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Abstract 
This paper presents a new and efficient method, based on stochastic annealing, to identify optimal 

design configurations from a large number of process alternatives, considering the effects of 
uncertainty.  Case studies of an integrated coal gasification combined cycle (IGCC) power plant are 
presented to illustrate this method.  For this case, the new stochastic synthesis framework reduced 
computational time by 60% compared to an exhaustive search procedure.  Greater efficiencies are 
expected as the number of process configurations increases. 

Introduction 
As the complexity of chemical and energy technologies has increased, the need has 

grown for new computer-aided design tools for process synthesis.  For technologies in the 
early stages of development and demonstration, the need to incorporate uncertainties in the 
process synthesis stage is especially great.  Integrated gasification combined cycle (IGCC) 
systems are an emerging technology for the clean and more efficient use of coal for power 
generation.  Several IGCC designs have been demonstrated on a commercial scale, with other 
advanced concepts currently in the development and demonstration stages. 

The United States Department of Energy (DOE) has developed computer-based 
performance models for several IGCC systems using the Aspen process simulator.  These 
models include different gasifier designs (i.e., fixed-bed, fluidized-bed, and entrained-bed 
gasifiers), and different gas stream cleanup systems based on hot gas or cold gas cleanup 
technologies.  Frey and Rubin (1992) extended the earlier DOE work to include new process 
performance models for environmental control systems, plus capital and operating cost 
models for several variants of IGCC system designs.  These Aspen models typically consist 
of approximately 80-90 unit operation blocks, and up to eight flowsheet sections involving 
gasification, gas cleanup, and power generation units.  Until now, each flowsheet was 
evaluated separately.  However, as the number of technological options increases, an 
exhaustive search through individual flowsheet simulations to identify an optimal design 
configuration becomes computationally expensive.  Thus, a systematic, efficient procedure 
for screening alternatives, and selecting an optimal design configuration, is desirable.   

In this paper, the problem of identifying an optimal design configuration system is posed 
as a process synthesis problem, wherein the alternative technological variants are embedded 
in one flowsheet — a “superstructure” — from which an optimal configuration is identified.  
An additional advance is the explicit treatment of uncertainty, in contrast to traditional 
deterministic analysis.  The presence of uncertainties makes the technology evaluation 



 

process a computationally intensive problem.  This paper presents an efficient approach for 
the solution of this real-world large-scale synthesis problem.   

Process Synthesis Under Uncertainty 
Approaches to process synthesis may be classified into four groups:  (1) the 

thermodynamic approach (Linhoff, 1981), (2) the evolutionary method (Nishida et al., 1981), 
(3) the hierarchical approach based on intuition and judgment (Douglas, 1988), and (4) the 
optimization or algorithmic approach (Grossmann, 1985; Friedler et al. 1995).  These 
approaches, although different in principle, all provide useful directions for process synthesis 
research. 

This paper focuses on the optimization approach to process synthesis.  This approach is 
especially amenable to generalization and to interfacing with modern process simulators.  
The optimizer determines the discrete and continuous decision variables, where discrete 
variables denote the existence or absence of specific units in the flowsheet, and continuous 
variables represent flows, operating conditions, and design parameters of system 
components.  In general, the synthesis problem thus involves two elements:  choosing the 
optimal components of a flowsheet, and optimizing a given flowsheet design. 

Stochastic Optimization Capability 
A generalized framework for analyzing uncertainties systematically has been developed 

around a chemical process simulator in our earlier work (Diwekar and Rubin, 1991).  This 
approach allows for probabilistic modeling of any chemical process flowsheet modeled in a 
simulator, and overcomes the limitations of sensitivity analysis by providing a generalized 
treatment of uncertainties.  Process optimization under uncertainty adds further complexity.  
Figure 1 shows the schematic of the stochastic optimization procedure developed for a given 
flowsheet.  The procedure involves two recursive loops:  the inner stochastic sampling loop, 
and the outer process optimization loop.  Because each loop involves iteration, it is desirable 
to reduce the computational intensity and the interactions between the two loops in order to 
address large-scale synthesis problems. 

Recently, a new recursive sampling technique, known as Hammersley sequence sampling 
(HSS), was shown to exhibit better homogeneity over a multi-variate parameter space 
compared to conventional sampling methods (Diwekar and Kalagnanam, 1997).  Further, it 
was found that the number of samples required for the HSS technique to converge to 
different performance measures of a random output variable (e.g., mean, variance or 
fractiles), subject to input uncertainties, is lower compared to traditional Monte Carlo or 
Latin hypercube sampling techniques.  This rapid convergence property of Hammersley 
sequence sampling has important implications for stochastic modeling of complex processes.  
It suggests that precise estimates of any probabilistic function are achievable using a smaller 
sample size.  This efficient sampling method is used for the inner sampling loop to enhance 
the computational efficiency of the stochastic optimization framework. 

The stochastic annealing algorithm proposed in earlier work (Painton and Diwekar, 1995; 
Chaudhuri and Diwekar, 1996) is designed to efficiently optimize a probabilistic objective 
function, and is used for the outer optimization loop.  The algorithm manipulates the sample 
size automatically, reducing the computational bottleneck of the stochastic optimization 
problem.  This is achieved by augmenting the real objective function with a penalty term that 
incorporates the error band-width for the probability measure.  The optimizer in Figure 1 not 
only obtains values of the decision variables, but also the number of samples required for the 
stochastic model.  Furthermore, it provides the trade-off between accuracy and efficiency by 
selecting a larger number of samples as the optimum design is approached.  Thus, the 
stochastic annealing algorithm minimizes central processing unit (CPU) time by balancing 



 

the trade-off between computational efficiency and solution accuracy via a penalty term in 
the objective function.   

 

Process Synthesis Capability 
To extend the modeling framework to include process synthesis, a process 

“superstructure” is added which includes all of the alternative flowsheet structures under 
consideration.  The presence or absence of superstructure components thus determines a 
particular flowsheet.  The process synthesis environment  then consists of the two loops 
shown in Figure 2.   

The inner loop again is the stochastic sampling loop which assigns probability distributions 
to uncertain parameters and generates a sample set based on a selected sampling technique 
(in this case, HSS sampling).  The outer loop handles flowsheet synthesis and optimization.  
This block predicts the decision variables (both discrete and continuous) and the sample size 
used by the inner loop.  This new process synthesizer has been linked with the public version 
of the Aspen process simulator used by DOE.  Additional details are described elsewhere 
(Chaudhuri and Diwekar, 1996).  In practical terms, these new developments provide a 
capability to handle not only complex process synthesis problems, but also to incorporate 
uncertainties into the process design stage in a computationally affordable manner. 

Application to IGCC Design 
The new process synthesis capability is illustrated in the context of a design decision for 

an IGCC power plant.  A typical plant consists of three major sections: gasification, gas 
cleanup, and power generation.  IGCC systems are classified primarily on the type of gasifier 
technology, oxidant, and gas cleanup method.  Since U.S. coals have a wide range of 
properties that affect the thermal, environmental, and economic performance of IGCC 
systems, coal choice also is an important design variable.   

Different combinations of coals, gasifiers, oxidants, emission control systems, and power 
generation equipment can give rise to a large array of different system configurations.  For 
example, a comparison of systems involving six coals, three gasifiers, two oxidants, four gas 
cleanup methods and two power generation units would yield a total of 288 different 
flowsheets that would have to be structured and analyzed individually in Aspen using the 
current DOE approach.  Such an effort would be extremely time-consuming and 
computationally burdensome.  In contrast, the current process synthesis approach would 
embed all of these design options in the single superstructure representation.  Since this study 
represents a first attempt to synthesize an IGCC flowsheet in the presence of uncertainties, 
the problem formulation was kept relatively simple in order to demonstrate the method, and 
to illustrate the computational efficiency achievable.  The case study thus seeks to identify 
the optimal design configuration based solely on a choice of coal type and oxidant feed, 
involving a total of twelve different options. 

Case Study Assumptions 
The IGCC system modeled in this study employs the KRW gasifier, which is a pressurized 
fluidized-bed system.  Steam plus air or oxygen react with coal to form a fuel gas stream 
containing CO, CO2, CH4, H2, H2S, COS, and NH3.  In-bed desulfurization may be performed 
using limestone or dolomite, which combines with sulfur to form calcium sulfide that is 
oxidized in a sulfation unit to form calcium sulfate.  The fuel gas stream exiting the gasifier 
passes through ceramic cyclone filters which remove particulates.  The gas then enters a 
desulfurization section where hydrogen sulfide is selectively adsorbed in a fixed bed of zinc 
ferrite pellets at 593C° (1100°F).  The sulfided sorbent is regenerated using air as the oxidant 



 

and steam as the diluent.  The regeneration off-gas containing SO2 is then recycled to the 
gasifier.  The clean fuel gas is burned in a gas turbine to produce power.  Additional power is 
obtained from steam generated by the hot combustion gases exiting the turbine (Frey and 
Rubin, 1992). 

The plant modeled is a nominal 700 MW facility operating at an annual capacity factor of 
80 percent.  An overall schematic of the plant is shown in Figure 3.  Values of process 
performance and cost parameters, as well as key uncertainties, have been characterized in 
previous work (Frey et al., 1994).  The uncertainty estimates shown in Table I were based on 
literature reviews, data analysis, and expert judgments of DOE process engineers based on 
the KRW IGCC system with hot gas cleanup.  Six bituminous coals were analyzed (Table II). 

The case study focused on options for coal choice and desulfurization.  The superstructure for 
the case study is shown in Figure 4.  Although in-bed and gas stream desulfurization are 
shown as discrete options, previous studies showed that the combination of these two 
technologies yielded the best economic performance (Diwekar and Rubin, 1992b).  
Therefore, only this option was included in the current flowsheet analysis.  The optimization 
problem, based on expected values, was to minimize the expected cost of electricity for the 
overall plant subject to a maximum sulfur dioxide emission rate of 0.015 lbs/106 Btu.  
Although this sulfur constraint is far more stringent than current U.S. regulations, it is 
representative of the capability of advanced IGCC technology, and consistent with DOE’s 
strategic planning objectives (Longwell, et al., 1995).   

Case Study Results 
Table III summarizes key results from the analysis.  The numbers shown are the mean 

values of the probabilistic result for each case.  One sees that the overall plant configuration 
with lowest expected cost of electricity (COE) is the air-blown system using the Utah coal.  
The most expensive configuration is the oxygen-blown system using Illinois No. 6 coal.  
Note that the lowest cost system is not the most efficient:  the highest thermal efficiency 
(46.6%) is found to be the air-blown system using the western Kentucky coal.  Total plant 
capital costs also vary across systems, with a mean value range of $1437 to $1664 /kW (all 
costs in constant 1994 dollars).  For any particular coal the air-blown system has a lower 
overall cost than the oxygen-blown system. 

The effect of uncertainties is illustrated in Figure 5, which show the cumulative 
distribution function (CDF) for the total capital cost, for the least-cost and highest-cost 
system configurations.  The CDF in Figure 5 shows an uncertainty of about $350/kW in the 
capital cost of each system, with some overlap in the two frequency distributions (i.e., some 
probability of having the same capital cost).  Since computer optimization methods 
sometimes make “knife-edge” choices in meeting an objective function, it is interesting to 
also examine the difference in cost between the optimum solution, and the next best choice.  
Figure 6 shows the probabilistic result for COE.  The solid vertical line shows results from 
the deterministic analysis.  The CDF shows a positive difference over the entire range, 
indicating that the nominal least-cost configuration is indeed robust over the assumed range 
of input uncertainties.  Note that the CDF is positively skewed relative to the deterministic 
result.  This indicates the likelihood of a much higher cost savings than predicted from the 
deterministic analysis.  On the other hand, had any of the cost differences been negative, a 
situation would have been revealed wherein an alternative configuration would have a lower 
overall cost under some circumstances. 

In this case study, the stochastic synthesis revealed the same optimal process configuration as 
a deterministic analysis.  The probabilistic analysis, however, showed that this choice is 
robust in the face of the technical and economic uncertainties that were specified.  In other 



 

cases, the inclusion of uncertainties in process synthesis can lead to an altogether different 
optimum relative to a deterministic analysis (Narayan, et al., 1996).  Thus, the new stochastic 
synthesis capacity demonstrated here can be a powerful tool in identifying designs that are 
resilient in the face of uncertainties. 

 

Computational Savings 
A comparative study also was performed in which individual flowsheet simulations for 

the twelve different coal and oxidant combinations were run for a fixed sample size of 100 
samples.  Results were compared to those from the new process synthesis approach.  The 
single synthesis run yielded the same result as the twelve individual runs.  However, 
stochastic annealing took 36,180 sec of CPU time compared to 89,143 sec for the twelve 
individual simulation runs.  This is a savings of 60 percent, or 15 hours in CPU time alone for 
this case study.  Additional savings accrued in reduced setup time for one large run compared 
to separate multiple runs.  Computational savings are expected to grow as the number of 
decision variables increases.   

Conclusions 
The large number of technical and economic uncertainties associated with advanced 

power systems now under development, coupled with an increasingly large array of design 
alternatives, requires new methods of design and analysis to identify robust, optimal 
configurations.  The stochastic synthesis approach demonstrated in this paper provides an 
efficient method for screening a large number of alternatives to identify the optimal design 
configuration in the face of uncertainties.  Future work will extend this analysis to include a 
larger number of flowsheet options for advanced energy systems design.  
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Figure 1. Stochastic optimization framework 
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Figure 3.  Simplified schematic of IGCC system  
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Figure 4.  Schematic of flowsheet  
superstructure for IGCC case study 
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Table I.  Uncertainty assumptions for case study 
————————————————————————— 

Parameter Det. Valuea Probabilistic  
  Valueb 

————————————————————————— 
PERFORMANCE   

Gasifier temp, °F 1900 T:  1900, 1900, 1950 
Carbon Conversion, % 95 T:  90, 95, 97 
Oxygen/carbon molar ratio 0.46 T:  0.45, 0.46, 0.47 
Fuel NOx conversion, 
% NH3 to NOx 

90 T:  50, 90, 100 

Thermal NOx conversion, 
fraction air N fixated x 105 

4.25 U:  1.0, 7.5 

Gasifier NH3 yield, 
% of coal N 

10 T:  0.5, 10, 10 

Conversion of CaS to 
CaSO4, % 

60 U:  30, 90 

Gas tubine CO conversion, 
wt % CO in fuel gas 

98.85 U:  97.72, 99.99 

   
COST PARAMETERS   

Gasifier direct cost uncertainty, 
% nominal direct capital cost 

20 T:  0, 20, 40 

Gas turbine direct cost uncertainty, 
%nominal direct capital cost 

25 U:  0, 50 

Standard error of HRSG direct cost 
model, $ million 

0 N::  -17.3, 17.3 

Indirect construction cost factor, % 20 T:  15, 20, 25 
Project contingency factor, % 17.5 U:  10, 25 
Limestone cost, $/ton 18 T:  18, 18, 25 
Ash disposal cost, $/ton 10 T:  10, 10, 25 
Maint. cost factor, gasific., 
% process area total cost 

4.5 T:  3, 4.5, 6 

Maint. cost factor, gas turbine 
% process area total cost 

2 T:  15, 2, 6 

————————————————————————— 
aDeterministic (nominal) value 
bT=triangular dist (min, mode, max); U=uniform dist 
(min,max); N = normal dist (range shown is three standard 
deviations about the mean) 

 
Table II.  Coal properties for case studies 

Parameter Ill. 5 Ill. 6 W. Ky. E. Ky. W.VA      Utah 
% Ash 7.10 10.00 8.51 5.10 7.30 7.72 
% Carbon 77.27 69.53 74.32 77.19 78.60 75.23 
% Hydrogen 15.43 5.33 5.12 5.83 5.30 5.37 
% Nitrogen 1.88 1.25 1.47 1.35 1.60 1.39 
% Chlorine 0.00 0.00 0.04 0.18 0.00 0.01 
% Sulfur 1.58 3.86 3.25 1.05 1.70 0.54 
% Oxygen 6.74 10.03 7.04 10.24 5.50 9.28 
HHV (Btu/lb) 13,250 12,774 12,245 13,524 13,760 14,140 
Price ($/MBtu) 1.368 1.368 1.601 1.601 1.672 1.341 

 

Table III. Mean value results for optimal 
 process configuration using air (oxygen)a

—————————————————————————— 
Parameter Ill.#5 Ill.#6  Ky E.Ky. Va. Utah 
—————————————————————————— 
Net Power (MW) 711 

(668) 
730 

(687) 
713 

(678) 
707 

(664) 
707 

(664) 
706 

(663) 
Efficiency (%) 44.3 

(40.2) 
42.4 

(38.9) 
46.6 

(42.5) 
40.5 

(36.5) 
43.2 

(39.0) 
42.4 

(38.4) 
SOx (lb/MBtu) .0005 .0006 .0007 .0004 .0005 .0004 
NOx (lb/MBtu) 0.66 

(0.64) 
0.49 

(0.48) 
0.59 

(0.57) 
0.48 

(0.47) 
0.57 

(0.56) 
0.51 

(0.50) 
Capital Cost ($/kW) 1452 

(1618) 
1558 

(1664) 
1485 

(1649) 
1448 

(1610) 
1455 

(1626) 
1437 

(1605) 
COE (mills/kWh) 46.3 

(50.0) 
51.6 

(53.3) 
49.7 

(52.5) 
48.2 

(51.1) 
48.5 

(51.6) 
45.3 

(48.0) 
—————————————————————————— aNumbers in parenthesis refer to the oxygen-blown 

systems.  
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