of time. In other cases it is desirable to operate

an installed process at a minimum level of operation. In order to account for these

considerations let £jt be a binary variable that will take the value 1 if process i is decided to be

excluded from any further consideration (installation, expansion or operation) starting at the

beginning of time period t Also let dit be equal to the available plant capacity at the time of shut

down (i.e. when 6jt = 1).

The constraints that apply for e^ and d^ are:

dit < Qu_x /=1,M>, MjVT+1 (Al)

dit<Uiteit ^l^VP, r=lJVT+l (A2)

Qit < ditMJu^ (l-e l7) (A3)

where Uit = Q^ + XrJi Qtf • Equation (A2) will force djt to zero for as long as £jt = 0. When

eit = 1, equations (Al) and (A3) enforce dit = Qj t-1. Note that when a process is selected and not

shut down at anytime B j j ^ + ^ l , while for a process that is never selected 6^=1. In addition,

one has to include the following constraints that relate the variables eit to the rest of the model

yiT < 1 - Eit i=WP, T*u t=lJ*T (A4)

According to (A4) no expansion is allowed, and according to (A5) no operation is allowed once

process i is decided not to be considered after time t.

In order to enforce operation of a process at a prespecified percentage of the installed

capacity the following simple constraint is sufficient

m f u Q i t t=l,NT (A6)

where xit is the prespecified percentage.
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If it is desirable to operate an installed process i during time period t in such a way so as

to process at least an amount of Lit units of the main product,

^ , for QtoX) (A7)

, for Qio=0 (A8)

A penalty (or profit, e.g. when scrapping the process) term can be included in the

objective as a function of the installed capacity at the time of shut-down:

NP NT+\

§ X
where au and $u are discounted cost coefficients. In the case of profit then o^ > 0 and pa >0

and constraint (A3) is redundant for the maximization problem.

In the case where an installed process is not operated for a period of time, a penalty term

can be included in the objective to account for the expenses of maintaining the idle plant:

NP NT

along with the following constraint

(A9)

that will force QPit to be equal to the installed capacity of the process. Here penit are again

discounted coefficients. Finally, the decision to shut down a process is applied exactly once for

each process, and therefore

(A10)

which gives rise to Special Ordered Sets of type 1. Therefore the additional computational

requirements of the modelling presented in this appendix should not be excessive.
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Appendix B: Solution to the Separation Problem

The separation problem has been shown to be the following Knapsack problem:

NP

max 'rXl"^)^) (Bla)

NP

where Zj= 1 if ieCj, Zj= 0 otherwise. Here y*u corresponds to the solution from the relaxed LP and

the uit are given by (14).

The heuristic developed for the solution of this problem takes advantage of the fact that

we are interested only in solutions for which Jt > -1 (because only in this case a violated

inequality is derived).

The algorithm is as follows:

Step 1. Set Zj= 1 for i such that y* = 1. Set Zj= 0 for i such that y^ = 0. If constraint
(Bib) is satisfied, Exit.

Step 2. Examine if by setting to 1 only one of the remaining z^s, constraint (Bib) is
satisfied. If so, set this to 1 and Exit. Ties are broken by choosing the i for
which -(1 - y*u) is the maximum coefficient in the objective (Bla).

Step 3. Apply the greedy heuristic in the following manner

i) Sort the remaining i's in order of decreasing (1 - y*u).

ii) Select zj= 1 one at a time in the order found in (i) until (Bib) is
•satisfied.

In Step 1 the variables Zj are assigned to avoid -1 terms in the objective Jt. Step 2 has

been included because in most examples solved, the optimum solution had only one nonzero zv

It was found that the algorithm gave the optimum in all cases in the examples solved.



23

REFERENCES

Benders, J.F., "Partitioning Procedures for Solving Mixed-Variables Programming Problems,"
Nurnerische Mathematik, 4,238-252 (1962).

Birge, J.R., tfThe Value of the Stochastic Solution in Stochastic Linear Programs with Fixed
Recourse," Math. Program., 24, 314-325 (1982).

Chathrathi, M, "Computer System for Long Range Planning in the Chemical Industry," M.S.
Thesis, Carnegie Mellon University (1986).

Crowder, H., E.L. Johnson, M. Padberg, "Solving Large-Scale Zero-One Linear Programming
Problems," Operations Research, 31, 803 (1983).

Fornari, R.E.J.E. Grossmann, "Long Range Planning Models for Process Selection and Capacity
Expansion in the Chemical Industry," Progress Report, Carnegie Mellon
University (1986).

Garfinkel, R.S., G.L. Nemhauser, "Integer Programming," Wiley, New Yoik (1972).

Geoffrion, A.M., "Generalized Benders Decomposition," JOTA, 10,4 (1972).

Grossmann, I.E., J. Santibanez, " Application of Mixed-Integer Linear Programming in Process
Synthesis," Computers and Chem. Engng., 4,205 (1980).

Himmelblau, D.M., T.C. Bickel, "Optimal Expansion of a Hydrodesulfurization Process,"
Computers and Chem. Engng., 4, 101 (1980).

Hirshfeld, D.S., "Mathematical Programming and the Planning, Scheduling and Control of
Process Operations," paper presented at the FOCAPO Conference, Park City
(1987).

Jimenez, A.G., D.F. Rudd, "Use of a Recursive Mixed-Integer Programming Model to Detect an
Optimal Integration Sequence for the Mexican Petrochemical Industry,"
Computers and Chem. Engng., 3, 291 (1987).

Kallberg, J.G., R.W. White, W.T. Ziemba, "Short Term Financial Planning Under Uncertainty,"
Mgmt. Sci., 28, 670-682 (1982).

Kendrick, D., A. Meeraus, "GAMS - An Introduction, User's Manual for GAMS," Development
and Research Dept. of the World Bank (1985).

Luss, H., "Operations Research and Capacity Expansion Problems: A Survey," Operations
Research, 30,907 (1982).

Padberg, M.W., TJ. Van Roy, L.A. Wolsey, "Valid Linear Inequalities for Fixed Charge
Problems," Operations Research, 33, 842 (1985).

Roberts, S.M., "Dynamic Programming in Chemical Engineering and Process Control,"
Academic Press, New York (1964).



24

Shimizu, Y., T. Takamatsu, "Application of Mixed-Integer Linear Programming in Multiterm
Expansion Planning Under Multiobjectives," Computers and Chem. Engng.,
9, 367 (1985).

Van Roy, T.J., L.A. Wolsey, "Valid Inequalities for Mixed 0-1 Programs," CORE Discussion
Paper 8316, Universite Catholique de Louvain, Louvain-A-Neuve (1983).

Van Roy, TJ., L.A. Wolsey, "Solving Mixed Integer Programs by Automatic Reformulation,"
CORE Discussion Paper 8432, Universite Catholique de Louvain,
Louvain-A-Neuve (1984).



 



Table 1* Example i . scenario 1

Selected Process and Production Prof 11 ••

Process Period (Kton/Year)

1 2

2

Capacity

Production

Capacity

Production

Capacity

Production

7.76

6.41

60.00 •

20.92

0

0

7.76

9.79

60.00 •

0

36.96

30.72

7.76

7.76

6O.OO •

O

36.96

36.96

T a b l e 2. Example I - Scanarlo 2

Selected Process and Production Profiles

Process

1

2

Capae1ty

Production

Capacity

Production

Capacity

Production

1

7.76

6.41

60.00 •

20.92

0

0

Period (Kton/Year)

2

7.76

9.79

•60.00 •

0

36.96

3O.72

3

7.76

7.76

60.00 •

0

36.96

36.96

T a b l e 3. Example 1 - Scenario 3

Selected Process and Production Profiles

Process

1

2

3

Capaolty

Production

CapaeIty

Production

Capaolty

Production

1

0

0

60.00 •

0

61.14

39.10

Period (Kton/Year)

2

O

O

60.00 •

O

61.14

49.67

3

7.76

7.76

60.00 •

11.62

61.14

61.14

Capacity



Table 4. Exanple i - Purchases and Sales

C h O m l C a l Period (Kton/year)

1 2 3

Scenario 1 - Purchases

1

2

Sales

3

Scenario 2 - Purchases

1

2

Sales

3

6.00

20.OO

20.82

6.OO

20.00

20.82

7.60

25.60

30.72

7.60

25.50

30.72

8.60

30.00

35.95

8.60

30.00

35.95

Scenario 3 - Purchases
1 0 o 8.6d

2 40.00 61.OO 60.00

Sales

3 38.10 48.64 62.66



Table 5. Example 2 - Scenario 1

Selected Process and Production Profiles

Process Period (Kton/yr)

1 2 3

«
1

2

3

4

6

6

7

6

w

10

Capac1ty

Production

Capac1ty

Production

Capac1ty

Production

Capac1ty

Production

Capac1ty

Production

Capac1ty

Production

Capacity

Production

Capacity

Production

Capacity

Production

Capacity

Production

99.10

40.54

0

0

0

0

94.38

74.48

0

0

67.67

40.64

100.00

81.47

100.OO

81.47

45. OO

45.OO

0

O

99.1O

67.67

O

0

O

O

94.38

64.35

0

0

67.67

67.57

123.72

121.15

200.00

176.00

45.00

0

O

O

99.10

89.19

0

0

0

O

94.38

84.94

O

0

67.67

67.67

128.72

126.00

200.00

199.OO

45.00

O

O

O

99.10

99.10

O

O

O

O

94.38

94.38

O

0

67.67

25.16

128.72

128.72

200.00

200.00

45.00

10.00

O

O



Table 6. Example 2 - Scenario 1

Purchases and Sales

Chemical

Purchases

1

2

3

4

6

Sales

6

1

•45.00

37.67

0

45.00

45.00

145.00

Period

2

76.00

0

0

75.00

69.64

176.00

(Kton/yr)

3

99.00

0

0

75.00

64.73

199.00

4

110.00

0

0

27.92

110.00

210.00



Table 7. Example 2 - Scenario 2

Selected Process and Production Profiles

Process Period (Kton/yr)

2 3

2

3

jr
9

6

/

8

v 9

10

Capac1ty

Production

Capac1ty

Production

Capacity

Production

Capac1ty

Production

Capacity

Production

Capac1ty

Production

Capacity

Production

Capacity

Production

Capacity

Production

Capac1ty

Production

O

O

0

0

O

0

42.86

42.86

O

O

O

0

54.63

42.86

100.00

100.00

O

0

o

o

67.67

67.57

0

0

63.20

63.20

42.86

42.66

O

0

0

0

64.63

64.63

176.OO

175.00

O

O

O

O

99.10

89.19

O

O

63.20

42.08

42.86

42.86

0

O

34.66

34.66

129.97

127.20

176.OO

176.00

35.00

24.00

O

O

99.10

99.10

O

O

63.20

51.62

42.86

42.86

O

O

34.66

26.47

129.97

129.97

176.OO

176.OO

35.OO

35.00

O

O



Table 8.

Chemical

Example 2 - Scenario 2

Purchases and Sales

Period (Kton/yr)

2 3

Purchases

1

2

3

4

6

Sales

6

0

45.00

20.29

0

45.00

100.00

75.00

33.29

34.82

0

67.36

175.00

99.OO

O

O

38.36

99.OO

199.OO

110.00

0

0

29.38

110.00

210.OO



Table 9. CPU times for examples 1 and 2

a) Example 1

Scenario 1

2.62

4.39

68.20

43.32

39.15

Scenario 2

3.00

4.43

76.79

48.70

43.81

Scenario 3

2.55

4.37

49.81

35.33

31.82

Branch and bound

Branch and bound/cuts

Benders decomposition I

Benders decomposition II

Benders decomposition II/cuts

b) Example 2

Branch

Branch

and

and

bound

bound cuts

Scenario 1

7.81

____

Scenario

11.99

16.34

2

CPU-seconds on IBM-3083. MILP and LP solver: MPSX.



Table 10. Effect of addition of cuts on branch and bound

Example 1

Scenario

Scenario

Scenario

Example 2

Scenario

1

2

3

2

ZIP

(no5)

1,697

1,063

2,236

45,248

ZLP

($105)

1,898

1,246

2,540

46,540

Branch and

No. Branches

11

13

7

183

Bound

No. Pivots

145

142

151

8580

Branch

ZLP N°

($105)

1,874

1,223

2,472

46,236

and Bound/Cuts

. Branches No.

11

12

6

140

Pivots

160

159

96

5182

LINDO computer code.



Table 11. Number of iterations of Benders decomposition for example 1

Benders I Benders II Benders II/Cuts Z Zip

($105)

Scenario 1 17 11 10 1,898 1,697

Scenario 2 19 12 10 1,246 1,063

Scenario 3 12 9 9 2,540 2,235



Table 12, Iterations for alternative Benders decomposition schemes in example 1, scenario 2

Iteration #

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Benders decomposition

zL

— 0 0

684.5

899.7

899.7

899.7

980.

1057.

1057.

1057.

1057.

1057.

1057.

1057.

1057.

1057.

1057.

1063.

1063.

1063.

1063^

zu

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1246.5

1105.

1095.4

1091.7

1063.

Selected

yll

• y32

y12
y12

yll

yll

yll

y13
y13

.7 3 3

'y32

'y31
.7 2 1.

.7 3 1

.7 3 1.

»y13'

'y13'
.7 1 2.

.7 1 2.

.7 1 2.

.7 1 2.

'y32

'y33

*y32
.73i

I

7'

y31

732

y31
y31
y31
y31
y31
y13

s

.7 3 2

'y32
>y33
>y32'y33

Bende1

zL

. 0 0

684.5

746.8

746.8

914.3

1033.8

1033.8

1033.8

1033.8

1039.5

1054.4

1054.4

1063.

s decomposition II

zu

1246.5

1246.5

1246.5

1246.5

1163.

1075.5

1069.5

1067.3

1065.5

1063.8

1063.

Selected y's

y13
y31
yll
y12
yll
yll
y12

y13

'y32
.7 3 3

.7 3 1

*y32

»73i

>y32
.7 3 2

.7 3 1

>y32

Benders

zL

. 0 0

684.5

892.

892.

892.

1027.

1033.

1033.

1040.9

1054.4

1063.

decomposition II/cuts

zu

1223.2

1223.

1223.

1223.

1184.

1071,

1067.

1065.

1063.

.2

.2

.2

3

4

2

5

Selected y's

yn
yn
yn
yn
y12
y12

.7 3 2

'y13'y31*y32

'y32

•y31
>y31
>y32
.7 3 2

»732

* *
Optimum Z 1063. 11 32



CHEMICAL 1

CHEMICAL 2

PROCESS

1

1 t

PROCESS
2

PROCESS

3

CHEMICAL 3

Fig. 1 : Flow Diagram for Example 1
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